Miscele by Tom

Due gas (vedi tabella) sono miscelati a volume costante. Determinare: $n, \chi, MW_m, w_i, \bar{c}_{vm}, \bar{c}_{pm}, c_v, c_p, R, T_m, p_i, V, V_i e \gamma_m$.

Specie	Massa kg	MW	N freedom	Т
N2	8	28	5	300
CO2	2	44	7	800
Tot	10			
Ro	8314.5	J/kmolK		
р	101300	Pa		
	n Kmole	χ ,p/pm,V/\	χ*MW	wi=mi/m
N2	0.28571	0.862745	24.15686	0.8
CO2	0.04545	0.137255	6.039216	0.2
Tot	0.33117	1	30.19608	

$$\begin{split} n_{N_2} &= \frac{m_{N_2}}{MW_{N_2}} = \frac{8}{28} = 0.286 \cdot kmol & n_{CO_2} = \frac{m_{CO_2}}{MW_{CO_2}} = \frac{2}{44} = 0.0455 \cdot kmol \\ n_m &= n_{N_2} + n_{CO_2} = 0.286 + 0.0455 = 0.332 \cdot kmol \\ \chi_{N_2} &= \frac{n_{N_2}}{n_m} = \frac{0.286}{0.332} = 0.861 & \chi_{CO_2} = 1 - \chi_{N_2} = 1 - 0.861 = 0.139 \\ MW_m &= \chi_{N_2} MW_{N_2} + \chi_{CO_2} MW_{CO_2} = \frac{m_m}{n_m} = \frac{10}{0.332} = 30.1 \cdot \frac{kg}{kmol} \\ w_{N_2} &= \frac{m_{N_2}}{m_m} = \frac{8}{10} = 0.8 & \dots \\ \bar{c}_{vN_2} &= \bar{R} \frac{5}{2} = 8314.5 \cdot \frac{5}{2} = 20.8 \cdot \frac{kJ}{kmole \cdot K} & \bar{c}_{vCO_2} = \bar{R} \frac{7}{2} = 8314.5 \cdot \frac{7}{2} = 29.1 \cdot \frac{kJ}{kmole \cdot K} \\ \bar{c}_{vm} &= \bar{c}_{vN_2} \chi_{N_2} + \bar{c}_{vCO_2} \chi_{CO_2} = 20.8 \cdot 0.861 + 29.1 \cdot (1 - 0.861) = 21.9 \cdot \frac{kJ}{kmole \cdot K} \\ \bar{c}_{pm} &= \bar{c}_{vm} + \bar{R} = 21.9 + 8.3145 = 30.2 \cdot \frac{kJ}{kmole \cdot K} & \dots \\ c_{vN_2} &= \frac{\bar{c}_{vN_2}}{MW_{N_2}} = \frac{20.8}{28} = 743 \cdot \frac{J}{kg \cdot K} & \dots \\ c_{vm} &= \frac{\bar{c}_{vm}}{MW_m} = \frac{21.9}{30.1} = 728 \cdot \frac{J}{kg \cdot K} & \dots \\ c_{vm} &= \frac{\bar{c}_{vm}}{MW_m} = \frac{8314.5}{30.1} = 276 \cdot \frac{J}{kg \cdot K} \\ T_M &= \frac{c_{vN_2} w_{N_2} T_{N_2} + c_{vCO_2} w_{CO_2} T_{CO_2}}{c_{vvo}} = \frac{743 \cdot 0.8 \cdot 300 + 661 \cdot 0.2 \cdot 800}{728} = 390 \cdot K \end{split}$$

$$p_{N2} = p_m \chi_{N_2} = 101.3 \cdot 0.861 = 87.2 \cdot kPa \qquad \dots$$

$$V_m = \frac{n_{N_2} \bar{R} T_m}{p_{N_2}} = \frac{n_m \bar{R} T_m}{p_m} = \frac{0.332 \cdot 8314.5 \cdot 393}{101,300} = 10.63 \cdot m^3$$

$$V_{N_2} = V_m \chi_{N_2} = \frac{n_{N_2} \bar{R} T_m}{p_m} = 10.63 \cdot 0.865 = 9.152 \cdot m^3 \quad \dots$$

$$\gamma_m = \frac{\bar{c}_{pm}}{\bar{c}_{vm}} = \frac{30.2}{21.9} = 1.379$$

.,, .,,		4		Ψ
j/kmolK	CV	cv*χ	Ср	cp*χ
N2	20786.3	17933.24	29100.75	25106.529
CO2	29100.8	3994.221	37415.25	5135.4265
	medio	21927.46		30241.956
	J/kgK			
	CV	cv wi	ср	cp wi
N2	742.366	593.8929	1039.313	831.45
CO2	661.381	132.2761	850.3466	170.06932
	Medio	726.169		1001.5193
γ	1.37918			
	wi cv T	wi cp T	R	R wi
N2	178168	249435	296.9464	237.55714
CO2	105821	136055.5	188.9659	37.793182
Somma	283989	385490.5		275.35032
Tm	391.078	384.9057		
		V costante	p costante	
	Vm	10.63016	10.46238	
	pi	Vi	Vi	
N2	87396.1	9.171114	9.026366	
CO2	13903.9	1.459041	1.436013	
		10.63016	10.46238	

Write the chemical reaction for the complete combustion of JP-4 and air. JP-4 has the formula CH_{1.93}. Also, calculate the stoichiometric fuel-to-air ratio for this blended jet fuel.

$$CH_{1.93} + x(O_2 + 3.76N_2) \rightarrow CO_2 + yH_2O + z3.76N_2$$

$$x = z \qquad 2y = 1.93 \qquad 2x = 2 + y$$

$$2x = 2 + \frac{1.93}{2} \rightarrow 2x = \frac{4 + 1.93}{2} \rightarrow x = \frac{5.93}{4}$$

$$CH_{1.93} + \frac{5.93}{4}(O_2 + 3.76N_2) \rightarrow CO_2 + \frac{1.93}{2}H_2O + \frac{5.93}{4}3.76N_2$$

$$f = \frac{\dot{m}_f}{\dot{m}_0} = \frac{1 \cdot 12 + 1 \cdot 1.93}{\frac{5.93}{4}(2 \cdot 16 + 3.76 \cdot 2 \cdot 14)} = 0.0684$$

Calculate the lower and higher heating values of octane, C_8H_{18} ,in the stoichiometric chemical reaction with oxygen at a reference temperature of 298.16 K and the pressure of 1 bar $(h_{VanH_2O} = 2243kJ/kg)$.

on dioxide Gas	-393.522	-8.944
on monoxide Gas	-110.53	-3.947
ogen Gas	0	0
ogen atom Gas	217.999	217.999
oxyl radical Gas	39.463	2.321
Gas	-241.827	-13.435
ogen peroxide Gas	-136.106	-4.003
alcohol Liquid	-277.20	-6.026
ine Gas	-103.90	-2.3614
e Gas	-126.148	-2.175
e Gas	-208.447	-1.8285
ne Liquid	-249.93	-2.1924
	on monoxide Gas ogen Gas ogen atom Gas oxyl radical Gas ogen peroxide Gas alcohol Liquid one Gas ogen Gas ogen Gas	on monoxide Gas -110.53 ogen Gas 0 ogen atom Gas 217.999 oxyl radical Gas 39.463 ogen peroxide Gas -241.827 ogen peroxide Gas -136.106 alcohol Liquid -277.20 one Gas -103.90 one Gas -126.148 one Gas -208.447

$$\begin{split} C_8 H_{18} + & \frac{25}{2} O_2 \rightarrow 8CO_2 + 9H_2O \\ Q_{ext} = & \sum_j \left[n_j \bar{c}_{pj} (T_2 - T_f) \right]_{prod} - \sum_i \left[n_i \bar{c}_{pi} (T_1 - T_f) \right]_{rea} + \Delta H_{RPf} \\ Q_{ext} = & \Delta H_{RPf} = \sum_j \left[n_j \Delta \bar{h}_{fj}^0 \right]_{prod} - \sum_i \left[n_i \Delta \bar{h}_{fi}^0 \right]_{rea} = -8 \cdot 394 - 9 \cdot 242 - (-208) \\ & = -5120 \cdot \frac{kJ \cdot kmol}{gmol} = -5.120 \cdot MJ \\ LHV = & \frac{-Q_{ext}}{m_f} = \frac{5114 \cdot 10^3}{12 \cdot 8 + 1 \cdot 18} = 44.5 \cdot 10^3 \cdot \frac{kJ}{kg} \\ HHV = LHV + & \frac{m_{H_2O}}{m_{C_0H_{10}}} h_{VapH_2O} = 44.5 \cdot 10^3 + \frac{18 \cdot 9}{12 \cdot 8 + 1 \cdot 18} 2243 = 47.7 \cdot 10^3 \cdot \frac{kJ}{kg} \end{split}$$

One mole of octane is burned with 120% theoretical air. Assuming that the octane and air enter the combustion chamber at 25*C* and the excess oxygen and nitrogen in the reaction will not dissociate, calculate

- (a) the fuel-air ratio
- (b) the equivalence ratio ϕ
- (c) the adiabatic flame temperature T_{af}

Assume: $\bar{c}_{p\text{CO}_2}=61.9kJ/kmol\cdot K$, $\bar{c}_{p\text{O}_2}=37.8kJ/kmol\cdot K$, $\bar{c}_{p\text{N}_2}=33.6kJ/kmol\cdot K$ $\bar{c}_{p\text{H}_2\text{O}}=52.3kJ/kmol\cdot K$

(d) Evaluate also the flame temperature by considering non constant specific heat.

%Oss	1.2		FA7.9					
Reagenti	n	MW	h0f	Prodotti	n	MW	h0f	ср
C8H18	1	114	-208.447	CO2	8	44	-393.522	61.9
O2	15	32		H2O	9	18	-241.827	52.3
N2	56.4	28		N2	56.4	28		33.0
Tot	72.4			O2	2.5	32		37.8
Tot	298.15			Tot	75.9			
mf	114		ΔΗ	-5.116E+06				
mair	2059.2			Stima	Valore me	dio esatto		
f	0.05536		Cpm	38.938603	36.4777			
fst	0.06643		Т	2029.2633	2146.04			
ϕ	0.83333		Dif	-324,038				
Tf guess	2029		Err%	-6.334E+00				

$$C_8H_{18} + x(O_2 + 3.76N_2) \rightarrow 8CO_2 + 9H_2O + x3.76N_2$$

$$2x = 16 + 9 \rightarrow x = 25/2 = 12.5$$

$$C_8H_{18} + 12.5(O_2 + 3.76N_2) \rightarrow 8CO_2 + 9H_2O + 12.5 \cdot 3.76N_2$$

$$\alpha = 1.2$$

$$C_8H_{18} + \alpha x(O_2 + 3.76N_2) \rightarrow 8CO_2 + 9H_2O + yO_2 + \alpha x3.76N_2$$

$$v = x(\alpha - 1) = 12.5 \cdot 0.2 = 2.5$$

$$C_8H_{18} + 15(O_2 + 3.76N_2) \rightarrow 8CO_2 + 9H_2O + 2.5O_2 + 15 \cdot 3.76N_2$$

(a) the fuel-air ratio

$$f = \frac{\dot{m}_f}{\dot{m}_0} = \frac{8 \cdot 12 + 18 \cdot 1}{15(2 \cdot 16 + 3.76 \cdot 2 \cdot 14)} = \frac{114}{2060} = 0.0553$$

(b) the equivalence ratio ϕ

$$\phi = \frac{f}{f_{st}} = \frac{0.0554}{\frac{8 \cdot 12 + 18 \cdot 1}{12.5(2 \cdot 16 + 3.76 \cdot 2 \cdot 14)}} = \frac{1}{\alpha} = 0.833$$

(c) the adiabatic flame temperature T_{af}

$$Q_{ext} = \sum_{j} [n_{j}\bar{c}_{pj}(T_{2} - T_{f})]_{prod} - \sum_{i} [n_{i}\bar{c}_{pi}(T_{1} - T_{f})]_{rea} + \Delta H_{RPf}$$

$$\begin{split} Q_{ext} &= 0 = \sum_{j} \left[n_{j} \bar{c}_{pj} (T_{2} - T_{f}) \right]_{prod} + \Delta H_{RPf} \\ \Delta H_{RPf} &= \sum_{j} \left[n_{j} \Delta \bar{h}_{fj}^{0} \right]_{prod} - \sum_{i} \left[n_{i} \Delta \bar{h}_{fi}^{0} \right]_{rea} = 10^{3} \left(-8 \cdot 394 - 9 \cdot 242 - (-1 \cdot 208) \right) \\ &= -5120 \cdot \frac{MJ}{kmol_{C_{8}H_{18}}} \\ n_{m} &= 8 + 9 + 2.5 + 15 \cdot 3.76 = 75.9 \\ c_{pm_{prod}} &= \sum_{j} \chi_{j} \bar{c}_{pj} = \frac{8 \cdot 61.9 + 9 \cdot 52.3 + 2.5 \cdot 37.8 + 15 \cdot 3.76 \cdot 33.6}{75.9} = 38.9 \cdot \frac{kJ}{kmol \cdot K} \\ n_{m} c_{pm_{prod}} (T_{2} - T_{f}) &= -\Delta H_{RPf} \\ T_{2} &= T_{f} - \frac{\Delta H_{RPf}}{n_{m} c_{pm_{prod}}} = 298.15 + \frac{5120 \cdot 10^{3}}{75.9 \cdot 38.9} = 2030 \cdot K \end{split}$$

■ TABLE 7.2

Molar Specific Heats of Various Gases

Gases at low pressures $\bar{c}_{p0} = \text{kJ/kmol} \cdot \text{K} \ \theta = \text{T(K)/100}$

Gas		Range K	Max. error (%)
$\overline{N_2}$	$\bar{c}_{p0} = 39.060 - 512.79\theta^{-1.5} + 1072.7\theta^{-2} - 820.40\theta^{-3}$	300–3500	0.43
O_2	$\bar{c}_{p0} = 37.432 + 0.020102\theta^{1.5} - 178.57\theta^{-1.5} + 236.88\theta^{-2}$	300-3500	0.30
H_2	$\bar{c}_{n0} = 56.505 - 702.74\theta^{-0.75} + 1165.0\theta^{-1} - 560.70\theta^{-1.5}$	300-3500	0.60
CO	$\bar{c}_{n0} = 69.145 - 0.70463\theta^{0.75} - 200.77\theta^{-0.5} + 176.76\theta^{-0.75}$	300-3500	0.42
OH	$\bar{c}_{n0} = 81.564 - 59.350\theta^{0.25} + 17.329\theta^{0.75} - 4.2660\theta$	300-3500	0.43
НО	$\bar{c}_{p0} = 59.283 - 1.7096\theta^{0.5} - 70.613\theta^{-0.5} + 74.889\theta^{-1.5}$	300-3500	0.34
H_2O	$\bar{c}_{p0} = 143.05 - 183.54\theta^{0.25} + 82.751\theta^{0.5} - 3.6989\theta$	300-3500	0.43
CO_2	$\bar{c}_{n0} = -3.7357 + 30.529\theta^{0.5} - 4.1034\theta + 0.024198\theta^2$	300-3500	0.19
NO_2	$\bar{c}_{p0} = 46.045 + 216.10\theta^{-0.5} - 363.66\theta^{-0.75} + 232.550\theta^{-2}$	300-3500	0.26
CH_4	$\bar{c}_{n0} = 672.87 + 439.74\theta^{0.25} - 24.875\theta^{0.75} + 323.88\theta^{-0.5}$	300-2000	0.15
C_2H_4	$\bar{c}_{p0} = 95.395 + 123.15\theta^{0.5} - 35.641\theta^{0.75} + 182.77\theta^{-3}$	300-2000	0.07
C_2H_6	$\bar{c}_{p0} = 6.895 + 17.26\theta - 0.6402\theta^2 + 0.00728\theta^3$	300-1500	0.83
C_3H_8	$\bar{c}_{p0} = -4.042 + 30.46\theta - 1.571\theta^2 + 0.03171\theta^3$	300-1500	0.40
C_4H_{10}	$\bar{c}_{p0} = 3.954 + 37.12\theta - 1.833\theta^2 + 0.03498 \theta^3$	300-1500	0.54

Source: Adapted from Van Wylen and Sonntag 1985.

(d) Evaluate also the flame temperature by considering non constant specific heat.

$$\begin{split} & \bar{h}_{j} = \left(\int_{T_{f}}^{T_{2}} \bar{c}_{pj} dT + \Delta \bar{h}_{fj}^{0} \right) & \bar{c}_{pj} = \frac{1}{T_{2} - T_{f}} \int_{T_{f}}^{T_{2}} \bar{c}_{pj} dT & \theta = \frac{T}{100} \\ & \bar{c}_{p_{CO_{2}}} = \frac{1}{T_{2} - T_{f}} \int_{T_{f}}^{T_{2}} 100 \sum (a_{i} \theta^{e_{i}}) d\left(\frac{T}{100}\right) = \frac{1}{T_{2} - T_{f}} \left[100 \frac{\sum a_{i} \theta^{e_{i}+1}}{e_{i}+1} \right]_{T_{f}}^{T_{2}} = \frac{1}{T_{2} - T_{f}} \left[T \frac{\sum a_{i} \theta^{e_{i}}}{e_{i}+1} \right]_{T_{f}}^{T_{2}} \\ & \bar{c}_{p_{CO_{2}}} = \frac{1}{T_{2} - T_{f}} \left[-3.736 \cdot T + \frac{30.53}{1.5} \cdot T \left(\frac{T}{100}\right)^{0.5} - \frac{4.103}{2} \cdot T \left(\frac{T}{100}\right)^{1} + \frac{0.02420}{3} \cdot T \left(\frac{T}{100}\right)^{2} \right]_{T_{f}}^{T_{2}} \end{split}$$

$$\begin{split} \bar{c}_{p_{CO_2}} &= \frac{\left[(-7,590 + 186,200 - 84,500 + 6,750) - (-1,115 + 10,470 - 1,822 + 21.4) \right]}{T_2 - T_f} \\ &= \frac{\left[100,900 - 7,550 \right]}{2030 - 298.15} = 53.9 \cdot \frac{kJ}{kmol \cdot K} \cdot K \\ T_2 &= T_f - \frac{\Delta H_{RPf}}{n_m c_{pm_{read}}} = 298.15 + \frac{5120 \cdot 10^3}{75.9 \cdot 36.5} = 2150 \cdot K \end{split}$$

Si deve iterare e si ha:

$$T_2 = T_f - \frac{\Delta H_{RPf}}{n_m c_{pm_{prod}}} = 298.15 + \frac{5120 \cdot 10^3}{75.9 \cdot 36.9} = 2130 \cdot K$$

$$T_2 = T_f - \frac{\Delta H_{RPf}}{n_m c_{pm_{prod}}} = 298.15 + \frac{5120 \cdot 10^3}{75.9 \cdot 36.8} = 2130 \cdot K$$

Da https://cearun.grc.nasa.gov/ThermoBuild/:

$$\begin{split} h_{2029} - h_{298.15} &= 93.19 \frac{kJ}{mole} \\ \bar{c}_{p_{CO_2}} &= \frac{h_{2029} - h_{298.15}}{2030 - 298.15} = \frac{93.249 \cdot 1000}{2030 - 298.15} = 53.8 \cdot \frac{kJ}{kmol \cdot K} \cdot K \end{split}$$

Prodotti	Δ h	∆h n	cpm		
CO2	93,144	745,156	53.81429		
H2O	74,735	672,613	43.1781		
N2	57,157	3,223,638	33.02233		
O2	60,291	150,727	34.83301		
	Tot	4,792,134			
https://ww	w.grc.nasa	.gov/www/	CEAWeb/ce	<u>aThermoBuil</u>	d.htm
	CO2	T1	298.15	T2	2029
Cost	Esp	Ср	Int	Ср	Int
-3.7357	0	-3.7357	-1113.8	-3.7357	-7,580
30.529	0.5	52.71449	10477.88	137.51612	186,013
-4.1034	1	-12.2343	-1823.83	-83.25799	-84,465
0.024198	2	0.215104	21.37778	9.9619319	6,738
		36.9596	7561.635	60.484363	100,706
				Diff	93,144
H2O		T1	298.15	T2	2029
Cost	Esp	Ср	Int	Ср	Int
143.05	0	143.05	42650.36	143.05	290,248
-183.54	0.25	-241.179	-57526	-389.5393	-632,300
82.751	0.5	142.8863	28401.04	372.7471	504,203
-3.6689	1	-10.9388	-1630.71	-74.44198	-75,521
		33.81853	11894.68	51.815856	86,630
					74,735
N2		T1	298.15	T2	2029
Cost	Esp	Ср	Int	Ср	Int
39.06	0	39.06	11645.74	39.06	79,253
-512.79	-1.5	-99.6064	59395.31	-5.610693	22,768
1072.7	-2	120.6726	-35978.5	2.6056386	-5,287
-820.4	-3	-30.9543	4614.515	-0.098215	100
		29.17186	39677.03	35.956731	96,834
					57,157
O2		T1	298.15	T2	2029
Cost	Esp	Ср	Int	Ср	Int
37.432	0	37.432	11160.35	37.432	75,950
0.020102	1.5	0.103488	12.34202	1.837225	1,491
-178.57	-1.5	-34.6862	20683.36	-1.953824	7,929
236.88	-2	26.64764	-7944.99	0.5753926	-1,167
		29.49696	23911.06	37.890794	84,202
					60,291

One mole of oxygen, $O_2(g)$, is heated to 4000 K at the pressure of p_m . A fraction of the oxygen dissociates to oxygen atoms according to $xO_2 \rightarrow 2xO$. Assuming a state of equilibrium is reached in the mixture, calculate

- (a) mole fraction of O_2 at equilibrium when p_m is 1 atm.
- (b) mole fraction of O_2 at equilibrium when p_m is 10 atm.

Assume the equilibrium constant for the reaction $O_2 \leftrightarrow 2O$ is $K_p=2.19$ atm at the temperature of 4000 K. Explain the effect of pressure on dissociation.

T(K)	$\frac{1}{2}0_2 \leftrightarrow 0$	$\frac{1}{2}$ H ₂ \leftrightarrow H	$\frac{1}{2}H_2 + \frac{1}{2}O_2 \leftrightarrow OH$	$H_2 + \frac{1}{2}O_2 \leftrightarrow H_2O$
3500	-0.310	-0.231	0.160	0.712
4000	0.170	0.201	0.233	0.238

Logaritmo in base 10 delle cosanti d'equilibrio K

$$K = \frac{\chi_0}{\chi_{O_2}^{\frac{1}{2}}} p^{\frac{1}{2}} = 10^{0.170} = 1.479 \qquad K_p = \frac{\chi_0^2}{\chi_{O_2}} p = K^2 = 1.479^2 = 2.187$$

$$0_2 \to (1 - x)0_2 + 2x0 \qquad n = 1 - x + 2x = 1 + x \qquad \chi_0 = \frac{2x}{1 + x} \qquad \chi_{O_2} = \frac{1 - x}{1 + x}$$

$$\frac{\left(\frac{2x}{1 + x}\right)^2}{\frac{1 - x}{1 + x}} p = K^2 = 1.479^2 = 2.187 \qquad \frac{4x^2}{1 + x} p = K_p (1 - x) \qquad 4x^2 p = 2.187 (1 - x^2)$$

$$x^2 (4p + 2.187) = 2.187 \qquad x = \sqrt{\frac{2.187}{4p + 2.187}}$$

$$p_m = 1 \qquad x = \sqrt{\frac{2.187}{4 + 2.187}} = 0.595$$

$$\chi_0 = \frac{2 \cdot 0.595}{1 + 0.595} = 0.746 \qquad \chi_{O_2} = \frac{1 - 0.595}{1 + 0.595} = 0.254$$

$$p_m = 10 \qquad x = \sqrt{\frac{2.187}{40 + 2.187}} = 0.228$$

$$\chi_0 = \frac{2 \cdot 0.228}{1 + 0.228} = 0.371 \qquad \chi_{O_2} = \frac{1 - 0.228}{1 + 0.228} = 0.629$$

In realtà se si considera la reazione $xO_2 \rightarrow 2xO$ la costante sarebbe Kx:

$$K_x = \frac{\chi_O^{2x}}{\chi_{O_2}^x} p^{2x-x} = \frac{\chi_O^{2x}}{\chi_{O_2}^x} p^x = K^{2x} = K_p^x$$

Si dovrebbe risolvere quindi:

$$\frac{\left(\frac{2x}{1+x}\right)^{2x}}{\left(\frac{1-x}{1+x}\right)^x}p^x = K_x = K^{2x} = K_p^x$$

Ma facendo la radice x esima di questa equazione si riottiene quella precedente:

$$\sqrt[x]{\frac{\left(\frac{2x}{1+x}\right)^{2x}}{\left(\frac{1-x}{1+x}\right)^{x}}p^{x}} = \frac{\left(\frac{2x}{1+x}\right)^{2}}{\frac{1-x}{1+x}}p = \sqrt[x]{K_{x}} = \sqrt[x]{K^{2x}} = \sqrt{K_{p}^{x}} = K_{p}$$