Fa 11.10

A turbojet engine has the following design parameters (which is at takeoff):

$$\begin{split} M_0 &= 0, p_0 = 101.3 \ kPa, T_0 = 15C, \gamma_c = 1.4, c_{pc} = \ 1004 \ J/kg \ K, \pi_d = 0.95, \\ \pi_c &= \ 30, e_c = \ 0.90, Q_R = \ 42,600 \ kJ/kg, \pi_b = \ 0.95, \eta_b = \ 0.98, \\ T_{t4} &= \ 1700 \ C, \eta_m = \ 0.98, e_t = \ 0.85, \gamma_t = \ 1.33, c_{pt} = \ 1156 \ J/kgK, \\ \pi_n &= \ 0.90, p_9 = \ p_0 \end{split}$$

This engine powers an aircraft that cruises at $M_0=0.80$ at an altitude where $T_0=-35C$, $p_0=20\ kPa$. The turbine entry temperature at cruise is $T_{t4}=1500C$. Assume that the engine has the same component efficiencies at cruise and takeoff, and the nozzle is perfectly expanded at cruise, as well. Calculate

(a) the exhaust velocity V_9 (in m/s) at the design point, i.e., at takeoff

	_		_	_			
	2	3	4	5	9		
	diff	comp	CC	Tur	No		
Cp	1004			1156	J/kgs	Mz	0.5
γ	1.4			1.33		N	7460
π	0.95	30	0.95		0.9	m2	77
η , $e_{c,t}$		0.9	0.98	0.85		Tref	288.15
Tt				1973		Pref	101,300
M0	0		po/p9	1	QR	42600	kJ/kgK
Т0	288	K	p0	101,300	Pa	$\eta_{\it m}$	0.98
k	0.286	K	3	0.248			
R	287			287			
a0	340	m/s	V0	0	m/s		
$\tau_r = T_{t0} = O/TO(\psi)$	1						
Section	С	t	λ				t
τ	2.94	0.757	7.89			π	0.267661
Section	0	2	3	4	5	7	9
Tt	288	288	848	1973	1494		1494
pt	101,300	96,235	2,887,050	2,742,698	734,114		660,702
Section	f	Pt9/p9	M9	Tt9/T9	T9/T0	a9	
3	0.03622	6.52	1.89	1.592	3.26	598	m/s
		V9		V9/a0	V9/a0 eff	F/ma0	Num
		1134	m/s	3.33	3.33	3.45	1331784
Section	t	th	р	0	TSFC*1e3		
h	0.870	0.432	0.000	0.0000	0.0308		
δ_2	θ_2	Θ	mc2	Nc2	θ4	Nc4	
0.950	0.999	6.85	81.0	7462	6.85	2851	

$$k = \frac{\gamma - 1}{\gamma} = \frac{1.4 - 1}{1.4} = 0.286 \qquad k_t = \frac{\gamma_t - 1}{\gamma_t} = \frac{1.33 - 1}{1.33} = 0.248$$

$$R = kc_p = 1004 \cdot 0.286 = 287 \frac{J}{kg \cdot K} \qquad R_t = k_t c_{pt} = 1156 \cdot 0.248 = 287 \frac{J}{kg \cdot K}$$

Effetto Ram

$$a_0 = \sqrt{\gamma R T_0} = \sqrt{1.4 \cdot 287 \cdot 288} = 340 \frac{m}{s}$$
 $V_0 = M_0 a_0 = 0 \frac{m}{s}$
 $\tau_r = \psi_0 = 1 + \frac{\gamma - 1}{2} M_0^2 = 1$

$$T_{t0} = T_0 \tau_r = 288 \cdot 1 = 288 \cdot K$$
 $p_{t0} = p_0 \tau_r^{\frac{1}{k}} = 1.013 \cdot 10^5 \cdot 1^{\frac{1}{0.286}} = 101.3 \cdot kPa$

Diffusore

$$p_{t2} = p_{t0}\pi_d = 101.3 \cdot 0.95 = 96.2 \cdot kPa$$

Compressore

$$\tau_c = \pi_c^{\frac{k}{e_c}} = 30^{\frac{0.286}{0.9}} = 2.95 \qquad p_{t3} = p_{t2}\pi_c = 96.2 \cdot 30 = 2890 \cdot kPa$$

$$T_{t3} = T_{t2}\tau_c = 288 \cdot 2.95 = 850 \cdot K$$

Camera di Combustione

$$\tau_{\lambda} = \frac{c_{pt}T_{t4}}{c_{p}T_{0}} = \frac{1154 \cdot 1973}{1004 \cdot 288} = 7.89$$

$$f = \frac{\tau_{\lambda} - \tau_{c}\tau_{r}}{Q_{R}\eta_{b}/(c_{p}T_{0}) - \tau_{\lambda}} = \frac{7.89 - 2.95 \cdot 1.0}{\frac{42.6 \cdot 10^{6} \cdot 0.98}{1004 \cdot 288} - 7.89} = 0.0362$$

$$\tau_{b} = \frac{\tau_{\lambda}}{\tau_{c}\tau_{r}} = \frac{7.89}{2.94 \cdot 1.0} = 2.67$$

$$p_{t4} = p_{t3}\pi_{b} = 2890 \cdot 0.95 = 2750 \cdot kPa$$

Turbina

$$\begin{split} \tau_t &= 1 - \frac{(\tau_c - 1)\tau_r}{\eta_m (1 + f)\tau_\lambda} = 1 - \frac{1.95 \cdot 1.0}{0.98 \cdot 1.036 \cdot 7.89} = 0.757 \\ \pi_t &= \tau_t^{\frac{1}{k_t e_t}} = 0.757^{\frac{1}{0.248 \cdot 0.85}} = 0.267 \\ p_{t5} &= p_{t4} \pi_t = 2750 \cdot 0.267 = 734 \cdot kPa \qquad T_{t5} = T_{t4} \tau_t = 1973 \cdot 0.757 = 1494 \cdot K \end{split}$$

Ugello

$$p_{t9} = p_{t5}\pi_n = 734 \cdot 0.90 = 661 \cdot kPa \qquad T_{t9} = T_{t5} = 1494 \cdot K$$

$$\frac{p_{t9}}{p_9} = \pi_n \pi_t \pi_b \pi_c \pi_d \pi_r \frac{p_0}{p_9} = \frac{p_{t9}}{p_0} \frac{p_0}{p_9} = \frac{661}{101.3} \cdot 1 = 6.53$$

$$M_9 = \sqrt{\frac{2}{\gamma_t - 1} \left[\left(\frac{p_{t9}}{p_9} \right)^{k_t} - 1 \right]} = \sqrt{\frac{2}{0.33} (6.53^{0.248} - 1)} = 1.895$$

$$\frac{T_{t9}}{T_9} = \psi_9 = 1 + \frac{\gamma_t - 1}{2} M_9^2 = \left(\frac{p_{t9}}{p_9} \right)^{k_t} = 6.53^{0.248} = 1.593 \qquad T_9 = \frac{T_9}{T_{t9}} T_{t9} = \frac{1494}{1.593}$$

$$= 938 \cdot K$$

$$a_9 = \sqrt{\gamma_t R_9 T_9} = \sqrt{1.33 \cdot 287 \cdot 938} = 598 \cdot \frac{m}{s}$$

$$V_9 = M_9 a_9 = 1.895 \cdot 598 = 1133 \cdot \frac{m}{s} \qquad V_{9.e} = V_9 \left(1 + \frac{1 - \frac{p_0}{p_9}}{\gamma_9 M_9^2} \right) = V_9 \qquad \frac{V_9}{a_0} = \frac{1133}{340}$$

$$= 3.33$$

Spinta e rendimenti

- (b) the thermal efficiency η_{th} at the design point
- (c) thrust-specific fuel consumption at the design point
- (d) the compressor pressure ratio at cruise
- (e) the exhaust velocity V_9 (in m/s) at cruise

$$\begin{split} \frac{F_u}{\dot{m}_0 a_0} &= (1+f) \frac{V_{9,e}}{a_0} - M_0 = 1.036 \cdot 3.33 - 0 = 3.45 \\ \eta_{th} &= \frac{\Delta K \dot{E}}{\mathcal{P}_t} = \frac{a_0^2 [(1+f)(V_9/a_0)^2 - M_0^2]}{2f Q_R} = \frac{B}{2f Q_R} \\ \eta_p &= \frac{F_i V_0}{\Delta K \dot{E}} \approx \frac{2F_u V_0/\dot{m}_0}{a_0^2 [(1+f)(V_9/a_0)^2 - M_0^2]} = \frac{2F_u V_0/\dot{m}_0}{B} \\ B &= a_0^2 [(1+f)(V_9/a_0)^2 - M_0^2] = 1.036 \cdot 1134^2 - 0^2 = 1.330 \cdot 10^6 \cdot \frac{m^2}{s^2} \\ \eta_{th} &= \frac{B}{2f Q_R} = \frac{1.330 \cdot 10^6}{2 \cdot 0.0362 \cdot 42.600 \cdot 10^6} = 0.431 \\ \eta_p &= \frac{2a_0 V_0 \frac{F_u}{\dot{m}_0 a_0}}{B} = \frac{2 \cdot 340 \cdot 0 \cdot 3.45}{1.330 \cdot 10^6} = 0 \\ TSFC &= \frac{\dot{m}_f}{F_u} = \frac{f}{F_u/\dot{m}_0} = \frac{f}{a_0 \frac{F_u}{\dot{m}_0 a_0}} = \frac{0.0362}{340 \cdot 3.45} = 3.09 \cdot 10^{-5} \cdot \frac{kg}{Ns} = 0.0309 \cdot \frac{kg}{kNs} \end{split}$$

Parametri corretti

$$\begin{split} \delta_i &= \frac{p_{ti}}{p_{ref}} - \theta_i = \frac{T_{ti}}{T_{ref}} \quad \Theta = \frac{T_{t4}}{T_{t2}} \\ \dot{m}_{ci} &= \frac{\dot{m}_t \sqrt{\theta_i}}{\delta_i} \qquad N_{c2} = N_2 / \sqrt{\theta_2} \qquad N_{c4} = N_4 / \sqrt{\theta_4} \\ \delta_2 &= \frac{p_{t2}}{p_{ref}} = \frac{96.2}{101.3} = 0.950 \qquad \theta_2 = \frac{T_{t2}}{T_{ref}} = \frac{288}{288.15} = 0.999 \qquad \Theta = \frac{T_{t4}}{T_{t2}} = \frac{1973}{288} = 6.85 \end{split}$$

$$\theta_4 = \frac{T_{t4}}{T_{ref}} = \frac{1973}{288.15} = 6.85$$

Si supponga che in condizioni di progetto si abbia:

$$M_z = 0.5, N = 7460 \cdot rpm, \dot{m}_2 = 77 \cdot \frac{kg}{s}$$

$$\dot{m}_{c2} = \frac{\dot{m}_2 \sqrt{\theta_2}}{\delta_2} = \frac{77\sqrt{0.999}}{0.95} = 81.0 \cdot \frac{kg}{s} \qquad N_{c2} = N_2/\sqrt{\theta_2} = \frac{7460}{\sqrt{0.999}} = 7462 \cdot rpm$$

$$N_{c4} = N_4/\sqrt{\theta_4} = \frac{7460}{\sqrt{6.85}} = 2850 \cdot rpm$$

Off design

Le condizioni di fuori progetto sono:

$$M_0 = 0.80$$
, $T_0 = -35\mathcal{C} = -35 + 273 = 238 \cdot K$, $p_0 = 20 \cdot kPa$, $T_{t4} = 1500\mathcal{C} = 1773 \cdot K$. Si parte con

Effetto Ram

$$a_0 = \sqrt{\gamma R T_0} = \sqrt{1.4 \cdot 287 \cdot 238} = 309 \frac{m}{s} \qquad V_0 = M_0 a_0 = 0.8 \cdot 309 = 247 \frac{m}{s}$$

$$\tau_r = \psi_0 = 1 + \frac{\gamma - 1}{2} M_0^2 = 1 + .2 \cdot 0.8^2 = 1.128$$

$$T_{t0} = T_{t2} = T_0 \tau_r = 238 \cdot 1.128 = 268 \cdot K \qquad p_{t0} = p_0 \tau_r^{\frac{1}{k}} = 20 \cdot 1.128^{\frac{1}{0.286}} = 30.5 \cdot kPa$$

Diffusore

$$p_{t2} = p_{t0}\pi_d = 30.5 \cdot 0.95 = 29.0 \cdot kPa$$

Parametri corretti Off design

$$\begin{split} \delta_2 &= \frac{p_{t2}}{p_{ref}} = \frac{29.0}{101.3} = 0.286 & \theta_2 = \frac{T_{t2}}{T_{ref}} = \frac{268}{288.15} = 0.932 & \theta = \frac{T_{t4}}{T_{t2}} = \frac{1773}{268} = 6.62 \\ \theta_4 &= \frac{T_{t4}}{T_{ref}} = \frac{1773}{288.15} = 6.15 \\ \tau_{\lambda} &= \frac{c_{pt}T_{t4}}{c_pT_0} = \frac{1154 \cdot 1773}{1004 \cdot 238} = 8.58 \end{split}$$

Off design

(d) the compressor pressure ratio at cruise

$$\tau_c - 1 = \eta_m (1+f) \frac{c_{p4}}{c_{p2}} \frac{T_{t4}}{T_{t2}} (1-\tau_t)$$

$$\tau_c = 1 + 0.98(1+f) \frac{1156}{1004} 6.62(1-0.757) = 1 + (1+f)1.815 = 1 + 1.036 \cdot 1.815 = 2.88$$

$$f = \frac{\tau_{\lambda} - \tau_{c}\tau_{r}}{\frac{Q_{R}\eta_{b}}{(c_{p}T_{0})} - \tau_{\lambda}} = \frac{8.58 - \tau_{c} \cdot 1.128}{\frac{42.6 \cdot 10^{6} \cdot 0.98}{1004 \cdot 238} - 8.58} = \frac{8.58 - \tau_{c} \cdot 1.128}{166.1} = 5.16 \cdot 10^{-2} - 6.79 \cdot 10^{-3}\tau_{c}$$

$$= 0.0320$$

$$\tau_c = 1 + (1 + f)1.80 = 1 + 1.032 \cdot 1.815 = 2.87$$

$$f = \frac{\tau_{\lambda} - \tau_{c}\tau_{r}}{Q_{R}\eta_{b}/(c_{p}T_{0}) - \tau_{\lambda}} = 5.166 \cdot 10^{-2} - 6.791 \cdot 10^{-3}\tau_{c} = 0.0321$$

$$\tau_c = 2.87$$
 $f = 0.0321$

$$\frac{\dot{m}_{c2,OD}}{\dot{m}_{c2,D}} \approx \frac{\pi_{c,OD}}{\pi_{c,D}} \sqrt{\frac{\Theta_D}{\Theta_{OD}}} \qquad \dot{m}_{c2,OD} = \dot{m}_{c2,D} \frac{\pi_{c,OD}}{\pi_{c,D}} \sqrt{\frac{\Theta_D}{\Theta_{OD}}} = 81.0 \frac{27.6}{30} \sqrt{\frac{6.85}{6.62}} = 75.8 \cdot \frac{kg}{s}$$

$$\dot{m}_2 = \frac{\dot{m}_{c2}\delta_2}{\sqrt{\theta_2}} = 75.8 \cdot \frac{0.286}{\sqrt{0.930}} = 22.5 \cdot \frac{kg}{s}$$

$$N_{c4,OD} \approx N_{c4,D} \approx 2850 \cdot \text{rpm} \rightarrow N_4 = \sqrt{\theta_4} N_{c4} = \sqrt{6.15} \cdot 2850 = 7070 \cdot rpm$$

$$\frac{\dot{m}_{c2,OD}}{\dot{m}_{c2,D}} = \frac{Mz_{2,OD}\psi_{z2,OD}^{-K_2}}{M_{z2,D}\psi_{z2,D}^{-K_2}} \rightarrow Mz_{2,OD}\psi_{z2,OD}^{-K_2} = \frac{\dot{m}_{c2,OD}}{\dot{m}_{c2,D}} M_{z2,D}\psi_{z2,D}^{-K_2}$$

$$K_2 = \frac{\gamma + 1}{2(\gamma - 1)} = \frac{2.4}{0.8} = 3$$

$$Mz_{2,0D}\psi_{z2,0D}^{-K_2} = \frac{75.8}{81}0.5(1+0.2\cdot0.5^2)^{-3} = 0.404$$

$$Mz_{2,OD} = 0.5$$
 $Mz_{2,OD}\psi_{z2,OD}^{-K_2} = 0.5(1 + 0.2 \cdot 0.5^2)^{-3} = 0.432$ $e = 0.432 - 0.404 = 0.0279$

$$Mz_{2,OD} = 0.4$$
 $Mz_{2,OD}\psi_{z2,OD}^{-K_2} = 0.4(1 + 0.2 \cdot 0.4^2)^{-3} = 0.364$ $e = 0.364 - 0.404 = -0.0401$

$$Mz_{2,0D} = \frac{0.5 \cdot (-0.0401) - 0.4 \cdot 0.0279}{(-0.0401) - 0.0279} = 0.459$$

$$Mz_{2,OD} = 0.457$$

Compressore

$$\begin{split} \pi_c &= \tau_c^{\frac{e_c}{k}} = 2.87^{\frac{0.9}{0.286}} = 27.6 & p_{t3} = p_{t2} \pi_c = 29 \cdot 27.6 = 800 \cdot kPa \\ T_{t3} &= T_{t2} \tau_c = 268 \cdot 2.87 = 769 \cdot K \end{split}$$

Camera di Combustione

$$p_{t4} = p_{t3}\pi_b = 799 \cdot 0.95 = 760 \cdot kPa$$

Turbina

$$\tau_t = 0.757$$
 $\pi_t = \tau_t^{\frac{1}{k_t e_t}} = 0.757^{\frac{1}{0.248 \cdot 0.85}} = 0.267$
 $p_{t5} = p_{t4}\pi_t = 759 \cdot 0.267 = 203 \cdot kPa$ $T_{t5} = T_{t4}\tau_t = 1773 \cdot 0.757 = 1342 \cdot K$

Ugello

$$\begin{split} p_{t9} &= p_{t5} \pi_n = 203 \cdot 0.90 = 182.7 \cdot kPa & T_{t9} = T_{t5} = 1342 \cdot K \\ \frac{p_{t9}}{p_9} &= \pi_n \pi_t \pi_b \pi_c \pi_d \pi_r \frac{p_0}{p_9} = \frac{p_{t9}}{p_0} \frac{p_0}{p_9} = \frac{182.7}{20.0} \cdot 1 = 9.14 \\ M_9 &= \sqrt{\frac{2}{\gamma_t - 1}} \left[\left(\frac{p_{t9}}{p_9} \right)^{k_t} - 1 \right] = \sqrt{\frac{2}{0.33}} (9.14^{0.248} - 1) = 2.10 \\ \frac{T_{t9}}{T_9} &= \psi_9 = 1 + \frac{\gamma_t - 1}{2} M_9^2 = \left(\frac{p_{t9}}{p_9} \right)^{k_t} = 9.14^{0.248} = 1.731 \\ T_9 &= \frac{T_9}{T_{t9}} T_{t9} = \frac{1342}{1.731} = 775 \cdot K \\ a_9 &= \sqrt{\gamma_t R_9 T_9} = \sqrt{1.33 \cdot 287 \cdot 775} = 544 \cdot \frac{m}{s} \\ V_9 &= M_9 a_9 = 2.10 \cdot 544 = 1142 \cdot \frac{m}{s} & V_{9.e} = V_9 \left(1 + \frac{1 - \frac{p_0}{p_9}}{\gamma_9 M_9^2} \right) = V_9 & \frac{V_9}{a_0} = \frac{1142}{309} = 3.70 \end{split}$$

Spinta e rendimenti

- (e) the exhaust velocity V_9 (in m/s) at cruise
- (f) the thermal efficiency η_{th} at cruise
- (g) the propulsive efficiency η_p at cruise
- (h) the thrust-specific fuel consumption at cruise

$$\begin{split} \frac{F_u}{\dot{m}_0 a_0} &= (1+f) \frac{V_{9,e}}{a_0} - M_0 = 1.032 \cdot 3.70 - 0.8 = 3.02 \\ \eta_{th} &= \frac{\Delta K \dot{E}}{\mathcal{P}_t} = \frac{a_0^2 [(1+f)(V_9/a_0)^2 - M_0^2]}{2f Q_R} = \frac{B}{2f Q_R} \\ \eta_p &= \frac{F_i V_0}{\Delta K \dot{E}} \approx \frac{2F_u V_0/\dot{m}_0}{a_0^2 [(1+f)(V_9/a_0)^2 - M_0^2]} = \frac{2F_u V_0/\dot{m}_0}{B} \\ B &= a_0^2 [(1+f)(V_9/a_0)^2 - M_0^2] = 1.032 \cdot 1142^2 - 247^2 = 1.285 \cdot 10^6 \cdot \frac{m^2}{s^2} \\ \eta_{th} &= \frac{B}{2f Q_R} = \frac{1.285 \cdot 10^6}{2 \cdot 0.0322 \cdot 42.600 \cdot 10^6} = 0.468 \\ \eta_p &= \frac{2a_0 V_0 \frac{F_u}{\dot{m}_0 a_0}}{B} = \frac{2 \cdot 309 \cdot 247 \cdot 3.02}{1.285 \cdot 10^6} = 0.59 \qquad \eta_o = \eta_p \eta_{th} = 0.468 \cdot 0.359 = 0.17 \\ TSFC &= \frac{\dot{m}_f}{F_u} = \frac{f}{F_u/\dot{m}_0} = \frac{f}{a_0 \frac{F_u}{\dot{m}_0 a_0}} = \frac{0.0322}{309 \cdot 3.02} = 3.45 \cdot 10^{-5} \cdot \frac{kg}{N_S} = 0.0345 \cdot \frac{kg}{kN_S} \end{split}$$

	2	3	4	5	9		
	diff	comp	СС	Tur	No		
c _p	1004				J/kgs		
γ	1.4			1.33			
π	0.95		0.95		0.9		
η, e _{c,t}		0.9	0.98	0.85			
Tt				1773			
M0	0.8		po/p9	1	QR	42600	kJ/kgK
TO	238	К	p0	20,000	Pa	η_m	0.98
k	0.286	K	3	0.248			
R	287			287			
a0	309	m/s	V0	247	m/s		
$\tau_r = T_{to} = 0 /$	1.128						
Section	С	t	λ			С	t
τ	2.87	0.757	8.58		π	27.6	0.268
Section	0	2	3	4	5	7	9
Tt	268	268	770		1343		1343
pt	30,487	28,962	798,965	759,017	203,159		182,843
Section	f	Pt9/p9	М9	Tt9/T9	T9/T0	a9	
3	0.032166	9.14	2.11		3.26		m/s
		V9		V9/a0	V9/a0 eff	F/ma0	Num
		1145	m/s	3.70	3.70	3.02	1292645
Section	t	th	р		TSFC*1e3		
h	0.870	0.472	0.358	0.1687	0.0344		
δ_2	θ_2	Θ	mc2	Nc2	θ4	Nc4	N
0.286	0.932	6.60	75.9	7326	6.15	2851	7072
Calcolo $ au_{ m c}$ iterativo con f		f variabile					
τ _c	2.87	2.87	2.87	2.87			
f	0.0321	0.0322	0.0322	0.0322			
Rhs	Mz2	0.5	0.4	0.459685	0.457566	0.457455	
0.40451	e	0.027409	-0.04058	0.001493	7.46E-05	-1.6E-07	

Fa 11.19

A high bypass ratio separate-flow turbofan engine with convergent nozzles has the following design point parameters (at takeoff, standard sea-level conditions):

$$\begin{split} M_0 &= 0, p_0 = 101.33 \ kPa, T_0 = 288 \ K, \gamma_c = 1.4, c_{pc} = 1004 J/kgK, \\ \pi_d &= 0.98, \dot{m}_{c2} = 600 kg/s \ , M_{z2} = 0.5, \pi_f = 1.8, e_f = 0.90, \alpha = 5.0, \pi_{cH} = 14, e_{cH} = 0.90, \\ T_{t4} &= 1873 K, Q_R = 42.8 MJ/kgK \ , \pi_b = 0.95, \eta_b = 0.99, \\ e_{tH} &= 0.85, \eta_{mH} = 0.995, e_{tL} = 0.89, \eta_{mL} = 0.995, \gamma_t = 1.33, c_{pt} = 1464 kJ/kgK \\ \pi_n &= 0.98, \pi_{nf} = 0.98, p_8 = p_{18} = p_0, M_8 = M_{18} = 1 \end{split}$$

The off-design point is the cruise condition described by:

$$M_0 = 0.84, p_0 = 20 \text{ kPa}, T_0 = 253 \text{ K}, T_{t4} = 1573 \text{K}$$

Calculate C_1 , C_2 and C_3 parameters at the design point. Then use Equation 11.67 to solve, i.e., to iterate for, $\tau_{cH_{OD}}$. Then, calculate $\tau_{f_{OD}}$ and α_{OD} . Use polytropic efficiencies to get π_f and π_{cH} at off-design.

	2	3	4	4.5	5	9	13	19
	diff	compH	CC	TH	TL	No	Fan	No FAn
C	1004	Compi		1146.4	16	140	Tan	J/kgK
C _p	1.4			1.33				J/ KgK
$rac{\gamma}{\pi}$	0.98	14	0.95	1.55		0.98	1.8	0.98
	0.36			0.05	0.00	0.36		0.30
η, e _{c,t}		0.9	0.99	0.85	0.89		0.9	
Tt			1873					2.5
k	0.286			0.248			Mz	0.5
R	287		_		kJ/kgK		N	7460
M0		alpha	5	QR		kJ/kgK	m2	462
p0	101,330	Pa		$\eta_{\it mH}$	0.995		Tref	288
Т0	288	K		$oldsymbol{\eta}_{ extit{mL}}$	0.995		Pref	101,300
a0	340	m/s	V0	0	m/s			
$\tau_r = T_{t0} = 0 / T$	1							
Section	f	c_H	с	t _H	t _L	t	λ	b
τ	1.205	2.31	2.79	0.793	0.797	0.632	7.43	2.6659911
	1.203	2.51	25.2	0.333	0.357	0.1190	7.13	2.0033311
Section	0	2	13/2.5	3	4	5	9	19
Tt	288	288	347	802	1873	1183	1183	347
pt	101,330	99,303			2,377,323			175,171
Core	,	f	0.0334		1		,	,
Pt9/p9	M9	M9 Eff	Tt9/T9	P9	po/p9		1.284	
2.74	1.311	1.311	1.284	101,330				
Т9	a9	V9	V9/a0	V9/a0 eff	F/ma0	F/maira0		Fc/Ft
922	591	774	2.28	2.28	2.35	0.392		0.335
Fan								
Pt19/p19	M19	M19 Eff	Tt19/T19	P19	po/p19			
1.729	0.920	0.920	1.169	101,330	1			
T19	a19	V19	V19/a0	V19/a0 eff	F/ma0	F/maira0		FF/Ft
297	345	318	0.934	0.934	4.67	0.778		0.665
	Section	t	th	p	0	TSFC*1e3	F/ma0	F/maira0
1,124,127	η	0.88217	0.393684	0	0	0.0140	7.02295	1.1704919
δ_2	θ_2	Θ	mc2	Nc2	θ4	Nc4		
0.980	1.000	6.50	471.3	7460	6.50	2925		
C1	C2	C3						
0.213								

$$k = \frac{\gamma - 1}{\gamma} = \frac{1.4 - 1}{1.4} = 0.286 \qquad k_t = \frac{\gamma_t - 1}{\gamma_t} = \frac{1.33 - 1}{1.33} = 0.248$$

$$R = kc_p = 1004 \cdot 0.286 = 287 \cdot \frac{J}{kg \cdot K} \qquad R_t = k_t c_{pt} = 1146 \cdot 0.248 \frac{J}{kg \cdot K} = 284 \cdot \frac{J}{kg \cdot K}$$

Effetto Ram

$$a_0 = \sqrt{\gamma R T_0} = \sqrt{1.4 \cdot 287 \cdot 288} = 340 \cdot \frac{m}{s}$$

$$V_0 = M_0 a_0 = 0 \cdot 340 = 0 \cdot \frac{m}{s} \qquad \tau_r = \psi_0 = 1 + \frac{\gamma - 1}{2} M_0^2 = 1$$

$$T_{t0} = T_0 \tau_r = 288 \cdot 1 = 288 \cdot K \qquad p_{t0} = p_0 \tau_r^{\frac{1}{k}} = 1.013 \cdot 10^5 \cdot 1^{\frac{1}{0.286}} = 101.3 \cdot kPa$$

Diffusore

$$p_{t2} = p_{t0}\pi_d = 101.3 \cdot 0.98 = 99.3 \cdot kPa$$

Fan

$$\tau_f = \pi_f^{\frac{k}{e_f}} = 1.8^{\frac{0.286}{0.90}} = 1.205 \qquad p_{t13} = p_{t2}\pi_f = 99.3 \cdot 1.80 = 178.7 \cdot kPa$$

$$T_{t13} = T_{t2}\tau_f = 288 \cdot 1.205 = 347 \cdot K$$

Compressore (HP)

$$\begin{split} \tau_{cH} &= \pi_{cH}^{\frac{k}{e_{cH}}} = 14.0^{\frac{0.286}{0.90}} = 2.31 \\ \pi_c &= \pi_f \pi_{cH} = 1.8 \cdot 14.0 = 25.2 \qquad \tau_c = \tau_f \tau_{cH} = 1.205 \cdot 2.31 = 2.78 \\ p_{t3} &= p_{t2} \pi_c = 99.3 \cdot 25.2 = 2500 \cdot kPa \\ T_{t3} &= T_{t2} \tau_c = 288 \cdot 2.78 = 801 \cdot K \end{split}$$

Camera di Combustione

$$\tau_{\lambda} = \frac{c_{pt}T_{t4}}{c_{p}T_{0}} = \frac{1146 \cdot 1873}{1004 \cdot 288} = 7.42$$

$$f = \frac{\tau_{\lambda} - \tau_{c}\tau_{r}}{Q_{R}\eta_{b}/(c_{p}T_{0}) - \tau_{\lambda}} = \frac{7.42 - 2.78 \cdot 1}{\frac{42.8 \cdot 10^{6} \cdot 0.99}{1004 \cdot 288} - 7.42} = 0.0334$$

$$\tau_{b} = \frac{\tau_{\lambda}}{\tau_{c}\tau_{r}} = \frac{7.42}{2.78 \cdot 1} = 2.67$$

$$p_{t4} = p_{t3}\pi_{b} = 2500 \cdot 0.95 = 2380 \cdot kPa$$

Turbina

$$\begin{split} &\tau_{tH} = 1 - \frac{\tau_f(\tau_{cH} - 1)}{\eta_{mH}(1 + f)\frac{\tau_{\lambda}}{\tau_r}} = 1 - \frac{1.205 \cdot 1.31}{0.995 \cdot 1.033 \frac{7.42}{1}} = 0.793 \\ &\tau_{tL} = 1 - \frac{(1 + \alpha)(\tau_f - 1)}{\eta_{mL}(1 + f)\frac{\tau_{tH}\tau_{\lambda}}{\tau_r}} = 1 - \frac{6 \cdot 0.205}{0.995 \cdot 1.033 \frac{0.793 \cdot 7.42}{1}} = 0.797 \\ &\pi_{tH} = \tau_{tH}^{\frac{1}{k_t e_{tH}}} = 0.793 \frac{1}{0.248 \cdot 0.85} = 0.333 \quad \pi_{tL} = \tau_{tL}^{\frac{1}{k_t e_{tL}}} = 0.797 \frac{1}{0.248 \cdot 0.89} = 0.358 \\ &\tau_t = \tau_{tH}\tau_{tL} = 0.797 \cdot 0.793 = 0.632 \quad \pi_t = \pi_{tH}\pi_{tL} = 0.333 \cdot 0.358 = 0.1192 \\ &p_{t5} = p_{t4}\pi_t = 2380 \cdot 0.1192 = 284 \cdot kPa \qquad T_{t5} = T_{t4}\tau_t = 1873 \cdot 0.632 = 1183 \cdot K \end{split}$$

Ugello

$$p_{t9} = p_{t5}\pi_n = 284 \cdot 0.98 = 278 \cdot kPa \qquad T_{t9} = T_{t5} = 1183 \cdot K$$

$$\frac{p_{t9}}{p_9} = \pi_n \pi_t \pi_b \pi_c \pi_d \pi_r \frac{p_0}{p_9} = \frac{p_{t9}}{p_0} \frac{p_0}{p_9} = \frac{278}{101.3} \cdot 1 = 2.74$$

$$M_9 = \sqrt{\frac{2}{\gamma_t - 1} \left[\left(\frac{p_{t9}}{p_9} \right)^{k_t} - 1 \right]} = \sqrt{\frac{2}{0.33} (2.74^{0.248} - 1)} = 1.312$$

Supersonico, si dovrebbe correggere la spinta

$$\begin{split} &\frac{T_{t9}}{T_9} = \psi_9 = 1 + \frac{\gamma_t - 1}{2} M_9^2 = \left(\frac{p_{t9}}{p_9}\right)^{k_t} = 2.74^{0.248} = 1.284 & T_9 = \frac{T_9}{T_{t9}} T_{t9} = \frac{1183}{1.284} = 921 \cdot K \\ &a_9 = \sqrt{\gamma_t R_9 T_9} = \sqrt{1.33 \cdot 284 \cdot 921} = 590 \cdot \frac{m}{s} & V_9 = M_9 a_9 = 1.312 \cdot 590 = 774 \cdot \frac{m}{s} \\ &V_{9.e} = V_9 \left(1 + \frac{1 - \frac{p_0}{p_9}}{\gamma_9 M_9^2}\right) = V_9 & \frac{V_9}{a_0} = \frac{774}{340} = 2.28 \end{split}$$

Ugello Fan

$$\begin{split} p_{t19} &= p_{t13} \pi_{nf} = 178.7 \cdot 0.98 = 175.1 \cdot kPa & T_{t19} &= T_{t13} = 347 \cdot K \\ \frac{p_{t19}}{p_{19}} &= \frac{p_{t19}}{p_0} \frac{p_0}{p_{19}} = \frac{175.1}{101.3} \cdot 1 = 1.728 \\ M_{19} &= \sqrt{\frac{2}{\gamma - 1}} \left[\left(\frac{p_{t19}}{p_{19}} \right)^k - 1 \right] = \sqrt{\frac{2}{0.40}} (1.729^{0.286} - 1) = 0.920 \\ \frac{T_{t19}}{T_{19}} &= \psi_{19} = 1 + \frac{\gamma - 1}{2} M_{19}^2 = \left(\frac{p_{t19}}{p_{19}} \right)^k = 1.729^{0.286} = 1.169 \\ T_{19} &= \frac{T_{19}}{T_{t19}} T_{t19} = \frac{347}{1.169} = 297 \cdot K & a_{19} &= \sqrt{\gamma R T_{19}} = \sqrt{1.40 \cdot 287 \cdot 297} = 345 \frac{m}{s} \\ V_{19} &= M_{19} a_{19} = 0.920 \cdot 345 = 317 \cdot \frac{m}{s} & V_{19.e} &= V_{19} \left(1 + \frac{1 - \frac{p_0}{p_{19}}}{\gamma M_{19}^2} \right) = V_{19} & \frac{V_{19}}{a_0} = \frac{317}{340} = 0.932 \end{split}$$

Spinta e rendimenti

$$\begin{split} \frac{F_{u.core}}{\dot{m}_{air}a_0} &= \frac{(1+f)}{1+\alpha} \frac{V_{9.e}}{a_0} - \frac{M_0}{1+\alpha} = \frac{1.033}{6.0} \, 2.28 - 0 = 0.393 \\ \frac{F_{u.Fan}}{\dot{m}_{air}a_0} &= \frac{\alpha}{1+\alpha} \frac{V_{19.e}}{a_0} - \frac{\alpha M_0}{1+\alpha} = \frac{5.0}{6.0} \, 0.932 - 0 = 0.777 \\ \frac{F_u}{\dot{m}_{air}a_0} &= \frac{F_{u.core}}{\dot{m}_{air}a_0} + \frac{F_{u.Fan}}{\dot{m}_{air}a_0} = 0.393 + 0.777 = 1.170 \\ \frac{F_{u.core}}{F_u} &= \frac{0.393}{1.170} = 33.6\% \qquad \frac{F_{u.Fan}}{F_u} = \frac{0.777}{1.170} = 66.4\% \\ TSFC &= \frac{f}{F_u/\dot{m}_0} = \frac{f}{(1+f)V_{9.e} + \alpha V_{19.e} - V_0} = \frac{0.0334}{1.033 \cdot 774 + 5.0 \cdot 317 - 0} = 14.01 \cdot 10^{-6} \\ N &= (1+f)V_{9.e}^2 + \alpha V_{19.e}^2 - (1+\alpha)V_0^2 = 1.033 \cdot 774^2 + 5.0 \cdot 318^2 = 1.122 \cdot 10^6 \\ \eta_{th} &= \frac{\Delta K \dot{E}}{\mathcal{P}_t} = \frac{(1+f)V_{9.e}^2 + \alpha V_{19.e}^2 - (1+\alpha)V_0^2}{2fQ_R} = \frac{N}{2fQ_R} = \frac{1.122 \cdot 10^6}{2 \cdot 0.0334 \cdot 42.8 \cdot 10^6} = 39.2\% \end{split}$$

$$\eta_p = \frac{2V_0\{[(1+f)V_{9.e}] + \alpha V_{19.e} - (1+\alpha)V_0\}}{(1+f)V_{9.e}^2 + \alpha V_{19.e}^2 - (1+\alpha)V_0^2} = \frac{2V_0[(1+f)V_9 + \alpha V_{19} - (1+\alpha)V_0]}{N} = 0$$

Parametri corretti

$$\delta_{i} = \frac{p_{ti}}{p_{ref}} - \theta_{i} = \frac{T_{ti}}{T_{ref}} \quad \Theta = \frac{T_{t4}}{T_{t2}} \quad \dot{m}_{ci} = \frac{\dot{m}_{i}\sqrt{\theta_{i}}}{\delta_{i}} \qquad N_{c2} = N_{2}/\sqrt{\theta_{2}} \qquad N_{c4} = N_{4}/\sqrt{\theta_{4}}$$

$$\delta_{2} = \frac{p_{t2}}{p_{ref}} = \frac{99.3}{101.3} = 0.980 \quad \theta_{2} = \frac{T_{t2}}{T_{ref}} = \frac{288}{288} = 1 \quad \Theta = \frac{T_{t4}}{T_{t2}} = \frac{1873}{288} = 6.50$$

Off design

Le condizione di fuori progetto sono:

$$M_0 = 0.84$$
, $p_0 = 20 \text{ kPa}$, $T_0 = 253 \text{ K}$, $T_{t4} = 1573 \text{ K}$

Effetto Ram

$$a_0 = \sqrt{\gamma R T_0} = \sqrt{1.4 \cdot 287 \cdot 253} = 319 \cdot \frac{m}{s} \qquad V_0 = M_0 a_0 = 0.84 \cdot 319 = 268 \frac{m}{s}$$

$$\tau_r = \psi_0 = 1 + \frac{\gamma - 1}{2} M_0^2 = 1 + 0.2 \cdot 0.84^2 = 1.141$$

$$T_{t0} = T_0 \tau_r = 253 \cdot 1.141 = 289 \cdot K \qquad p_{t0} = p_0 \tau_r^{\frac{1}{k}} = 20 \cdot 1.141^{\frac{1}{0.286}} = 31.7 \cdot kPa$$

$$\tau_{\lambda} = \frac{c_{pt} T_{t4}}{c_n T_0} = \frac{1146 \cdot 1573}{1004 \cdot 253} = 7.10$$

Off design

Si parte con

$$C_{1} = \frac{\tau_{r}\tau_{f}}{\tau_{\lambda}}(\tau_{cH} - 1) = \frac{1 \cdot 1.205}{7.43} \cdot 1.31 = 0.213$$

$$C_{2} = \frac{\tau_{r}}{\tau_{\lambda}}(1 + \alpha)(\tau_{f} - 1) = \frac{1}{7.42} \cdot 6 \cdot 0.205 = 0.1658$$

$$C_{3} = \alpha \pi_{cH} \sqrt{\frac{\tau_{r}\tau_{f}}{\tau_{\lambda}}} = 5 \cdot 14 \sqrt{\frac{1 \cdot 1.205}{7.42}} = 28.2$$

$$\left(1 + \frac{C_{3}}{\tau_{cH}^{0.9}} \sqrt{\frac{\tau_{cH} - 1}{C_{1}}}\right) \left(\frac{C_{1}}{(\tau_{cH} - 1)} - \frac{\tau_{r}}{\tau_{\lambda}}\right) = C_{2}$$

$$\left(1 + \frac{28.2}{\tau_{cH}^{0.9}} \sqrt{\frac{\tau_{cH} - 1}{0.213}}\right) \left(\frac{0.213}{(\tau_{cH} - 1)} - \frac{1.141}{7.10}\right) = 0.1658$$

$$\left(1 + \frac{61.1}{\tau_{cH}^{3.15}} \sqrt{\tau_{cH} - 1}\right) \left(\frac{0.213}{(\tau_{cH} - 1)} - 0.1607\right) = 0.1658$$

Si itera

$$\begin{split} &\tau_{cH} = 2.31 \,\rightarrow\, e = \left(1 + \frac{61.1}{2.31^{3.15}} \sqrt{1.31}\right) \left(\frac{0.213}{1.31} - 0.1607\right) - 0.1658 = -0.1544 \\ &\tau_{cH} = 2.20 \,\rightarrow\, e = \left(1 + \frac{61.1}{2.20^{3.15}} \sqrt{1.20}\right) \left(\frac{0.213}{1.20} - 0.1607\right) - 0.1658 = -0.0552 \\ &\tau_{cH} = \frac{2.20 \cdot (-.1544) - 2.31(-.0552)}{-.1544 + .0552} = 2.14 \\ &\tau_{cH} = 2.14 \,\rightarrow\, e = \left(1 + \frac{61.1}{2.14^{3.15}} \sqrt{1.14}\right) \left(\frac{0.213}{1.14} - 0.1607\right) - 0.1658 = 0.01559 \\ &\tau_{cH} = \frac{2.20 \cdot .0156 - 2.14(-.0552)}{.0156 + .0552} = 2.15 \\ &\pi_{cH} = \frac{r_{cH}^{e_{cH}}}{r_{\lambda}} = 2.15^{3.15} = 11.12 \\ &C_1 = \frac{\tau_r \tau_f}{\tau_{\lambda}} (\tau_{cH} - 1) \,\rightarrow\, \tau_f = \frac{C_1}{\frac{\tau_r}{\tau_{\lambda}} (\tau_{cH} - 1)} = \frac{0.213}{.1607 \cdot 1.15} = 1.153 \\ &\pi_f = \tau_f^{e_f} = 1.153^{3.15} = 1.565 \\ &C_3 = \alpha \pi_{cH} \sqrt{\frac{\tau_r \tau_f}{\tau_{\lambda}}} \,\rightarrow\, \alpha = \frac{C_3}{\pi_{cH} \sqrt{\frac{\tau_r \tau_f}{\tau_{\lambda}}}} = \frac{28.2}{11.12 \sqrt{.1607 \cdot 1.153}} = 5.89 \end{split}$$

	2	3	4	4.5	5	9	13	19
	diff	comp	CC	TH	TL	No	Fan	No FAn
С _р	1004			1146.4				J/kgK
γ	1.4			1.33				
π	0.98	11.16729	0.95			0.98	1.553222	0.98
η, e _{c,t}		0.9	0.99	0.85	0.89		0.9	
Tt Tt			1573					
k	0.285714			0.24812			ריג.	
R	286.8571			284.4451	kJ/kgK		0 13	19
M0	0.84	alpha	5.873285	QR	42800	kJ/kgK	d c T	$t \cdot n$
p0	20,000	Pa		η_m	0.995		$\sqrt{3}$	4
то	253	K			9.95E-01		Ť	
a0	318.7551		V0	267.7543	m/s			
$\tau_r = T_{tO} = O/TC$, -	· •		, 5			
Section		C	С	t _H	t_L	t	a	b
_	1.150	C _H		0.792				
t	1.150	2.15	2.47		0.795	0.629	7.10	2.514714
Ct'	0	2	17.3	0.330	0.354	0.1170	0	10
Section Tt	0 289	2 289	13/2.5 332	714	1573	5 990	9 990	19 332
pt	31,746	31,111	48,322	539,631	512,649	59,958	58,759	
Core	31,740	51,111 f	0.0268	-	1	33,336	36,733	47,330
Pt9/p9	M9	M9 Eff	Tt9/T9	P9	po/p9		1.307	
2.94		1.363	1.307	20,000	1.000		1.507	
T9	a9	V9	V9/a0		F/ma0	F/maira0		Fc/Ft
758		730	2.29	2.29	1.51	0.220		0.420
Fan								
Pt19/p19	M19	M19 Eff	Tt19/T19	P19	po/p19			
2.368	1.182	1.000	1.200	25,017	0.799446			
T19	a19	V19	V19/a0	V19/a0 eff	F/ma0	F/maira0		FF/Ft
277	333	333	1.046	1.196	2.09	0.304		0.580
Num		t	th	р		TSFC*1e3		F/maira0
907,144	η	0.882417	0.39581	0.67727	0.26807	0.0233	3.599268	0.52366
δ_2	θ_2	Θ	mc2	Nc2	θ4	Nc4		
0.003	0.007	786.50		0	0.01	0		
$ au_CH$	2.31	2.2	2.137259	2.152326	2.15123	2.151205	2.151205	2.151205
e	-0.15645	-0.05641	0.017827	-0.0014	-3.1E-05	5.73E-08	-2.3E-12	
$ au_{CH}$	π_{CH}	$ au_{f}$	π_{f}	α				
2.151205				5.873285				
				2.2.0200				