Tecniche di Specifica e di Verifica

Automata-based
LTL Model-Checking

Finite state automata

A finite state automaton is a tupleA = (2,S,S,R,F)
e 2:set of input symbols

e S set ofstates --S5,: set ofinitial states S, S)
e R:Sx 3 - 25:the transition relation.

* F: set ofacceptingstates (FL1 S)

« Arunronw=a,...,a, IS a sequence,,...,s, such that
s, 1S, and s, ,[IR(s,a) for O<i<n.

« A run r iIs acceptingif s,[IF, while a word w Is
acceptedoy A if there is an accepting run ofA onw.
 The language £(A) acceptedoy A Is the set of finite

words accepted byA.

2

Finite state automata: union

Given automata A; and A,, there Is an automatonA
acceptingL(A) = L(A,) O L(A,)

A = (2,5,9,R,F)Is an automaton which just runs non-
deterministically either A, or A, on the input word.

S=50S
F=F,0OF,
S = S U Sz

) { Rl(s,a)if sOS,
R, (s,a)if sUI S,

Finite state automata: union
Al

A;
b l /@\ l a
s W e, 0.
L(A)=b"(ab)’a L(A ,)=a(a*ba)
b L a
C@
AOA, | L(A)=L(A ,) O L(A))

ol oe)

Finite state automata: intersection

Given automata A, and A,, there Is an automatonA
acceptingL(A) = L(A) n L(A,)

A = (2,5,5,R,F) runs simultaneously both automataA ,
and A, on the input word.

S=§xS,
F=F,xF,

S = 1 X S

R((s,1),a) = R(s,a)x Ry(t,a)

Finite state automata: intersection

ol e
SO O

L(A,)=b*(ab) a

Az

g
OO S

L(A,)=a(a*ba)’

) LIA)=L(A) n L(AY

Finite state automata: complementation

If the automaton Is deterministic, then it just
suffices to sef¢= S\ F.

This doesn’t work, though, for non-deterministic
automata

Solution:;
1. Determinizehe automaton using the subset construction.
2. Complementhe resulting deterministic automaton

The complexity of this process i€xponentialin the
size of the original automaton.

The number of states of the final automaton /5|,
INn the worst case

Finite state automata: complementation

A

a | a N
SONSO

l

AD

ot
L(A)=(a*b)a () Jab " (1)

v

L(AP)= (+b)*a

a

L(A%=L(A)

Blchi automata (BA)

A Buchi automaton is a tupleA = (2,S,$,R,F)

e 2:set of input symbols

e S set ofstates -5, : set ofinitial states S, S)
e R:SxZ - 25:the transition relation.

* F: set ofacceptingstates F L1 S)

« A runr on w=a;a,,... IS an infinite sequences,,s,,...
such thats, 1S, and s, [IR(s,&) for 1=0.

e A run r Is acceptingif someaccepting state in Foccurs
In r infinitely often.

A word w is acceptedoy A If there Is an accepting run
of A on w, and thelanguage £ (A) acceptedby A Is

the set of (infinite) w-words accepted byA.

9

Blchi automata (BA)

A Buchi automaton is a tupleA = (2,S,$,R,F)

« Arunr onw=a,a,... IS an infinite sequences,,s;,...
such thats, S, and s, [IR(s,a) for 1=0.

e Let Lim(r) ={s|s = sfor infinitely many 1 }
 Arunr is acceptingif

Lim(r) n F # [

« A word w Is acceptedby A If there Is an accepting
run of A onw.

 The language £ (A) acceptedby A is the set of
(infinite) w-words accepted byA.

10

Blichl automata: union

Given Buchi automata A; and A,, there is an Buchi
automaton A acceptingL (A) = L (A U L (A,).

The constructionis the same as foprdinary automata

A = (2,5,5,R,F) Is an automaton which just runs non-
deterministically either A, or A, on the input word.

S=3US,
F=F, OF,
S = S U Sz

{ R,(s,a)if s S,
R(s,a) |
R, (s,a)if sUI S,

Buchi automata: intersection

e The Intersection construction for automata does notvork
for Buchi automata.

e |nstead, the Intersection for Bilchi automata can be
defined as follows:

A=(2,S,S,R,F) Intuitively runs simultaneously both
automata A =(2,S,S,,R,,F,) and A=(2S,S,,R,,F,) on

the input word.
S=9x8,x{1,2}
F=F,x5x{1}
Sp = o1 X % {1}

[(s',t,2) if SOR(s,d), t OR,(t,a), sOF,andi=1
R((s,t,i),a) = (s'.t,1) if SORy(s,8, ' OR,(s,d,t 0F,andi=2
L (s'.t,) if SORy(s,a), t' ORy(t,a) .

Buchi automata: intersection

A = (2,5,§,R,F) runs simultaneously both automataA, and
A, on the input word.

S=3§x5x{1,2}*
F=F, xS x{1}
Sp = Sy X Sy x {1}
(s',1,2) if S’LR,(s,a), t' IR,(t,a), sLIF,and i=1
R((s,t,i),a) & (s',t,1) If S'URy(s,d), U 1R,(t,a), tlF,and i=2
(s',t',)) if S'ORy(s,a), t' OR(t,a)
The automaton remember&? tracks) one for each automaton,

and pointsto one of the tracks] As soon as it goes through
~ an accepting state on the current track, it changesack.

The accepting condition and the transition relationensure
that this change of track must happens infinitely @ien.

Blchi automata: intersection

A = (2,5,S,R,F) runs simultaneously both automataA, and
A, on the input word.

S=3x5%{1,2}
F=F; xS,x{1}
Sy = 1 X S % {1}
(s',1,2) if S’LR(s,a), t' IR,(t,a), sSLIF,and i=1
R((s,t,i),a) & (s',t,1) If S'UR(s,d), U 1R,(t,a), tlF,and i=2
(s’,t,1)) 1f S'UR,(s,d), ' IR,(t,a)
As soon as It visits an accepting state mack 1, it switches to

track 2 and then totrack 1 again but only after visiting an
accepting state in thdrack 2

Therefore, to visit infinitely often a state in F (F,), the
automaton must also visitnfinitely often some state of-,. 1

Blchi automata: complementation

I's a complicated construction -- the standard subst
construction for determinizing automata doesn’t work
as non-deterministic automatare more powerfulthan

deterministic onege.g.L£ =(0+1) 1%) L 1
1

Solution (resorts to another kind of automaton):

e Transform the (non-deterministic) Blchi automaton into a
(non-deterministic) Rabin automaton(a more general kind
of w-automaton).

e Determinize and then complementhe Rabin automaton
« Transform the Rabin automatoninto a Buchi automaton.

e Therefore, also Blchi automata are closed under
complementation 15

Rabin automata

e A Rabin automaton is like a Buchi automaton,

except that the accepting condition is defined
differently.

« A=(2,5,,R,F), whereF=((G,,B,),...,(G,,,B.,)).

e and the acceptance condition for a rum = s,,s,,... IS
as follows: for some

 Lim(r) n G, #] and
e Lim(r) n B; =0
In other words, there iIs a pair (G ,B.) such that the

“good set (G) Is visited infinitely often, while the
“bad’ set (B)) Is visited onlyfinitely often.

16

Rabin versus Blchi automata

1,0 TheBuchi automaton
Ot a0
1

. / 1 The Rabin automaton
= : fot £, = (0+1y1®
0

The Rabin automaton has(({t},{s}))
Note that the Rabin automatondisterministic

17

Language emptiness for Blichi automata

Theemptiness problenfor Buchi automatais the problem
of deciding whether the language accepted by a Buchi
automatorA is empty, i.e. ifL(A)=[1.

Theorem The emptiness problenfior Bichi automatais
decidable in linear timel.e. In timeO(|A)).

Fact: £(A) = [0 iff in the Blchi automaton there ®
reachable cyclé\ containing a state IrfF.

18

Language emptiness for Blichi automata

In other words|_(A) # [] Iff there Is acyclecontaining an
accepting state which Is alsoreachable from some
Initial state of the automaton.

We need to find whether there is such a reachabtele

We could simply compute th&CCs of A using the
standardDFS algorithm, and check if there exists a
reachabler{ontrivial) SCCcontaining a state IR.

But this Is usuallytoo inefficient in practice. We will
therefore use amore efficient nested DFS(more
efficient in theaverage-case

19

Efficient language emptiness for BA

Input: A
Initialize: Stack;:=0, Stack,:= [
Table;:= I, Table,;= [0
Algorithm Main()
foreach s Init
If sl] Table, then
DFS1(s)
output(* empty™;
return;

Algorithm DFS1(s)
push(s,Stack);
hash(s, Table);
foreach t [Succ(s)

If t] Table, then
DFS1(t),
if sF then
DFS2(s)

pop(Stack,);

Algorithm DFS2(s)
push(s,Stack);
hash(@, Table) ;
foreacht [0 Succ (s)do
if t L] Table, then
DFS2(t)
else ift is on Stack
output(* not empty”);
output(Stack,, Stack,,t);
return;

pop(Stack,);

Note: upon finding a bad cycle,
Stack, +Stack,+t, determines

a counterexample: a bad cycle

reached from an init state.
20

Generalized Blchi automata (GBA)

Generalized Buchi automatarA = (2,S,$,R,(F,,---.F.1))

« Arunr onw=a;,a,,... IS an infinite sequences,,s;,... such
that s,US, and s, UR(s,a) for j=0.

e Let Lim(r) ={s|s = g for infinitely many k}

« Arunrisacceptingf foreachO<i<m

Lim(r) n F; #0

Any Generalized Bulchi automaton can be easily

transformed into a Buichi automatonas follows:

LA) = N [»g<2,S,9.RF>)

i0{0,...,m-1}

This transformation is not very efficienf though.

21

From GBA to BA efficiently
Generalized Buchi automatarA = (2,S,$,R,(F,,---.F.1))

A Generalized Bulchi automatonA can be efficiently
transformed into a Blchi automatonA’ = (2, S',S,, R’,
") as follows:

S’'=5x%x{0,...m-1}
F'=F, x{i} forsome0O<i<m
S'h=§ x{i} forsomeO0<i<m

R((s (s’, (i+1 mod m)) if s’0R(s,a and sCF.
((s,i),a) (s',i) if S'00R (s,8 and sOF,

Notice that the transformation above expands the
automaton size by a factor ofm (compare with Blchi
Intersection).

22

LTL and Buchi automata: example

« The following Buchi automaton

recognizes the models of the LTL
formulap U g

e |Indeed, all these models have the form;
p'q AP® D P

where by AP® we mean any Infinite
seguence of atomic propositionsAR.

23

LTL and Blchi automata: example

« The following Buchi automaton
recognizes the models of the LTL
formulap U g

* Indeed, all these models have the for D

p'q AP®

where by AP® we mean any infinite
seguence of atomic propositionsAR. @

Notice that for convenience, we shall
assoclatesymbols to statemstead of arcs ’
(the general mapping between the fwo
versions oBuchi automatacan be easily

defined.

24

LTL-semantics and Buchi automata

« A formula expresses a property ofw-words, i.e., an
w-language L() O Z,5%.

e For wword 0 =0,, 0,,0,,....0%,:,% leto' = 0,04,
0...... be the suffix of o starting at positioni. We
defined the “satisfies relation, E, inductively:

+ OED iff pOo; (for p, OAP).

¢ O E- Iff nota E .

e oY, UY, iff o EY,0rac k..

« GEXY iff o*lEY.

e gEY, UL, iff Ck=i. (0XEY,and00<j< k. ol E Y,)

+ o'k, R, iff Ok2i. (0¥ Y,or M<j<k. ol k)
 We can then define the language() ={o | c®e P }.

Relation with Kripke structures

We extend our definition of “satisfies to transition
systems, orKripke structures as follows:

e given arunt= §—s,—..—5—...0f K,p, let
L(1) = L(Sp) L(Sy) ... L(S,) ...
notice thatL() [J X,

« Then K,x £ Y Iff for all computations (runs) 1t of
Kap, L(TD E .

In other words:

e setting L(K »,p) = {L(m) | TtIS an infinite path in K 55}

Kap FW = L(Kpp) O L(Y).

26

LTL Model Checking: explanation

Kap F U

~

L(Kap) O LW)

= L(Kup) N (ZAPO)\ L)) =0

<~

A

LK) N L(mY) = [
L(Kue) 0 LA =10

27

Relation with Kripke structures

We can transform any Kripke structure into a
Blchi automaton as follows:

where every state Is acceptihg

LTL Model Checking

System Mode

LTL
property

ok

Model Checker

p——

Check thatK E W

by checking that
LIK)NnL(A,y) =0
1

—

Convert—-y to a
Blichi automaton
A_y, SO that

LEW) =LA

No! +
“counterexample”

29

The algorithmic tasks to perform

We have reduced_.TL model checkingo two tasks:

1 Convert an LTL formula ¢ (i.e. =) into a Blchi
automaton A, such thatL(Q) = L(A,).

2 Check whether K ,» £ W, by checking whether the
Intersection of languagesC(K ,p) N L(A_) Is empty.
It Is actually unwise to first construct all of K ,,, because
K ,p Can be far too big Etate explosioh

e Instead, it iIs possible perform the check byconstructing
states ofK ,, only as needed

30

LTL to BA translation

o First, let’s put LTL formulag in normal form where:
e ='s have beenpgushed i, applying only topropositions
e the only propositional operators arel],[].
e the only temporal operators axeU and its duaR.

 We can use the following rules:
* p - q=- pUOq/(definition);
e« =(p0qg)=- pO~ q(De Morgaris low);
e =(pdqg)=- pO- g(De Morgaris low);
e - = p=p(double negatioriow);
* "(pUQ)=E(=pP)R(=0q);
* " (PR)=E(EpP)U(-Q);
« Fp=TUp ;Gp=0Rp;
e = X p=X - p(linearity)

31

LTL to BA translation

o First, let’s put LTL formulag in normal form

= ‘s have beenpushed i, applying only to propositions.
 We use the following rules:

* p-q=-pUq ;- (pUg)=-plU-q ;=(pUg=-p

|:|—| q N N pE p :

* " (PU=EEP)REQ) ;- (PRA=E(EP)U(-Q)

e Fp=TUp ;Gp=slURp ;" Xp=EX-p;
Examples:

(pUQ) - Fn=-(pUq)UFr==(pUqg (TUr)=

(—l pR—l q)EI(TUI‘)

GFp - FrE(LUR(Fp)) - (TUp =(LUR(TUP)) - (TUr)=

S (OR(TUP)O(TUN=(TU=(TUpP)O(TU=
(TU@R-p)O(TUT)

32

LTL to BA translation: intuition

States ofA; will be sets of subformulasf ¢, thus ifp =
p,U-p,, a state Is given blylL{p,,p,,= Py, P;U=P,}-
Consider a word = 0, 0,,0,,...003,,* such that E ¢,
where, e.g.¢ = Y,U ,.

Mark each position with the set of subformulds of ¢
that hold true there:

Op 010y covnvnnnnnn.
Clearly,¢ [I',. Butthen, byconsistencyeither:
e Y, 0l andp OT 4, Or
o Y,0T0,.
The consistency rules dictate our states anditians. .,

LTL to BA translation

Let sub(®) denote the set of subformulasdof
We defineA, = (Q, 2, R, L, Init, F) as follows.
First, the state set:

 Q={r O sub@) |s.t.T islocally consistent.

e Forl to belocally consistentve should have:

e LT

eif UyOdr, thenp O or yOT.

e fYUyOr, thenp O andy O T.

e if p, 0TI then- p,UI, and if= p, O T thenp,LIT.
e fYUYONthen(@Oror yadr).

e fYRYOTl, thenyOT.

34

LTL to BA translation

Now, labeling the states é&i;:
e Thelabeling_: Q > 2 isL(lN) ={l Osub(®) n Z |l I T}.

* Now, a wordo = 0,0, ... U (Zp)?Is In L(A,) Iif there
isarunmt=r,- I > I, ..of A, st 00N, we
have thato; “satisfies L(I;), I.e., o, IS a ‘satisfying
assignmentfor L(I",) .

e This constitutes alight redefinition of Bichi automata

wherelabeling is on the statesistead of on the edges.
This facilitates a much more compagt

35

LTL to BA translation

Now, the transition relation, and the restﬂcq;‘.

Basec

Q(L

on the fo
yUy) =yl

o(l_

lowing TL rules:
(YOX(WUY))

JRY) =yUWWUOX (WRY)=(yUy) O(yUX(YRY))

and on thesemantics ofX, we define:
« RLUQxQ, where(l',I"") LR iff:

o If
o If
o |f

(WUY Ol thenyOlM,or@ONMand(WUy OI).
(VRy)OlthenyOlN,and(@UOTFor(YRyYy OI).

XwOT, t

neny L1,

36

LTL to BA translation: example

oje

Consider the following formula: Fp=TU p
sub(TUp)={TUp, p}
Init={r dsub(TUpP)|TUpLOTI}

37

LTL to BA translation: example

ONN®

Consider the following formula: TU p
(TUp) =pUX(TUDp)

38

LTL to BA translation: example

\

Consider the following formula: TU p
(TUp) =pUX(TUDp)

39

LTL to BA translation: example

\

ol L2
C

Consider the following formula: TU p
(TUp) =pUX(TUDp)

40

LTL to BA translation: example

\
@/?
00

Consider the following formula: TU p
(TUp) =pUX(TUDp)

41

LTL to BA translation: example

\
@/?
00

In this automaton are runs, e.g.T U p]®, wherep
never occurs.These run must not be accepting

42

LTL to BA translation

e INit={FUQ |¢ LI}
o For each(U y) Ll sub(®), there is a set, LI F, such
that:
e F={TUQ|(wWUY OlorylTl}
o (orequivalenthyF={F JQ|if (WUy LI, thenyd})

* (notice that if there areo (¢ U y) [sub(®), then the
acceptance condition is the trivial orad:states are accepting

Lemma L£(]) = L(Ag) -

ButAq) IS now ageneralizedBuchi automaton...

43

LTL to BA translation: example

Consider following form: TUDp
sub(TUp)={TUp, p}
F={Fryp}={TOsub(TUp)|(TUp)OTorpUr} .

LTL to BA translation: example

O

Consider the fol

\
O

owing formula: Gp=0ORPp

sub@R p)={OR p, p}

Init={I L

sub@Rp)|ORpOT}

45

LTL to BA translation: example

Consider the following formula: Gp=0OR p
sub@ R p) ={OR p, p}
(ORp)=pUX(ORP)

46

LTL to BA translation: example

The trivial
acceptance condition

Consider the following formula: Gp=0OR p
sub@ R p) ={OR p, p}
There areno eventualitieshenceF ={ Q } .

LTL to BA translation: example
pUq

Consider the following formula: pU g

subpUag)={pUq,p,q}
Init={r OsubPUp)|pUqlrl}

48

LTL to BA translation: example

olelojo

Consider the following formula: pU g

subpUag)={pUq,p,q}
Init={r OsubPUp)|pUqlrl}

49

LTL to BA translation: example

Consider the following formula: pU g

subUqg)={pUq,p,q}
(PUg=q0@E0OX(pUaqg)

50

LTL to BA translation: example

Consider the following formula: pU g

subpUq)={pUq,p,q
F={F uq}={T OsubpUaq)|[(pUaq)Odrorqdr}

On-the-fly translation algorithm

There Is another moreefficient wayto build the Buchi
automaton corresponding to a LTL formula.

e The algorithm proposed byVardi and his colleagues,
IS based on the idea of refining statesnly as needed

e |t only record the necessary information(what must
hold) at a state, instead of recording the complete
Information about each state (both whatmust hold
and what might or might-not holg.

* In a way what “might or might-not hold is treated as
‘don’t caré information (which can be filled in, but
whose value has no relevant effect).

52

Algorithm data structure: node

Name A string identifying the current node
Father: The name of thefather nodeof current node

Incoming: List of fully expanded nodewith edges to the
current node.

Old: A set oftemporal formulaewhich must hold and In
the current nodehave been processed already

New. A set oftemporal formulaewhich must hold but in
the current nodehave not been processed yet

Next A set oftemporal formulaewhich should hold In
the next node(immediate successor) of theurrent
node

Fully Expandednodes (i.e Statesof the Automaton) are
those nodes having thélewfield empty.

53

Name Nodel
Father: Nodel

Incoming: Init

NODE >l New: {p U q}

Next {}

Old: {}

\ Fully Expanded
Name Node2 \ Name Node3 /
Father: Nodel Father: Nodel
Incoming: Init Incoming: Init
New {p} New {}
Next {p Uq} Next {}
Old: {p U q; Old: {a.pUat | o

gorithm to build set of fully expanded nodes

functioncreate graph()

return(expand([Namnie Fathefrl new name(),
Incoming {Init}, NewL { ¢},

OldU [, Next] 1],)

Fully Expanded Nodes

~

functionexpand (Node Nodes_ Set _—

If New(Nodexll then

If C(NDUONodes_Seawith Old(ND)=0OId(Node)and

Incoming(ND):= Incoming(ND)U Incoming(Nodg
return(Nodes Set
else returrgxpand([Namell Fatherld new name(),
Incomingl] {Name(Nodg)
New [l Next(Node)OIld [, Nextd [I],
Nodes Sdil {Nod4g);

andNext(ND) = Next(Nodehen

else

55

Example: case of a fully expanded node

Nodes Set *

4 ORp;p
Name Node8
Father: Node6
Incoming: 4
New. {}
Next {IR p}
Old: {/{Rp;p}

Example: case of a fully expanded node

Nodes Set ‘

4 puqg;p
9 puQg;q
Name Node9
Father: Node7
Incoming: 4
New. {}
Next {}

Old: pUq; q}

functionexpand (Node, Nodes Set

If New(Nodg=[ther{ preceding block Expansion for literals
else —
let n O New; Contradiction found

New(Node)= New(Node) {n};
casen of /
n=p;or-porTorl]:
f n =0 orNeg(n)JOId(Nodethen
retur [* Discard current node */

elseOld(Nods := Old(Node)T {n}:
returngxpand(Node Nodes Séy;

nN=pUPorpuRYorpdy:....

58

Splitting a node
for Disjunction

Name Nodel
Father: Nodel

Incoming: Init

New.
Next
Old:

fo Ua}

m

Name
Father:

New.
Next
Old:

Node2
Nodel

Incoming: Init

o}
{}
p Oaq}

Name Node3
Father: Nodel
Incoming: Init
New. {}
Next {}

Old: f Uq}

59

Splitting a node |Name Nodel
for Untll op. Father: Nodel
Incoming: Init
New. o U g}
Next {}
Old: {}
4/$3N
Name Node2 Name Node3
Father: Nodel Father: Nodel
Incoming: Init Incoming: Init
New:. o} New:. o}
Next o U q} Next {}
Old: P Uqg} Old: o U g}

60

Splitting a node
for Release op.

Name Nodel
Father: Nodel

Incoming: Init

New. o R q}
Next {}
Old: {}

m

Name Node2
Father: Nodel

Incoming: Init

New. {}
Next PR g}
Old: P R g}

Name Node3
Father: Nodel
Incoming: Init
New. P.q}
Next {}

Old: PR}

61

Additional functions

The function Neg() is applied only to literals:
Neg(p;) =~ p; Neg(T) =L
Neg(=p;) =p Neg(t) =T

The functions New1(), New2() and Next1(), used

for splitting nodes are applied to temporal
formulae and defined as follows:

n Newl(n) Nextl(n) New?2(n)
LUy | {H {n Uy} {y}
LRy | {y} {HR g} {1 .y}
L0y {1} [{y}

functionexpand (Node, Nodes Sk
If New(Nodég=[1 then{preceding block

else
let NI New;
New(Node)= New(Node) {n}; Splitting the node
casen of
n=p;or-p orTor: {preceding block /

splitting

N=pUyoruR Y orpdy:

Nodel=[Namell new name(), Fatherld Name(Node)
Incomingld Incoming(Node)
New [l New(Node)l ({Newlf))} \ Old(Node),
Old O Old(Node)d {n},
Next[l Next(Node)l {Nextlif)}];
Node2=[Namell new name(), Fatherld Name(Node)
Incomingld Incoming(Node)
New [l New(Node)l ({New2f)} \ Old(Node),
Old O Old(Node)d {n}, Next[d Next(Nodd])
returnexpand(Node2 expand(Nodel Nodes S¢));

n=pUwy:... 63

functionexpand (Node, Nodes Seét
If New(Nodg=[] then{ preceding block
else
let nUJ New;
New(NodeFNew(Node) {n};

casen of Expansion for conjunction

n=p;or-p;or Torl {preceding block
N=pUPorpuRYorpudy:{preceding block /
n=ply:
returngxpand([Namell Name(Nodg
Father]l Father(Node,
Incomingl] Incoming(Nodg
New [l (New(Node)l{u,p} \Old(Node),
Old U Old(Node)d {n}, Next= Next(Nod€)
Nodes Sét

n=Xuv:...

64

Expanding a node

Name Nodel
Father: Nodel

Incoming: Init

New. o q,...}
Next {...}
Old: {...}

l expand
Name Node2

Father: Nodel
Incoming: Init

New. .09,...}
Next {...}

Old: {...p Uq}

65

functionexpand (Node, Nodes Seét
If New(Nodég=L1 then{preceding block
else
let NI New;

New(NodeFNew(Node) {n}; Expansion for Next operatof

casen of
n=p;or-p,or Torl: {preceding block
N=pUyPorpyRYPorudy:{preceding block
n=p0Oy: {preceding block

nN=Xuy:
returnexpand(
[Nameld Name(NodgFatherl]l Father(Node,
Incomingl] Incoming(Nodg Newll New(Node)
Old O Old(Node)d {n}, Next =Next(Node)l {y}],
Nodes Seét

esac,

endexpand;
66

Expanding a node

Name Nodel
Father: Nodel

Incoming: Init

New. K p,...}
Next {...}
Old: {...}

l expand
Name Nodel

Father: Nodel
Incoming: Init

New. {...}
Next {...p}
Old: {....Xp}

The need for accepting conditions

« IMPORTANT: Remember that not every maximal
patht=5,S;S,... In the graph determines a model
of the formula: the construction above allows

some node to containuU P while none of the
successor nodes contait.

e This Is solved again by imposing thegeneralized
Blchi acceptance conditions

« for each subformula of @ of the form p U Y, there
Is a setr, [I F, including the nodess [1 Q, such that

either p U @ O OIld(s), or g LI Old(s).

68

Complexity of the construction

THEOREM: For any LTL formula ¢ a Bduchi
automatonA , can be constructed which accepts all
an only the w—sequencesatisfying .

THEOREM: Given a LTL formula ¢, the Bduchi
automaton for ¢@ whose states areO(29) (in the
worst-case [|¢@ Is the number of subformulae ofi].

THEOREM: Given a LTL formula ¢ and a Kripke
structure Ky, the, the LTL model checking
problem can be solved in time O(|K J219).
[actually it Is PSPACEcompletd.

69

LTL to BA: example

e Consider the following formula:

Gp
 wherepis an atomic formula.
e |ts negation-normal formis

ORp

70

LTL to BA: example

Current node i1s Node 1
Incoming = [Init]

Old =] (ORp) =(p0O0) O
New = [0 R p]
Noxt = [(POX(@R)

New(node) not empty, removing= O R p, nodesplitinto 2,
about to expand them 71

LTL to BA: example

Current node I1s Node 2
Incoming = [Init]
Old=[0R p]

New = []

Next =[0R p]

New(node) not empty, removing= p, hode replaced by 4
about to expand them

72

LTL to BA: example

Current node I1s Node 4
Incoming = [Init]
Old=[0Rp;p]

New =[]

Next =[0R p]

New(node) empty, no equivalent nodes. About to add,
timeshift and expand.

73

LTL to BA: example

..

4 ORPp;p

Current node i1s Node 5
Incoming = [4]

Old =] (ORp) =(pO0) O
New = [OR p] (P OX(OR p))
Next =]

New(node) not empty, removing= 0 R p, nodesplitinto 6, 7
about to expand them 74

LTL to BA: example

..

4 ORPp;p

Current node Is Node 6
Incoming = [4]
Old = [OR p]

New = |p]

Next = [OR p]

New(node) not empty, removing= p, hode replaced by 8,
about to expand it 75

LTL to BA: example

INnit

A4

URp;p

Current node is Node 8
Incoming = [4]
Old=[0RDp;pl

New =[]

Next = [OR pj

New(node) empty, found equivalent old node in NGkt (4).

Returning it instead.

76

LTL to BA: example

From the split
of Node 5
4 ORp;p 9,

Current node is Node 7
Incoming = [4]
Old=[0R p]
New=[0;p
Next =[]

New(node) not empty, removing= [J, Inconsistent node
deleted - dead end!.

LTL to BA: example

From the split
of Node 1
4 ORp;p 9,

Current node is Node 3
Incoming = [Init]
Old=[0R p]
New = [J; p]
Next =[]

New(node) not empty, removing= [J, inconsistent node
deletec- dead end

LTL to BA: example

..

URp;p

Final graph folGp=[Rp

C5C

79

LTL to BA: example 2

Consider the following formula:

pUQg
where p and g are atomic formulae.

80

LTL to BA: example 2

Current node is Node 1
Incoming = [Init]
Old =]

New = p U (] (PUQ =q0(pOX(pU Q)

Next =[] '\
03,2

New(node) not empty, removing=p U nodes
about to expand them

81

LTL to BA: example 2

Current node is Node 2
Incoming = [Init]

Old =[p U q]

New = [p]

Next = [p U q]

New(node) not empty, removing= p node replaced by 4, about
to expand them

82

LTL to BA: example 2

Current node is Node 4
Incoming = [Init]
Old=[pUq;p]

New =[]

Next = [p U q]

New(node) empty, no equivalent nodes. Add, timesimél
expand.

83

LTL to BA: example 2

Current node i1s Node 5

..

A

pUq;p

Incoming = [4]

Old =]

New = [p U q]

Next =[]

(PUQg) =qU(pOX(pU Q)

New(node) not empty, removing=p U g, nodesplitinto 6 , 7,

about to expand.

84

LTL to BA: example 2

4 pUq;p

Current node is Node 6
Incoming = [4]
Old=[pU q]

New = []

Next = [p U q]

New(node) not empty, removing=p, hode replaced by 8, about
to expand it 85

LTL to BA: example 2

4 pUq;p

Current node is Node 8
Incoming = [4]
Old=[pUq;npl

New =[]

Next = [p U q]

New(node) empty. Found equivalent old note (4) au&l Set.
Returning it instead.

86

LTL to BA: example 2

From the split

of Node 5
4 pUg;p P,

Current node is Node 7
Incoming = [4]
Old=[pU q]

New = [g]

Next =[]

New(node) not empty, removing= g, node replaced by 9, about
to expand it 87

LTL to BA: example 2

4 pUQg;p D)

Current node is Node 9
Incoming = [4]
Old=[pUq;q

New =[]

Next =[]

New(node) empty, no equivalent node found. Add sinne and
expand

LTL to BA: example 2

Init
4 puq;p
Current node is Node 10 l
Incoming = [9] _
old =[] 0 pUQg;q
New =[]
Next =[]

New(node) empty, no equivalent node found. Add siniié and
expand

LTL to BA: example 2

INnit

l

A

pUg;p D

Current node i1s Node 11

l

Incoming = [10]
Old =[] 9

pUqQ;q

New =[]
Next =[]

l
10

New(node) empty. Found ec
Returning it instead.

uivalent old node in N&a (10).

90

LTL to BA: example 2

From the split
of Node 1

Current node i1s Node 3

Incoming = [Init]
Old=[p U q]
New = [of]

Next =[]

New(node) not empty, node rep

INnit

!
4 pUlq;p
9 pUQq;g

l

10

0,

aced by 12, aboakpand.

LTL to BA: example 2

INnit

l

A

pUq;p

Current node is Node 12

l

Incoming = [Init]
Old=[pUgq;q I

puqg:;q

New =[]

l

Next =[]

10)

New(node) empty. Found ec
Returning it instead.

uivalent old node (4) mu@l Set.

92

LTL to BA: example 2

L -

Final graph fop U g

4 pUlq;p
9 puQqg;g
|
10

93

Comparison of the two algorithms

The graphs fop U g obtained from the two algorithms

Notes on the algorithm

 Notice that nodes donot necessarilyassign truth
value toall atomic propositiongin AP)!

* Indeed thelabeling to be associated to a node can
be any element oR2AF which agrees with theliterals
(AP or negations ofAP) in Old(Node)

 Let Pos(g)=0Id(q) n AP
* Let Neg(q)={n UAP|-n 0 Old(q);

Zg)={ XOAP | XOPos(g)U(X n Neg(q) =}

95

Notes on the algorithm

D £0)={{p} {p.a}}

) ={{}.{p}{a}{p.a}}

Composing A s and A

* |In general what we need to do Is to compute the
Intersection _of the languagesecognized by the
two automata A, and A, and check for
emptiness.

« We have already seens(ide 12 how this can be
done.

« When the Systemneeds not satisfy FAIRNESS
conditions (or Iin general Ay have the trivial
acceptance condition, Il.e.all the states are
accepting there i1s a more efficient construction...

97

Efficient composition of A ¢ and A,

* When A, have theftrivial acceptance conditioni.e.

all the states are acceptinthere is a more efficient
construction.

* |n this case we can just compute:

Asysn Acp: < Z’ Ssysx S(p’ R” SOsysx SO(p’ Ssysx F(p>
e where

(<s,t,a,<s’,t'>)0R" Iff (sa,s’)URg,and (t,at)UR,

98

Efficient composition of A ¢ and A,

Notice that in our case both automata havébels In
the stateginstead of on the transitions).

This can be dealt with by simplyrestricting the set of
statesof the intersection automaton to those which
agree on the labelin@n both automata.

Therefore we define
AgsN Ap=<2,5, R, (Seye* So(p)n S, §,& Fy>
where
S’ = {(S1t) N Ssysx S(pl Lsys(S)IAP((p):L(p(t)} and
(<s,b,<s' U>)UR" it (ss)URgs and (t,U)0R,

99

