Tecniche di Specifica e di
Verifica

Linear Time Temporal Logic



Temporal Logics: The context

o Kripke Structures model systems.

« Temporal logics model the dynamic
behavioral properties of systems
— Linear Time
— Branching Time

 Model checking can be used to determine If
a system has the desired behavioral

property.



Properties of computations: local
properties

Refer toimmediate successorer predecessor®f the current state.

Exampiles:

Some/every immediate successor state satises thepmrty o:
 The system may enable the procesd the next state.

« |If the light was red at the previous state andrenge now, it must
turn green at the next state.

Some/every immediate predecessor satises the properp (usually
expressed as conditionals):

 If the process is currently enabled, the scheduler must have fidab
the processgat the previous state.

e If train is entering the tunnel now, the semaphonest have been
switched red on the other end at the previous mamen

Local properties can be iterated a fixed number of times, ot
Indefinitely.



Universal properties of computatiol
Invariance, safety

|nvariance properties are properties thamust always hold along the

computation, whilesafety properties describe events thamust never
happenalong the computation.

Invariance:

The greatest common divisor gfandY remains the same throughout
the execution.

Safety:.

No deadlock will ever occur.
At least one process will be enabled at any moragtine.

Not more than one process will ever be incits$ical section (e.g., not
more than one train will ever be in the tunnelha&t same time.

A resource will never be available to two or mopeocesses
simultaneously.

Also, partial correctnessproperties:

If a pre-condition P holds at all initial states, thenpmst-condition Q
will/must hold at all accepting (terminating) s&te



Existential properties of computations:
eventualities, liveness

Eventuality, liveness properties: those thawill (must) happen sometime
during the computation.

Examples:

 The execution of the program will terminate.

« If the train has entered the tunnel, it will eualty leave it.

* Once a printing job is activated, eventually itllwe completed.
e |If a message is sent, eventually it will be dekace

Also, total correctnessproperties:

« |If a pre-condition P holds at the initial state, then the computatiol wi
reach an accepting (terminating) state, whergdisecondition Q will
hold.



Properties of computations: fairness,
precedence

Fairness properties. All processes will be treateddirly” by
the operating system (the scheduler, etc.)

Examples:

« Weak fairness: Every continuous request is eventually
granted.

e Strong fairness: If a request is repeated infinitely often then
It is eventually granted.

« Impartiality: Every process is scheduled infinitely often.

* Precedence: The eventx will occur before the everft, which
may or may not occur at all.

— If the train has entered the tunnel, it will evally leave it
(before any other train has entered it).



Reachability properties in transition
systems

All important properties of computations can beressed in
terms ofreachability or non-reachability of states with specic
atomic properties.

For instanceeventuality is justreachability of a “good staté,
while safety Is non-reachability of “bad state$, fairness
corresponds toepeated reachability, etc.

More generally, we may interestedrigachability of a state or a
set of states along some or all paths starting faogwven state
(or, set of states); this is callémrward reachability .

Likewise we may be interested in the states fronnciva state
(or a set of states) is reachable; this is calleskward
reachability.



Linear time temporal logics.

e LTL (Linear Time Temporal Logic)
— Syntax
— Semantics
— The Model Checking Problem.
— Its solution.



The Application

 Model a system to be verified as a Kripke
structure:
— Transition SystemS = (S, 3, R)

— AP = A finite set of atomic propositions.
» Basic assertions about the system

—L:S - 2A% = The set of subsets &fP.
—p O L(s) ---- p Is true ats.
— p LI L(s) ---- p Is not true ak.

« K=(S, §, R,AP, L) ---- Kripke Structure




The Application

The computations of the Kripke structur&
will be themodelsfor LTL formulas.

The property to be verified Is captured as an
LTL formula ¢.

The modeled systei has the property
Iff every computation of K isa model of ¢.

We need to verifyrfode check) whether:
-K = ¢
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A set of Atomic Propositions

Grt-1 - ~Q
Arbiter

Reg-2 |

Grt-2

Resource

R1-Process 1 iglle
W1- Process 1 iwaiting

P1- Process 1 igsing the resource.
AP ={R1, W1, P1R2, W2, P}
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The context

 Model a system to be verified as a Kripke
structure:
— Transition systemS = (S, $ R)

— AP = A finite set of atomic propositions.
» Basic assertions about the system

—L:S — 2P = The set of subsets of AP.

—p O L(S) ---- pis true ats
— p O L(s) ---- p Is not true as.

e K=(S, §, R, AP, L) ---- Kripke structure
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L(s5) = ? L(s2) ={r1, p2}
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L(so) ={r1, r2}

Reql Q ReQ?2
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IO SO
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Req Grtl Reql

‘ ‘ L(s2) ={r1, p2}
L(s5) = {wl,w2}
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sO S3 s4 sO 1 s s2 sO s3 ...
{r1,r2} {wil,r2} {ul,r2} {rl,r2} {ri,w2} {rl1,p2} {rl1,r2}{wlr2}...
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Assertions about a computation

sO s3 s4 sO 1 s sS2 sO s3 ...

rl, r2} {wil, r2} {p1,r2} {rl,r2} {ri1,w2} {rl,p2} {rl,r2} {wlr2}..

 |f at some stage Process Iuagiting then at somé&iter
stage It iI9orinting (I.e. using the resource).

« At no stageare both processes using the resource.

 |f a process Is walting then it doessatil it starts to use
the resource.

 There Is a stageat which both processes are waiting.

22




The Application

- K=(S, S, R, AP, L)

e Every computation (seguence of states) can
be viewed as a sequence of subsets.lef

* 5SS, .... —-L(Sy) L(sy) L(S)) -...
 TheseAP-computationswill be the models
for the formulas of LTL.

 Verification :
— EveryAP-computation oK is a model ofp
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Linear Time Temporal Logic

(LTL)

e Syntax :

— AP ={py, p1: ---Pn}, a finite set of Atomic Propositions.
 Formulas :

— Everyp, iIn APis aLTL formula.

— If ¢ iIs a formula them ¢ is aLTL formula.

— If ¢, andd, are formulas the(p,[1¢,) IsaLTL
formula.

— If ¢ I1s a formula theixX ¢, F¢ andG ¢ areL TL
formulae (Next, Eventually, Always).

— If &, and¢, are formulas the(p, U ¢,) iIsaLTL
formula (Until).
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Formulas

LTL :=pU-¢ Ud, O ¢,

¢LUFo UG oL, U,

*p ; plg ; (-plUq)
* Xqg ; X(pOq) ; X((-

0

- (r 0q)
q) OX=(r Oq))

* (PU)UXrU(=qU(X=p)))
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(PUg)U (Xgl(ruU-p))
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Semantics

AP = A finite set of atomic propositions.
> =2°F  =The set of subsets 6P

AP={p,q,r}
2 ={ @ {p} {a}, {r}, {p.q}, {p.r}, {q.r}, {p.q.1} }

>® = The set ofnfinite sequences overz.
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Semantics

e AP={p,q, 1} Z=2/°
*2={@{PL{dL -.iP: QT }}

o {pl,r}{ql} | {p,(ll,r}{llf}---
path: O0—31+— 2— 3— 4 ...

o At stageO of o, p andr are true but nad;
at stage of d no member oAP Is true....

28



Semantics

>® = The set of infinite sequences over
ol2® --- Amodel
a(l) ---- I-th position ofo

{I‘D} {q,‘r} ? {r,‘ g} {p, c‘i § TP

0 1 2 3 4 e,
o(0)=1{p} o(2)=0 0a(3) =7
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Semantics

AP 2 =24F

>% = The set of infinite sequences over
ocdz% --- A model

o(l) ---- I-th position ofo

¢, a formula.

o(l) = ¢
— o(l) satisfies ¢
— ¢ Is true In tha-th position ofo
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Semantics

LTL :=pU-¢ Ud, 0 ¢,

e Each I'J- IS a subset oAP.
s o()E=p Iff pOT,

¢LUFo UG O L, U,
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Semantics

LTL ::=pU-¢ Ud, 0 ¢, ¢UF UG U, U0,

* AP ={p, q, 1}
e o={p,q} {r} O{ag,r} {p.q,1}.....
0 1 2 3 4

e 0(0) satisfiesg
e 0(1) satisfiesr
e 0(2) doesnot satisfy q !




Semantics

LTL ::=pU-¢ Ud, 0 ¢, ¢UFo UG U, U,
o= I, I, ... I P

Each I'J- IS a subset oAP.
elo(E=-¢ iff o) ¢
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Semantics

LTL :=pU-¢ Ud, O ¢,
o= I, I, ... [

Each I'J- IS a subset oAP.

¢LUFo UG O L, U,

lo(i) = 6,00, iff o)

a(1)

= ¢, OR
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Semantics

LTL =pU=-¢ Ud, O ¢, ¢UUFO UG O UP, U o,
AP =1{p, q, I}

G=1{p,q; 1} U1{Q, 1} {p. Q. 1} ....
0 1 2 3 4

e 0(0) satisfies—r ; a(0) doesnot satisfy r
e g(1)satisfiesp LI r ; o(1) satisfiesr
e g(2)satisfies=(pr) ?
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Semantics

LTL =pU-¢ 0o, U P, ¢UUFO UG O UP, U o,
AP ={p, q, I}

G=1p, Q} 1y UAQ, 1} 1P, Q, I} ...
0 1 2 3 4

e 0(2)satisfies=(p L r) ?Yes
e 0(2)doesnot satisfyp L r




Semantics

LTL z=pO0-06 06,06, XOOFGOG ¢ Od, U b,
e 0=Ty Ty Tyl Tipg e,

e o= X0 iff o(i+l) =6




Semantics

LTL =:=pO0-6¢0¢,0¢, X ¢ OFdOGd Od, U d,
AP ={p, q, I}

o=1{p,q} {r} O {q.rt {p.ar}....
0 1 2 3 4

e 0(2)satisfies X r ; o(3) satisfiesr
e 0(0)satisfiesX(p L r) ; o(1) satisfiesr
e 0(1)doesnot satisfy X(p U r)

—0(2) doesnot satisfy p [ r
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Semantics

LTL =pU-¢ Ud, 0 ¢, ¢UUFO UG O UP, U o,
AP =1{p, q, I}
o={p,g} {r} O {a.,r} {p.a.r}.....

0 1 2 3 4
e 0(1) satisfies X(X = p) I
—0(2) satisfiesX = p I
—0(3) satisfies— p I

—0(3) doesnot satisfy p
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Semantics

LTL :=pU-0¢0¢,0¢, [ IXOUFOLUG LD, U0,
ceo=1I, I, I,.... [

e o)FEF¢ Iiff o) E for some =i




Semantics

LTL ::=pU-¢ U¢, 0 ¢, ¢UFO UG O LD, U o,
AP =1{p, q, I}
o={p,g} {r} O {a.,r} {p.a.r}.....

0 1 2 3 4
e 0(0)satisfiesF(X p) this is true since
—0(3) satisfies X p I

—0(4) satisfiesp IS true since
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Semantics

LTL :=pU-¢0¢,0¢, [ IXOUFOLUG O LUD, U,
ceo=1I, I, I,.... I P ...

e 0()E GO iff  o()E for all |=I




Semantics

LTL ::“pl]—-(I)D(I)lIZI(I)2 ¢DF¢DG¢D¢1U¢2

o=l I,. +1 - rk 1
e
e 0() =6, U ¢2 |ff there eX|stsk > S.t.
—0(K) =9,
—-0()) =¢, forevery i<|<k
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Semantics

LTL :==pU-¢0¢,0¢, [ IXOUFOLUGHLUD, U0,
e k could be arbitrarily greater than
« k=1Is allowed and there 01 <] <k

e 0()=09, U, Iff there existk =1 s.t.

—a(k)
—0())

= 0,
=¢1

forevery 1<) <k
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sO s3 s4 sO 1 s sS2 sO s3 ...

{r1,r2} {wl1,r2} {p1,r2} {r1,r2} {ri,w2} {r1,p2} {r1,r2} {wlr2}...
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An Example

AP ={rl, wl, pl,r2, w2, p2

{ri1,r2} {wir2} {pd,r2} {r1,r2} {ri,w2} {rl,p2} {r1,r2} {wlr2}...

0 1 2 3 4

e 0(1) satisfies (r2 U w2) ;
" g(4) satisfiesw2 and
* g(1),0(2), 0(3) satisfy r2.

S}

6

7

46



An Example

AP ={rl, wl, pl,r2, w2, p2

{ri1,r2} {wir2} {pd,r2} {r1,r2} {ri,w2} {rl,p2} {r1,r2} {wlr2}...

0 1 2 3 4

S}

e 0(1) doesnot satisfy (r2 U p2) ;
= g(5) satisfies p2 and
* 0(1),0(2), 0(3) satisfy r2.
» puto(4) doesnot satisfy r2 !

6

7
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An Example

AP ={rl, wl, pl,r2, w2, p2

{ri1,r2} {wir2} {pd,r2} {r1,r2} {ri,w2} {rl,p2} {r1,r2} {wlr2}...

0 1 2 3 4 S} 6

e 0(1) does satisfy ((r2 Ow2) U p2) ;
=g(5) satisfies p2 and
*g(1), a(2), 0(3) satisfy r2, hence alsdr2 w?2).

*g(4) satisfiesw2, hence alsdr2 Jw2) !

7
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Models

« AP IAP=D

e >%=The set of infinite sequences over

e o 02%
«  anLTL formula.

e A pathcis amodel of ¢ (o
—0(0) = ¢

— ¢ ) iff

49



Validity in LTL

e AP 2AP = 2

e >%=The set of infinite sequences over
e 0029

«  anLTL formula.

e pisLTL-valid(=¢ ) iff for everyo 0 2%
—0=0




Basic LTL Language
We will use thereduced LTL language

LTL = ph ¢ U, UG, X ¢ U, U 9,

* ¢, 0¢, - = (=¢,00-6)) (and)
* ¢, 0, - =000, (implies)
* 0, =0, - (¢, 0 0,) U(d, UGy  (iff)
* AP ={Py, Py 1P}

* T ---—-p,0-p, (true)

e Fact: In every model o, at every |,

—a(l)

—T
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Derived Operators

e LTL::=p

"¢D¢1

e Fp = (TL

P,

¢

¢, U 0,

®) (future ; diamond<>)

* \WWe gave the following semantics

—0o(l) = Fo Iff there exists k=1 such

thato(k)

— ¢
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Derived Operators

* \WWe gave the following semantics

—0(l) = F¢ Iff there exists k=1 such
thato(k) = ¢.

Proof of Fb=(TU ¢)
o(l) =(TU¢) Iff
dj =i, 0()=¢ andli<k<j,o(k) =T Iff
dj =i, o()) =¢ Iff
o(l) = Fo




Derived Operators

e LTL:= p ¢ U¢, 0, ¢ O¢, U,
+ F§ = (TUY)

oG(I)E

-F= ¢ (invariant; box:[])

* \WWe gave the following semantics

—a(1)
o(k)

= G ¢ Iff foreveryk=1,

— ¢ .
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Derived Operators

* LTL:= ph o UG, U¢, X ¢ LU, U9,
* WR¢) = (=pU-9) (Releaseps

+ G¢ = (OR})

—0(l) = (WR ) Iiff
for each k=1 (if for eachi<| <Kk
o(j) ¥ wthen o(k) E ¢)




Derived Operators

* LTL:= ph o UG, U¢, X ¢ LU, U9,
* WR¢) = (=pU-9) (Releaseps

+ G¢ = (OR})

—o(l) = (WR ) Iiff
for each k=1 (for somei<j <Kk

0()) = Yorao(k) F 9)




Derived Operators

e LTL::= p[h ¢

¢, U0,

* WW¢) (Unlesy

Give the semantics according to the following

Intuition:

¢ Lo, Ug,

e (YW ¢): If g must be true unlegs occurs (notice
that¢ may never occur).

Show that(W W ¢) = G @ O (W U &)
Show that=(p U ¢) = ((= ¢ OY) W (= ¢ U= ¢))
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Derived Operators

e LTL ;= p[h ¢

¢, 00,

 (UB9) (Before

Give the semantics according to the following

Intuition:

¢ Uo, U,

e (U B ¢): If ¢ ever occurs, the must occur

beforeg.

Show that(WB ¢) = = (=wU ¢ )
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Some important validities

«(WU)=6¢ (Y
*(WRO)=¢ L(Y

XWUo))

= (¢ DY) C
+Fo = ¢ OXF ¢
+Go = oUXGO

XWR¢))=
(¢ OX(WR))

59



LTL: Some examples

Safety: “It never happens that both A and B are
printing at the same time”

G(= (PaUPg))

Liveness: “whenever A Is waiting, it will eventually
print in the future”

GW,OFP,)

Fairness: “Ais infinitely often idle”
GFR,

Strong fairness: “Iif A is infinitely often waiting,
then it will infinitely often printing”
GFW,0OGF P,
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Example: mutual esclusion
N = noncritical, T = trying, C =critical\‘m User1 User2

61



Example: mutual esclusion (safety)
N = noncritical, T = trying, C = critical\‘m User1 User2

ME= G-(C1UC2)? ME -~F(C1OC2)?]
YES: There is no reachable state in which both C1 andC2 hold! .



Example: mutual exclusion (liveness)
N = noncritical, T = trying, C = critical\‘m User1 User2

M FC1?

NO: there is an infinite (cyclic) solution in which C1 neverholds!
63



Example: mutual exclusion (liveness)
N = noncritical, T = trying, C = critical\‘m User1 User2

ME=G (TLOFC1?

YES: every path starting from each state where T1 holds
passes through a state where C1 holds! 64



Example: mutual exclusion (fairness)
N = noncritical, T = trying, C =critical\‘/m,—m User1 User2

ME=GFCL1?

NO: e.qg., In the initial state, there is an infinite (cyclic) solution
In which C1 never holds! 65



Example: mutual exclusion (strong fairness)

N = noncritical, T =trying, C = critical\~ N1, N2 User1 User2

/ﬁiﬁ.\

/TN

\

/

MEGFTLILGFC1?

YES: every path which visits T1 infinitely often also visits C1
Infinitely often (see liveness prop. in previous example)! .



Model Checking

K=(S, $, R, AP, L) (the system)
¢, anLTL formula. (the property)

K = ¢ Iff every AP-computationof K Is a
model of¢.

Determining this Is the model checking
problem.

A solution to this problem can be automated!
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