Tecniche di Specifica e di
Verifica

Modeling with Transition Systems

An example

The Dining Philosophers

* Possible problems:

— Deadlock system state where no action can be taken
(no meaningful transition possible)

— Starvation When a system component is prevented
access to resources.

— Livelock When the system components are not blocked
but the system as a whole does not progress semse
components are prevented to take specific actions)

Fairness

The Dining Philosophers

* A possible solution to deadlock:
— pick up right fork only if both are present
Useful assumptions on the system

—weak fairness any phil. trans. continuously
enabled will eventually fire (e.g. eating
philosophers will finish)

— strong fairness any phil. trans. enabledfinitely
oftenwill eventuallyoccur (e.g. If 2 fork available
Infinitely often, phil. will eventually eat).

Starvation
The Dining Philosophers

e Possible solution:

— pick up fork only Iif both are present
Assumptions

—strong fairness any phil. trans. enabled infinitely
often, will eventually occur (if 2 fork available
Infinitely often, philosopher will eventually eat).

strong fairnesds not enough to preventarvation
Why? Think of the case with 4 philosophers!
Sol.(?): Trypreventing consecutive eating

Still suffers fromstarvationwith 5 phils!'\Why?

4

Outline

 The model Jransition systems

e Some features
— Paths
— Computations
— Branching

* First order representation

Transition systems

e A transition systen{Kripke structurg Is a
structure

TS = (S, %, R)
where:
— S Is afinite set ofstates.

— S, O Sis the set omitial states

— R [0 Sx Sis atransition relation
= R must beotal, that is
—[OsS Os’0S . (s, s’)J R or, equivalently,

— for every states in S, there existss’ in S such
that(s, s’)is InR.

Notions and Notations

S=(S, S R)
(s,s)UR R(s,s) s ¢
A (finite) pathfrom sis a sequence
Spy S+
such that
—s=5§
—-S§ - S, for 0<i<n
Itis froms tos’if s, =S
An infinite path fromsis aninfinite sequence.....

Labeled transition systems

¢ Sometimes we may usdiaite set of actions:
—Act={a, b, ..}

e The actions will be used to label the
transitions.

e TS = (S, § Act, R)
—ROSxAct xS, labeled transitions.
—(s,a,s)OR - R(s,a,s) - s—= s

A vending machine

c-serve ‘
coffee c-out
coin |
tea ® Cout
t-serve

coin-return

A path

c-serve

‘ C-out

coffee

coin |

t-out

t-serve

coin-return

10

A non-path

C-Serve

‘ C-out

coin | 5 3

‘ t-out

coffee

tea

t-serve

coin-return

123 No!
312 yes!

11

A non-total transition relation

C-Serve

coffee c-out

t-out

12

State space

 The state spac®f a system (e.g. program) is the
set ofall its possible states

 For example, ifV={a, b, c} and the variables
range over the naturals, then tlsgate space

INcluc
<a=0,
<a=1,

es:
0=0,c=0y<a=1,b=0,c=0>

n=1,c=07<a=932,b=5609,c=6658>

13

Atomic transition

 Each atomic transition represents a small
peace of code (arxecution stepy such that
no smaller peace of code (orstep Is
observable.

e |sa:=a+latomic?

 In some systems it Is, e.g., whenis a
register and the transition is executed using
aninc command.

14

(Non)Atomicity (race conditions)

 Execute the following whe

a=0 In two concurrent

orocesses:/
P2:a=a+1

Pl:a=a+1
e Result:a=2

T

* |s this always the case?

N
 Consider the actual translation:

[~
Pl:iload Rl,a P2:load R2,a
Inc R1 Inc R2

W store R2,a

e amay also bel

15

The common framework

 Many systems need to be modeled.
— Digital circuits
» Synchronous
= Asynchronous
— Programs
o Strategy : Capture the main features using a

logical framework (nothing to do with temporal
logics!) :First order representation

16

The Inefficient way

Asynchronous
circuits

Synchronous Kripke Structure

circuits

Programs
(finite state)

Model checking

17

The efficient way

Asynchronous
circuits

First Order

Representatiof Kripke Structure

synchronous
Circuits

A 4

Programs
(finite state)

Model checking

18

Synchronous counter modulo 8

19

The mod-8 counter

System variablesV = {v, v, vy}
Domainof v, is {0, 1}

Same domain forpand y as well.

Special caseThese variables aim®olean

Eachstates can also be seen asuaction
assigning to each variablesalue In its domain

—-s:V-5B

~s(Vp) =0 s(y) =1 s(y=1
— This specifies the state=(1 1 0)!

20

A mod-8 counter: states

@z

State Predicates

V Vi

@z

A set of states can be picked out by a
propositional formula:

X =v, v, Isthe set{}

22

State Predicates

A set of states can be picked out by a
propositional formula:

X =v, v, Is the set {00,101, 110,111, 00L, 011}

23

Initial States Predicate

N\

@z

A set of states can be picked out by a formula;

24

Initial States Predicate

N\

@z

A set of states can be picked out by a formula;
Sy=-Vv, U=v, U=v, therefore X, = { Sy} ={ 000}

25

Transition relation predicate

@z

A set oftransitionscan also be picked out by a formula

Ry= vy < (voOvy) OV,

Vv, — current value v,” — next value

26

Transition relation predicate

t
000—2
tl

L

A set of transitions can also be picked out byrenfda.

R= v, = (voOvy) OV,

{tO’ 1:1’ t2}] RZ

Vv, — current value v,” — next value

27

Transition relation predicate

@z

R = Formula(v,, vy, Vo, V', V{', Vg)
Not all formulae will define subsets of transitions

You must pick the right formula .

28

Transition relation predicate

Ry= Vv, # v, V, — current value v, — next value
R, ={(000)— (101),........ }

But this Is not a transition!

{to, 1y, 1ot OR, but t,0R,

29

Transition relation predicate

003——(o0i——a10——oni
Ry= VvV, # V, v, — current value v, — next value

Ry= vy = (OVy
Ry= vy, = (vOvy) OV,

R=R, OR, OR,

30

Summary of Predicates

System variableg,, v,, v,, V..
Eachv, has adomain of values

— Boolean , {a,b,c,..}, {5,8,0,7}...

— We require that each domainfb®te.

A statels a functions which assigns to each
system variable a value in its domain.

The set of states ishite.

31

Summary

Predicates can be used to pick out —succinctly-
sets of states (useful for Iidentifying Initial
states).

X =Formula(vy, Vq, Vs,...V,)

But this works well only whemll domains are
boolean

In general, we can ugest order formulae

32

Summary

A set of transitions can also be picked out
using predicates.

= Formula(vgy, Vq,..., Vpy Vg s Vi’ yea V)
IS the set of all transitions

(Vg Vi,---5Vy) > (W, V{,..00V,)
such thatormula(above!) Is satisfied.

Not all (state otransitior) formulas will be
legitimate.

33

Why use formulae?

Formulae allow us to compactly describe a
system and its dynamics

It's easy to go from al6gical’ description to
Kripke structures

Once we have &ripke structure we are In
business.

We can use
— Temporal Logicgo specify properties
— Model checkingto verify these properties.

34

First Order Logic

 The general structure
— Syntax
* Formulae

— Semantics

= \When Is a formula true?

= Models

— Interpretations
— Valuations

35

Syntax

e Terms

— Variables

— Functions symbols, constant symbols
e Atomic formulas

— Relation symbols, equalityerms

 Formulas
— Atomic formulas
— Propositional connectives
— Existential and universal quantifiers

36

Syntax

 (individual) variables --x, y, v, V', ...
— System variables in our context

e Function symbolsf®
—n is the arity off.

— Add®
— Next(l

* Function symbols will capture the functic
used Iin the programs, circulits, ...

ns

37

Constant symbols

« Apart from variables, it will also be
convenient to have constant symbols.

— zero, five,
« Variables can be assigned different value

but a constant symbol Iis assigneoxad
value.

2S

38

Terms

ermsare used to point at values.

——

Any variablev is a term.

—X,V,V’

Any constant symbatl is a term.
Supposd Is a function symbol of arity

andt,, t,, ...,t are terms, thef{(t,, t2,...,tn)f
Is a also term.

39

Terms

Let Plusbe a function symbol of arity 2.
Vy, Vs, Plus(v,, Plus(v, v,)) are terms.
—the semantics of the last term is intuitively
vV, + 2v,
Letweird opbe a function symbol of arity 3
Then
Plusfveird_opy, Plusi,, v,), five), Plusf, v"))
IS a term.

40

Predicates

* Relation (predicate) symbals
— P which also has an arity
— Greater-Thanhas arity 2
— Prime has arity 1
— Middle has arity 3 -Middle(t,, x, t,)
= intuitively, x lies betweern, andt,
* Equal has arity 2
— will be denoted as

— It is a “‘constant’ relation symbol.

41

Atomic formulas.

e If t, andt, are terms thers(t,, t,) IS an
atomic formula.
— also writternt, = t,

e SupposeP has arityn andt,, t,, ..., t are
terms.

 ThenP(t,, t,, ..., {) IS an atomic formula.

42

Atomic formulas

Greater-Thartfive, zerg
Greater-Thar(two, four)
Prime(Plus(vy, V"))

Plus(v,Zero)= weird_op(v,v,four)

v = Greater_Thargv,,v,) IS not an atomic
formula !

43

Terms and Predicates

e A termis meant to denote a domain value.

— It makes no sense to talk about a term being
true or false.

 An atomic formulamay betrue or false
(depends on the interpretation).

— It does not make sense to associate a domain
value with an atomic formula.

44

* ¢ =¢’ abbreviates (¢

Formulas

Every atomic formula is a formula.
If ¢ Is a formula them ¢ Is a formula.

If ¢ and¢’ are formulas thep L1¢’ Is a
formula.

¢’ abbreviates—(-¢ [1-¢’)

¢
b

¢’ abbreviates # ¢

$’)

o

9" U¢)

45

Formulas

If ¢ Is a formula and is a variable themnk. ¢
IS a formula.

X.¢ abbreviates [X.=¢

These ar@xistentialanduniversalquantifiers.

The power of first order logic comes from
these operators!

46

Semantics

Models:

—Domain of interpretation

— Interpretation
* For the function, constant and relation symbols.
— Fixed for all formulas.

* For the individual variables, on a “per formula”
basis.
—Valuations

47

Semantics

« Domain
— Each variable will have its domain of values.
— We pretend all these domains are the same.

— Or rather, a big enough “universe” that will
contain all these domains.

e Fix D the universe of values.

48

Semantics

Interpretation function |

e Assign a concrete function to edcimction
symbol(of the same arity!)

* Assign a concrete memberBfto each
constant symbol

* Assign a concrete relation to eaelation
symbol(of the same arity!).

49

Semantics

 Assume we have fixed an interpretation for
all function symbols, constant symbols and
relational symbols.

 Letd be a formula. Fix aaluation (or
assignmenkV which assigns a member of
D to each variable.

e V:Var —— D

50

Lift V to All Terms

e We have:

— Aninterpretationfor the function symbols and
constant symbols.

— An assignmentV : Var D
« Using these, we can construct (uniquely!)
V. T:Terms D

the interpretation of terms!

51

ConstructingV_ T

\
. V. T

- N !

/ \ /

. :Constant' .
\ \ R4
‘o Symbolg™ |
* ~ ~ -_— /’ ’

" o o m owm "

52

ConstructingV_ T

f(tl’ t2’ t3) \Vj

Variables
‘ " V T
’° R
:Constant' R e)
'symbols___4—""Interpretation
~__"7

53

\
\symb

/
1Constant

Constructing V_ T

fi(ty, t, t

N\

|
olg
/

54

Constructing V_ T

flty)

'F(d1’ dz’ d?,)

55

Semantics

 Let¢ be a formula. Fix a valuatiovi which
assigns a member bfto each variable.

« S0 we now hav¥ T that assigns a
member oD to each term.

* ¢ Is satisfled undeY (and the interpretation
we have fixed, for all formulae) If :

56

Semantics

o Suppose’(t, t,,.., t) Is an atomic formula
andVv_T(t)=d, ...V _T(t)=d

and PCONIs the relation assigned to
symbolP by our interpretatiom.

 ThenP(t, t,,.., 1) Is satisfied undeY iff
PCON(, d,,...,d) holdsin D, that Is:
(dy, d,,d) OPCONOD xDx...xD

57

Semantics

e Supposea Is of the form-¢’.
Theng Is satisfied undeY Iff ¢’ Is not
satisfled undev .
e Suppose is of the formd,[1d,

Theng Is satisfied undeY iff ¢, Is satisfied
underV or ¢, Is satisfied undey'.

58

Semantics

Greater-ThanPlus(v, 3), Multi (x, 2))
t, t,
V(v) =2 V(X) =1
V_Tlt)=5V_TH®)=2
(5, 2)J > [Integersx Integers
V'(V)=1V'(X)=6andV’_T(t,) =3 V' _T(t) =12
(3, 12)0 > [Integersx Integers

UnderV the atomic formula is true, but undér
the atomic formula Is not.

59

Semantics

e The only case left is whepis of the form
K. ¢’

* ¢ Is satisfied undeY Iff there Is a valuation
V'’ such thaty’ Is satisfied undey’ andV’
IS required to meet the condition:

— V' Is exactlyV for all variables except.
— Tox, V' can assigmany valueof its choosing.

60

Semantics

WhetherlX. ¢ is true or not undev
— does not depend on whatdoes orx !

[X.2X =y Is true undek/(y) = 4, V(x) = 1

Because, we can find' , with V'(y) = 4 but
V'(X) = 2.

One sayx Is boundin the formula and is
free.

61

The efficient way

Asynchronous
circuits

First Order
Representatiof

synchronou
circuits

A 4

Programs
fini { :
(finite state) Model checking

First Order Representation to
Transition Systems

{V{, Vp, ...,V }--- System variables.
D,, D,, ...,D, --- The corresponding domains.

D=L1D
S : {vy, V,, ...,V,} —— D such that

S --- The set of states

63

Initial States

° Sy(Vy, Vs, ...,\) IS @ FO formula describing the set
of initial states.

e Atomic formula

— v =d wherev is Is a system variable ands a constant
symbol interpreted as a member of the domamw of

Example:

¢ “S,Is the set of all states where {he= 0Oand
Input Is a power of”

o [h.(input=EXP(n)) O (pc =0)

64

Transition relation

e R(V,Vp,... Vv, VS .0v)) Is a FO formula
iInvolving the current variablesv,,v,,...,v, (the
system variablgsand thenext variables(v,’,

V' V).

¢ (d, d,,...d)— (d’,d,,...d) Iff
R(Vy,Vs,... V' VS, .v,) IS true under the
valuationv, =d,,...,v,=d_, v,/ =d/ ,..v, =d .

65

Transition Relation

e V={X,, 2}
 Program : {X, Yy, zpc}
o - begin

L . Statement
, . Statement

I 1 If even(X)thenx = x/2 elsex = x -1

P

66

Transition Relation
* V=Y, 7}
 Program {x, Yy, z,pc}
I 1 If even(x)thenx = x/2 elsex = x -1
P

* ¢ (X,¥,2 pc, X,Y, Z, pc)
e pc=L0 pc'=1l; O(h.(x=2n)1x =x/2) [
(- [h.(x=2n)U x = x-1) Osame(y, z)

Notice that the formula above Is equivalent to:
e pc=kL0 pc'=1; 0
((Ch.(x=2n) Ox'=x/2) O (- [.(x=2n) Ox’=x-1)) [
same(y, z)
« wheresame(y, z)stands fory' =y [1z'=z

67

Transition Relation

 In a similar fashion , we can specify the
transition relation formulae for :
— Assignment statement
— While statements
— etc.etc.
— See the text book!

68

Kripke Structures

AP Is a finite set ohtomic propositions
—“value of x IS 3
—-'X=9
« M= (S, §, R, L), aKripke Structure
— (S, §, R) Is a transition system.
—-L:S — 2P
— 2AP - The set of subsets of AP
(L(s)12A" identifies astate

2AP identifies thestate spac

69

Kripke Structures

e The atomic propositions andtogether
convert a transitions system into a model.

 We can start interpretingrmulas over the
Kripke structure

 The atomic propositions make basic (easy)
assertions about system states.

70

Automata and Kripke Structures

AP - set of elementary property
<S,AR,§,L>

S - set of states

A - set of transition labels

R [SxXAxS - (labeled) transition relation
_ - Iinterpretation mapping L:S —— 2\F

n FO representatiorwe would need two sets of
variables: V and Act (for actions or input).

71

Example: a print manager

iy - AP
end =i ends printing S
req, =i requests printing Wi= 1 waits
start;= i start printing P.= 1 prints

0, R.=1rests
R,.R;

R\

72

S={0,1,2,3,4,5,6,7}

A = {end,.end,, req,, reqg, start,, start;}

R ={(0,req,,1), (O,req.,2), (1,req.3), (1,start,,6), (2,req,,3),

(2,start;,7), (3,start,,5), (3,starg;,4), (4,end,1), (5.end,2),

(6,end,,0), (6,req;,9), (7,end,0), (7,req,,4),}

L ={0- {RaARg} 1 {W,Rgh 25 {RAWg}, 3 {W,,We},
4 {W ,,Pg}, 5- {P,Wg}, 6 {P,,Rg}, 7> {RAPg} } 73

Properties of the printing systems

1. Every state in whick, holds, is preceded
by a state in whichV, holds

2. Any state in whichV, holds Is followed
(possibly not immediately) by a state In
which P, holds.

 The first can easily be checked to be true

e The second ifalse(e.q.0134134134.).-
In other words the systemnst fair.

74

Synchronization

Usually complex systems are composed of a
number of smallesubsystemémodules

It Is natural to model the whole system
starting from the models of the subsystems.

And then define how they cooperate.

There are many ways to define cooperation
(synchronizatior).

75

Synchronization: no interaction

The system model is just thmartesian productof
the simpler modules.

Let TS,,...,TS, be n automata (orTSs), where
T5=<3.AR.S0>

The system Is then defined 8S=<S,A,R,$> where

S=5 XS, X... X5,

A=A x AL .o x AL}

R={(<s,....5><a,...,8><S",...,5,>)| forall i, a#-
and (s,a,s’) R, ora=- and s’ =s}

S = <S10%0-++ S0

/0

inc TS, TS,
Q Q TS, counter
modulo 2 _
: INC

" inc, inc @ @

AN

.inc InC
TS,: counter
-, inc modulo 4

77

Synchronization: interaction

To allow for interaction, or synchronization on
specific actions we can introduce &ynchro-
nization Set(to inhibit undesired transitions)

e Synchronization set Is just a subset of the compmsi
actions:
Syncl A 0{-} x A0{-} x... x A T{-}

 Then we will have to define thepossible transitions
as

R={(<s,,....$><&,,...,8>,<S',...,S,>) |
(ag,...,a,)Syncand forall I, a# -
and(s,a,s) UR;, ora=- and s’; =s}

78

Free synchronization (Asynchronous systems):.

Sync={inc,-} x {-,inc} ={(-,-), (inc,-), (-,inc),
(inc,inc)}

INC, inC

79

Free synchronization

Asynchronous systems:

Sync={inc,-} x {-,inc}
iDZIKRi(Vi Vi')

R(V,V') =

V(o)

1]

same())| (h [kameg)

/

If one wants to discard
the situation where no
component acts

80

Synchronization on all actions (Synchronous
systems):
Sync={(inc,inc)}

INc,inc

TS=TS§xTS, &

Synchronous systems

Synchronous systems:
Sync={(inc,inc)}

R(V,V') = LIR(V,,v}')

l

82

Asynchronous systems with interleaving (only one
component acts at any time):

Sync={(-,inc),(inc,-)}

- .1nc

TS=Tgx TS,

Asynchronous systems:
Interleaving

Asynchronous systemsnly one component
acts at any time.

Sync={(-,inc),(inc,-)}
R(V.V) = LR vv) 0 Lbame)

Concurrent programs

Many systems to be verified can be viewed as
concurrent programs

— operating system routines
— cache protocols
— communication protocols

P =cobegin(P, || P, || ...|]| P,) coend
P,, P,,..P, --- Sequential Programs

°rogram variablesetV =V, [...00V , (setV, for
programi)

Program counterssetPC (one for each program)
Jsually interleaving semanticgs assumed

85

Program Statements

A program P Is a sequence oftatementsof the
following form:

o sSKkip

o V= EXpr (Expr an arithmetical expression)
 wait(Cond) (Cond an boolean expression)

e lock(V) (v a varible: semaphore)

 unlock(v) (v a varible: semaphore)

e Statm,; Statm,; ... ; Statm, (sequential composition)

* IF Cond THEN Statm, ELSE Statm, ENDIF
« WHILE Cond DO Statm DONE
« COBEGIN (P, ||P5]]---l|P,) COEND

86

Sequential Programs: the
transition predicate C

General Structure

l |

Statement C(l, statement I')

ll,

C is essentially aranslation functiontaking
a label, a program statementind a label
and giving the FOL formula specifying
the transition relation for the statement.

5

l |

Assignments

| C(l, vi=expr., I

V.= expr.
(V:=2Xx -V +3-y)

pc=I10pc =1 0OV =expr. [

ll,

Osame (V — {v})same (PC —{pc})

[for Y ={y 1, ¥o, --Ym}:
same(Y)=y, =y, 0y, =y, O.. Oy,]

88

Skip

c(l, skip, I" |

pc=10 pc’ =1 Osame (V)
[dsame (PC —{pc})

89

Sequential composition

I
v

Statement

Cd, P,

l .

C(l, Statement,) [
cal, P,

P!

\4

90

Conditional statement

| C(, IF-THEN-ELSE(b| ,1,), 1) |

b (pc =10 pc’ =1, Ob Osame(V)O
|2l same (PC — {pch)
Q (pc =10 pc’' =1, O- b Osame(V)O
same (PC — {pchU
C(, P, IO
C(|2’ Q’ l,)

IF b THEN P ELSE Q FI

91

While statement

| CUWHILE(D, 1), 1)

(pc =1 0 pc’ =1, Ob Osame(V)O
same (PC — {pc}U

(pc =1 0O pc’'=I O-b Osame(V)
same (PC — {pc})

Cly, P, 1)

WHILE b DO P END_WHILE

92

Concurrent programs

o P =cobegin(P,|[P,]l ..-]I P, coend
e P, P,,..P, --- Sequential Programs

Concurrent programs

P =cobegin(P,||P,] ...]| P,) coend
* P, P,,..P, --- Sequential Programs

* C(l,, Py, I}) --- The transitions of program,
(definedinductivelyon the structure d?,!).

* V. ---- The set of variables of prografm
* Programs magharevariables!
* pc — The program counter of progrém

94

Concurrent programs

e pc ---- the program counter of thmncurrent

orogram; it could be part of a larger program!

e [1 denotes anundefined program counter

value.
* S(V, PC) =pre(V) U(pc=L)
(pc,=00) O......

(pc,=0])

95

The Transition Predicate

| C(L, P, L) |
(pc=L0Opc, =1, 0...0pc,=1,0
pc’ = 0 0Osame(V))
g :
(C(l, Py,) OSame (V —V\)
l|n [Same(PC \{pg}))
... O
.................... P C(In’ = |n’) O0Same (V — \{1)
ll : [1Same(PC \{p¢}))
g []
l K (pc=00pc, =1, O... Opc, =1 O
Opc’'=L" 0O
pc, = 00...pc, = OOsame(V)

96

The Transition Predicate

| C(,waitt), 1) |

wait(b)

(pc. =1 0Opc’ =1 O-b Osame(V))
[
(pc, =1 0pc’ =1 Ob Osame(V))

Repeatedly tests the boolean expresbiontil it is true.
Whenb becomedrue proceeds to the next step.

97

The Transition Predicate

V=1

| C(lock(v),) |

lock(V)

v=0

(pc =1 0pc’ =1 Ov =10same(V))
[]
(pc,=10pc’ =1 Ov=00
v' =1 Osame(V\{Vv}))

Similar towait with boolean expression=0, but when the condition
becomesgrue, v is updated td and it proceeds to next step.

98

The Transition Predicate
| C(, unlock(v), 1) |

'
unlock(v) (pc; =10pc’ =1" Ov' =0 Osame(\M\{v}))

Simply sets variable to O, thus, possibly, enabling other processes

to trigger theidock (or wait) transition to enter critical regions. N

Summary

System variables

Domain of values

States

Initial state predicate
Transition predicate

pc values (for programs)
Synchronization mechanisms

100

