Tecniche di Specifica e di Verifica

Automata-based LTL Model-Checking

Finite state automata

A finite state automaton is a tuple $A = (\Sigma, S, S_0, R, F)$

- Σ: set of input symbols
- S: set of states -- S_0 : set of initial states ($S_0 \subseteq S$)
- $R:S \times \Sigma \rightarrow 2^S$: the transition relation.
- F: set of accepting states ($\mathbf{F} \subseteq S$)
- A *run r* on $w=a_1,...,a_n$ is a sequence $s_0,...,s_n$ such that $s_0 \in S_0$ and $s_{i+1} \in \mathbb{R}(s_i,a_i)$ for $0 \le i \le n$.
- A run r is accepting if $s_n \in F$, while a word w is accepted by A if there is an accepting run of A on w.
- The *language L(A) accepted* by A is the set of finite words accepted by A.

Finite state automata: union

Given automata A_1 and A_2 , there is an automaton A accepting $L(A) = L(A_1) \cup L(A_2)$

A = (Σ, S, S_0, R, F) is an automaton which just runs nondeterministically either A₁ or A₂ on the input word.

$$S = S_{1} \cup S_{2}$$

$$F = F_{1} \cup F_{2}$$

$$S_{0} = S_{01} \cup S_{02}$$

$$R(s,a) = \begin{cases} R_{1}(s,a) \text{ if } s \in S_{1} \\ R_{2}(s,a) \text{ if } s \in S_{2} \end{cases}$$

Finite state automata: union

Finite state automata: intersection

Given automata A_1 and A_2 , there is an automaton A accepting $L(A) = L(A_1) \cap L(A_2)$

A = (Σ, S, S_0, R, F) runs simultaneously both automata A₁ and A₂ on the input word.

$$S = S_1 \times S_2$$
$$F = F_1 \times F_2$$
$$S_0 = S_{01} \times S_{02}$$

$$\boldsymbol{R}((s,t),a) = \boldsymbol{R}_1(s,a) \times \boldsymbol{R}_2(t,a)$$

Finite state automata: intersection

Finite state automata: complementation

- If the automaton is deterministic, then it just suffices to set F^c = S -F.
- This doesn't work, though, for *non-deterministic automata*.
- Solution:

O Determinize the automaton using the subset construction.
O Complement the resulting deterministic automaton

- The complexity of this process is *exponential* in the size of the original automaton.
- The number of states of the final automaton is 2^{/S/}, in the *worst case*.

Büchi automata (BA)

- A Büchi automaton is a tuple $A = (\Sigma, S, S_0, R, F)$
- Σ: set of input symbols
- S: set of states -- S_0 : set of initial states ($S_0 \subseteq S$)
- $R:S \times \Sigma \to 2^S$: the transition relation.
- F: set of accepting states ($\mathbf{F} \subseteq S$)
- A *run r* on $w=a_1,a_2,...$ is an infinite sequence $s_0,s_1,...$ such that $s_0 \in S_0$ and $s_{i+1} \in \mathbb{R}(s_i,a_i)$ for $i \ge 0$.
- A run r is accepting if some accepting state in F occurs in r infinitely often.
- A word w is *accepted* by A if there is an accepting run of A on w, and the *language* L_ω(A) accepted by A is the set of (infinite) ω-words accepted by A.

Büchi automata (BA)

A Büchi automaton is a tuple $A = (\Sigma, S, S_0, R, F)$

- A *run r* on $w=a_1,a_2,...$ is an infinite sequence $s_0,s_1,...$ such that $s_0 \in S_0$ and $s_{i+1} \in \mathbb{R}(s_i,a_i)$ for $i \ge 0$.
- Let $Lim(r) = \{ s \mid s = s_i \text{ for infinitely many } i \}$

• A run r is accepting if

 $Lim(r) \cap F \neq \emptyset$

- A word w is *accepted* by A if there is an accepting run of A on w.
- The *language* $L_{\omega}(A)$ *accepted* by A is the set of (infinite) ω -words accepted by A.

Büchi automata: union

Given Büchi automata A_1 and A_2 , there is an Büchi automaton A accepting $L_{\omega}(A) = L_{\omega}(A_1) \cup L_{\omega}(A_2)$.

The construction is the same as for ordinary automata.

A = (Σ, S, S_0, R, F) is an automaton which just runs nondeterministically either A₁ or A₂ on the input word. $S = S_1 \cup S_2$ $F = F_1 \cup F_2$ $S_0 = S_{01} \cup S_{02}$ $R(s,a) = \begin{cases} R_1(s,a) \text{ if } s \in S_1 \\ R_2(s,a) \text{ if } s \in S_2 \end{cases}$

Büchi automata: intersection

- The intersection construction for automata does not work for Büchi automata.
- Instead, the intersection for Büchi automata can be defined as follows:
- A= (Σ, S, S_0, R, F) intuitively runs simultaneously both automata A₁= $(\Sigma, S_1, S_{01}, R_1, F_1)$ and A₂= $(\Sigma, S_2, S_{02}, R_2, F_2)$ on the input word.

$$S = S_{I} \times S_{2} \times \{1,2\}$$

$$F = F_{I} \times S_{2} \times \{1\}$$

$$S_{0} = S_{0I} \times S_{02} \times \{1\}$$

$$R((s,t,i),a) = \begin{cases} (s',t',2) & \text{if } s' \in R_{I}(s,a), t' \in R_{2}(t,a), s \in F_{I} \text{ and } i=1 \\ (s',t',1) & \text{if } s' \in R_{I}(s,a), t' \in R_{2}(s,a), t \in F_{2} \text{ and } i=2 \\ (s',t',i) & \text{if } s' \in R_{I}(s,a), t' \in R_{I}(t,a) \end{cases}$$

$$12$$

Büchi automata: intersection

A = (Σ, S, S_0, R, F) runs simultaneously both automata A₁ and A₂ on the input word.

Büchi automata: intersection

A = (Σ, S, S_0, R, F) runs simultaneously both automata A₁ and A₂ on the input word.

$$S = S_1 \times S_2 \times \{1,2\}$$
$$F = F_1 \times S_2 \times \{1\}$$
$$S_0 = S_{01} \times S_{02} \times \{1\}$$

 $R((s,t,i),a) = \begin{cases} (s',t',2) & \text{if } s' \in R_1(s,a), t' \in R_2(t,a), s \in F_1 \text{ and } i=1 \\ (s',t',1) & \text{if } s' \in R_1(s,a), t' \in R_2(t,a), t \in F_2 \text{ and } i=2 \\ (s',t',i) & \text{if } s' \in R_1(s,a), t' \in R_1(t,a) \end{cases}$

- As soon as it visits an accepting state in *track 1*, it switches to *track 2* and then to *track 1* again but only after visiting an accepting state in the *track 2*.
- Therefore, to visit *infinitely often* a state in $F(F_1)$, the automaton must also visit *infinitely often* some state of F_2 .¹⁴

Büchi automata: complementation

Solution (resorts to another kind of automaton):

- Transform the (non-deterministic) Büchi automaton into a (non-deterministic) *Rabin automaton* (a more general kind of ω-automaton).
- Determinize and then complement the Rabin automaton.
- Transform the Rabin automaton into a Büchi automaton.
- Therefore, also Büchi automata are closed under complementation.

Rabin automata

- A Rabin automaton is like a Büchi automaton, except that the accepting condition is defined differently.
- $A = (\Sigma, S, S_0, R, F)$, where $F = ((G_1, B_1), ..., (G_m, B_m))$.
- and the acceptance condition for a run r = s₀, s₁,... is as follows: for some i
 - $Lim(r) \cap G_i \neq \emptyset$ and
 - $Lim(r) \cap B_i = \emptyset$

in other words, there is a pair (G_i, B_i) such that the left-hand set (G_i) is visited *infinitely often*, while the right-hand (B_i) set is visited *finitely often*.

Rabin versus Büchi automata

The Büchi automaton fot $L_{\omega} = (0+1)^* 1^{\omega}$

The Rabin automaton has $F=((\{t\},\{s\}))$

Note that the Rabin automaton is *deterministic*.

Language emptiness for Büchi automata

- The *emptiness problem for Büchi automata* is the problem of *deciding* whether the language accepted by a Büchi automaton A is empty, i.e. if $L(A)=\emptyset$.
- <u>Theorem</u>: The emptiness problem for Büchi automata is decidable in linear time, i.e. in time O(|A|).
- <u>*Fact*</u>: $L(A) = \emptyset$ *iff* in the Büchi automaton there is no <u>reachable cycle</u> A containing a state in F.

Language emptiness for Büchi automata

- In other words, $L(A) = \emptyset$ *iff* there is a cycle containing an *accepting state*, which is also *reachable from some initial state* of the automaton.
 - We need to find whether there is such a reachable cycle
- We could simply compute the *SCCs* of **A** using the standard *DFS* algorithm, and check if there exists a reachable (*nontrivial*) *SCC* containing a state in *F*.
- But this is *too inefficient* in practice. We will therefore use a *more efficient nested DFS* (more efficient in the *average-case*).

Efficient language emptiness for BA

Input: A Initialize: Stack₁:= \emptyset , Stack₂:= \emptyset Table₁:= \emptyset , Table₂:= \emptyset **Algorithm Main()** foreach $s \in Init$ if $s \notin Table_1$ then DFS1(s); output("empty"); return; **Algorithm DFS1(s)** push(s,Stack₁); hash(s,Table_1); for each $t \in Succ(s)$ if $t \notin Table_1$ then DFS1(t);if $s \in F$ then **DFS2(s); pop**(Stack₁);

Algorithm DFS2(s) push(s,Stack₂); hash(s,Table₂) ; foreach t ∈ Succ (s) do if t ∉ Table₂ then DFS2(t) else if t is on Stack₁ output("not empty"); output(Stack₁,Stack₂,t); return; pop(Stack₂);

<u>Note</u>: upon finding a bad cycle, Stack₁+Stack₂+t, determines a counterexample: a bad cycle reached from an init state.

Generalized Büchi automata (GBA)

Generalized Büchi automaton: $A = (\Sigma, S, S_0, R, (F_1, ..., F_m))$

- A *run r* on $w=a_1,a_2,...$ is an infinite sequence $s_0,s_1,...$ such that $s_0 \in S_0$ and $s_{i+1} \in \mathbb{R}(s_i,a_i)$ for $i \ge 0$.
- Let $Lim(r) = \{ s \mid s = s_i \text{ for infinitely many } i \}$
- A *run r* is *accepting* if for each $1 \le i \le m$

$$Lim(r) \cap F_i \neq \emptyset$$

Any *Generalized Büchi automaton* can be easily transformed into a *Büchi automaton* as follows:

$$L(\Sigma, S, S_0, R, (F_1, ..., F_m)) = \bigcap_{i \in \{1, ..., m\}} L(\Sigma, S, S_0, R, F_i)$$

This transformation is not very efficient, though.

From GBA to BA efficiently

Generalized Büchi automaton: $A = (\Sigma, S, S_0, R, (F_1, ..., F_m))$

A Generalized Büchi automaton can be efficiently transformed into a Büchi automaton as follows:

 $S' = S \times \{1, \dots, m\}$ $F' = F \times \{i\} \text{ for some } 1 \le i \le m$ $S'_0 = S_0 \times \{i\} \text{ for some } 1 \le i \le m$ $R((s,i),a) = \begin{cases} (s', (i \mod m) + 1) & \text{if } s' \in R(s,a) \text{ and } s \in F_i \\ (s',i) & \text{if } s' \in R(s,a) \text{ and } s \notin F_i \end{cases}$

Notice that the transformation above expands the automaton size by a factor or *m* (see *Büchi Intersection*).

LTL-semantics and Büchi automata

- We can interpret a formula ψ as expressing a property of ω -words, i.e., an ω -language $L(\psi) \subseteq \Sigma_{AP}^{\omega}$.
- For ω-word σ = σ₀, σ₁, σ₂,.... ∈ Σ_{AP}^ω, let σⁱ = σ_i, σ_{i+1}, σ_{i+2}... be the suffix of σ starting at position *i*. We defined the "*satisfies*" relation, ⊧, inductively:
 - $\sigma \models p_j$ iff $p_j \in \sigma_0$ (for any $p_j \in P$).
 - $\sigma \models \neg \psi$ iff not $\sigma \models \psi$.
 - $\sigma \models \psi_1 \lor \psi_2$ iff $\sigma \models \psi_1$ or $\sigma \models \psi_2$.
 - $\sigma \models X\psi$ iff $\sigma^{1} \models \psi$.
 - $\sigma \models \psi_1 \cup \psi_2$ iff $\exists i \ge 0$ such that $\sigma^i \models \psi_2$,

and $\forall \mathbf{j}, \mathbf{0} \leq \mathbf{j} < \mathbf{i}, \sigma^j \models \psi_1$.

• We finally define the language $L(\psi) = \{ \sigma | \sigma \models \psi \}$. 23

Relation with Kripke structures

- We extend our definition of *"satisfies"* to transition systems, or *Kripke structures*, as follows:
- $K_{AP} \models \psi$ iff *for all* computations (runs) π of K_{AP} , $L(\pi) \models \psi$, or in other words, iff

 $L(K_{AP}) \subseteq L(\psi).$

Relation with Kripke structures

We can transform any Kripke structure into a Büchi automaton as follows:

where every state is accepting! 25

LTL Model Checking

LTL Model Checking: explanation

$$\begin{split} \mathbf{M} \models \psi & \Leftrightarrow \mathbf{L}(\mathbf{K}_{AP}) \subseteq \mathbf{L}(\psi) \\ \Leftrightarrow & \mathbf{L}(\mathbf{K}_{AP}) \cap (\Sigma_{AP}{}^{\omega} \setminus \mathbf{L}(\psi)) = \emptyset \\ \Leftrightarrow & \mathbf{L}(\mathbf{K}_{AP}) \cap \mathbf{L}(\neg \psi) = \emptyset \\ \Leftrightarrow & \mathbf{L}(\mathbf{K}_{AP}) \cap \mathbf{L}(\mathbf{A}_{\neg \psi}) = \emptyset \end{split}$$

The algorithmic tasks to perform

We have reduced LTL model checking to two tasks:

- 1 Convert an LTL formula φ (i.e. $\neg \psi$) to a Büchi automaton A_{φ} , such that $L(\varphi) = L(A_{\varphi})$.
 - Can we in general do this? yes.....
- 2 Check whether $K_{AP} \models \psi$, by checking whether the intersection of languages $L(K_{AP}) \cap L(A_{\neg\psi})$ is empty.
 - It is actually unwise to first construct all of K_{AP} , because K_{AP} can be far too big (*state explosion*).
 - Instead, we shall see how it is possible perform the check by *constructing* states of K_{AP} only *as needed*.

- First, let's put LTL formulas φ in *normal form* where:
 - ¬ 's have been "**pushed in**", applying only to propositions.
 - the only propositional operators are \neg , \land , \lor .
 - the only temporal operators are **X**, **U** and its dual **R**.
- In order to do that we use the following rules:
 - $p \rightarrow q \equiv \neg p \lor q$; $p \leftrightarrow q \equiv (\neg p \lor q) \land (\neg q \lor p)$
 - $\neg (p \lor q) \equiv \neg p \land \neg q$; $\neg (p \land q) \equiv \neg p \lor \neg q$; $\neg \neg p \equiv p$
 - \neg (p U q) \equiv (\neg p) **R** (\neg q) ; \neg (p **R** q) \equiv (\neg p) U (\neg q)
 - $F p \equiv T U p$; $G p \equiv \bot R p$; $\neg X p \equiv X \neg p$

- First, let's put LTL formulas φ in *normal form*
 - \neg 's have been "**pushed in**", applying only to propositions.
- We use the following rules:
 - $p \rightarrow q \equiv \neg p \lor q$; $p \leftrightarrow q \equiv (\neg p \lor q) \land (\neg q \lor p)$

•
$$\neg(p \lor q) \equiv \neg p \land \neg q$$
; $\neg(p \land q) \equiv \neg p \lor \neg q$; $\neg \neg p \equiv p$

- \neg (p U q) \equiv (\neg p) **R** (\neg q) ; \neg (p **R** q) \equiv (\neg p) U (\neg q)
- $F p \equiv T U p$; $G p \equiv \bot R p$; $\neg X p \equiv X \neg p$

Examples:

$$((p U q) \rightarrow F r) \equiv \neg(p U q) \lor F r \equiv \neg(p U q) \lor (T U r) \equiv \\ \equiv (\neg p R \neg q) \lor (T U r)$$

 $\begin{array}{c|c} GF p \rightarrow F r \equiv (\perp \mathbf{R} (Fp)) \rightarrow (T U p) \equiv (\perp \mathbf{R} (T U p)) \rightarrow (T U r) \equiv \\ \equiv \neg (\perp \mathbf{R} (T U p)) \lor (T U r) \equiv (T U \neg (T U p)) \lor (T U r) \equiv \\ \equiv (T U (\perp R \neg p)) \lor (T U r) \end{array}$

- States of \mathbf{A}_{φ} will be <u>sets of subformulas</u> of φ , thus if we have $\varphi = \mathbf{p}_1 \mathbf{U} \neg \mathbf{p}_2$, a state is given by $\Gamma \subseteq \{\mathbf{p}_1, \neg \mathbf{p}_2, \mathbf{p}_1 \mathbf{U} \neg \mathbf{p}_2\}$.
- Consider a word $\boldsymbol{\sigma} = \boldsymbol{\sigma}_0, \, \boldsymbol{\sigma}_1, \, \boldsymbol{\sigma}_2, \dots \in \Sigma_{AP}^{\omega}$ such that $\boldsymbol{\sigma} \models \boldsymbol{\varphi}$, where, e.g., $\boldsymbol{\varphi} = \boldsymbol{\psi}_1 \mathbf{U} \boldsymbol{\psi}_2$.
- Mark each position i with the set of subformulas Γ_i of ϕ that hold true there:

 $\Gamma_0 \ \Gamma_1 \ \Gamma_2 \ \dots$

 $\sigma_0 \sigma_1 \sigma_2 \ldots \ldots$

- Clearly, $\phi \in \Gamma_0$. But then, by *consistency*, either:
 - $\psi_1 \in \Gamma_0$ and $\phi \in \Gamma_1$, or
 - $\psi_2 \in \Gamma_0$.
- The consistency rules dictate our states and transitions.

31

Let $sub(\phi)$ denote the set of subformulas of ϕ . We define $A_{\phi} = (Q, \Sigma, R, L, Init, F)$ as follows. First, the state set:

- $\mathbf{Q} = \{ \Gamma \subseteq \mathbf{sub}(\varphi) \mid \text{s.t. } \Gamma \text{ is } \underline{\textit{locally consistent}} \}.$
 - For Γ to be *locally consistent* we should, e.g., have:
 - ⊥∉ Γ
 - if $\psi \lor \gamma \in \Gamma$, then $\psi \in \Gamma$ or $\gamma \in \Gamma$.
 - if $\psi \land \gamma \in \Gamma$, then $\psi \in \Gamma$ and $\gamma \in \Gamma$.
 - if $\mathbf{p}_i \in \Gamma$ then $\neg \mathbf{p}_i \notin \Gamma$, and if $\neg \mathbf{p}_i \in \Gamma$ then $\mathbf{p}_i \notin \Gamma$.
 - if $\psi U \gamma \in \Gamma$, then $(\psi \in \Gamma \text{ or } \gamma \in \Gamma)$.
 - if $\psi \mathbf{R} \gamma \in \Gamma$, then $\gamma \in \Gamma$.

Now, labeling the states of A_{φ} :

- The labeling $L: Q \mapsto \Sigma$ is $L(\Gamma) = \{ l \in sub(\phi) \mid l \in \Gamma \}$.
 - Now, a word $\sigma = \sigma_0 \sigma_1 \dots \in (\Sigma_{AP})^{\omega}$ is in $L(A_{\varphi})$ *iff* there is a run $\pi = \Gamma_0 \to \Gamma_1 \to \Gamma_2 \to \dots$ of A_{φ} , s.t., $\forall i \in \mathbb{N}$, we have that σ_i "*satisfies*" $L(\Gamma_i)$, i.e., σ_i is a "*satisfying assignment*" for $L(\Gamma_i)$.
 - This constitutes a <u>slight redefinition of Büchi</u> <u>automata</u>, where labeling is on the states instead of on the edges. This facilitates a much more compact A_{ϕ} .

Now, the transition relation, and the rest of A_{ϕ} . Based on the following *LTL rules*:

- $(\psi U \gamma) \equiv \gamma \lor (\psi \land X (\psi U \gamma))$
- $(\psi \mathbf{R} \gamma) \equiv \gamma \land (\psi \lor \mathbf{X} (\psi \mathbf{R} \gamma)) \equiv (\gamma \land \psi) \lor (\gamma \land \mathbf{X}(\psi \mathbf{R} \gamma))$

and on the semantics of X, we define:

- $\mathbf{R} \subseteq \mathbf{Q} \times \mathbf{Q}$, where $(\Gamma, \Gamma') \in \mathbf{R}$ iff:
 - if $(\psi U \gamma) \in \Gamma$ then $\gamma \in \Gamma$, or $(\psi \in \Gamma \text{ and } (\psi U \gamma) \in \Gamma')$.
 - if $(\psi \mathbf{R} \gamma) \in \Gamma$ then $\gamma \in \Gamma$, and $(\psi \in \Gamma \text{ or } (\psi \mathbf{R} \gamma) \in \Gamma')$.
 - if $X \psi \in \Gamma$, then $\psi \in \Gamma$ '.

- Init = { $\Gamma \in \mathbf{Q} \mid \phi \in \Gamma$ }.
- For each $(\psi \cup \gamma) \in sub(\phi)$, there is a set $\mathbf{F}_i \in \mathbf{F}$, such that:
 - $\mathbf{F}_i = \{ \Gamma \in \mathbf{Q} \mid (\psi \mathbf{U} \gamma) \notin \Gamma \text{ or } \gamma \in \Gamma \}$
 - (or equivalently $\mathbf{F}_i = \{ \Gamma \in \mathbf{Q} \mid \text{if } (\psi \cup \gamma) \in \Gamma, \text{ then } \gamma \in \Gamma \}$)
 - (notice that if there are no ($\psi \cup \gamma$) \in sub(ϕ), then the acceptance condition is the trivial one: all states are accepting)

<u>Lemma</u>: $L(\phi) = L(A_{\phi})$.

but, at this point, A_ϕ is a generalized Büchi automaton \ldots

LTL to BA translation: example

Consider the following formula: $\top U p$ $sub(\top U p) = \{\top U p, p\}$ $F = \{F_{\top U p}\} = \{\Gamma \in sub(\top U p) | (\top U p) \notin \Gamma \text{ or } p \in \Gamma\}_{41}$

Consider the following formula: $G p \equiv \bot R p$ $sub(\bot R p) = \{\bot R p, p\}$ $Init = \{\Gamma \in sub(\bot R p) | \bot R p \in \Gamma\}$

Consider the following formula: $G p \equiv \bot R p$ $sub(\bot R p) = \{\bot R p, p\}$ $(\bot R p) \equiv p \land X (\bot R p)$

Consider the following formula: $p \cup q$ $sub(p \cup q) = \{p \cup q, p, q\}$ $Init = \{\Gamma \in sub(p \cup p) \mid p \cup q \in \Gamma\}$

Consider the following formula: $p \cup q$ $sub(p \cup q) = \{p \cup q, p, q\}$ $Init = \{\Gamma \in sub(p \cup p) \mid p \cup q \in \Gamma\}$

Consider the following formula: $p \cup q$ $sub(p \cup q) = \{p \cup q, p, q\}$ $(p \cup q) \equiv q \lor (p \land X (p \cup q))$

Consider the following formula: *p* U *q*

 $sub(p U q) = \{p U q, p, q\}$ $\mathbf{F} = \{\mathbf{F}_{pUq}\} = \{\Gamma \in sub(p U q) \mid (p U q) \notin \Gamma \text{ or } q \in \Gamma\}_{48}$

On-the-fly translation algorithm

- There is another more *efficient way* to build the Büchi automaton corresponding to a LTL formula.
- The algorithm proposed by *Vardi* and his colleagues, is based on the idea of refining states *only as needed*.
- It only record the *necessary information* (what *must hold*) of a state, *instead* of recording *the complete information* about each state (both what *must hold* and what *might or might-not hold*).
- In a way what "*might or might-not hold*" is treated as '*don't care*' information (which can be filled in, but whose value has no relevant effect).

Algorithm data structure: node

- Name: A string identifying the current node.
- Father: The name of the father node of current node.
- *Incoming*: List of *fully expanded nodes* with edges to the current node.
- *Old*: A set of *temporal formulae* which must hold and in the *current node* have been processed already.
- *New*: A set of *temporal formulae* which must hold but in the *current node* have not been processed yet.
- *Next*: A set of *temporal formulae* which should hold in the *next node* (immediate successor) of the *current node*.

function create graph(ϕ) return(expand([Name Father new_name(), Incoming [Init], New $\in \{\phi\}$, Old $\in \emptyset$, Next $\in \emptyset$], \emptyset)

function expand (Node, Nodes_Set)

if $New(Node) = \emptyset$ then if $\exists ND \in Nodes_Set$ with Old(ND) = Old(Node) and and Next(ND) = Next(Node) then $Incoming(ND) := Incoming(ND) \cup Incoming(Node);$ return($Nodes_Set$); else return($expand([Name \leftarrow Father \leftarrow new_name(),$ $Incoming \leftarrow \{Name(Node)\},$ $New \leftarrow Next(Node), Old \leftarrow \emptyset, Next \leftarrow \emptyset],$ $Nodes_Set \cup \{Node\});$

else

Name:	Node8
Father:	Node6
Incoming:	4
New:	{}
Next:	$\{\perp \mathbf{R} \ p\}$
Old:	$\{\perp \mathbf{R} p; p\}$

function expand (*Node*, *Nodes_Set*) if *New(Node)*=Ø then{*preceding block*} else let $\eta \in \text{New}$; **Contradiction found** $New(Node) := New(Node) \setminus \{\eta\};$ case η of $\eta = \mathbf{p}_i \text{ or } \neg \mathbf{p}_i \text{ or } \mathsf{T} \text{ or } \bot$ (if $\eta = \bot$ or Neg $(\eta) \in Old(Node)$) then return(Nodes_Set); /* Discard current node */ else $Old(Node) := Old(Node) \cup \{\eta\};$ return(expand(*Node*, *Nodes Set*)); $\eta = \mu \mathbf{U} \psi$ or $\mu \mathbf{R} \psi$ or $\mu \vee \psi : \dots$

Additional functions

 $\begin{array}{ll} \text{The function Neg}() \text{ is applied only to literals:} \\ \text{Neg}(p_i) = \neg \ p_i & \text{Neg}(\top) = \bot \\ \text{Neg}(\neg p_i) = p_i & \text{Neg}(\bot) = \top \end{array}$

The functions New1(), New2() and Next1(), used for <u>splitting nodes</u>, are applied to temporal formulae and defined as follows:

η	New1 (η)	Next1 (η)	New2 (η)
μυψ	{µ}	$\{\mu U \psi\}$	$\{\psi\}$
μRψ	$\{\psi\}$	$\{\mu \mathbf{R} \psi\}$	{ μ , ψ }
$\mu \lor \psi$	{µ}	Ø	$\{\psi\}$


```
function expand (Node, Nodes_Set)
if New(Node)=Ø then {preceding block}
else
  let \eta \in New;
  New(Node):=New(Node) \setminus \{\eta\};
   case \eta of
        \eta = \mathbf{p}_i or \neg \mathbf{p}_i or \mathsf{T} or \bot: {preceding block}
        \eta = \mu \mathbf{U} \psi \text{ or } \mu \mathbf{R} \psi \text{ or } \mu \lor \psi : \{ preceding block \} \}
        \eta = \mu \wedge \psi:
            return(expand([Name \Leftarrow Name(Node),
                                   Father \Leftarrow Father(Node),
                                   Incoming \Leftarrow Incoming(Node),
                                   New \leftarrow (New(Node) \cup {\mu,\psi} \ Old(Node)),
                                  Old \leftarrow Old(Node) \cup \{\eta\}, Next = Next(Node)],
                     Nodes_Set);
```

 $\eta = \mathbf{X} \boldsymbol{\psi} : \dots$

Name:	Node1
Father:	Node1
Incoming:	Init
New:	{ p ^ q, }
Next:	{ }
Old:	{ }
	expand
Name:	Node2
Father:	Node1
Incoming:	Init
New:	{ p , q ,}
Next:	{ }
Old:	$\{,p \land q\}$

```
function expand (Node, Nodes_Set)
if New(Node)=Ø then {preceding block}
else
   let \eta \in New;
   New(Node):=New(Node) \setminus \{\eta\};
   case \eta of
         \eta = \mathbf{p}_i or \neg \mathbf{p}_i or \mathsf{T} or \bot: {preceding block}
         \eta = \mu \mathbf{U} \psi \text{ or } \mu \mathbf{R} \psi \text{ or } \mu \lor \psi : \{ preceding block \} \}
         \eta = \mu \land \psi : \{ preceding \ block \} \}
         \eta = \mathbf{X} \boldsymbol{\Psi}:
              return(expand(
                      [Name \Leftarrow Name(Node), Father \Leftarrow Father(Node),
                       Incoming \Leftarrow Incoming(Node), New \Leftarrow New(Node),
                       Old \leftarrow Old(Node) \cup \{\eta\}, Next = Next(Node) \cup \{\psi\}\},\
                    Nodes_Set);
```

esac;

end expand;

Name:	Node1
Father:	Node1
Incoming:	Init
New:	{X p,}
Next:	{}
Old:	{ }
	expand
Name:	Node1
Father:	Node1
Incoming:	Init
New:	{}
Next:	{,p}
Old:	{, X p}

The need for accepting conditions

- *IMPORTANT*: Remember that *not every maximal path* $\pi = s_0 s_1 s_2...$ in the graph *determines a model* of the formula: the construction above allows some node to contain $\mu U \psi$ while none of the successor nodes contain ψ .
- This is solved again by imposing the generalized Büchi acceptance conditions :
 - for each subformula of ϕ of the form $\mu \cup \psi$, there is a set $F_{\phi} \in \mathbf{F}$, including the nodes $s \in \mathbf{Q}$, such that either $\mu \cup \psi \notin Old(s)$, or $\psi \in Old(s)$.

Complexity of the construction

- <u>THEOREM</u>: For any LTL formula ϕ a *Büchi* automaton A_{ϕ} can be constructed which accepts all an only the ω -sequences satisfying ϕ .
- <u>THEOREM</u>: Given a LTL formula ϕ , the *Büchi* automaton for ϕ whose states are $O(2^{|\phi|})$ (in the worst-case). [$|\phi|$ is the number of subformulae of ϕ].
- <u>THEOREM</u>: Given a LTL formula ϕ and a Kripke structure K_{sys} the, the LTL model checking problem can be solved in time $O(|K_{sys}| \cdot 2^{|\phi|})$. [actually it is *PSPACE*-complete].

• Consider the following formula:

G*p*

- where *p* is an atomic formula.
- Its negation-normal form is

 $\perp \mathbf{R} p$

Init

Current node is Node 1 Incoming = [Init] Old = [] $(\perp \mathbf{R} p) \equiv (p \land \bot) \lor \\ (p \land \mathbf{X}(\bot \mathbf{R} p))$ New = $[\perp \mathbf{R} p]$ Next = []New(node) not empty, removing $\eta = \perp \mathbf{R} p$, node *split* into 2, 3, about to expand them

Init

Current node is Node 2 Incoming = [Init] Old = $[\perp \mathbf{R} p]$ New = [p]Next = $[\perp \mathbf{R} p]$

New(node) not empty, removing $\eta = p$, node replaced by 4 about to expand them

Init

Current node is Node 4 Incoming = [Init] Old = $[\perp \mathbf{R} p; p]$ New = [] Next = $[\perp \mathbf{R} p]$

New(node) empty, no equivalent nodes. About to add, timeshift and expand.

Current node is Node 5 Incoming = [4] Old = [] New = [$\perp \mathbf{R} p$] Next = [] New(node) not empty, removing $\eta = \perp \mathbf{R} p$, node *split* into 6, 7

about to expand them

Current node is Node 6 Incoming = [4] Old = $[\perp \mathbf{R} p]$ New = [p]Next = $[\perp \mathbf{R} p]$

New(node) not empty, removing $\eta = p$, node replaced by 8, about to expand it

Current node is Node 8 Incoming = [4] Old = $[\perp \mathbf{R} p; p]$ New = [] Next = $[\perp \mathbf{R} p]$

New(node) empty, found equivalent old node in Node_Set (4). Returning it instead.

Current node is Node 7 Incoming = [4] Old = $[\perp \mathbf{R} p]$ New = $[\perp; p]$ Next = []

New(node) not empty, removing $\eta = \bot$, inconsistent node deleted - dead end!.

Current node is Node 3 Incoming = [Init] $Old = [\bot \mathbf{R} p]$ New = [\bot ; p] Next = []

New(node) not empty, removing $\eta = \bot$, inconsistent node deleted - dead end!.

Final graph for $\mathbf{G} p \equiv \perp \mathbf{R} p$

Consider the following formula: p U qwhere p and q are atomic formulae.

Init

Current node is Node 1 Incoming = [Init] Old = [] New = [$p \cup q$] Next = [] New(node) not empty, removing $\eta = p \cup q$ node *split* into 3, 2,

about to expand them

Init

Current node is Node 2 Incoming = [Init] $Old = [p \cup q]$ New = [p]Next = $[p \cup q]$

New(node) not empty, removing $\eta = p$ node replaced by 4, about to expand them

Init

Current node is Node 4 Incoming = [Init] $Old = [p \cup q ; p]$ New = [] Next = $[p \cup q]$

New(node) empty, no equivalent nodes. Add, timeshift and expand.

Current node is Node 5 Incoming = [4]Old = [] $(p \mathbf{U} q) \equiv q \vee (p \wedge \mathbf{X}(p \mathbf{U} q))$ New = $[p \cup q]$ Next = []New(node) not empty, removing $\eta = p U q$, node *split* into 6, 7, about to expand.

Current node is Node 6 Incoming = [4] $Old = [p \cup q]$ New = [p] $Next = [p \cup q]$

New(node) not empty, removing $\eta = p$, node replaced by 8, about to expand it

Current node is Node 8 Incoming = [4] $Old = [p \cup q; p]$ New = [] Next = [$p \cup q$]

New(node) empty. Found equivalent old note (4) in Node_Set. Returning it instead.

Current node is Node 7 Incoming = [4] $Old = [p \cup q]$ New = [q]Next = []

New(node) not empty, removing $\eta = q$, node replaced by 9, about to expand it

Current node is Node 9 Incoming = [4] $Old = [p \cup q; q]$ New = [] Next = []

New(node) empty, no equivalent node found. Add timeshift and expand

New(node) empty, no equivalent node found. Add timeshift and expand

New(node) empty. Found equivalent old node in Node_Set (10). Returning it instead.

New(node) not empty, node replaced by 12, about to expand.

New(node) empty. Found equivalent old node (4) in Node_Set. Returning it instead.

Final graph for *p* U *q*

Comparison of the two algorithms

The graphs for $p \cup q$ obtained from the two algorithms

Notes on the algorithm

- Notice that nodes do *not necessarily* assign truth value to *all atomic propositions* (in AP)!
- Indeed the *labeling* to be associated to a node can be *any element of* 2^{AP} which agrees with the *literals* (AP or negations of AP) in Old(Node).

• Let
$$Pos(q) = Old(q) \cap AP$$

• Let $Neg(q) = \{\eta \in AP | \neg \eta \in Old(q)\}$

$$\mathcal{L}(q) = \{ \mathbf{X} \subseteq \mathbf{AP} \mid \mathbf{X} \supseteq Pos(q) \land (\mathbf{X} \cap Neg(q)) = \emptyset \}$$

Composing A_{sys} and A_{ϕ}

- In general what we need to do is to compute the intersection of the languages recognized by the two automata A_{sys} and A_{ϕ} and check for emptiness.
- We have already seen (*slide 12*) how this can be done.
- When the *System* need *not* satisfy FAIRNESS conditions (or in general A_{sys} have the trivial acceptance condition, i.e. *all the states are accepting*) there is a more efficient construction...

Efficient composition of A_{sys} and A_{ϕ}

- When A_{sys} have the *trivial acceptance condition*, i.e. *all the states are accepting* there is a more efficient construction.
- In this case we can just compute:

$$\mathbf{A}_{\mathrm{sys}} \cap \mathbf{A}_{\phi} = <\Sigma, \, \mathbf{S}_{\mathrm{sys}} \times \mathbf{S}_{\phi}, \, \mathbf{R}', \, \mathbf{S}_{0\mathrm{sys}} \times \mathbf{S}_{0\phi}, \, \mathbf{S}_{\mathrm{sys}} \times \mathbf{F}_{\phi} >$$

• where

 $(\langle s,t \rangle,a,\langle s',t'\rangle) \in \mathbb{R}'$ iff $(s,a,s') \in \mathbb{R}_{sys}$ and $(t,a,t') \in \mathbb{R}_{\phi}$

Efficient composition of A_{sys} and A_{ϕ}

- Notice that in our case both automata have *labels in the states* (instead of on the transitions).
- This can be dealt with by simply *restricting the set of states* of the intersection automaton to those which *agree on the labeling* on both automata.
- Therefore we define

$$\mathbf{A}_{\mathrm{sys}} \cap \mathbf{A}_{\phi} = <\Sigma, S', R', (S_{0\mathrm{sys}} \times S_{0\phi}) \cap S', S_{\mathrm{sys}} \times F_{\phi} >$$

• where

 $S' = \{(s,t) \in S_{sys} \times S_{\phi} \mid L_{sys}(s) = L_{\phi}(t)\} \text{ and} \\ (\langle s,t \rangle, \langle s',t' \rangle) \in \mathbb{R}' \quad iff \quad (s,s') \in \mathbb{R}_{sys} \text{ and } (t,t') \in \mathbb{R}_{\phi} \}$