Tecniche di Specifica e di Verifica

Boolean Decision Diagrams I (BDDs)

Outline

- NuSMV
- The state explosion problem.
- Techniques for overcoming this problem:
- Compact representation of the state space.
- BDDs.
- Abstractions (bisimulations)
- Symmetries.
- Partial Order Reductions.

NuSMV

- New Symbolic Model Verifier.
- Developed at CMU-IRST (Ed Clarke, Ken McMillan, Cimatti et al.) as extension/reimplementation of SMV.
- NuSMV has its own input language (also called SMV!).

NuSMV

- You must prepare your verification problem in this language.
- An NuSMV program is a convenient way to describe a Kripke structure.
- You can insert the properties you want to verify in the program.
- Read the tutorial and on a need-to-know basis, the manual.
- Links will be created soon to these documents.

How to circumvent state space explosion?

- Use succinct representations of the state space.
- Boolean Decision Diagrams.
- Reduce TS to TS' such that:
- TS has the required property iff TS' has the required property.
- Symmetries
- Abstractions (bisimulations)
- Partial order reductions.

Symbolic Model checking

- K = (S, $\left.\mathbf{S}_{\mathbf{0}}, \mathbf{R}, \mathbf{A P}, \mathbf{V}\right)$
- ψ a CTL formula
- To check whether:
$-\mathbf{K}, \mathbf{s} \vDash \psi$
- We need to
- compute $\operatorname{states}(\psi)=\{\mathbf{x} \mid \mathbf{K}, \mathbf{x} \vDash \psi\}$.
- then check whether $\mathbf{s} \in \operatorname{states}(\psi)$.

Symbolic Model checking

- $K=\left(\mathbf{S}, \mathbf{S}_{0}, \mathbf{R}, \mathbf{A P}, \mathbf{V}\right)$
- ψ a CTL formula
- $\mathbf{S}^{\boldsymbol{\prime}} \subseteq \mathbf{S}$ can be represented as a boolean function.
- \mathbf{R} can be represented as a boolean function.
- States (ψ) can be represented as a boolean function.

BDDs

- Boolean functions can be (often) succinctly represented as boolean decision diagrams.
- BDDs are easy to manipulate.
- Not all boolean functions have a succinct representation.
- Use BDDs to represent and manipulate the boolean functions associated with the model checking process.

Boolean Functions

- f: Domain \rightarrow Range
- Boolean function:
- Domain $=\{0,1\}^{\mathrm{n}}=\{\mathbf{0}, \mathbf{1}\} \times \ldots \times\{\mathbf{0}, \mathbf{1}\}$.
- Range $=\{0,1\}$
$-\mathbf{f}$ is a function of \mathbf{n} boolean variables.
- How many boolean functions of 3 variables are there?

Boolean Functions

- f: Domain \rightarrow Range
- Boolean function:
- Domain $=\{0,1\}^{\mathrm{n}}=\{\mathbf{0 , 1}\} \times \ldots . \times\{\mathbf{0 , 1}\}$.
- Range $=\{0,1\}$
- \mathbf{f} is a function of \mathbf{n} boolean variables.
- How many boolean functions of 3 variables are there?
- Answer : $\mathbf{2}^{\mathbf{2}^{\mathbf{3}}}=\mathbf{2}^{\mathbf{8}}$!

Truth Tables

\mathbf{x}	y	z	g
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$
g:\{0,1\} \times\{0,1\} \times\{0,1\} \rightarrow\{0,1\}
$$

Boolean Expressions

- Given a set of Boolean variables $\boldsymbol{x}, \boldsymbol{y}, \ldots$ and the constants $\mathbf{1}$ (true) and $\mathbf{0}$ (false):

$$
t::=x|0| 1|\neg t| t \wedge t|t \vee t| t \Rightarrow t \mid t \Leftrightarrow t
$$

- The semantics of Boolean Expressions is defined by means of truth tables as usual.
- Given an ordering of Boolean variables, Boolean expressions can be used to express Boolean functions.

Boolean expressions

- Boolean functions can also be represented as boolean (propositional) expressions.
- $\mathbf{x} \wedge \mathbf{y}$ represents the function:
$-\mathrm{f}:\{\mathbf{0}, \mathbf{1}\} \times\{\mathbf{0}, \mathbf{1}\} \rightarrow\{0,1\}$
- $\mathbf{f}(\mathbf{0}, \mathbf{0})=$
- $\mathbf{f}(\mathbf{0}, \mathbf{1})=$
- $\mathbf{f}(\mathbf{1 , 0})=$
- $\mathbf{f}(\mathbf{1}, \mathbf{1})=$

Boolean expressions

- Boolean functions can also be represented as boolean (propositional) expressions.
- $\mathbf{x} \wedge \mathbf{y}$ represents the function:
$-\mathrm{f}:\{\mathbf{0}, \mathbf{1}\} \times\{\mathbf{0}, \mathbf{1}\} \rightarrow\{\mathbf{0}, \mathbf{1}\}$
- $\mathbf{f}(\mathbf{0}, \mathbf{0})=\mathbf{0}$
- $\mathbf{f}(\mathbf{0}, \mathbf{1})=\mathbf{0}$
- $\mathbf{f}(\mathbf{1 , 0})=0$
- $\mathbf{f}(\mathbf{1}, \mathbf{1})=\mathbf{1}$

Boolean functions and expressions

\mathbf{x}	y	\mathbf{z}	g
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0
$\mathbf{0}$	0	1	1
$\mathbf{0}$	1	0	1
$\mathbf{0}$	1	1	0
1	0	0	1
$\mathbf{1}$	0	1	0
$\mathbf{1}$	1	0	0
$\mathbf{1}$	1	1	1

$$
g:\{0,1\} \times\{0,1\} \times\{0,1\} \rightarrow\{0,1\}
$$

$$
\mathbf{g}=((\mathbf{x} \Leftrightarrow \mathbf{y}) \wedge \mathbf{z}) \vee((\mathbf{x} \Leftrightarrow \neg \mathbf{y}) \wedge \neg \mathbf{z})
$$

Boolean expressions and functions

\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{g}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	

$$
\mathbf{g}=(\mathbf{x} \wedge \mathbf{y} \wedge \neg \mathbf{z}) \vee(\mathbf{x} \wedge \neg \mathbf{y} \wedge \mathbf{z}) \vee(\neg \mathbf{x} \wedge \mathbf{y})
$$

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Boolean expressions and functions

Three Representations

- Boolean functions
- Truth tables
- Propositional formulas.
- Three equivalent representations.
- Here is a fourth one!

Boolean Decision Tree

- A boolean function is represented as a (binary) tree.
- Each internal node is labeled with a (boolean) variable.
- Each internal node has a positive (full line) and a negative (dotted line) successor.
- The terminal nodes are labeled with $\mathbf{0}$ or $\mathbf{1}$.

Boolean Decision Diagrams

- A compact way of representing boolean functions.
- Can be used in CTL model checking.
- Represent a subset of states as a boolean function.
- Represent the transition relation as a boolean function.
- Reduce $\mathbf{E X}(\psi), \mathbf{E U}\left(\psi_{1}, \psi_{2}\right)$ and $\mathbf{E G}(\psi)$ to manipulating boolean functions and checking for boolean function equality.
- Go from NuSMV (program) representation directly to its BDD representation!

Boolean Decision Tree

- A boolean function is represented as a (binary) tree.
- Each node is labeled with a (boolean) variable.
- Each node has a positive (full line) and a negative (dotted line) successor.
- The terminal nodes are labeled with $\mathbf{0}$ or $\mathbf{1}$.

Boolean decision trees.

BDDs

A BDD is finite rooted directed acyclic graph in which:

- There is a unique initial node (the root)
- Each terminal node is labeled with a 0 or 1.
- Each non-terminal (internal) node \boldsymbol{v} has three attribute:
- $\operatorname{var}(\boldsymbol{v})$, and
- exactly two successors low(v) and high(v): one labeled 0 (dotted edge, low(v)) and the other labeled 1 (full edge, high(v)).

$$
\mathbf{g}=(\mathbf{y} \wedge(\mathbf{x} \Leftrightarrow \mathbf{z})) \vee(\neg \mathbf{y} \wedge(\mathbf{x} \Leftrightarrow \neg \mathbf{z}))
$$

Reduction Rules

- Three reduction rules:
- Share identical terminal nodes. (R1)
- Remove redundant tests (R2)
- Share identical non-terminal nodes. (R3)

Reduction Rules

- Three reduction rules:
- Share identical terminal nodes. (R1)
- If a BDD contains two terminal nodes m and \mathbf{n} both labeled 0 then, remove \mathbf{n} and direct all incoming edges at n to m .
- Similarly for two terminal nodes labeled 1.

Share identical terminal nodes. (R1)

Share identical terminal nodes. (R1)

Share identical terminal nodes. (R1)

Reduction Rules

- Three reduction rules:
- Share identical terminal nodes. (R1)
- Remove redundant tests (R2)
- If both successors of node m lead to the same node n then remove m and direct all incoming edges of m to n .

Remove redundant tests (R2)

Reduction Rules

- Three reduction rules:
- Share identical terminal nodes. (R1)
- Remove redundant tests (R2)
- Share identical non-terminal nodes. (R3)
- If the sub-BDDs rooted at the nodes \mathbf{m} and \mathbf{n} are "identical" then remove \mathbf{n} and direct all its incoming edges to m .

Share identical non-terminal nodes. (R3)

Share identical non-terminal nodes. (R3)

$$
\mathbf{g}=(\mathbf{y} \wedge(\mathbf{x} \Leftrightarrow \mathbf{z})) \vee(\neg \mathbf{y} \wedge(\mathbf{x} \Leftrightarrow \neg \mathbf{z}))
$$

Reduced BDDs

- A BDD is reduced iff none of the three reduction rules can be applied to it.
- Start from the bottom layer (terminal nodes).
- Apply the rules repeatedly to level i. And then move to level i-1.
- Stop when the root node has been treated.
- This can be done efficiently.

Binary Decision Tree

Reduced BDD

Ordered BDDs

- $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}\right\}$
- An indexed (ordered) set of boolean variables.
$-\mathrm{x}_{1}<\mathrm{x}_{2} \ldots \ldots<\mathrm{x}_{\mathrm{n}}$
- \mathbf{G} is an ordered BDD w.r.t. the above variable ordering iff:
- Each variable that appears in \mathbf{G} is in the above set. (but the converse may not be true).
- If $\mathbf{i}<\mathbf{j}$ and $\mathbf{x}_{\mathbf{i}}$ and $\mathbf{x}_{\mathbf{j}}$ appear on a path then $\mathbf{x}_{\mathbf{i}}$ appears before \mathbf{x}_{j}.

Ordered BDDS

- Fundamental Fact:
- For a fixed variable ordering, for each boolean function there is exactly one reduced ordered BDD!
- Reduced OBDDs are canonical objects.
- To test if \boldsymbol{f} and \boldsymbol{g} are equal, we just have to check if their reduced OBDDs are identical.
- This will be crucial for model checking!

$$
\mathbf{y}<\mathbf{z}<\mathbf{x}
$$

Reduced OBDD

- An OBDD is reduced (i.e. it is a ROBDD) if there are only two terminal vertices $\mathbf{0}$ and $\mathbf{1}$, and for all non terminal vertices $\boldsymbol{v}, \boldsymbol{u}$:

$$
\begin{aligned}
& -\operatorname{low}(v) \neq \operatorname{high}(v)(\text { non-redundant tests }) \\
& -\operatorname{low}(v)=\operatorname{low}(u), \operatorname{high}(v)=\operatorname{high}(u) \text { and } \operatorname{var}(v)=\operatorname{var}(u) \\
& \operatorname{implies} v=u(u n i q u e n e s s)
\end{aligned}
$$

Canonicity of ROBDD

Let we denote an ROBDD with its root node and the function represented by subgraph a rooted in node \boldsymbol{u} with $\mathbf{f}^{\mathbf{u}}$. Then:

Theorem: For any function $\mathbf{f :}\{\mathbf{0}, \mathbf{1}\}^{\mathrm{n}} \rightarrow\{\mathbf{0 , 1}\}$ there exists a unique ROBDD u with variable ordering $x_{1}, x_{2}, \ldots, x_{n}$ such that

$$
\mathbf{f}^{\mathrm{u}}=\mathbf{f}\left(x_{1}, \ldots, x_{\mathrm{n}}\right)
$$

Consequences of canonicity

Theorem: For any function $\mathbf{f :}\{\mathbf{0 , 1}\}^{\mathbf{n}} \rightarrow\{\mathbf{0 , 1}\}$ there exists a unique ROBDD \boldsymbol{u} with variable ordering $x_{1}, x_{2}, \ldots, x_{n}$ such that

$$
\mathbf{f}^{\mathrm{u}}=\mathbf{f}\left(x_{1}, \ldots, x_{\mathrm{n}}\right)
$$

Therefore we can say that:

- A function $\mathbf{f}^{\mathbf{u}}$ is a tautology if its ROBDD \boldsymbol{u} is equal to 1.
- A function $\mathbf{f}^{\mathbf{u}}$ is a satisfiable if its ROBDD \boldsymbol{u} is not equal to $\mathbf{0}$.

Reduced OBDDs

- The ordering is crucial!
- $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{y}_{1}, \mathrm{y}_{2}\right\} \quad \mathrm{x}_{1} \mathrm{x}_{2}$

$$
\begin{array}{lll}
-\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}_{1}, \mathbf{y}_{2}\right) & \mathbf{y}_{1} & \mathbf{y}_{2} \\
-\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}_{1}, \mathbf{y}_{2}\right)=1 & \text { iff } & \left(\mathbf{x}_{1}=\mathbf{y}_{1} \wedge \mathbf{x}_{2}=\mathbf{y}_{2}\right)
\end{array}
$$

- If $\mathbf{x}_{1}<\mathbf{y}_{\mathbf{1}}<\mathbf{x}_{\mathbf{2}}<\mathrm{y}_{\mathbf{2}}$, then the OBDD is of size $3 \cdot 2+2=8$.
- If $\mathbf{x}_{1}<\mathbf{x}_{\mathbf{2}}<\mathbf{y}_{\mathbf{1}}<\mathrm{y}_{\mathbf{2}}$, then the OBDD is of size 3. $\mathbf{2}^{\mathbf{2}}-\mathbf{1}=\mathbf{1 1}$!

Reduced OBDDs

$$
\mathbf{x}_{1}<\mathbf{y}_{1}<\mathbf{x}_{2}<\mathbf{y}_{2}
$$

$$
\mathbf{x}_{1}<\mathbf{x}_{2}<\mathbf{y}_{1}<\mathbf{y}_{2}
$$

Reduced OBDDs

- The ordering is crucial!
- $\left\{x_{1}, x_{2}, . ., x_{n}, y_{1}, y_{2}, . ., y_{n}\right\} \quad x_{1} x_{2} \ldots x_{n}$

$$
\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, . ., \mathbf{x}_{\mathrm{n}}, \mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{\mathrm{n}}\right) \quad \mathbf{y}_{1} \mathbf{y}_{2} \ldots \mathbf{y}_{\mathrm{n}}
$$

$$
-\mathbf{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, . ., \mathrm{x}_{\mathrm{n}}, \mathbf{y}_{1}, \mathrm{y}_{2}, . ., \mathrm{y}_{\mathrm{n}}\right)=1 \quad \text { iff } \bigwedge_{\mathrm{i}=1}^{n}\left(\mathrm{x}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}}\right)
$$

- If $\mathbf{x}_{\mathbf{1}}<\mathbf{y}_{\mathbf{1}}<\mathrm{x}_{\mathbf{2}}<\mathbf{y}_{2} \ldots \mathrm{x}_{\mathrm{n}}<\mathrm{y}_{\mathrm{n}}$, then the OBDD is of size $\mathbf{3 n}+\mathbf{2}$.
- If $x_{1}<x_{2}<\ldots<x_{n}<y_{1}<\ldots<y_{n}$, then the OBDD is of size $3 . \mathbf{2}^{\mathrm{n}}-\mathbf{1}$!

ROBDDs

- Finding the optimal variable ordering is computationally expensive (NP-complete).
- There are heuristics for finding good orderings.
- There exist boolean functions whose sizes are exponential (in the number of variables) for any ordering.
- Functions encountered in practice are rarely of this kind.

Implementation of ROBDDs

Array-based implementation

The function MK

- The function MK searches for a node \boldsymbol{u} with $\operatorname{var}(u)=\boldsymbol{x}_{\boldsymbol{i}}, \operatorname{low}(\boldsymbol{u})=\boldsymbol{l}$ and $\operatorname{high}(\boldsymbol{u})=\boldsymbol{h}$. If the node does not exists, then creates the new node after inserting it. The running time is $\boldsymbol{O}(\mathbf{1})$.
$H(i, l, h)$ is a hash function mapping a triple $\langle i, l, h\rangle$ into a node index in T.

Algorithm MK(i,l,h)
if $l=h$ then return I
else if $\mathbf{T}[\mathbf{H}(\mathbf{i}, 1, \mathrm{~h})] \neq$ empty then return $\mathbf{T}[\mathbf{H}(\mathbf{i}, 1, \mathrm{~h})$]
else $\mathbf{u}=\operatorname{add}(\mathbf{T}, \mathbf{H}(\mathbf{i}, \mathbf{l}, \mathbf{h}), \mathbf{i}, \mathbf{l}, \mathbf{h})$
return u

Operations on ROBDDs.

- During model checking, boolean operations will have to be performed on ROBDDs.
- These operations can be implemented efficiently.
- $\mathbf{f} \vee \mathbf{g} \cdots-\cdots----\mathbf{G}_{\mathbf{f}} \mathbf{o p}_{\vee} \mathbf{G}_{\mathrm{g}}=\mathbf{G}_{\mathbf{f} \vee \mathrm{g}}$
- There is a procedure called APPLY to do this.

Operations on ROBDDs

- When performing an operation on \mathbf{G} and \mathbf{G} ' we assume their variable orderings are compatible.
- $\mathbf{X}=\mathbf{X}_{\mathbf{G}} \cup \mathbf{X}_{\mathbf{G}}$,
- There is an ordering < on \mathbf{X} such that:
$-<$ restricted to $\mathbf{X}_{\mathbf{G}}$ is $<_{\mathbf{G}}$
- < restricted to $\mathbf{X}_{\mathbf{G}}$, is $<_{G}$.

Operations on OBDDs

- The basic idea (Shannon Expansion):
- $\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}\right)$

$$
\begin{gathered}
-\left.\mathbf{f}\right|_{x_{1}=0}=\mathbf{f}\left(0, x_{2}, ., x_{n}\right) \\
\quad \mathbf{f}=x_{1} \vee\left(x_{2} \wedge x_{3}\right) \\
\left.\quad \mathbf{f}\right|_{x_{1}=0}=x_{2} \wedge x_{3}
\end{gathered}
$$

- Similarly, $\left.f\right|_{\mathbf{x} 1=1}=\mathbf{f}\left(\mathbf{1}, \mathbf{x}_{2}, . ., \mathbf{x}_{\mathrm{n}}\right)$

$$
f\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}\right)=\left(\left.\neg \mathbf{x}_{1} \wedge \mathbf{f}\right|_{\mathbf{x}_{1}=0}\right) \vee\left(\left.\mathbf{x}_{1} \wedge \mathbf{f}\right|_{\mathbf{x}_{1}=1}\right)
$$

- This is true even if $\mathbf{x}_{\mathbf{1}}$ does not appear in \mathbf{f} !

Operations on ROBDDs.

- Let \mathbf{x} be the variable of the root of $\mathbf{G}_{\mathbf{f}}$ and \mathbf{y} the variable of the root of $\mathbf{G}_{\mathbf{g}}$.
- To compute $\mathbf{G}_{\mathbf{f} \mathbf{~ o p ~} \mathbf{g}}$ we consider:

CASE1: $\mathrm{x}=\mathrm{y}$

- \mathbf{f} opg $=\left(\neg \mathbf{x} \wedge\left(\left.f\right|_{x=0}\right.\right.$ opg $\left.\left.\right|_{x=0}\right) \vee$

$$
\left(x \wedge\left(\left.f\right|_{x=1} \text { op }\left.g\right|_{x=1}\right)\right.
$$

- We have to solve now two smaller problems!

Operations on ROBDDs.

- Let \mathbf{x} be the root of $\mathbf{G}_{\mathbf{f}}$ and \mathbf{y} the root of $\mathbf{G}_{\mathbf{g}}$.
- To compute $\mathbf{G}_{\mathbf{f} \mathbf{~ o p} \mathbf{g}}$ we consider: CASE2: $\mathrm{x}<\mathrm{y}$.
- Then \mathbf{x} does not appear in $\mathbf{G}_{\mathbf{g}}$ (why?).
$-\left.\mathbf{g}\right|_{\mathbf{x}=0}=\mathbf{g}=\left.\mathbf{g}\right|_{\mathrm{x}=1}$
- fopg $=\left(\neg \mathbf{x} \wedge\left(\left.\mathbf{f}\right|_{\mathbf{x}=\mathbf{0}} \mathbf{o p g}\right) \vee\left(\mathbf{x} \wedge\left(\left.\mathbf{f}\right|_{\mathbf{x}=\mathbf{1}} \mathbf{o p g}\right)\right.\right.$
- We have to solve now two smaller problems!

Algorithm for Apply

Algorithm Apply(op,u,v)

Function App(u,v)
if terminal_case $(o p, u, v)$ then return op(u, v)
else if $\operatorname{var}(u)=\operatorname{var}(v)$ then

$$
\mathbf{u}=\mathbf{m k}(\operatorname{var}(\mathbf{u}), \operatorname{App}(o p, \operatorname{low}(\mathbf{u}), \operatorname{low}(\mathbf{v})),
$$

App(op,high(u),high(v)))
else if $\operatorname{var}(u)<\operatorname{var}(v)$ then
$\mathbf{u}=\mathbf{m k}(\operatorname{var}(\mathbf{u}), \operatorname{App}(\operatorname{op}, \operatorname{low}(\mathbf{u}), \mathbf{v}), \operatorname{App}(\mathrm{op}, \operatorname{high}(\mathbf{u}), \mathbf{v}))$ else /* $\operatorname{var}(\mathbf{u})>\operatorname{var}(v)$ */
$\mathbf{u}=\mathbf{m k}(\operatorname{var}(\mathbf{u}), \operatorname{App}(\mathrm{op}, \mathbf{u}, \operatorname{low}(\mathrm{v})), \operatorname{App}(\mathrm{op}, \mathbf{u}, h i g h(\mathrm{v})))$
return u
return $\operatorname{App}(\mathbf{u}, \mathbf{v})$
running time $=\mathbf{O}\left(2^{\mathrm{n}}\right)$. Why?
$n=$ number of variables.

Efficient algorithm for Apply

Algorithm Apply(op,u,v)
init(G)
Function $\operatorname{App}(\mathbf{u}, \mathbf{v})$
if $\mathbf{G}(\mathbf{u}, \mathbf{v}) \neq$ empty then return $\mathbf{G}(\mathbf{u}, \mathrm{v})$
else if terminal_case(op,u,v) then return op(u,v)
else if $\operatorname{var}(u)=\operatorname{var}(v)$ then
$\mathbf{r}=\mathbf{m k}(\operatorname{var}(\mathbf{u}), \operatorname{App}(o p, \operatorname{low}(\mathbf{u}), \operatorname{low}(\mathrm{v}))$,
App(op,high(u),high(v)))
else if $\operatorname{var}(u)<\operatorname{var}(v)$ then
$\mathbf{r}=\mathbf{m k}(\operatorname{var}(\mathbf{u}), \operatorname{App}(\mathrm{op}, \operatorname{low}(\mathbf{u}), \mathbf{v}), \operatorname{App}(\mathrm{op}, \mathrm{high}(\mathbf{u}), \mathbf{v}))$
else /* $\operatorname{var}(\mathbf{u})>\operatorname{var}(\mathbf{v})$ */
$\mathbf{r}=\operatorname{mk}(\operatorname{var}(\mathbf{u}), \operatorname{App}(\mathrm{op}, \mathrm{u}, \operatorname{low}(\mathrm{v})), \operatorname{App}(\mathrm{op}, \mathbf{u}, \mathrm{high}(\mathrm{v})))$
$\mathbf{G}(\mathbf{u}, \mathbf{v})=\mathbf{r}$
return r
return $\operatorname{App}(\mathbf{u}, \mathbf{v})$

$$
\text { running time }=\mathbf{O}\left(\left|\mathbf{G}_{\mathrm{u}} \|\left|\mathbf{G}_{\mathrm{v}}\right|\right)\right. \text {. Why? }
$$

The Restrict operation

- Problem: Given a (partial) truth assignment $x_{1}=b_{1}, \ldots, x_{k}=b_{k}\left(\right.$ where $b_{j}=0$ or $\left.b_{j}=1\right)$, and a ROBDD \boldsymbol{t}^{u}, compute the restriction of \boldsymbol{t}^{u} under the assignment.
- E.G.: if $f\left(x_{1}, x_{2}, x_{3}\right)=\left(\left(x_{1} \Leftrightarrow x_{2}\right) \vee x_{3}\right)$ we want to compute $f\left(x_{1}, x_{2}, x_{3}\right)\left[0 / x_{2}\right]=f\left(x_{1}, 0, x_{3}\right)$

$$
\text { i.e.: } f\left(x_{1}, 0, x_{3}\right)=\neg x_{1} \vee x_{3}
$$

Restrict Operation: example

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(\left(x_{1} \Leftrightarrow x_{2}\right) \vee x_{3}\right) \quad f\left(x_{1}, x_{2}, x_{3}\right)\left[0 / x_{2}\right]=\neg x_{1} \vee x_{3}
$$

Restrict Operation

- Let \mathbf{x} be the root of $\mathbf{G}_{\mathbf{f}}$
- To compute $\left.\mathbf{G}_{\mathbf{f}}\right|_{\mathbf{y}=\boldsymbol{b}}$ we consider: CASE1: $\mathrm{x}=\mathrm{y}$
- $\left.\right|_{y_{y=b}}=\operatorname{low}\left(G_{f}\right)$ if $b=0$
- $\left.f\right|_{y=b}=\operatorname{high}\left(G_{f}\right)$ if $b=1$

Restrict Operation

- Let \mathbf{x} be the root of $\mathbf{G}_{\mathbf{f}}$
- To compute $\left.\mathbf{G}_{\mathbf{f}}\right|_{\mathbf{y}=\mathbf{b}}$ we consider: CASE2: $x>y$
- $\left.\mathbf{f}\right|_{\mathrm{y}=\mathrm{b}}=\mathbf{f}$

Restrict Operation

- Let \mathbf{x} be the root of $\mathbf{G}_{\mathbf{f}}$
- To compute $\left.\mathbf{G}_{\mathbf{f}}\right|_{\mathbf{y}=\mathbf{b}}$ we consider: CASE2: $\mathrm{x}<\mathrm{y}$

$$
-\left.f\right|_{y=b}=\left(\left.\neg \mathbf{x} \wedge\left(\left.\mathbf{f}\right|_{x=0}\right)\right|_{y=b}\right) \vee\left(\left.\mathbf{x} \wedge\left(\left.\mathbf{f}\right|_{x=1}\right)\right|_{y=b}\right)
$$

- We have to solve now two smaller problems!

Algorithm for Restrict

Algorithm Restrict(u,i,b)

Function Res(u)

if $\operatorname{var}(\mathbf{u})>\mathrm{i}$ then return u else if $\operatorname{var}(\mathbf{u})<i$ then return $m k(\operatorname{var}(\mathbf{u}), \operatorname{Res}(\operatorname{low}(\mathbf{u})), \operatorname{Res}(\operatorname{high}(\mathbf{u})))$
else /* $\operatorname{var}(\mathbf{u})=\mathbf{i}$ */

$$
\text { if } b=0 \text { then }
$$

return $\operatorname{Res}(\operatorname{low}(\mathbf{u}))$
else $/ * \operatorname{var}(\mathbf{u})=\mathbf{i}$ and $\mathbf{b}=\mathbf{1}$ */
return $\operatorname{Res}(h i g h(u))$
return $\operatorname{Res}(\mathbf{u})$

$$
\text { running time }=\mathbf{O}\left(2^{\mathrm{n}}\right) \text {. Why? }
$$

Efficient algorithm for Restrict

```
Algorithm Restrict(u,i,b)
    init(G)
Function \(\operatorname{Res}(\mathbf{u})\)
    if \(\mathbf{G}(\mathbf{u}) \neq\) empty then return \(\mathbf{G}(\mathbf{u})\)
    if \(\operatorname{var}(u)>\) i then return \(u\)
    else if \(\operatorname{var}(u)\) < \(i\) then
        \(\mathbf{r}=\mathbf{m k}(\operatorname{var}(\mathbf{u}), \operatorname{Res}(\operatorname{low}(\mathbf{u})), \operatorname{Res}(\operatorname{high}(\mathbf{u})))\)
    else \(/ * \operatorname{var}(\mathbf{u})=\operatorname{var}(\mathbf{v}) * /\)
        if \(b=0\) then
        \(\mathbf{r}=\operatorname{Res}(\operatorname{low}(\mathbf{u}))\)
        else /* \(\operatorname{var}(\mathbf{u})=\operatorname{var}(\mathbf{v})\) and \(b=1 * /\)
        \(\mathbf{r}=\operatorname{Res}(\operatorname{high}(\mathbf{u}))\)
    \(\mathbf{G}(\mathbf{u})=\mathbf{r}\)
```

 return \(\mathbf{r}\)
 return $\operatorname{Res}(\mathbf{u})$
running time $=\mathbf{O}\left(\mid \mathrm{G}_{\mathrm{u}}\right)$. Why?

Quantification

- Extend the boolean language with

$$
\exists \mathrm{x.t} \mid \forall \mathrm{x} . \mathrm{t}
$$

- They can be defined in terms of ROBDD operations:

$$
\begin{aligned}
& \exists \mathrm{x} . \mathrm{t}=\mathrm{t}[\mathbf{0} / \mathrm{x}] \vee \mathrm{t}[1 / \mathrm{x}] \\
& \forall \mathrm{x} . \mathrm{t}=\mathrm{t}[0 / \mathrm{x}] \wedge \mathrm{t}[1 / \mathrm{x}]
\end{aligned}
$$

We can use an appropriate combination of Restrict and Apply

Symbolic CTL Model Checking

- Represent the required subsets of states as boolean functions and hence as ROBDDs.
- Represent the transition relation as a boolean function and hence as a ROBDD.
- Reduce the iterative fixed point computations of the model checking process to operations on OBDDs.
- Check for the termination of the fixpoint computation by checking ROBDD equivalence.

Symbolic Model Checking

- $\mathbf{K}=\left(\mathbf{S}, \mathbf{S}_{\mathbf{0}}, \mathbf{R}, \mathbf{A P}, \mathbf{L}\right)$
- Assume that if $\mathbf{L}(\mathbf{s})=\mathbf{L}\left(\mathbf{s}^{\prime}\right)$ then $\mathbf{s}=\mathbf{s}^{\prime}$.
- If not, add a few new atomic propositions if necessary, so as to distinguish states only based on labeling.
- $\mathbf{A P}=\{\mathbf{p}, \mathbf{q}, \mathbf{r}\}$
- $\mathbf{L}(\mathbf{s})=\{p\}$
$-\mathbf{f}_{\mathrm{s}}=\mathbf{p} \wedge \neg \mathbf{q} \wedge \neg \mathbf{r}$
- $\mathbf{f}_{\left\{\mathbf{1} 1,52, s_{5}\right\}}=\mathbf{f}_{\mathrm{s}_{1}} \vee \mathbf{f}_{\mathrm{s} 2} \vee \mathbf{f}_{\mathrm{s} 5}$

Symbolic Model Checking

- $K=\left(S, S_{0}, R, A P, L\right)$
- $\mathbf{A P}=\{\mathbf{p}, \mathbf{q}, \mathbf{r}\}$
- Invent $\left\{\mathbf{p}^{\prime}, \mathbf{q}^{\prime}, \mathbf{r}^{\prime}\right\}$
- $\operatorname{Suppose}\left(\mathbf{s}_{\mathbf{1}}, \mathbf{s}_{\mathbf{2}}\right)$ in \mathbf{R} (i.e. $\left.\mathbf{R}\left(\mathbf{s}_{\mathbf{1}}, \mathbf{s}_{\mathbf{2}}\right)\right)$ with $\mathbf{L}\left(\mathbf{s}_{\mathbf{1}}\right)=\{\mathbf{p}, \mathbf{q}\}$ and $\mathbf{L}\left(\mathbf{s}_{\mathbf{2}}\right)=\{\mathbf{r}\}$. Then $\mathbf{f}_{\mathbf{R}\left(\mathbf{s}_{\mathbf{1}}, \mathbf{s}_{\mathbf{2}}\right)}=\mathbf{f}_{\mathbf{s}_{\mathbf{1}}} \wedge \mathbf{f}_{\mathbf{s}_{\mathbf{2}}}$.
- where $\mathbf{f}_{\mathbf{s}_{2}}=\neg \mathbf{p}^{\prime} \wedge \neg \mathbf{q}^{\prime} \wedge \mathbf{r}^{\prime}$
- $\mathbf{f}_{\mathbf{R}}=V_{\left(\mathbf{s}_{1}, \mathbf{s}_{2}\right) \in \mathbf{R}}\left(\mathbf{f}_{\mathbf{R}\left(\mathbf{s}_{1}, \mathbf{s}_{2}\right)}\right)$
- Choose the ordering $p<p^{\prime}<q<q^{\prime}<r<r^{\prime}$!

CTL symbolic Model Checking

- $\left|\left[\mathbf{x}_{\mathrm{i}}\right]\right|=\mathbf{f}_{\mathrm{x}_{\mathrm{i}}}\left(\mathbf{x}_{\mathrm{i}}\right)$
(the OBDD for the boolean variable \mathbf{x}_{i})
- $|[\neg \phi]|=\neg \mathbf{f}_{\phi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}\right)$
(apply negation of the OBDD for ϕ)
- $|[\phi \vee \psi]|=\mathbf{f}_{\phi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \vee \mathbf{f}_{\psi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}\right)$
(apply \vee operation to the OBDDs for ϕ and ψ)
- $|[\phi \wedge \psi]|=\mathbf{f}_{\phi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \wedge \mathbf{f}_{\psi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}\right)$
(apply \wedge operation to the OBDDs for ϕ and ψ)

CTL symbolic Model Checking

- $|[\mathbf{E X} \phi]|=$

$$
\exists \mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}^{\prime}\left(\mathbf{f}_{\phi}\left(\mathbf{x}^{\prime}{ }_{1}, \ldots, \mathbf{x}_{\mathbf{n}}\right) \wedge \mathbf{f}_{\mathrm{R}}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}, \mathbf{x}^{\prime}, \ldots, \ldots, \mathbf{x}_{\mathrm{n}}\right)\right)
$$

(relational product, also known as pre-image of R)

- $|[\mathbf{E U}(\phi, \psi)]|=$

$$
\mu Z .\left(f_{\psi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \vee\left(f_{\phi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}\right) \wedge E X Z\right)\right)
$$

- $|[E G \phi]|=v Z .\left(\mathbf{f}_{\phi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}\right) \wedge \mathbf{E X} \mathbf{Z}\right)$

Symbolic model checking: example

Given the boolean variable $\mathbf{V}=\left\{\mathbf{x}_{\mathbf{1}}, . ., \mathrm{x}_{\mathrm{n}}\right\}$, $\mathbf{E G} \psi$ can be computed as follows:

- Assume the $\operatorname{ROBDD} \mathbf{f}_{\psi}\left(\mathbf{x}_{1}, ., \mathbf{x}_{\mathbf{n}}\right)$ has been computed.
- $\mathbf{X}_{\mathbf{0}}=\mathbf{f}_{\psi}\left(\mathbf{x}_{1}, ., \mathbf{x}_{\mathbf{n}}\right) \quad\left[\mathbf{f}_{\psi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}^{\prime}\right)\right.$ by substitution $]$
- $\mathbf{X}_{\mathrm{i}+1}=\mathbf{X}_{\mathrm{i}} \cap \mathbf{Y}_{\mathrm{i}}$ where
 $\left.f_{R}\left(x_{1}, . ., x_{n}, x_{1}, . ., x_{n}^{\prime}\right)\right)$
$-\mathbf{X}_{\mathbf{i}+1}$ can be computed as $\mathbf{X}_{\mathbf{i}} \wedge \mathbf{Y}_{\mathbf{i}}$
- Finally whether $\mathbf{X}_{\mathbf{i + 1}}=\mathbf{X}_{\mathbf{i}}$ can be checked by checking if the corresponding ROBDDs are identical.

Symbolic Model Checking

- The actual Kripke structure will be, in general, too large.
- State explosion.
- So one must try to compute the ROBDDs directly from the system model (NuSMV program) and run the model checking procedure with the help of this implicit representation.
- Symbolic model checking.
- But we need additional techniques !

