Tecniche di Specifica e di
Verifica

Boolean Decision Diagrams |
(BDDs)

Outline

e NUuSMV
* The state explosion problem.

 Techniques for overcoming this problem:
— Compact representation of the state space.
= BDDs.
— Abstractions (bisimulations)
— Symmetries
— Partial Order Reductions.

NuSMV

 New Symbolic M odelVerifier.

 Developed atCMU-IRST (Ed Clarke,
Ken McMillan, Cimatti et al.) as
extension/reimplementation 6MYV .

« NuSMV has its own Input language (also
calledSMV!).

NuSMV

You must prepare your verification problem
In this language.

An NuSMYV program Is a convenient way to
describe &ripke structure .

You can Insert the properties you want to
verify in the program.

Read the tutorial and on a need-to-know
basis, the manual.

Parallel Composition

TS, =(5, S% 2, R) RiCS xZ xS
TS,=(5, 8% 2, R) R,CSXE xS,

aec2, andal 2,
— An “internal” action of TS,;.
ac 2, N2z,

— A common(synchronizing action of TS, and
TS..

Parallel Composition

* TS, =(S, S” 2 R) RIES xZ x§
£ 75,2 (S, S 5, R) R,CS,XE, x5,
¢« TS=(TS, || TS) =(S, 9, Z, R).

—S=3XS

—_ SO:S_LOXSZO

Parallel Composition

* TS, =(S, §°% 2, R) RICSxZ xS
* TS,=(5, 5" 2, R) R,ESXxZ, xS,
e TS=(TS, || TS,) =(S, 9, Z, R).

—RCSx2xS

=S =3 XS,
- R((s1,s2), a, (t1, t2)) ?
—ifae >, andall ,
—thenR,(s1, a, tl)ands2 = t2

Parallel Composition

* TS, =(S, §°% 2, R) RICSxZ xS
* TS,=(5, 5" 2, R) R,ESXxZ, xS,
e TS=(TS, || TS,) =(S, 9, Z, R).

—RCSx2xS

=S =3 XS,
- R((s1,s2), a, (t1, t2)) ?
—ifae2,andal Z,
—thenR,(s2, a, t2)andsl = tl

Parallel Composition

S=(TS; H

S =(5, 8% 2, R) RiCS xZ xS
S,=(5, 8% 2, R) R,CSXE xS,

S)=(S, 9,2 R).

—RCSx2xS
=S =3 xS,
- R((s1,s2), a, (t1, t2)) ?
—ifae2;andae 2,
—thenR,(s1, a, tl)and R,(s2, a, t2)

Parallel Composition

TS

(TS ITS) [TS;

* TS=TS [(TS, || TSy

=TS || TS, || TS

Parallel Composition

S=TS[|TS,...| TS;
Size(TS) =~ |S|=k > 2
Description of TS~ k, + k, ...+ K

n

Size(TS) = K x Kk,...x k,
> 2" |

Size of TS Is exponentialin n (thenumber
of componentk

State space explosion problem

11

How to circumvent state space
explosion?

» Use succinct representations of the state space.
— Boolean Decision Diagrams
 Reducel Sto TS’ such that:

— TS has the required property |ff
TS’ has the required property.

= Symmetries
» Abstractions (bisimulations)
» Partial order reductions.

12

Symbolic Model checking

K=(S, S, R, AP, V)
P aCTL formula

To check whether:
—K,skFy

We need to

— computg[y]| = states() = {s| K, s & }.
—then checkvhethers € [[y]].

13

Symbolic Model checking

K=(S, § R, AP, V)
P aCTL formula

S’ C Scan be represented ab@olean function
R can be represented ab@olean function

I[W]| can then be represented asoalean
function.

Boolean functionsrepresent theharacteristic
functions of the givensets of states

14

BDDs

Boolean functions can be (oftes)iccinctly
represente@sboolean decision diagrams

BDDs are easy to manipulate.

Not all boolean functions have a succinct
representation

UseBDDsto represent and manipulate the
boolean functions associated with the
model checking process.

15

Boolean Functions

e f: Domain — Range

e Boolean function:
— Domain ={0, 1}» ={0,1} xx {0,1}.
— Range ={0, 1}
—f 1s a function o boolean variables.

« How many boolean functions 8fvariables
are there?

16

Boolean Functions

e f: Domain — Range

e Boolean function:
— Domain ={0, 1}» ={0,1} xx {0,1}.
— Range ={0, 1}
—f 1s a function o boolean variables.

« How many boolean functions 8fvariables
are there?

— Answer :22°= 281

17

Truth Tables

g:{0, 1} x{0, 1} x {0, 1} — {0, 1}

0 0] Of O

O 0 1 1

Ol 1) O 1

O 1| 14 O

1] 0] O 1

11 0] 11 O

11 1{ O O
11 1] 1 1

X1¥Y1419

18

Boolean Expressions

Given a set oBoolean variables x,y,..and the
constantd (true) andd (false):

t:=x|0]|1|-t|tOt|tOt|[t=t |t =t
The semantics ofBoolean EXxpressionsis
defined by means afuth tablesas usual.

Given an ordering of Boolean variables,
Boolean expressionkan be used to express
Boolean functions

19

Boolean expressions

 Boolean functions can also be represented
as boolean (propositional) expressions.

e X LIy represents the function:
—1:{0, 1} x {0, 1} — {0, 1}
= (0, 0) =
" (0, 1) =
" f(1, 0) =
nf(1, 1) =

20

Boolean expressions

* Boolean functions can also be represented
as boolean (propositional) expressions.

e X [y represents the function:
—1:{0, 1} x {0, 1} — {0, 1}
= (0, 0) =0
= (0, 1) =0
= f(1, 0) =0
= f(1, 1) =1

21

Boolean functions and expressions
Xy |z]g

g:{0, 1} x{0, 1} x {0, 1} — {0, 1}

 ~ O O O O
 ~ O O - +» O O
P 0O = O =k O = O
b O O B O - = O

g=(x<y) Uz)L((x = ~y) U=2) 22

Boolean expressions and functions
Xy |z]g

g=(xUyU-z)U(x U=y Uz) U(=xLy)

 ~ O O O O
 ~ O O - +» O O
P 0O = O =k O = O

23

Boolean expressions and functions
Xy |z]g

g=(xUyU-2z)U(x U=y Uz) U(=xLy)

g:{0, 1} x{0, 1} x {0, 1} — {0, 1}

 ~ O O O O
 ~ O O - +» O O
P 0O = O =k O = O
c +r —r O + O O

24

Three Representations

Boolean functions

Truth tables

Propositional formulas
Threeequivalentrepresentations.
Here Is dourth onel

25

Boolean Decision Tree

« A boolean functionis represented as a
(binary) tree

e Each Iinternal node Is labeled with a
(boolean)variable

e Eachinternal nodehas apositive(full line)
and anegative(dotted ling successar

e Theterminal nodesare labeled witl® or 1.

26

Boolean Decision Diagrams

* A compact wayof representing boolean functions.

« Can be used I@TL model checking.
— Represent a subset of states as a boolean function

— Represent the transition relation as a booleactifom

— ReduceEX(W), EU(W,, W,) and EG(J) to manipulating
boolean functions and checking fdroolean function

equality.

« Go fromNuSMV (program) representatiaiirectly to
Its BDD representation!

27

If-Then-Else operator

(x Os) O(=x Osp)

X~5,%)

Xy

X>Yy,0

Xty

X 1,y

y

X

X> VY, Z

y

X

If-Then-Else representation

Let x O AP, then

e X=EX 1,0

° —I(I) = (I) -0,1

* ¢, 00,20, - ¢,,0

* 0, 00,20, - 1,0,

heorem:Every boolean formula can be written
In If-Then-Else representaton

Assumed, =x -), ,), then
G1 > O, P3=(X > Yy, Py) > ¢, 05=
=X - (L|J1—’ ¢2’¢3)1(L|J2—’ ¢2’¢3) 2

If-Then-Else normal form

ITE normal form: a boolean expression Is
written in ITE normal form if it only contains
constants Oand 1, If-Then-Else Is the only
operator occurring in the expression andests
are only performed on variables

30

Boolean decision trees.

If-Then-Else normal form

xy=x -vy,0

Shannon Expansion: ®\
= (XDf[llx]) (_'XDf[O/x])
=X = T Tomg @\ R

where
f[a,x](...,x,...) =f(...,a,...)

fora=0,1

31

If-Then-Else normal form
ITE normal form: a boolean expression Is

written in |

E normal form If it only contains

constants Oand 1, If-Then-Else Is the only
operator occurring in the expression andests
are only performed on variables

heorem:Every boolean formula can be written

IN ITE normal form.

Proof: by trivial induction on the structure of
boolean formulae.

32

Boolean Decision Tree

« A boolean functionis represented as a
(binary) tree

« Each node Is labeled with a (boolean)
variable

« Eachnode has apositive (full line) and a
negative(dotted ling successar

e Theterminal nodesare labeled witl® or 1.

33

0

0 0] Of O
O 0 1 1
Ol 1) O 1

11 0] 11 O

11 1{ O O
11 1] 1 1

X1¥Y1219

(my U(x = =2))

YUX = 2))

g:

34

BDDs

A BDD is finite rooted directed acyclic grapm
which:

* There is aunique Initial node(theroot)
e Eachterminal nodeis labeled with & or 1.

 Eachnon-terminal (internal) nodev has three
attribute:

—var(v), and

— exactly two successors low(vand high(v): one

labeledO (dotted edgglow(v)) and the other labeled
1 (solid edgehigh(v)).

35

y

36

Reduction Rules

e Three reduction rules:
— Share identical terminal nodes. (R1)
— Remove redundant tests (R2)
— Share identical non-terminal nodes. (R3)

37

Reduction Rules

e Three reduction rules:
— Share identical terminal nodes. (R1)

e |f a BDD containstwo terminal nodesm
and n both labeled O then removen and
direct all iIncoming edges at to m.

e Similarly for two terminal nodegabeled1l.

o) 5
. aentical non
/ terminal identical
. N\ terminal
5 0 K 0 38

Share identical terminal nodes. (R1)

g=(yUXez)U@EyUX = =2) 4

Share identical terminal nodes. (R1)

g=(yUX e z)U@EyUX = =2) 4

Share identical terminal nodes. (R1)

g=(yUKX<2)UEyUX==-2)

Reduction Rules

* Three reduction rules:
— Share identical terminal nodeR&1()

— Remove redundant testgR2)

e |f both successors of noden lead to the
same noden thenremovem anddirect all
Incoming edges om to n.

non
redundant test

redundant test

42

Remove redundant testgR2)

/X X

N K

Reduction Rules

e Three reduction rules:

— Share identical terminal nodeR&1()
— Remove redundant test34)

— Share identical non-terminal nodes(R3)
e |f the sub-BDDs rooted at the nodes andn

are “identical’ thenremovem anddirect all
Its Incoming edges ta.

®

@ non-unique
\ \ node

unique
node
44

Share identical non-terminal nodes(R3)

g=(yUX e z)U@EyUX = =2)) 4

Share identical non-terminal nodes(R3)

g=(yUX e z)U@EyUX = =2)) 4

Reduced BDDs

A BDD is reducediff none of the three reduction
rules can be applied to it.

Start from the bottom layer (terminal nodes).

Applytherulesrepeatedlyto leveli. And thenmove
to leveli-1 (in this way checking for applicability of
R3 only needs testing whethemar(m)=var(n),
low(m)=low(n) andhigh(m)=high(n)).

Stop when the root node has been treated.
This can be done efficiently.

a7

Binary Decision Tree
for

Reduced BDD

 —

yO(x = -=2) =

Ordered BDDs

o {Xq, Xpy.ry X}
— An indexed (ordered) set of boolean variables.

e G Is an ordered BDD w.r.t. the abovevariable
ordering Iff:

— Each variable that appearsnis in the above set.
(but the converse may not be true).

—If 1 <] and x; and x; appear on a path thex
appears before x

49

Ordered BDDS

e Fundamental Fact

— For a fixed variable ordering, each boolean
function has exactly one reduced Ordered
BDD!

— Reduced OBDDs amanonical objects

— To test Iff and g are equal, we just have to
check iftheir reducedOBDDs areidentical.

— This will be crucial for model checkihg

50

y<Z<X

51

52

53

54

hun®

55

56

Reduced OBDD

« An OBDD isreduced(l.e. it is aROBDD) If
there are onlywo terminal verticed) andl1, and
for all non terminal verticesy,u:

— low(v) # high(v) (non-redundant tests

— low(v) = low(u) high(v) = high(u)andvar(v) = var(u)
Impliesv = u (uniquenes$

57

Canonicity of ROBDD

Let us denote &ROBDD with its root node
and thefunction represented bgubgraph a
rootedin nodeu with fY. Then:

Theorem For any functionf:{0,1}" - {0,1}
there exists a uniqueROBDD u with
variable ordering,, X,,..., X, such that

fu=1(Xq,...,X,)

58

Conseguences of canonicity

Theorem For any functionf:{0,1}" - {0,1}
there exists aunigue ROBDD u with
variable ordering,, x,,..., X, such that

fu=1(Xy,...,X,)

Therefore we can say that:

* A functionf! s atautologyif its ROBDD u
IS equalto 1.

e A functionfY s asatisfiablelf its ROBDD
u is not equalto O.

29

Reduced OBDDs

The ordering is crucial!

{X1: X5, Y1u Yo} X Xy
— (X1, X0, Y1, o) YoYo

— (X0 X2, Y1, Y2) =1 1F (X =y, UX, = Y5)
If X, <y, < X% <Y, then theOBDD Is of size
3-:2+2=8

If X, < %, <y, <Y, then theOBDD is of size
3:-2-1=11!

60

Reduced OBDDs

X1 <Y< X<Y,

(X, =y OX, = y))

Reduced OBDDs

The ordering Is crucial!

{X1, X014 : X0, Y1, Y0s - -, Y} Xy Xo.ow Xo

f(X2 Xo1e 01X Y1 Y21 -3 Y) M Y2 Yn

N
— (X, Xoro e XY1Yareo oY) = 1 iff i{\1(xi:yi>

If X, <Vy; <X <V,...<X, <Y, then theOBDD Is of
size3n + 2

If X, <X, <...<x, <V, <...<Yy,, then theOBDD is of
Size3 . 2" —1!

62

ROBDDs

Finding the optimal variable ordering is
computationally expensiviNP-completq.
There areneuristicsfor finding “good orderings.

There exist boolean functions whose sizes are
exponential (in the number of variables) for any
ordering.

Functions encountered In practice aezely of
this kind.

63

Implementation of ROBDDs

Array-based implementation

root = Us
Var | Low| High
0 ? ? ?
1 ? ? ?
0 1
TN= | Y| Y2
| U vy, | 1 0
Us| X U, U,
Ugl Yo | O Us
Us| v, | O Us
Ug| X, | Us | U,

The function MK

e The function MK searches for a node with
var(u)=x, low(u)=I and high(u)=h. If the node
does not exists, then creates the new node after
Inserting it. The running time 19(1).

Algorithm mk(i,1,h)

If 1=h then
return |
else ifT[H(i,l,h)] #empty then
return T[H(i,l,h)]
else u = add(T,H(,l,h),il,h)

H(i,l,h) is a hash
function mapping
a triple <i,l,h> into
a node index InT.

return u

Operations on ROBDDs.

During model checking, boolean operations
will have to be performed dROBDDs.

These operations can be Implemented
efficiently.

fig - Gy 0py Gy = Gy

here Is a procedure callegePPLY to do
this.

66

Operations on ROBDDs

* \When performing an operation GhandG’
we assume their variable orderings are
compatible

e X=XsUXg
 There Is an ordering on X such that:

— <restricted toX; IS <;
— <restricted toX;. IS <g..

67

Operations on OBDDs

* The basic idea3hannon Expansion
o f(X4, X5, .oty X))
- f|X1:O — f(O, X2,...,Xn)
= f =X V(X5 A Xy)

" fly, = 0= X LiX3
— Similarly,f |, - = f(1, %, ...,X,)

f(xl’ X2""1)§1) = (_'Xl Df|x1:O) D(Xl Df|x1:1)

e This is true even ik, does not appear in

68

Operations on OBDDs: Negation

e The basic ideaShannon Expansion

f(xl’ X2 """)%) = (_'Xl |:lﬂxl:O) D(Xl |:lﬂxl:l)

* Therefore, assuming, < X, <...<x,

~ f(Xg, Xg0e%) = 2 (g Offy 2o) D (xq Oy 29))
= (2 (=%, Off ¢) D= (x, Of],)
= (% O fl o) O~ X, O fl 2y
= (% U=x) O(=x, 0= fl, 2o) O
0%, O fl) O fl o0 fl -

:(_' XlEl_'ﬂxl:O)D(XlD_'f'xl:l) *

Operations on ROBDDs.

» Letx be thetop variableof G; andy thetop
variableof G,.

« To computes; ,, , we consider:
CASEl: x =y
=f Opg = (_'X D(f |x:00pg |x:0)]

(xU(f |x=10P 9 |x=1)
— We have to solve now twamaller problems!

70

Operations on ROBDDs.

» Letx be thetop variableof G; andy thetop
variableof G,

 To computes; ,, , we consider:
CASE2: x <.
— Thenx does not appear @, (why?).
~0lx=0=9 = 9x=1

"fopg=0Cx0(f[x=gopg)UXO(f|x-10p Q)

— We have to solve now twamaller problems!

CASEZ2: x > yIs symmetric.

71

Operations on ROBDDs.

 To computes; ,, , we consider:
Base (terminal) casesglepend upo
Eg.: ifop =0then {0,0 - O; 1}
If op =0then {1,1 - 1; 0}

Notice that-f(x,,x,,....x.) = f(x;,X,,...,x,) 0 1, therefore
negationcan be implemented withpply.

72

Algorithm for Apply

Algorithm Apply(op,u,v)

Function App(u,v)
If terminal_case(op,u,vXhen return op(u,v)
else ifvar(u) = var(v) then
u = mk(var(u), App(op,low(u),low(v)),
App(op,high(u),high(v)))
else ifvar(u) < var(v) then
u = mk(var(u),App(op,low(u), v), App(op,high(u),v))
else /*var(u) > var(v) */
u = mk(var(u),App(op,u,low(v)), App(op,u,high(v)))
return u

If n = number of variables, the
return App(u,v) running time = O(2"). Why?

Efficient algorithir for Apply

Algorithm Apply(op,u,v)
nit(G)
Function App(u,Vv)
It Gg,(u,v) # empty then return G (u,v)
else ifterminal_case(op,u,vXhen return op(u,v)
else ifvar(u)=var(v) then
r = mk(var(u), App(op,low(u),low(v)),
App(op,high(u),high(v)))
else ifvar(u) < var(v) then
r = mk(var(u),App(op,low(u), v), App(op,high(u),v))
else /*var(u) > var(v) */
r = mk(var(u),App(op,u,low(v)), App(op,u,high(v)))
Gop(U,v) =71

return r

running time = O(|G_||G,|).- Why?

return App(u,v)

Exemple of Applya

(X1 = X5) L(X3 = X,) U=Xs

(X1 = Xg) O=Xg

(¢, DXL 50x,) O
U (=X, R X,0RX5RX%,)) ChXe

The Restrict operation

 Problem Given a (partial) truth assignment
X,=by,....%=b, (where b=0 or b=1), and a
ROBDD tY, compute the restriction ¢f under
the assignment.

e E.G.0 IFf(X,%,%3) = ((X; = X,) LX3) we want
to computd (X ,X,,X3)[0/%,] = f(X,0,%)
l.e.:f(X1,0,%5)= =X, LX;

76

Restrict Operation: example
f(X1,X0,X3) = (X = X5) OX3) f(X1,%X,X3)[O/%;] = X, O X4

Q
\
\
\
\
\

77

Restrict Operation

* Letx be the root of5;

* To computesy|,-,, we consider:
CASEl: x =y
= fl_, = low(G,) if b=0
= f|,_, = high(G) ifb=1

78

Restrict Operation

* Letx be the root of5;

* To computesy|,-,, we consider:
CASE2: x>y
. 1:ly:b = f

79

Restrict Operation

* Letx be the root of5;

* To computesy|,-,, we consider:
CASE2: x<y

. fly:b = (_' X L (flx:O)ly:b) L (X] (flx:1)|y:b)
 We have to solve now twamaller problems!

80

Algorithm for Restric

Algorithm Restrict(u,i,b)

Function Res(u)
If var(u) > ithen return u
else ifvar(u) < i then
return mk(var(u),Res(low(u)),Res(high(u)))
else /*var(u) =1 */
If b = Othen
return Res(low(u))
else /*var(u) =1andb = 1%/
return Res(high(u))
return Res(u)

running time = O(2"). Why?

ol

Efficient algorithir for Restric

Algorithm Restrict(u,i,b)
Init(G .o
Function Res(u)
If G,J(u) #emptythen return G,_(u)
If var(u) > ithen return u
else ifvar(u) < I then
r = mk(var(u),Res(low(u)),Res(high(u)))
else /*var(u) = var(v) */
If b = Othen
r = Res(low(u))
else /*var(u) = var(v) andb = 1*/
r = Res(high(u))
GeU) = 1

return r
return Res(u)

running time = O(|G_|). Why?

Quantification

 Extend the boolean language with
1] Ox.t

 They can be defined in terms of ROBDD
operations:

1 =1[0/x] Ot[1/X
[Ix.t = t]0/x] O t[1/X]

We can use an appropriate combinatioiRektrict
andApply

83

Symbolic CTL Model Checking

Represent the requiredsubsets of statesas
noolean functions and henceRSBDDs.

Represent thdransition relation as a boolean
function and hence as=OBDD.

Reduce the iterativexed point computations of
the model checking process tmperations on
OBDDs.

Check for the termination of the fixpoint
computation by checkingOBDD equivalence

84

Symbolic Model Checking

K=(S, S, R, AP, L)
Assume that I.(s) = L(S’) thens = s’
—If not, add a few new atomic propositionsif

necessary, so as to distinguish states only based o
labeling.

AP ={p, q, r}
L(s) = {p}
—f.=pU-qg0-r

° f{Sl, 9 % fSl u fsz u f55

85

Symbolic Model Checking

e« K=(S, S, R, AP, L)
* AP={p,q, 1}
Addthe next-state boolean variablgs, g’, r'}
Supposés,;, s,) InR (i.e.R(s;, S)))
with L(s,) = {p, q} andL(s,) = {r}.
Thenf =1, UF .

R(s1,s2)
—wheref, =p 0q O-r andf’, =-p" O=q" Or

* Tr = Lisy, o) er (TR s)
e Choosetheorderingp<p' <q<qg <r<r !

86

CTL symbolic Model Checking

o Xl =i (Xpaee X)) =X
(the OBDD for the boolean variablex;)

* [l = ~TyXp,..00X0)
(apply negation to the OBDD for)

* [[@UW]| =Ty(Xq,.... %) LTy(Xg, 000 X0)
(apply Ooperation to the OBDDs forg@and ()

* [[eUW]] =1Ty(Xp,-- %) OTy(Xq,.00%0)
(apply Ooperation to the OBDDs forg@and ()

87

CTL Symbolic Model Checking

* [[EX q]| =
K gy X (F(X oo X) O TR(X g X0 X 50X)
This Is also called theelational product or the

pre-image of |[@]| by R (seeSection6.61n
Clarke’s bookfor a moreefficient algorithm).

¢ EEV@WI = HZ.(fy(y,. %) O
(Fo(Xs,-- %) DEX 2))

+ [[EG @l = VZ.(F Xy, %,) DEX 2)

88

Symbolic model checking: example

Let V={x,,...,x.}, then|[EG U]| can be computed as
follows:

1. Assume the ROBDR(x,,...,X,) has been computed.

2. SetXy=1,(X'y,....x") [computed fronf(x,,...,X,)
by substitution |

3. We need to compute,, =X, n Y, where:
Yi= DK g, X (P (X 1 X) OFR(Xgs e X0s X g505X)

Xi,, can easily be computed dsL]Y,

4. Checkwhether X, = X. by checking whether the
corresponding ROBDDs areentical.

5. If not, substitute theext-statevariables for thetate-
variablesin X, ,, and repeat fromtep 3 89

Algorithm Compute EXR)
f1(x) =15 (X);
J=1;
repeat
| ==]+1,
fi i=fa(x) O OX.(fr(x, X)) Of 1(X"));
until f;(x) = .1 (x);

Algorithm Compute_EUS,,[3,)
f(x):= fBZ (X);
J=1;
repeat
=)+
fi =150 O(fp,(x) O O¢.(Fr(x,) Of1(x)));
until f,(x) = f;_; (x);

90

CTL Symbolic model checking

Finally, assuming boolean variabMs{x,,...,x }, and the
ROBDD for|[¢]| already computed.

« Checking whether
KFE@

amounts to checking whether the ROBDDfigr LIT_,
identical to the ROBDD fol0, wheref, ;. Is the ROBDD
for the sel[Init]| of initial states of K.

(recall that< E g iff [[Init]] O |[g]] iff |[Init]] n [~]| = O)

91

Pre-image computation with BDD

Let us consider thEBre-imageoperation
D(’l,...,x’n(fw(x’l,...,x’n) Ofa(Xqyee X, X 15.00,X 1))
Pre-imagels a special case of tielational Product
[X' (R,(X,xX") OR,(X',z))
whereR ISR, R,isandz is empty.
Pre-imagecan easily be computed by applyingo the

BDD'’s for g andR, and then existential elimination of
the primed variables.

However, the intermediate BDD for
Fp(X 10X) OFp(Xq, e X0, X 100X)
IS usually far bigger than the final result.

This be avoided by exploitingarly quantification, whenever
possible.

Pre-image computation with BDD

Early quantification is based on the fact that:
* |If X, <X, and the top variable ¢fis x, then
D(Z (Xl - 1:|x1:1’ f|x1:o) = (Xl - D(Z 1E|x1:11 D(Z flxle)
(recall that X (f op g)=f op [k g, whenevel does not
depend o)
« If the top variable ofj is x, then

(X, (X2 = 9ly=1: G=0) = (Tk=1 [Il,=o0)

This means that we can devise an algorothm thapuatarthe
pre-image by applying quantification as soon as it Is
possible.

This avoids computing theonjunction (which is usually
bigger than the final result) during the computatnd the
pre-image 93

Pre-image computation with BD

Algorithm RelProd(u,v,7) /* 07 (fv OfY) */
INit(G)
Function RelP(u,v7)
If u=0or v =0thenreturn O
If u=2landv = 1thenreturn 1
If G(u,v) #NIL then return G(u,v)
Z = min(var(u), var(v))
If var(v) = var(u) then
r, = RelP(high(u), high(v), 7) ; r, = RelP(low(u), low(v),)
else ifz = var(u) then
r, = RelP(high(u), v, 7) ; r, = RelP(low(u), v, 7))
else /*z = var(v) */
r, = RelP(u, high(v), 7) ; r, = RelP(u, low(v), 1))
If z[7 then
r=mk(z,ry, r,)
else *z [1%/
r=Apply(0 ry, ry)
G(u,v) =r
return r

return RelP(u,v,7)

Symbolic Model Checking

 The actual Kripke structure will be, in general,
too large.

— State explosion

e SO one must try tccompute the ROBDDs
directly from the system model (NUSMV
program) and run the model checking
procedure with the help of thismplicit
representation.

— Symbolic model checking

e This may not be sufficient, thoughldditional
technigues may be neede(e.g.,abstraction).

