
Tecniche di Specifica e di
Verifica

Boolean Decision Diagrams I
(BDDs)
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Outline

• NuSMV
• The state explosion problem.
• Techniques for overcoming this problem:

– Compact representation of the state space.
� BDDs.

– Abstractions (bisimulations)
– Symmetries.
– Partial Order Reductions.
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NuSMV

• New Symbolic Model Verifier.

• Developed at CMU-IRST (Ed Clarke,
Ken McMillan, Cimatti et al.) as
extension/reimplementation of SMV.

• NuSMV has its own input language (also
called SMV!).
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NuSMV

• You must prepare your verification problem in
this language.

• An NuSMV program is a convenient way to
describe a Kripke structure.

• You can insert the properties you want to verify in
the program.

• Read the tutorial and on a need-to-know basis, the
manual.

• Links will be created soon to these documents.
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How to circumvent state space
explosion?

• Use succinct representations of the state space.
– Boolean Decision Diagrams.

• Reduce TS to TS’ such that:
– TS has the required  property   iff

TS’ has the required property.

� Symmetries

� Abstractions (bisimulations)

� Partial order reductions.
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Symbolic Model checking

• K = (S, S0, R, AP, V)

•  ψψ  a CTL formula

• To check whether:
– K, s rr ψψ

• We need to
– compute states(ψψ) = {x MM K, x rr ψψ}.

– then check whether s �� states(ψψ).
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Symbolic Model checking

• K = (S, S0, R, AP, V)

•  ψψ  a CTL formula

• S’ ww S can be represented as a boolean function.

• R can be represented as a boolean function.

• States(ψψ) can be represented as a boolean
function.
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BDDs

• Boolean functions can be (often) succinctly
represented as boolean decision diagrams.

• BDDs are easy to manipulate.

• Not all boolean functions have a succinct
representation.

• Use BDDs to represent and manipulate the
boolean functions associated with the
model checking process.



9

Boolean Functions

• f : Domain �� Range

• Boolean function:
– Domain = {0, 1}n = {0,1} ee ….ee {0,1}.

– Range = {0, 1}
– f is a function of n boolean variables.

• How many boolean functions of 3 variables
are there?
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Boolean Functions

• f : Domain �� Range

• Boolean function:
– Domain = {0, 1}n = {0,1} ee ….ee {0,1}.

– Range = {0, 1}

– f is a function of n boolean variables.

• How many boolean functions of 3 variables
are there?
– Answer : 223 

= 28 !
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Truth Tables

   0   0    0   0

   0   0    1   1

   0   1    0   1

   0   1    1   0

   1   0    0   1

   1   0    1   0

   1   1    0   0

   1   1    1   1

g : {0, 1} ee {0, 1} ee {0, 1} �� {0, 1}

 x   y    z    g
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Boolean Expressions

• Given a set of Boolean variables x,y,… and
the constants 1 (true) and 0 (false):

t ::= x | 0 | 1 | ¬¬t | t ∧∧ t | t ∨∨ t | t ⇒⇒ t | t ⇔⇔ t
• The semantics of Boolean Expressions is

defined by means of truth tables as usual.

• Given an ordering of Boolean variables,
Boolean expressions can be used to express
Boolean functions.
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Boolean expressions

• Boolean functions can also be represented
as boolean (propositional) expressions.

• x AA y represents the function:
– f: {0, 1} ee {0, 1} �� {0, 1}

� f(0, 0) =

� f(0, 1) =

� f(1, 0) =

� f(1, 1) =
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Boolean expressions

• Boolean functions can also be represented
as boolean (propositional) expressions.

• x AA y represents the function:
– f: {0, 1} ee {0, 1} �� {0, 1}

� f(0, 0) = 0

� f(0, 1) = 0

� f(1, 0) = 0

� f(1, 1) = 1
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Boolean functions and expressions

   0   0    0   0

   0   0    1   1

   0   1    0   1

   0   1    1   0

   1   0    0   1

   1   0    1   0

   1   1    0   0

   1   1    1   1

g : {0, 1} ee {0, 1} ee {0, 1} �� {0, 1}

 x   y    z    g

g = ((x ⇔⇔ y) AA z) BB ((x ⇔⇔ ¬¬y) AA ¬¬z)
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Boolean expressions and functions

   0   0    0

   0   0    1

   0   1    0

   0   1    1

   1   0    0

   1   0    1

   1   1    0

   1   1    1

g = (x AA y AA ¬¬z) BB (x AA ¬¬y AA z) BB (¬¬x AA y)

 x   y    z    g
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Boolean expressions and functions

   0   0    0   0

   0   0    1   0

   0   1    0   1

   0   1    1   1

   1   0    0   0

   1   0    1   1

   1   1    0   1

   1   1    1   0

 x   y    z    g

g = (x AA y AA ¬¬z) BB (x AA ¬¬y AA z) BB (¬¬x AA y)

g : {0, 1} ee {0, 1} ee {0, 1} �� {0, 1}
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Three Representations

• Boolean functions

• Truth tables

• Propositional formulas.

• Three equivalent representations.

• Here is a fourth one!
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Boolean Decision Tree

• A boolean function is represented as a
(binary) tree.

• Each internal node is labeled with a
(boolean) variable.

• Each internal node has a positive (full line)
and a negative (dotted line) successor.

• The terminal nodes are labeled with 0 or 1.
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Boolean Decision Diagrams

• A compact way of representing boolean functions.

• Can be used in CTL model checking.

– Represent a subset of states as a boolean function.

– Represent the transition relation as a boolean function.

– Reduce EX(ψψ), EU(ψψ1, ψψ2) and EG(ψψ))  to manipulating
boolean functions and checking for boolean function
equality.

• Go from NuSMV (program) representation directly to
its BDD representation!
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Boolean Decision Tree

• A boolean function is represented as a
(binary) tree.

• Each node is labeled with a (boolean)
variable.

• Each node has a positive (full line) and a
negative (dotted line) successor.

• The terminal nodes are labeled with 0 or 1.
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Boolean decision trees.

x AA y

x

yy

00 0 1
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   0   0    0   0

   0   0    1   1

   0   1    0   1

   0   1    1   0

   1   0    0   1

   1   0    1   0

   1   1    0   0

   1   1    1   1

 x   y    z    g y

z

x x

z

x x

0 1 1 0 1 0 0 1

g = (y A�A�(x ⇔⇔ z)) BB (¬¬y AA (x ⇔⇔ ¬¬z))
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BDDs

A BDD is finite rooted directed acyclic graph in
which:

• There is a unique initial node (the root)

• Each terminal node is labeled with a 0 or 1.

• Each non-terminal (internal) node v has three
attribute:
– var(v), and

– exactly two successors low(v) and high(v): one
labeled 0 (dotted edge, low(v)) and the other labeled
1 (full edge, high(v)).
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y

z z

x

1

x

0

g = (y A�A�(x ⇔⇔ z)) BB (¬¬y AA (x ⇔⇔ ¬¬z))
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Reduction Rules

• Three reduction rules:
– Share identical terminal nodes. (R1)
– Remove redundant tests (R2)

– Share identical non-terminal nodes. (R3)
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Reduction Rules
• Three reduction rules:

– Share identical terminal nodes. (R1)

• If a BDD contains two terminal nodes m
and n both labeled 0 then, remove n and
direct all incoming edges at n to m.

• Similarly for two terminal nodes labeled 1.

x identical
terminal

z

00

y

x non
identical
terminal

z

0

y

0
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y

z

x x

z

x x

0 1 1 0 1 0 0 1

g = (y A�A�(x ⇔⇔ z)) BB (¬¬y AA (x ⇔⇔ ¬¬z))

Share identical terminal nodes. (R1)
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y

z

x x

z

x x

0 1 1 1 0 0 1

g = (y A�A�(x ⇔⇔ z)) BB (¬¬y AA (x ⇔⇔ ¬¬z))

Share identical terminal nodes. (R1)
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y

z

x x

z

x x

0 1 0 1 0 1

g = (y A�A�(x ⇔⇔ z)) BB (¬¬y AA (x ⇔⇔ ¬¬z))

Share identical terminal nodes. (R1)
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Reduction Rules
• Three reduction rules:

– Share identical terminal nodes. (R1)

– Remove redundant tests (R2)

• If both successors of node m lead to the
same node n then remove m and direct all
incoming edges of m to n.

x

y

redundant test

z

x

y

non
redundant test

z
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y y

10 1

x x

y y

10

⇒⇒

x

y

10

⇒⇒

Remove redundant tests (R2)
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Reduction Rules
• Three reduction rules:

– Share identical terminal nodes. (R1)

– Remove redundant tests (R2)

– Share identical non-terminal nodes. (R3)

• If the sub-BDDs rooted at the nodes m and n
are “ identical” then remove n and direct all its
incoming edges to m.

x x unique
node

z
y

x x non-unique
node

z
y
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y

z

x x

z

x x

0 1 0 1 0 1

g = (y A�A�(x ⇔⇔ z)) BB (¬¬y AA (x ⇔⇔ ¬¬z))

Share identical non-terminal nodes. (R3)
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y

z

x x

z

x

0 1 0 1 0 1

g = (y A�A�(x ⇔⇔ z)) BB (¬¬y AA (x ⇔⇔ ¬¬z))

Share identical non-terminal nodes. (R3)
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Reduced BDDs

• A BDD is reduced iff none of the three
reduction rules can be applied to it.

• Start from the bottom layer (terminal nodes).

• Apply the rules repeatedly to level i. And
then move to level i-1.

• Stop when the root node has been treated.

• This can be done efficiently.
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y

z z

x

1

x

0

Reduced BDD

y

z

x x

z

x x

0 1 1 0 1 0 0 1

Binary Decision Tree
for

g = (y A�A�(x ⇔⇔ z)) BB (¬¬y AA (x ⇔⇔ ¬¬z))
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Ordered BDDs

• {x1, x2,…, xn}
– An indexed (ordered) set of boolean variables.

– x1 < x2 …..< xn

• G is an ordered BDD w.r.t. the above variable
ordering iff:

– Each variable that appears in G is in the above set.
(but the converse may not be true).

– If i < j  and xi and xj  appear on a path then xi
appears before xj .
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Ordered BDDS

• Fundamental Fact:
– For a fixed variable ordering, for each boolean

function there is exactly one reduced ordered
BDD!

– Reduced OBDDs are canonical objects.

– To test if f and g are equal, we just have to
check if their reduced OBDDs are identical.

– This will be crucial for model checking!
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y

z

x x

z

x

0 1 1 0 1 0

y < z < x

x

0 1



41

y

z

x x

z

x

0 1 1 1 0

x

0 1
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y

z

x x

z

x x

0 1 0 1 0 1
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y

z

x x

z

x

0 1

x
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y

z

x

z

0 1

x x
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y

z

x

z

x

0 1
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Reduced OBDD

• An OBDD is reduced (i.e. it is a ROBDD) if
there are only two terminal vertices 0 and 1, and
for all non terminal vertices v,u:

– low(v) ≠≠ high(v) (non-redundant tests)

– low(v) = low(u), high(v) = high(u) and var(v) = var(u)
implies v = u (uniqueness)
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Canonicity of ROBDD

Let we denote an ROBDD with its root node
and the function represented by subgraph a
rooted in node u with fu. Then:

Theorem: For any function f:{0,1}n →→ {0,1}
there exists a unique ROBDD u with
variable ordering x1, x2,…,xn such that

fu = f(x1,…,xn)
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Consequences of canonicity

Theorem: For any function f:{0,1}n →→ {0,1}
there exists a unique ROBDD u with
variable ordering x1, x2,…,xn such that

fu = f(x1,…,xn)
Therefore we can say that:

• A function fu is a tautology if its ROBDD u
is equal to 1.

• A function fu is a satisfiable if its ROBDD
u is not equal to 0.
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Reduced OBDDs

• The ordering is crucial!

• {x1, x2, y1, y2}        x1  x2

– f(x1, x2, y1, y2)         y1   y2

– f(x1, x2, y1, y2) = 1  iff   (x1 = y1 ∧∧ x2 = y2)

• If x1 < y1 < x2 < y2, then the OBDD is of size 
3·2 + 2 = 8.

• If x1 < x2 < y1 < y2, then the OBDD is of size 
3·22 – 1 = 11 !
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Reduced OBDDs

x1

y1

x2

y2y2

1 0

y1

x1 < y1 < x2 < y2 x1 < x2 < y1 < y2

x1

x2 x2

y1 y1 y1
y1

y2y2

1 0

(x1 = y1 ∧∧ x2 = y2)
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Reduced OBDDs

• The ordering is crucial!

• {x1, x2,…, xn,y1,y2,…, yn}          x1  x2 … xn

f(x1, x2,…, xn,y1,y2,…, yn)         y1 y2 … yn

                                                                                            n

– f(x1, x2,…, xn,y1,y2,…, yn) = 1    iff    ¼ 
(xi = yi)

                                                                       i  = 1

• If x1 < y1 < x2 < y2…< xn < yn, then the OBDD is of
size 3n + 2.

• If x1 < x2 <…< xn < y1 <…< yn, then the OBDD is of
size 3 . 2n – 1 !
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ROBDDs

• Finding the optimal variable ordering is
computationally expensive (NP-complete).

• There are heuristics for finding good orderings.

• There exist boolean functions whose sizes are
exponential (in the number of variables) for any
ordering.

• Functions encountered in practice are rarely of
this kind.
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Implementation of ROBDDs

Array-based implementation

       Var     Low     High
 0       ?         ?          ?
 1       ?         ?          ?
 

 u1        y2           0               1 
 u2        y2           1               0 
 u3        x2           u2             u1 
 u4        y2           0               u3 
 u5        y1           0               u3 
 u6        x1           u5             u4 

x1

y1

x2

y2y2

1 0

y1

u1 u2

u3

u4 u5

u6

root = u6

T []=
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The function MK

• The function MK searches for a node u with
var(u)=xi, low(u)=l and high(u)=h. If the node
does not exists, then creates the new node after
inserting it. The running time is O(1).

Algorithm MK(i,l,h)
 if  l=h then
     return l
 else if T[H(i,l,h)] ≠≠ empty then
        return T[H(i,l,h)]
 else u = add(T,H(i,l,h),i,l,h)
         return u

H(i,l,h) is a hash
function mapping
a triple <i,l,h> into
a node index in T.
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Operations on ROBDDs.

• During model checking, boolean operations
will have to be performed on ROBDDs.

• These operations can be implemented
efficiently.

• f BB g  ---------   Gf  opBB Gg = Gf BB g

• There is a procedure called APPLY to do
this.
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Operations on ROBDDs

• When performing an operation on G and G’
we assume their variable orderings  are
compatible.

• X = XG >> XG’

• There is an ordering < on X such that:
– < restricted to XG is <G

– < restricted to XG’ is <G’.
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Operations on OBDDs
• The basic idea (Shannon Expansion):

• f(x1, x2, …, xn)
– fMMx1 = 0  = f(0, x2,…, xn)

� f = x1 BB (x2 AA x3)

� fMMx1 = 0 = x2 AA x3

– Similarly, f MMx1 = 1 = f(1, x2,…, xn)

f(x1, x2,...,xn) = (¬¬x1 AA fMMx1 = 0  )  BB  (x1 AA fMMx1 =1)

• This is true even if x1 does not appear in f !
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Operations on ROBDDs.

• Let x be the variable of the root of Gf and y
the variable of the root of Gg.

• To compute Gf op g we consider:
CASE1: x = y

� f op g = (¬¬x AA (f MMx = 0 op g MMx= 0) BB
       (x AA (f MMx = 1 op g MMx= 1)

– We have to solve now two smaller problems!
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Operations on ROBDDs.

• Let x be the root of Gf and y the root of Gg.

• To compute Gf op g we consider:
CASE2: x < y.

– Then x does not appear in Gg (why?).

– g MMx= 0 = g = g MMx= 1

� f op g = (¬¬x AA (f MMx = 0 op g ) BB (x AA (f MMx = 1 op g)

– We have to solve now two smaller problems!
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Algorithm for Apply
Algorithm Apply(op,u,v)

  Function App(u,v)

      if terminal_case(op,u,v) then return op(u,v)
   else if var(u) = var(v) then
        u = mk(var(u),App(op,low(u),low(v)),

          App(op,high(u),high(v)))
   else if var(u) < var(v) then
         u = mk(var(u),App(op,low(u), v), App(op,high(u),v))
   else /* var(u) > var(v) */
         u = mk(var(u),App(op,u,low(v)), App(op,u,high(v)))
   return u

return App(u,v)
running time = O(2n). Why?
n = number of variables.
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Efficient algorithm for Apply
Algorithm Apply(op,u,v)
    init(G)

  Function App(u,v)
    if  G(u,v) ≠≠ empty then return G(u,v)

      else if terminal_case(op,u,v) then return op(u,v)
    else if var(u)=var(v) then
         r = mk(var(u),App(op,low(u),low(v)),

            App(op,high(u),high(v)))
    else if var(u) < var(v) then
         r = mk(var(u),App(op,low(u), v), App(op,high(u),v))
    else /* var(u) > var(v) */
         r = mk(var(u),App(op,u,low(v)), App(op,u,high(v)))
    G(u,v) = r
    return r
return App(u,v)

running time = O(|Gu||Gv|). Why?
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The Restrict operation

• Problem: Given a (partial) truth assignment
x1=b1,…,xk=bk (where bj=0 or bj=1), and a
ROBDD tu, compute the restriction of tu under
the assignment.

• E.G.: if f(x1,x2,x3) = ((x1 ⇔⇔ x2) ∨∨ x3) we want
to compute f(x1,x2,x3)[0/x2] = f(x1,0,x3)

i.e.: f(x1,0,x3)= ¬¬x1 ∨∨ x3
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Restrict Operation: example

x1

x2

x3

0 1

x2

x1

x3

0 1

f(x1,x2,x3) = ((x1 ⇔⇔ x2) ∨∨ x3) f(x1,x2,x3)[0/x2] = ¬¬x1 ∨∨ x3
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Restrict Operation

• Let x be the root of Gf

• To compute Gf|y=b we consider:
CASE1: x = y

� f|y=b = low(Gf) if b=0

� f|y=b = high(Gf) if b=1
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Restrict Operation

• Let x be the root of Gf

• To compute Gf|y=b we consider:
CASE2: x > y

� f|y=b = f
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Restrict Operation

• Let x be the root of Gf

• To compute Gf|y=b we consider:
CASE2: x < y

� f|y=b = (¬¬ x A�A�(f|x=0)|y=b) ∨∨  (x A�A�(f|x=1)|y=b)

• We have to solve now two smaller problems!
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Algorithm for Restrict
Algorithm Restrict(u,i,b)

  Function Res(u)
    if var(u) > i then return u
    else if var(u) < i then
         return mk(var(u),Res(low(u)),Res(high(u)))
    else /* var(u) = i */
         if b = 0 then
             return Res(low(u))
         else /* var(u) = i and b = 1 */
             return Res(high(u))
return Res(u)

running time = O(2n). Why?
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Efficient algorithm for Restrict
Algorithm Restrict(u,i,b)
    init(G)

 Function Res(u)
    if  G(u) ≠≠ empty then return G(u)
    if var(u) > i then return u
    else if var(u) < i then
         r = mk(var(u),Res(low(u)),Res(high(u)))
    else /* var(u) = var(v) */
         if b = 0 then
             r = Res(low(u))
         else /* var(u) = var(v) and b = 1 */
             r =  Res(high(u))
    G(u) = r
    return r
return Res(u)

running time = O(|Gu|). Why?
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Quantification

• Extend the boolean language with

∃∃x.t | ∀∀x.t
• They can be defined in terms of ROBDD

operations:

∃∃x.t = t[0/x] BB t[1/x]

∀∀x.t = t[0/x] AA t[1/x]

We can use an appropriate combination of Restrict
and Apply
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Symbolic CTL Model Checking

• Represent the required  subsets of states as
boolean functions and hence as ROBDDs.

• Represent the transition relation as a boolean
function and hence as a ROBDD.

• Reduce the iterative fixed point computations of
the model checking process to operations on
OBDDs.

• Check for the termination of the fixpoint
computation by checking ROBDD equivalence.
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Symbolic Model Checking
• K = (S, S0, R, AP, L)
• Assume that if L(s) = L(s’) then s = s’.

– If not, add a few new atomic propositions if
necessary, so as to distinguish states only based on
labeling.

• AP = {p, q, r}

• L(s) = {p}

– fs = p AA ¬¬q AA ¬¬r

• f{s1, s2, s5} = fs1 B�B� fs2 BB fs5
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Symbolic Model Checking

• K = (S, S0, R, AP, L)
• AP = {p, q, r}
• Invent {p’, q’, r’}
• Suppose (s1, s2) in R    (i.e. R(s1, s2))
     with L(s1) = {p, q} and L(s2) = {r}.
   Then fR(s1,s2) = fs1 AA f’s2.

– where f’s2
 = ¬¬p’ AA ¬¬q’ AA r’

• fR = BB(s1, s2) �� R (fR(s1,s2))

• Choose the ordering   p < p’ < q < q’ < r < r’  !



73

CTL symbolic Model Checking
• |[xi]| = fxi

(xi)
(the OBDD for the boolean variable xi)

• |[¬¬φφ]| = ¬¬fφφ((x1,…,xn))
(apply negation of the OBDD for φφ)

• |[φ φ ∨∨  ψψ]| = fφφ((x1,…,xn) ) ∨∨  fψψ((x1,…,xn))
(apply ∨∨ operation to the OBDDs for φφ and ψψ)

• |[φ φ ∧∧  ψψ]| = fφφ((x1,…,xn) ) ∧∧  fψψ((x1,…,xn))
(apply ∧∧ operation to the OBDDs for φφ and ψψ)
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CTL symbolic Model Checking
• |[EX φφ]| =
      ∃∃x’1,…,x’n(fφφ((x’1,…,x’n) ) ∧∧  fR((x1,…,xn,x’1,…,x’n))))
((relational product, also known as pre-image of R)

• |[EU(φφ,ψψ)]| =
              µµZ.(fψψ((x1,…,xn) ) ∨∨  ((fφφ((x1,…,xn) ) ∧∧  EX  ΖΖ))))

• |[EG φφ]| = ννZ.(fφφ((x1,…,xn) ) ∧∧  EX  ΖΖ))
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Symbolic model checking: example

Given the boolean variable V={x1,…, xn}, EG ψψ can be
computed as follows:

• Assume the ROBDD fψψ((x1,…, xn)) has been computed.

• X0 = fψψ  ((x1,…, xn)  )            [fψψ((x’1,…, x’n) ) by substitution]

• Xi+1 = Xi  ∩∩ Yi where
– Yi = ∃∃x’1,…, x’n(fψψ((x’1,…, x’n) ) ∧∧  

        fR((x1,…, xn,x’1,…, x’n))))
– Xi+1 can be computed as Xi ∧∧ Yi

• Finally whether Xi+1 = Xi can be checked by checking
if the corresponding ROBDDs are identical.
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Symbolic Model Checking

• The actual Kripke structure will be, in general, too
large.
– State explosion.

• So one must try to compute the ROBDDs
directly from the system model (NuSMV
program) and run the model checking procedure
with the help of this implicit representation.
– Symbolic model checking.

• But we need additional techniques !


