Tecniche di Specificaed
Verifica

Boolean Decision Diagrams |
(BDDs)

Outline

e NUSMV
e The state explosion roblem.

e Techniques for overcoming this problem:
— Compact representation of the state space.
» BDDs.
— Abstractions (bissmulations)
— Symmetries.
— Partial Order Reductions.

NuSMV

 New Symbolic Model Verifier.

 Developed at CMU-IRST (Ed Clarke,
Ken McMillan, Cimatti et al.) as
extension/reimplementation of SMV.

« NuSMV has its own input |language (also
called SMV!).

NuSMV

You must prepare your verification problem in
this language.

An NuSMV program Is a convenient way to
describe aKripke structure.

Y ou can insert the properties you want to verify in
the program.

Read the tutorial and on a need-to-know basis, the
manual.

Links will be created soon to these documents.

How to circumvent state space
explosion?

 Use succinct representations of the state space.
— Boolean Deasion Diagrams.

e Reduce TSto TS such that:
— TS hastherequired property I
TS hastherequired property.
= Symmetries
= Abstractions (bisimulations)
= Partial order reductions.

Symbolic Model checking

K=(S S, R, AP, V)
P aCTL formula

To check whether:
—K,sF Yy

We need to

— compute states() = {x | K, x E {3}.
—then check whether s € states(l).

Symbolic Model checking

K=(S S, R, AP, V)
P aCTL formula

S C Scan be represented as aboolean function.
R can be represented as a boolean function.

States(p) can be represented as a boolean
function.

BDDs

Boolean functions can be (often) succinctly
represented as boolean decision diagrams.

BDDs are easy to manipulate.

Not all boolean functions have a succinct
representation.

Use BDDsto represent and manipulate the
boolean functions associated with the
model checking process.

Boolean Functions

e f: Domain — Range

e Boolean function:
— Domain ={0, 1} ={0,1} xx {0,1}.
— Range = {0, 1}
— f 1safunction of n boolean variables.

« How many boolean functions of 3 variables
are there?

Boolean Functions

e f: Domain — Range

e Boolean function:
— Domain ={0, 1} ={0,1} xx {0,1}.
— Range =10, 1}
— f isafunction of n boolean variables.
« How many boolean functions of 3 variables
are there?

— Answer : 22° = 281

10

Truth Tables

g: {0, 1} x{0, 1} x{0, 1} — {0, 1}

XY 1219

00| 0|0
00|11

01| 0|1
O/11]0

11 0101

1101110

1111 0|0
111|111

11

Boolean Expressions

 Glven a set of Boolean variables x,y,... and

the constants 1 (true) and O (false):

t:=x|0|1]|-t]|t

tt

t|t

tt o t

e The semantics of Booean EXxpressons is
defined by means of truth tables as usual.

« Glven an ordering of Boolean variables,
Boolean expressions can be used to express

Booean functions.

12

Boolean expressions

e Boolean functions can also be represented
as boolean (propositional) expressions.
e X AV represents the function:
—f: {0, 1} x {0, 1} — {0, 1}
= (0, 0) =
(0, 1) =
= (1, 0) =
(1, 1) =

13

Boolean expressions

e Boolean functions can also be represented
as boolean (propositional) expressions.
e X A 'Y represents the function:
—f: {0, 1} x {0, 1} — {0, 1}
=f(0,0)=0
= f(0,1) =0
«f(1,0) =0
«f(1,1) =1

14

Boolean functions and expressions

y

V4

P P P P O O O o |X
P P O O B B O O

— O B O + O B+, O

g: {0, 1} x{0, 1} x{0, 1} — {0, 1}

, O O B O Fr Lk O @

g=(X = Y)AY V(X = 7y) A=2)

Boolean expressions and functions

y

V4

g

r P P P O O o o X
L P O O P P O O

— O B O + O B+, O

J=(XAYA-Z)VXAYAZV(XAY)

16

Boolean expressions and functions
Y £ 19

J=(XAYA-Z)VXAYAZV(XAY)

g: {0, 1} x{0, 1} x{0, 1} — {0, 1}

P P P P O O O o |X
P P O O B B O O

— O B O + O B+, O
o ~» ~» O +— O O

17

Three Representations

Boolean functions

Truth tables

Propositional formulas.

Three equivalent representations.
Hereisafourth onel

18

Boolean Decision Tree

« A boolean function Is represented as a
(binary) tree.

e Each Internal node Is labeled with a
(boolean) variable.

« Each internal node has a positive (full line)
and a negative (dotted line) successor.

e Theterminal nodes are labeled with O or 1.

19

Boolean Decision Diagrams

* A compact way of representing boolean functions.
e Canbeusedin CTL mode checking.

— Represent a subset of states as a boolean function.

— Represent the transition relation as a boolean function.

— Reduce EX(W), EU(Y,, Y,) and EG(Y) to manipulating
boolean functions and checking for boolean function

equality.

e Go from NuSMYV (program) representation directly to
Its BDD representation!

20

Boolean Decision Tree

« A boolean function Is represented as a
(binary) tree.

e Each node Is labeled with a (boolean)
variable.

 Each node has a positive (full line) and a
negative (dotted line) successor.

e Theterminal nodes are labeled with O or 1.

21

Boolean decision trees.

22

L 4
L 4
L 4
L 4
L 4
L 4
00
L

*
.
.
.
*
IS

L 4
L 4
*
L 4
L 4
00
*

0

g=(YAX = 2)V(EYANKX = 2)

XY 1219

00| 0|0
00|11

01| 0|1
O/11]0

1101110

1111 0|0
111|111

23

BDDs

A BDD is finite rooted directed acyclic graph in
which:

 Thereisaunique initial node (the root)
e Eachterminal nodeislabeled with a0 or 1.

e Each non-terminal (internal) node v has three
attribute:

— var(v), and

—exactly two successors low(v) and high(v): one

labeled O (dotted edge, low(Vv)) and the other labeled
1 (full edge, high(v)).

24

g=(YAX=2)V(EYyAKXe Z)

25

Reduction Rules

 Three reduction rules:

— Shareidentical terminal nodes. (R1)
— Remove redundant tests (R2)
— Shareidentical non-ter minal nodes. (R3)

26

Reduction Rules

 Threereduction rules:
— Shareidentical terminal nodes. (R1)

e |f a BDD contans two terminal nodes m
and n both labeled O then, remove n and
direct all iIncoming edges at n to m.

« Similarly for two terminal nodes labeled 1.

| identical non
/ terminal : identical
3 N O\ terminal

0 0 K 0 27

Shareidentical terminal nodes. (R1)

g=(YAX=2)V(EYyAKXe Z)

28

Shareidentical terminal nodes. (R1)

g=(YAX=2)V(EYyAKXe Z)

29

Shareidentical terminal nodes. (R1)

g=(YAX=2)V(EYyAKXe Z)

30

Reduction Rules

e Three reduction rules:
— Share identical terminal nodes. (R1)

— Removeredundant tests (R2)

e |f both successors of nhode m lead to the
same node n then remove m and direct all
Incoming edges of m to n.

@fant test

non
redundant test

31

/

Remove redundant tests (R2)

X

Y/ \,y
AVAN

1

1

/
/
/
’

Y

0 1

&

32

Reduction Rules

e Threereduction rules:

— Shareidenticd terminal nodes. (R1)
— Remove redundant tests (R2)

— Shar e identical non-ter minal nodes. (R3)

e |f the sub-BDDsrooted at the nodes m and n
are “identical” then remove n anddirect all its
Incoming edges to m.

® &

unique
node
33

@ non-unique
\ \ node

Shar e identical non-terminal nodes. (R3)

9=YAX=2)V(EYyAXe=n2)

Shar e identical non-terminal nodes. (R3)

9=YAX=2)V(EYyAK==Z)

Reduced BDDs

A BDD is reduced iff none of the three
reduction rules can be applied to It.

Start from the bottom layer (terminal nodes).

Apply the rules repeatedly to level 1. And
then moveto level I-1.

Stop when the root node has been treated.

This can be done efficiently.

36

Reduced BDD

Binary Decision Tree
for

9=(YAX<=2)V(EYyAX e 2) ar

Ordered BDDs

o {Xq, Xpy.er, X}
— An indexed (ordered) set of boolean variables.
— X1 <Xy o< X,
e G Is an ordered BDD w.r.t. the above variable
ordering iff:
— Each variable that appears in G is in the above set.
(but the converse may not be true).

—1f 1 <] and x; and x; appear on a path then X
appears before ;.

38

Ordered BDDS

e Fundamental Fact:

— For a fixed variable ordering, for each boolean
function there is exactly one reduced ordered
BDD!

— Reduced OBDDs are canonical objects.

—To test If f and g are egual, we just have to
check if their reduced OBDDs areidentical.

— Thiswill be crucial for model checking!

39

y<Z<X

40

41

42

43

45

Reduced OBDD

« AnOBDD isreduced (i.e. itisaROBDD) if
there are only two terminal vertices 0 and 1, and
for al non terminal vertices v,u:

— low(Vv) # high(v) (non-redundant tests)

— low(v) = low(u), high(v) = high(u) and var(v) = var(u)
iImpliesv = u (uniqueness)

46

Canonicity of ROBDD

Let we denote an ROBDD with its root node
and the function represented by subgraph a
rooted in node u with fU. Then:

Theorem: For any function f:{0,1}" - {0,1}
there exists a unigue ROBDD u with
variable ordering X, X,,...,X,, such that

fU=1(xy,...,X,)

47

Consequences of canonicity

Theorem: For any function f:{0,1}" - {0,1}
there exists a unique ROBDD u with
variable ordering X4, X,,...,X, such that

fU=1(Xy,...,X,)

Therefore we can say that:

e A function f¥ isatautology if its ROBDD u
Isequal to 1.

o A functionfYisasatisfiableif itsROBDD
u is not equal to O.

43

Reduced OBDDs

Theorderingiscrucial!

{X1, X2, Y1, Yo} X1 Xo
—T(Xq, X2 Y1, ¥2) Y1 Y2

— (X1, X2, Y1, Y2) = 1 iff (X =y, X, =Y))
If X, <y; <X, <Y,, then the OBDD is of size
3.2+2=8

If X; <X, <y,; <Y,, then the OBDD is of size
3-22-1=11!

49

Reduced OBDDs

<
X1 <Y1<X;<Y,

(X, =y OX; =y))

X1 <Xy, <Y<Y,

Reduced OBDDs

Theordering iscrucial!

{X1’ XZ’ "t Xn1y1’y2’ "t yn} Xl X2 e Xn

F(X1, Xo1e s XY 1. Y200 Yn) - YaYa- Vi

N
— F(Xy Xprevn XY 1 Y2reen Vo) = 1 iff /\1 (% = Vi)

If X; <y; <X, <VY,..<X, <Y,, then the OBDD 1Is of
Size3n + 2.

If X; <X, <..<X, <Y, <..< Yy, then the OBDD is of
Sze3.2"— 1!

ol

ROBDDs

Finding the optimal variable ordering is
computationally expensive (NP-complete).

There are heuristics for finding good orderings.

There exist boolean functions whose sizes are
exponential (in the number of variables) for any
ordering.

Functions encountered in practice are rarely of
this kind.

952

|mplementation of ROBDDs

Array-based implementation

T]

root = ug

Var

o
SCIEN
=

O oOocC kO
N

c
Ul

The function MK

e The function MK searches for a node u with
var(u)=x:;, low(u)=I and high(u)=h. If the node
does not exists, then creates the new node after
inserting it. The running timeis O(1).

Algorithm MK(i,l,h)

If 1=h then
return |
elseif T[H(i,l,h)] # empty then
return T[H(i,l,h)]
elseu = add(T,H(i,l,h),i,I,h)

H(i,l,h) isa hash
function mapping
atriple<i,l,h>into
anodeindexinT.

return u

Operations on ROBDDs.

During model checking, boolean operations
will have to be performed on ROBDDs.

These operations can be 1mplemented
efficiently.
fvg --------- G; op, G, =

There Is a procedure called APPLY to do
this.

55

Operations on ROBDDs

* \When performing an operation on G and G’
we assume their variable orderings are
compatible.

e X=Xz UXg

e Thereisan ordering < on X such that:

— <regtricted to X5 IS <
— <restricted to X5 1S <.

56

Operations on OBDDs

* The basic idea (Shannon Expansion):
o f(Xq, Xy .uvy X))
—flx =0 =1(0, Xz, Xp)
==X, V(X5 A Xp)
"fly, =0 = X2 A X3
— Similarly, f |,; = 1= f(1, X5,.., X))

F(Xp, XppeeeXn) = (X A Bl 20) V(X ATy 29)

e Thisistrueeven if x, does not appear inf !

S/

Operations on ROBDDs.

» Let x bethevariable of theroot of G; and y
the variable of the root of G

* To compute Gy, , We consider:
CASEL: x=vy
"fopg=(=XA(flx=00Pgls=0) V

(X A (f ‘leop g |x:1)
— We have to solve now two smaller problems!

58

Operations on ROBDDs.

* Let x betheroot of G; andy theroot of G,

* To compute Gy, , We consider:
CASE2: x <.
— Then X does not appear in G, (why?).

_g‘x 0~ = 0= g‘x 1
"fopg=(xA(fl=00p9)VXA(|-10p0)
— We have to solve now two smaller problems!

99

Algorithm for Apply

Algorithm Apply(op,u,v)

Function App(u,v)
If terminal_case(op,u,v) then return op(u,v)
elseif var(u) = var(v) then
u = mk(var(u),App(op,low(u),low(v)),
App(op;high(u),high(v)))
elseif var(u) < var(v) then
u = mk(var (u),App(op,low(u), v), App(op,high(u),v))
else/* var(u) > var(v) */
u = mk(var (u),App(op,u,low(v)), App(op,u,high(v)))
return u

running time = O(2"). Why?
return App(u,v) n = number of variables.

Efficient algorithm for Apply

Algorithm Apply(op,u,v)
Init(G)
Function App(u,v)
If G(u,v) # empty then return G(u,v)
elseif terminal_case(op,u,v) then return op(u,v)
elseif var(u)=var(v) then
r = mk(var (u),App(op,low(u),low(v)),
App(op,high(u),high(v)))
elseif var(u) < var(v) then
r = mk(var (u),App(op,low(u), v), App(op,high(u),v))
else/* var(u) > var(v) */
r = mk(var (u),App(op,u,low(v)), App(op,u,high(v)))
G(uv) =r

returnr

running time = O(|G,||G,|). Why?

return App(u,v)

The Restrict operation

* Problem: Given a(partial) truth assignment
X1=Dy,.... X =b, (where b =0 or b=1), and a
ROBDD tY, compute the restriction of t4 under

the assignment.
o E.G.IIf f(X,X5,X3) = ((X; = X))

X3) We want

to compute f(X,,X,,Xz)[0/X,] = f(X4,0,%)

l.e.: f(X1,0,%)= =X,

X3

62

Restrict Operation: example

(X1 X2X3) = (X1 = Xp) L X3)

f(X1,X5,X3)[0/X,] = X, U X

63

Restrict Operation

» Let x betheroot of G;

* To compute G¢,-,, we consider:
CASEL: x=vy
= f|,, = low(Gy) if b=0
= fl,, = high(Gy) if b=1

Restrict Operation

» Let x betheroot of G;

* To compute G¢,-,, we consider:
CASE2: x >y
m fly:b = f

65

Restrict Operation

» Let x betheroot of G;

* To compute G¢,-,, we consider:
CASE2: x <y

= fly=p = (= XA (Flyeo)ly=p) O (X A (Fli=)

* We haveto solve now two smaller prob

y:b)

ems!

66

Algorithm for Restrict

Algorithm Restrict(u,i,b)

Function Res(u)
If var(u) >ithenreturnu
elseif var(u) <i then
return mk(var(u),Res(low(u)),Res(high(u)))
else/* var(u) =1*/
If b =0then
return Res(low(u))
else/*var(u)=1andb=1%*/
return Res(high(u))
return Res(u)

running time = O(2"). Why?

Y4

Efficient algorithm for Restrict

Algorithm Restrict(u,i,b)
INit(G)
Function Res(u)
If G(u) # empty then return G(u)
If var(u) >ithenreturnu
elseif var(u) <I then
r = mk(var(u),Res(low(u)),Res(high(u)))
else/* var(u) =var(v) */
If b =0then
r = Res(low(u))
else/* var(u) =var(v)and b =1%*/
r = Res(high(u))
G(u) =r

returnr

running time = O(|G,[). Why?

return Res(u)

Quantification

 Extend the boolean language with
K.t | Ox.t

* They can be defined in terms of ROBDD
operations:

K.t =t[0/X] V t[1/X
X.t =t[0/x] A t[1L/X

We can use an appropriate combination of Restrict
and Apply

69

Symbolic CTL Moded Checking

Represent the required subsets of states as
noolean functions and hence as ROBDDs.

Represent the transition relation as a boolean
function and hence asa ROBDD.

Reduce the iterative fixed point computations of
the model checking process to operations on
OBDDs.

Check for the termination of the fixpoint
computation by checking ROBDD equivalence.

70

Symbolic Model Checking

K=(S5 S, R,AP, L)

Assumethat if L(s)=L(S) thens=¢5.

—1If not, add a few new atomic propositions If
necessary, so as to distinguish states only based on
labeling.

AP={p,q,r}

L(s) =1{p}

—f.=pAgqA-T

* f{SL 2,55} — fSl v fsz v f55

71

Symbolic Model Checking

K=(S S, R, AP, L)

AP={p,q,r}
Invent {p’, q’, r'}
Suppose (s, S,) INR - (1.e. R(s, S)))

with L(s) = {p, q} and L(s,) = {r}.

Thentgg o) =1 AT,

—wheref’ ==p" A=qQ" AT’

* 1:R = v(sl,) €R (fR(S]_,SZ))
e Choosetheordering p<p’'<g<qg <r<r’!

72

CTL symbolic Model Checking
 |[xi]] =1, ()

(the OBDD for the boolean variable x;)

* [[= @l = ~TylXy,- .. %)
(apply negation of the OBDD for)

* lleUW

(apply

* leUw

(apply

| = Tg(Xgs- %)

Fy(Xgs-Xp)

[1operation to the OBDDsfor g and)

| = Ty(Xg,---:Xp)

I ST &

[1operation tothe OBDDsfor @and)

73

CTL symbolic Model Checking

* [EX @l| =

(relational product, also known as pre-image of R)

* [[EU(Q.W)

UZ.(Fy (X, . Xq) O (F(Xg,-...Xp) DEX Z))

74

Symbolic modé checking: example

Given the boolean variable V={x,,.., X.}, EG { can be
computed as follows:

* Assumethe ROBDD f,(Xy,.., X,) has been computed.
e Xo= qu (X149 Xp) [fq,(x’ 1.+ X' 1) DY substitution]
* Xi,; =X; nY;where
=Y = DK g, X (F(X g, X)) O
Fa(Xqyeea XpoX 15000 X' 1))
— Xi,1 Can be computed as X; O,

» Finally whether X;,; = X, can be checked by checking
If the corresponding ROBDDs are identical.

75

Symbolic Model Checking

 The actual Kripke structure will be, in general, too
large.

— State explosion.

e SO one must try to compute the ROBDDs
directly from the system mode (NuSMV
program) and run the model checking procedure
with the help of thisimplicit representation.

— Symbolic model checking.
» But we need additional techniques'!

76

