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CTL*, CTL and LTL



CTL* language I
Syntax Let  AP a finite set ofatomic 

propositions. We define by mutual 
induction the following set of formulae:
(state formulae)

0 If p ∈∈∈∈ AP, then p is a state formula.

1 If ψψψψ andψψψψ’ are state formulae, then so are¬¬¬¬ψψψψ
and ψψψψ ∨∨∨∨ ψψψψ’ , ψψψψ ∧∧∧∧ ψψψψ’ .

2 If ψψψψ andψψψψ’ are path formulae, then Eψ ψ ψ ψ and 
Aψψψψ arestate formulae .



CTL* language I
Syntax ...

(path formulae)

3 if ψψψψ is a state formula, then ψψψψ is a path 
formula.

4 if ψψψψ andψψψψ’ are path formulae, then so are¬¬¬¬ψψψψ
and ψψψψ ∨∨∨∨ ψψψψ’ , ψψψψ ∧∧∧∧ ψψψψ’ .

5 if ψψψψ andψψψψ’ are path formulae, then so are Xψψψψ
andψψψψUψψψψ’ .



CTL* semantics I
Semantics Given the standard definitions

K = (S, S0, R, AP, L), s ∈∈∈∈ S, L: S →→→→ 2AP and
pathof K : ππππ = s0 s1 s2.… where(si si+1)∈∈∈∈ R:

0 K, s £ p   iff p ∈∈∈∈ L(s).

1 \for propositional formulae
– K, s £ ¬¬¬¬ψψψψ iff not K, s £ ψψψψ
– K, s £ ψψψψ1 ∨∨∨∨ ψψψψ2 iff K, s £ ψψψψ1 or K, s £ ψψψψ2.

– K, s £ ψψψψ1 ∧∧∧∧ ψψψψ2 iff K, s £ ψψψψ1 and K, s £ ψψψψ2.

2 K,s £ Eψ  ψ  ψ  ψ  (K,s £ Aψψψψ) iff for some (for all) path 
ππππ=s s1 s2.…, K,ππππ £ ψψψψ



CTL* semantics II

Semantics ...
3 K, ππππ £ p   iff K, s0 £ p .

4 for propositional formulare
– K, ππππ £ ¬¬¬¬ψψψψ iff not K, ππππ £ ψψψψ
– K, ππππ £ ψψψψ1 ∨∨∨∨ ψψψψ2 iff K, ππππ £ ψψψψ1 or K, ππππ £ ψψψψ2.

– K, ππππ £ ψψψψ1 ∧∧∧∧ ψψψψ2 iff K, ππππ £ ψψψψ1 and K, ππππ £ ψψψψ2.

5 temporal operators
– K,ππππ £ Xψ ψ ψ ψ iff K,ππππ1 £ ψψψψ
– K,ππππ £ ψψψψUψψψψ’ iff for some j , K,ππππj £ ψψψψ’ , and for allk<j ,

K,ππππk £ ψψψψ



CTL language definition

CTL can be defined as the sub-labguageof CTL *

by replacing items3-5 of the above definition, by 
the following:

3’ if ψψψψ andψψψψ’ are stateformulae, then Xψψψψ andψψψψ
Uψψψψ’ are path formulae.

0 If p ∈∈∈∈ AP, then p is a state formula.

1 If ψψψψ andψψψψ’ are state formulae, then so are¬¬¬¬ψψψψ
and ψψψψ ∨∨∨∨ ψψψψ’ , ψψψψ ∧∧∧∧ ψψψψ’ .

2 If ψψψψ andψψψψ’ are path formulae, then Eψψψψ and Aψψψψ
arestate formulae.



LTL, CTL and CTL*

LTL (state): ϕϕϕϕ ::= A ψψψψ

(path): ψψψψ ::= p  ¬¬¬¬ ψψψψ  ψψψψ1 ∨∨∨∨ ψψψψ2 X ψψψψ  ψψψψ1 U ψψψψ2

CTL (state): ϕϕϕϕ ::= p  ¬¬¬¬ ϕϕϕϕ  ϕϕϕϕ1 ∨∨∨∨ ϕϕϕϕ2 E ψψψψ

(path): ψψψψ ::= X ϕϕϕϕ  ϕϕϕϕ1 U ϕϕϕϕ2

CTL * (state): ϕϕϕϕ ::= p  ¬¬¬¬ ϕϕϕϕ  ϕϕϕϕ1 ∨∨∨∨ ϕϕϕϕ2 E ψψψψ

(path): ψψψψ ::= ϕϕϕϕ  ¬¬¬¬ ψψψψ  ψψψψ1 ∨∨∨∨ ψψψψ2 X ψψψψ  ψψψψ1 U ψψψψ2



LTL and CTL*

Theorem:[Clarke] For every CTL * formula 
ψψψψ, an equivalent LTL (it it exists) must be 
of the form Af(ψψψψ) where f(ψψψψ) is equal to ψψψψ
with all the path quantifiers eliminated.



LTL vs CTL
In LTL, we could write:
A FG p , which means “on all 
paths, there is some state 
from which p will forever 
hold” (i.e. ¬¬¬¬ p holds finitely 
often). `
There is no equivalent of this 
LTL formula in CTL.
For example, in the following 
model, A FG p holds, but the 
formula AF AG p does not.
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LTL vs CTL
Similarly the LTL formula  
AF(p ∧∧∧∧ X p) has no 
equivalent in CTL.
Two attempts are:
AF(p ∧∧∧∧ AX p)
But in the model on the 
right, the LTL formula is 
true while the CTL formula 
is false
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LTL vs CTL
Similarly the LTL formula  
AF(p ∧∧∧∧ X p) has no 
equivalent in CTL.
Two attempts are:
AF(p ∧∧∧∧ AX p)
and
AF(p ∧∧∧∧ EX p)
But in the model on the 
right, the LTL formula is 
false while the second CTL 
formula is true.
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LTL vs CTL
The LTL formula A GF p means “on all paths and 
for all states, a state is reachable where p holds” 
(i.e. p holds infinitely often).

There is an equivalent CTL formula for this LTL 
formula.

The equivalent CTL formula is AGAF p which 
holds in all and only the models where A GF p
holds.

Proof: It suffices to show that for any kripke 
structure K, K £AGAF p iff K £A GF p.



LTL vs CTL

The LTL formula ϕϕϕϕ = A(GFp →→→→Fq) (meaning that 
Fq holds on all fair paths satisfying p infinitely 
often) cannot be expressed in CTL.

Proof: It suffices to show that for any candidate 
CTL formula ψψψψ, there is at least a kripke structure K, 
with either 

K £ ϕϕϕϕ andK £ ψψψψ

or 

K £ ϕϕϕϕ and K £ ψψψψ.



ϕϕϕϕ = A(GFp →→→→Fq)
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Let us consider the CTL formula 
AGEF αααα. Clearly:

K £ AG(EF αααα)
Suppose ββββ is a LTL formula which is 
equivalentto AGEF αααα. If this where 
true, then: 

K £ ββββ
But K £ ββββ if and only if for every path 
π of K

K,π £ ββββ
Since any path π in K’ is also in K, this 
would imply that for every path π of K’

K’,π £ ββββ
But K’ £ AG(EF αααα), therefore the LTL 
formula ββββ cannot be equivalent to 
AGEF αααα.
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LTL vs CTL vs CTL *

CTL *

CTLLTL

AF(p ∧∧∧∧ X p) AG(EF q)

AF(p ∧∧∧∧ X p) ∧∧∧∧ AG(EF q)

AU(p,q)



LTL vs CTL vs CTL *

• A GF ϕϕϕϕ is a LTL formula which can be expressed
in CTL by the equivalentformula AG AF ϕϕϕϕ.

• For any ϕϕϕϕ and ψψψψ the LTL formula A(GF ϕϕϕϕ →→→→ ψψψψ)
is not expressiblein CTL , in particular it is not 
equivalent to((AG AF ϕϕϕϕ) →→→→ ψψψψ).

• In other words, fairness constraints cannot be 
expressed directly in CTL .


