
Tecniche di Specifica e di Verifica

Automata-based
LTL Model-Checking

2

Finite state automata

A finite state automaton is a tuple A = (ΣΣ,S,S0,R,F)

• ΣΣ: set of input symbols

• S: set of states -- S0 : set of initial states (S0 ⊆⊆ S)

• R:S ×× ΣΣ →→ 2S : the transition relation.

• F: set of accepting states (F ⊆⊆ S)

• A run r on w=a1,…,an is a sequence s0,…,sn such that
s0 ∈∈S0 and si+1∈∈R(si,ai) for 0≤≤i≤≤n.

• A run r is accepting if sn∈∈F, while a word w is
accepted by A if there is an accepting run of A on w.

• The language L(A) accepted by A is the set of finite
words accepted by A.

3

Finite state automata: union

Given automata A1 and A2, there is an automaton A
accepting L(A) = L(A1) ∪∪ L(A2)

A = (ΣΣ,S,S0,R,F) is an automaton which just runs non-
deterministically either A1 or A2 on the input word.

 S = S1 ∪∪ S2

 F = F1 ∪∪ F2

 S0 = S01 ∪∪ S02

 R(s,a) =
R1(s,a) if s ∈∈ S1

R2(s,a) if s ∈∈ S2
{

4

Finite state automata: union

0 1

2 3

a

a

a

b

b

b

0 1

a

b

b

L(A1)=b*(ab)*a

A1

2 3

a

ab

L(A2)=a(a*ba)*

A2

A1 ∪∪ A2 L(A)=L(A1) ∪∪ L(A2)

5

Finite state automata: intersection

Given automata A1 and A2, there is an automaton A
accepting L(A) = L(A1) ∩∩ L(A2)

A = (ΣΣ,S,S0,R,F) runs simultaneously both automata A1
and A2 on the input word.

 S = S1 ×× S2

 F = F1 ×× F2

 S0 = S01 ×× S02

 R((s,t),a) = R1(s,a) ×× R2(t,a)

6

Finite state automata: intersection

0,2 0,3

1,2 1,3

a

b

b

0 1

a

b

b

L(A1)=b*(ab)*a

A1

2 3

a

ab

L(A2)=a(a*ba)*

A2

A1 ∩∩ A2 L(A)=L(A1) ∩∩ L(A2)a

7

Finite state automata: complementation

• If the automaton is deterministic, then it just suffices
to set Fc = S�F.

• This doesn’t work, though, for non-deterministic
automata.

• Solution:
❶ Determinize the automaton using the subset construction.
❷ Complement the resulting deterministic automaton

• The complexity of this process is exponential in the
size of the or iginal automaton.

• The number of states of the final automaton is 2|S|, in
the worst case.

8

Finite state automata: complementation

L(A)=(a+b)*a

s t

a

b

a

A

L(AD)= (a+b)*a

{ s} { s,t}

a

b

AD

Ø { t}

b

a,b

a

b
a

{ s} { s,t}

a

b

Ø { t}

b

a,b

a

b
a

Ac
L(Ac)=L(A)

❶

❷

9

Büchi automata (BA)
A Büchi automaton is a tuple A = (ΣΣ,S,S0,R,F)

• ΣΣ: set of input symbols

• S: set of states -- S0 : set of initial states (S0 ⊆⊆ S)

• R:S ××ΣΣ →→ 2S : the transition relation.

• F: set of accepting states (F ⊆⊆ S)

• A run r on w=a1,a2,… is an infinite sequence s0,s1,…
such that s0 ∈∈S0 and si+1 ∈∈R(si,ai) for i≥≥0.

• A run r is accepting if some accepting state in F occurs
in r infinitely often.

• A word w is accepted by A if there is an accepting run
of A on w, and the language Lωω(A) accepted by A is
the set of (infinite) ωω-words accepted by A.

10

Büchi automata (BA)

A Büchi automaton is a tuple A = (ΣΣ,S,S0,R,F)

• A run r on w=a1,a2,… is an infinite sequence s0,s1,…
such that s0 ∈∈S0 and si+1 ∈∈R(si,ai) for i≥≥0.

• Let Lim(r) = { s | s = si for infinitely many i }

• A run r is accepting if

Lim(r) ∩∩ F ≠≠ ∅∅
• A word w is accepted by A if there is an accepting

run of A on w.

• The language Lωω(A) accepted by A is the set of
(infinite) ωω-words accepted by A.

11

Büchi automata: union

Given Büchi automata A1 and A2, there is an Büchi
automaton A accepting Lωω(A) = Lωω(A1) ∪∪ Lωω(A2).

The construction is the same as for ordinary automata.

A = (ΣΣ,S,S0,R,F) is an automaton which just runs non-
deterministically either A1 or A2 on the input word.

 S = S1 ∪∪ S2

 F = F1 ∪∪ F2

 S0 = S01 ∪∪ S02

 R(s,a) =
R1(s,a) if s ∈∈ S1

R2(s,a) if s ∈∈ S2
{

12

Büchi automata: intersection

• The intersection construction for automata does not work
for Büchi automata.

• Instead, the intersection for Büchi automata can be
defined as follows:

A=(ΣΣ,S,S0,R,F) intuitively runs simultaneously both
automata A1=(ΣΣ,S1,S01,R1,F1) and A2=(ΣΣ,S2,S02,R2,F2) on
the input word.

 S = S1 ×× S2 ×× {1,2}
F = F1 ×× S2 ×× {1}

 S0 = S01 ×× S02 ×× {1}
(s’ ,t’ ,2) if s’∈∈R1(s,a), t’∈∈R2(t,a), s ∈∈ F1 and i=1

(s’ ,t’ ,1) if s’∈∈R1(s,a), t’∈∈R2(s,a), t ∈∈ F2 and i=2

(s’ ,t’ ,i) if s’∈∈R1(s,a), t’∈∈R1(t,a)
{R((s,t,i),a) =

13

Büchi automata: intersection

A = (ΣΣ,S,S0,R,F) runs simultaneously both automata A1 and
A2 on the input word.

 S = S1 ×× S2 ×× {1,2}
F = F1 ×× S2 ×× {1}

 S0 = S01 ×× S02 ×× {1}

The automaton remembers 2 tracks, one for each automaton,
and points to one of the tracks. As soon as it goes through
an accepting state on the current track, it changes track.

The accepting condition and the transition relation ensure
that this change of track must happens infinitely often.

(s’,t’,2) if s’∈∈R1(s,a), t’∈∈R2(t,a), s∈∈F1 and i=1

(s’,t’,1) if s’∈∈R1(s,a), t’∈∈R2(t,a), t∈∈F2 and i=2

(s’,t’,i) if s’∈∈R1(s,a), t’∈∈R1(t,a)
{R((s,t,i),a) =

14

Büchi automata: intersection

A = (ΣΣ,S,S0,R,F) runs simultaneously both automata A1 and
A2 on the input word.

 S = S1 ×× S2 ×× {1,2}
F = F1 ×× S2 ×× {1}

 S0 = S01 ×× S02 ×× {1}

As soon as it visits an accepting state in track 1, it switches to
track 2 and then to track 1 again but only after visiting an
accepting state in the track 2.

Therefore, to visit infinitely often a state in F (F1), the
automaton must also visit infinitely often some state of F2.

(s’,t’,2) if s’∈∈R1(s,a), t’∈∈R2(t,a), s∈∈F1 and i=1

(s’,t’,1) if s’∈∈R1(s,a), t’∈∈R2(t,a), t∈∈F2 and i=2

(s’,t’,i) if s’∈∈R1(s,a), t’∈∈R1(t,a)
{R((s,t,i),a) =

15

Büchi automata: complementation

I t’ s a complicated construction -- the standard subset
construction for determinizing automata doesn’t work
as non-deterministic automata are more powerful than
deterministic ones (e.g. Lωω=(0+1)*1ωω)

Solution (resor ts to another kind of automaton):
• Transform the (non-deterministic) Büchi automaton into a

(non-deterministic) Rabin automaton (a more general kind
of ωω-automaton).

• Determinize and then complement the Rabin automaton.
• Transform the Rabin automaton into a Büchi automaton.

• Therefore, also Büchi automata are closed under
complementation.

1
1

1,0

16

Rabin automata

• A Rabin automaton is like a Büchi automaton,
except that the accepting condition is defined
differently.

• A = (ΣΣ,S,S0,R,F), where F=((G1 ,B1),…,(G m ,Bm)).
• and the acceptance condition for a run r = s0,s1,… is

as follows: for some i

• Lim(r) ∩∩ Gi ≠≠ ∅∅ and

• Lim(r) ∩∩ Bi = ∅∅
 in other words, there is a pair (Gi ,Bi) such that the

left-hand set (Gi) is visited infinitely often, while the
r ight-hand (Bi) set is visited finitely often.

17

Rabin versus Büchi automata

The Rabin automaton has F=(({t},{s}))

Note that the Rabin automaton is deterministic.

1

1

1,0

s t

The Büchi automaton
fot Lωω = (0+1)*1ωω

s t
1

0

0
1 The Rabin automaton

fot Lωω = (0+1)*1ωω

18

Language emptiness for Büchi automata

The emptiness problem for Büchi automata is the problem
of deciding whether the language accepted by a Büchi
automaton A is empty, i.e. if L(A)=∅∅.

Theorem: The emptiness problem for Büchi automata is
decidable in linear time, i.e. in time O(|A|).

Fact: L(A) = ∅∅ iff in the Büchi automaton there is no
reachable cycle A containing a state in F.

19

Language emptiness for Büchi automata

In other words, L(A) = ∅∅ iff there is a cycle containing an
accepting state, which is also reachable from some
initial state of the automaton.

We need to find whether there is such a reachable cycle

We could simply compute the SCCs of A using the
standard DFS algorithm, and check if there exists a
reachable (nontrivial) SCC containing a state in F.

But this is too inefficient in practice. We will therefore use
a more efficient nested DFS (more efficient in the
average-case).

20

Efficient language emptiness for BA
Input: A
Initialize: Stack1:=∅∅, Stack2:= ∅∅
 Table1:= ∅∅, Table2:= ∅∅
Algor ithm Main()
 foreach s ∈∈ Init
 if s ∉∉ Table1 then

 DFS1(s);
 output(“ empty”);
 return;

Algor ithm DFS1(s)
 push(s,Stack1);
 hash(s,Table1);
 foreach t ∈∈ Succ(s)
 if t ∉ ∉ Table1 then

 DFS1(t);
 if s ∈∈ F then
 DFS2(s);
 pop(Stack1);

Algor ithm DFS2(s)
 push(s,Stack2);
 hash(s,Table2) ;
 foreach t ∈∈ Succ (s) do
 if t ∉∉ Table2 then
 DFS2(t)
 else if t is on Stack1

 output(“ not empty”);
 output(Stack1,Stack2,t);
 return;
 pop(Stack2);

 Note: upon finding a bad cycle,
 Stack1+Stack2+t, determines
 a counterexample: a bad cycle

reached from an init state.

21

Generalized Büchi automata (GBA)
Generalized Büchi automaton: A = (ΣΣ ,S,S0 ,R,(F1 ,...,Fm))

• A run r on w=a1,a2,… is an infinite sequence s0,s1,…
such that s0 ∈∈S0 and si+1 ∈∈R(si,ai) for i≥≥0.

• Let Lim(r) = { s | s = si for infinitely many i }

• A run r is accepting if for each 1 ≤≤ i ≤≤ m

Lim(r) ∩∩ Fi ≠≠ ∅∅
Any Generalized Büchi automaton can be easily

transformed into a Büchi automaton as follows:

 L(ΣΣ ,S,S0 ,R,(F1 ,...,Fm)) = ∩∩ L(ΣΣ ,S,S0 ,R,Fi)
 i∈∈{1,…,m}

This transformation is not very eff icient, though.

22

From GBA to BA efficiently
Generalized Büchi automaton: A = (ΣΣ ,S,S0 ,R,(F1 ,...,Fm))

A Generalized Büchi automaton can be eff iciently
transformed into a Büchi automaton as follows:

S’ = S ×× {1,…,m}
F’ = F ×× {i} for some 1 ≤≤ i ≤≤ m

S’0 = S0 ×× {i} for some 1 ≤≤ i ≤≤ m

Notice that the transformation above expands the
automaton size by a factor or m (see Büchi
Intersection).

(s’, (i mod m)+1) if s’∈∈R(s,a) and s∈∈Fi

(s’,i) if s’∈∈R (s,a) and s∉∉Fi
{R((s,i),a) =

23

LTL-semantics and Büchi automata

• We can interpret a formula ψψ as expressing a property
of ωω-words, i.e., an ωω-language L(ψψ) ⊆⊆ ΣΣAP

ωω.

• For ωω-word σσ = σσ0 , σσ1 , σσ2 ,….. ∈∈ΣΣAP
ωω, let σσ i = σσi , σσi+1 ,

σσi+2…. be the suffix of σσ starting at position i. We
defined the “satisfies” relation, � , inductively:
• σσ � pj iff pj ∈∈ σσ0 (for any pj ∈∈ P).

• σσ � ¬¬ψψ iff not σσ � ψψ.
• σσ � ψψ1 ∨∨ ψψ2 iff σσ � ψψ1 or σσ � ψψ2.
• σσ � Xψψ iff σσ1 � ψψ.
• σσ � ψψ1 U ψψ2 iff ∃∃ i ≥≥ 0 such that σσ i � ψψ2 ,

 and ∀∀j, 0≤≤ j< i, σσ j � ψψ1.

• We finally define the language L(ψψ) = { σσ | σσ � ψψ }.

24

Relation with Kripke structures

We extend our definition of “satisfies” to transition
systems, or Kripke structures, as follows:

• KAP � ψψ iff for all computations (runs) ππ of KAP ,
L(ππ) � ψ ψ , or in other words, iff

L(KAP) ⊆⊆ L(ψψ).

25

Relation with Kripke structures

We can transform any Kr ipke structure into a
Büchi automaton as follows:

{p,q}
s0

{p}
s1

{q}
s2

KAP

s0 s1

s2

AK

{p,q}

init
{p}

{p,q}

{p}

{q}

{p,q}

where every state is accepting!

26

LTL Model Checking

 System Model

K

LTL
proper ty

ψψ

Model Checker
Yes!

No! +
“counterexample”

Convert ¬¬ψψ to a
 Büchi automaton

 A¬¬ψ ψ , so that
L(¬¬ψψ) = L(A¬¬ψψ)

Check that K � ψψ
by checking that

L(K)∩∩L(A¬¬ψψ) = ∅∅

27

LTL Model Checking: explanation

M � ψψ ⇔⇔ L(KAP) ⊆⊆ L(ψψ)

 ⇔⇔ L(KAP) ∩∩ (ΣΣAP
ωω \ L(ψψ)) = ∅∅

 ⇔⇔ L(KAP) ∩∩ L(¬¬ψψ) = ∅∅
 ⇔⇔ L(KAP) ∩∩ L(A¬¬ψψ) = ∅∅

28

The algorithmic tasks to perform

We have reduced LTL model checking to two tasks:

1 Conver t an LTL formula ϕϕ (i.e. ¬¬ψψ) to a Büchi
automaton Aϕϕ , such that L(ϕϕ) = L(Aϕϕ).

• Can we in general do this? yes……

2 Check whether KAP � ψψ, by checking whether the
intersection of languages L(K AP) ∩∩ L(A¬¬ψψ) is empty.

• I t is actually unwise to first construct all of K AP, because
KAP can be far too big (state explosion).

• Instead, we shall see how it is possible per form the check by
constructing states of KAP only as needed.

29

LTL to BA translation

• First, let’s put LTL formulas ϕ in normal form where:
• ¬¬ ‘s have been “pushed in” , applying only to propositions.
• the only propositional operators are ¬¬, ∧∧,∨∨.
• the only temporal operators are X, U and its dual R.

• In order to do that we use the following rules:
• p →→ q ≡≡ ¬¬ p ∨∨ q ; p ↔↔ q ≡≡ (¬¬ p ∨∨ q) ∧∧ (¬¬ q ∨∨ p)
• ¬¬(p ∨∨ q) ≡≡ ¬¬ p ∧∧ ¬¬ q ; ¬¬(p ∧∧ q) ≡≡ ¬¬ p ∨∨ ¬¬ q ; ¬¬ ¬¬ p ≡≡ p
• ¬¬(p U q) ≡≡ (¬¬ p) R (¬¬ q) ; ¬¬ (p R q) ≡≡ (¬¬ p) U (¬¬ q)
• F p ≡≡ 7 U p ; G p ≡≡ ⊥ R p ; ¬¬ X p ≡≡ X ¬¬ p

30

LTL to BA translation

• First, let’s put LTL formulas ϕ in normal form
• ¬¬ ‘s have been “pushed in” , applying only to propositions.

• We use the following rules:
• p →→ q ≡≡ ¬¬ p ∨∨ q ; p ↔↔ q ≡≡ (¬¬ p ∨∨ q) ∧∧ (¬¬ q ∨∨ p)
• ¬¬(p ∨∨ q) ≡≡ ¬¬ p ∧∧ ¬¬ q ; ¬¬(p ∧∧ q) ≡≡ ¬¬ p ∨∨ ¬¬ q ; ¬¬ ¬¬ p ≡≡ p
• ¬¬ (p U q) ≡≡ (¬¬ p) R (¬¬ q) ; ¬¬ (p R q) ≡≡ (¬¬ p) U (¬¬ q)
• F p ≡≡ 7 U p ; G p ≡≡ ⊥ R p ; ¬¬ X p ≡≡ X ¬¬ p

Examples:
((p U q) →→ F r) ≡≡ ¬¬(p U q) ∨∨ F r ≡≡ ¬¬(p U q) ∨∨ (7 U r) ≡≡
 ≡≡ (¬¬ p R ¬¬ q) ∨∨ (7 U r)

GF p →→ F r ≡≡ (⊥ R (Fp)) →→ (7 U p) ≡≡ (⊥ R (7 U p)) →→ (7 U r) ≡≡
 ≡≡ ¬¬ (⊥ R (7 U p)) ∨∨ (7 U r) ≡≡ (7 U ¬¬ (7 U p)) ∨∨ (7 U r) ≡≡
 ≡≡ (7 U (⊥ R ¬¬ p)) ∨∨ (7 U r)

31

LTL to BA translation

• States of Aϕϕ wil l be sets of subformulas of ϕϕ, thus if we
have ϕϕ= p11U¬¬p2, a state is given by ΓΓ⊆⊆{p1,¬¬p2,p1U¬¬p2}.

• Consider a word σσ = σσ0 , σσ1 , σσ2 ,…∈∈ΣΣAP
ωω such that σσ � ϕ,

where, e.g., ϕϕ = ψψ11Uψψ2 .

• Mark each position i with the set of subformulas Γi of ϕ
that hold true there:

 ΓΓ0 ΓΓ1 ΓΓ2 …………

 σσ0 σσ1 σσ2 …………

• Clearly, ϕϕ ∈∈ ΓΓ0 . But then, by consistency, either:

• ψψ11 ∈∈ ΓΓ0 and ϕϕ ∈∈ ΓΓ1, or

• ψψ2 2 ∈∈ ΓΓ0 .

• The consistency rules dictate our states and transitions.

32

LTL to BA translation

Let sub(ϕ) denote the set of subformulas of ϕ.

We define Aϕϕ = (Q, ΣΣ , R, L, Init, F) as follows.

First, the state set:

• Q = {ΓΓ ⊆⊆ sub(ϕϕ) | s.t. ΓΓ is locally consistent }.
• For ΓΓ to be locally consistent we should, e.g., have:

• ⊥⊥∉ ∉ ΓΓ
• if ψψ ∨∨ γγ ∈∈ ΓΓ, then ψψ ∈∈ ΓΓ or γγ ∈∈ ΓΓ.

• if ψψ ∧∧ γγ ∈∈ ΓΓ, then ψψ ∈∈ ΓΓ and γγ ∈∈ ΓΓ.

• if pi ∈∈ ΓΓ then ¬¬ pi∉∉ ΓΓ, and if ¬¬ pi ∈∈ ΓΓ then pi∉∉ ΓΓ.

• if ψ ψ U γ γ ∈∈ ΓΓ, then (ψψ ∈∈ ΓΓ or γγ ∈∈ ΓΓ).

• if ψ ψ R γ γ ∈∈ ΓΓ, then γγ ∈∈ ΓΓ.

33

LTL to BA translation

Now, labeling the states of Aϕϕ:

• The labeling L: Q �� ΣΣ is L(ΓΓ) = {l ∈∈ sub(ϕϕ) | l ∈∈ ΓΓ}.

• Now, a word σσ = σσ0 σσ1 … ∈∈ (ΣΣAP)ωω is in L(Aϕϕ) iff
there is a run π π = = ΓΓ0 →→ ΓΓ1 →→ ΓΓ2 →→ … of Aϕϕ, s.t.,
∀∀i∈∈´, we have that σσi “satisfies” L(ΓΓi), i.e., σσi is a
“satisfying assignment” for L(ΓΓi) .

• This constitutes a slight redefinition of Büchi
automata, where labeling is on the states instead of
on the edges. This facil itates a much more compact
Aϕϕ.

34

LTL to BA translation

Now, the transition relation, and the rest of Aϕϕ.

Based on the following LTL rules:

• (ψ ψ U γγ)) ≡≡ γ γ ∨∨ ((ψ ψ ∧∧ X (ψ ψ U γγ))))
• (ψ ψ R γγ)) ≡≡ γ γ ∧∧ ((ψ ψ ∨∨ X (ψ ψ R γγ)))) ≡≡ ((γ γ ∧∧ ψψ)) ∨∨ ((γ γ ∧∧ X(ψ ψ R γγ))))

and on the semantics of X, we define:

• R ⊆⊆ Q ×× Q , where (ΓΓ,ΓΓ’) ∈∈ R iff:

• if (ψ ψ U γγ)) ∈∈ ΓΓ then γ γ ∈∈ ΓΓ, or (ψ ψ ∈∈ ΓΓ and (ψ ψ U γγ)) ∈∈ ΓΓ’).

• if (ψ ψ R γγ)) ∈∈ ΓΓ then γ γ ∈∈ ΓΓ, and (ψ ψ ∈∈ ΓΓ or (ψ ψ R γγ)) ∈∈ ΓΓ’).

• if X ψψ ∈∈ ΓΓ, then ψψ ∈∈ ΓΓ’.

35

LTL to BA translation

• Init = {ΓΓ ∈∈ Q | ϕϕ ∈∈ ΓΓ}.

• For each (ψ ψ U γγ)) ∈∈ sub(ϕϕ), there is a set Fi ∈∈ F, such
that:

• Fi = {Γ Γ ∈∈ Q | (ψ ψ U γγ) ∉∉ ΓΓ or γγ ∈∈ ΓΓ}

• (or equivalently Fi = {Γ Γ ∈∈ Q | if (ψ ψ U γγ) ∈∈ ΓΓ, then γγ ∈∈ ΓΓ})

• (notice that if there are no (ψ ψ U γγ)) ∈∈ sub(ϕϕ), then the
acceptance condition is the trivial one: all states are accepting)

Lemma: L(ϕϕ) = L(Aϕϕ) .

but, at this point, Aϕϕ is a generalized Büchi automaton …

36

LTL to BA translation: example

7 U p p
7 U p

p

Consider the following formula: F p ≡≡ 7 U p
sub(7 U p) = {7 U p , p}

Init = {ΓΓ ∈∈ sub(7 U p) | 7 U p ∈∈ ΓΓ}

37

LTL to BA translation: example

7 U p p
7 U p

p

Consider the following formula: 7 U p

(7 U p)) ≡≡ p ∨∨ X (7 U p))

38

LTL to BA translation: example

7 U p p
7 U p

p

Consider the following formula: 7 U p

(7 U p)) ≡≡ p ∨∨ X (7 U p))

39

LTL to BA translation: example

7 U p p
7 U p

p

Consider the following formula: 7 U p

(7 U p)) ≡≡ p ∨∨ X (7 U p))

40

LTL to BA translation: example

7 U p p
7 U p

p

Consider the following formula: 7 U p

(7 U p)) ≡≡ p ∨∨ X (7 U p))

41

LTL to BA translation: example

7 U p p
7 U p

p

Consider the following formula: 7 U p

sub(7 U p) = {7 U p , p}

F = {F7 U p } = {Γ Γ ∈∈ sub(7 U p) | (7 U p)) ∉∉ ΓΓ or p ∈∈ ΓΓ}

42

LTL to BA translation: example

Consider the following formula: G p ≡≡ ⊥⊥ R p
sub(⊥⊥ R p) = {⊥⊥ R p , p}

Init = {ΓΓ ∈∈ sub(⊥⊥ R p) | ⊥⊥ R p ∈∈ ΓΓ}

⊥⊥ R p

p

p
⊥⊥ R p

43

LTL to BA translation: example

Consider the following formula: G p ≡≡ ⊥⊥ R p
sub(⊥⊥ R p) = {⊥⊥ R p , p}

(⊥⊥ R p)) ≡≡ p ∧∧ X (⊥⊥ R p))

⊥⊥ R p

p

p
⊥⊥ R p

44

LTL to BA translation: example

Consider the following formula: G p ≡≡ ⊥⊥ R p
sub(⊥⊥ R p) = {⊥⊥ R p , p}

There are no eventualities, hence F = { Q }

⊥⊥ R p

p

p
⊥⊥ R p

The trivial
acceptance condition

45

LTL to BA translation: example

Consider the following formula: p U q

sub(p U q) = {p U q , p , q}

Init = {ΓΓ ∈∈ sub(p U p) | p U q ∈∈ ΓΓ}

p U q
p

p U q

p,q q

p U q
p,q

p U q
q

p

46

LTL to BA translation: example

p U q
p

p U q

p,q

Consider the following formula: p U q

sub(p U q) = {p U q , p , q}

Init = {ΓΓ ∈∈ sub(p U p) | p U q ∈∈ ΓΓ}

q

p U q
p,q

p U q
q

p

47

LTL to BA translation: example

p U q
p

p U q

p,q

Consider the following formula: p U q

sub(p U q) = {p U q , p , q}

(p U q)) ≡≡ q ∨∨ ((p ∧∧ X (p U q))))

q

p U q
p,q

p U q
q

p

48

LTL to BA translation: example

p U q
p

p U q

p,q

Consider the following formula: p U q

sub(p U q) = {p U q , p , q}

F = { F p U q } = {Γ Γ ∈∈ sub(p U q) | (p U q)) ∉∉ ΓΓ or q ∈∈ ΓΓ}

q

p U q
p,q

p U q
q

p

49

On-the-fly translation algorithm

There is another more efficient way to build the Büchi
automaton corresponding to a LTL formula.

• The algor ithm proposed by Vardi and his colleagues,
is based on the idea of refining states only as needed.

• I t only record the necessary information (what must
hold) of a state, instead of recording the complete
information about each state (both what must hold
and what might or might-not hold).

• In a way what “ might or might-not hold” is treated as
‘don’t care’ information (which can be fil led in, but
whose value has no relevant effect).

50

Algorithm data structure: node

Name: A string identifying the current node.

Father: The name of the father node of current node.

Incoming: List of fully expanded nodes with edges to the
current node.

Old: A set of temporal formulae which must hold and in
the current node have been processed already.

New: A set of temporal formulae which must hold but in
the current node have not been processed yet.

Next: A set of temporal formulae which should hold in
the next node (immediate successor) of the current
node.

51

Name: Node2

Father: Node1

Incoming: Init

New: {p}

Next: {p U q}

Old: {p U q}

Name: Node3

Father: Node1

Incoming: Init

New: {q}

Next: {}

Old: {p U q}

Name: Node1

Father: Node1

Incoming: Init

New: {p U q}

Next: {}

Old: {}

NODE

52

function expand (Node, Nodes_Set)
 if New(Node)=∅∅ then
 if ∃∃ND∈∈Nodes_Set with Old(ND)=Old(Node) and
 and Next(ND) = Next(Node) then
 Incoming(ND) := Incoming(ND) ∪ Incoming(Node);
 return(Nodes_Set);
 else return(expand([Name ⇐ Father ⇐ new_name(),
 Incoming ⇐ {Name(Node)},
 New ⇐ Next(Node), Old ⇐ ∅∅, Next ⇐ ∅∅],
 Nodes_Set ∪∪ {Node});
 else ….

function create graph(φφ)
 return(expand([Name⇐Father⇐new_name(),
 Incoming⇐{Init}, New⇐{φφ},
 Old⇐∅∅, Next⇐∅∅], ∅∅)

53

Init

4 ⊥⊥ R p ; p

Nodes_Set

Name: Node8

Father: Node6

Incoming: 4

New: {}

Next: {⊥⊥ R p}

Old: {⊥⊥ R p ; p}

54

Nodes_Set

Name: Node9
Father: Node7
Incoming: 4
New: {}
Next: {}

Old: {p U q ; q}

Init

4 p U q ; p

9 p U q ; q

55

function expand (Node, Nodes_Set)
 if New(Node)=∅∅ then{{preceding block}}
 else
 let ηη ∈ New;
 New(Node) := New(Node) \ {ηη};
 case ηη of
 ηη = pi or ¬¬pi or 7 or ⊥⊥�:
 if ηη = ⊥⊥ or Neg(ηη)∈Old(Node) then

 return(Nodes_Set) ; /* Discard current node */

 else Old(Node) := Old(Node) ∪ {ηη};
 return(expand(Node, Nodes Set));
 ηη = µµ U ψψ or µµ R ψψ or µµ ∨∨ ψψ : ….

Contradiction found

56

Additional functions

ηη New1(ηη) Next1(ηη) New2(ηη)

µ µ U ψψ {{µµ}} {{µ µ U ψψ}} {{ψψ}}
µ µ R ψ ψ {{ψψ}} {{µ µ R ψψ}} {{µµ ,,ψψ}}
µ µ ∨∨ ψ ψ {{µµ}} ∅∅ {{ψψ}}

The function Neg() is applied only to literals:
Neg(pi) = ¬¬ pi Neg(7) = ⊥⊥
Neg(¬¬pi) = pi Neg(⊥⊥) = 7

The functions New1(), New2() and Next1(), used
for splitting nodes, are applied to temporal
formulae and defined as follows:

57

function expand (Node, Nodes_Set)
 if New(Node)=∅∅ then {{preceding block}}
 else
 let ηη∈ New;
 New(Node) := New(Node) \ {ηη};
 case ηη of
 ηη = pi or ¬¬pi or 7 or ⊥⊥: {{preceding block}}

ηη = µµ U ψψ or µµ R ψψ or µµ ∨∨ ψ ψ :
 Node1:=[Name ⇐ new_name(), Father ⇐ Name(Node),
 Incoming ⇐ Incoming(Node),

New ⇐ New(Node) ∪ ({New1(ηη)} \ Old(Node)),
Old ⇐ Old(Node) ∪ {ηη},

 Next ⇐ Next(Node) ∪ {Next1(ηη)}];
 Node2:=[Name ⇐ new_name(), Father ⇐ Name(Node),
 Incoming ⇐ Incoming(Node),

 New ⇐ New(Node) ∪ ({New2(ηη)} \ Old(Node)),
 Old ⇐ Old(Node) ∪ {ηη}, Next ⇐ Next(Node)];

 return(expand(Node2, expand(Node1, Nodes_Set)));
ηη = µµ ∧∧ ψψ : ….

splitting

58

Name: Node1

Father: Node1

Incoming: Init

New: {p U q}

Next: {}

Old: {}

Name: Node2

Father: Node1

Incoming: Init

New: {p}

Next: {p U q}

Old: {p U q}

Name: Node3

Father: Node1

Incoming: Init

New: {q}

Next: {}

Old: {p U q}

split

59

function expand (Node, Nodes_Set)
 if New(Node)=∅∅ then {{preceding block}}
 else
 let ηη∈ New;
 New(Node):=New(Node) \ {ηη};
 case ηη of
 ηη = pi or ¬¬pi or 7 or ⊥⊥: {{preceding block}}

ηη = µµ U ψψ or µµ R ψψ or µµ ∨∨ ψψ : {{preceding block}}
ηη = µµ ∧∧ ψψ :

 return(expand([Name ⇐ Name(Node),
 Father ⇐ Father(Node),

 Incoming ⇐ Incoming(Node),
 New ⇐ (New(Node) ∪ {µµ ,ψ ψ } \ Old(Node)),

 Old ⇐Old(Node) ∪ {ηη}, Next = Next(Node)],
 Nodes_Set);
 ηη = X ψψ : ….

60

Name: Node1

Father: Node1

Incoming: Init

New: {p ∧∧ q,…}

Next: {...}

Old: {...}

Name: Node2

Father: Node1

Incoming: Init

New: {p,q,…}

Next: {...}

Old: {…,p ∧∧ q}

expand

61

function expand (Node, Nodes_Set)
 if New(Node)=∅∅ then {{preceding block}}
 else
 let ηη∈ New;
 New(Node):=New(Node) \ {ηη};
 case ηη of
 ηη = pi or ¬¬pi or 7 or ⊥⊥: {{preceding block}}

ηη = µµ U ψψ or µµ R ψψ or µµ ∨∨ ψψ : {{preceding block}}
 ηη = µµ ∧∧ ψψ : {{preceding block}}

ηη = X ψψ :
 return(expand(

 [Name ⇐ Name(Node),Father ⇐ Father(Node),
 Incoming ⇐ Incoming(Node), New ⇐ New(Node),

 Old ⇐ Old(Node) ∪ {ηη}, Next = Next(Node) ∪ {ψψ}],
Nodes_Set);

 esac;
end expand;

62

Name: Node1

Father: Node1

Incoming: Init

New: {X p,…}

Next: {...}

Old: {...}

Name: Node1

Father: Node1

Incoming: Init

New: {…}

Next: {…,p}

Old: {…, X p}

expand

63

The need for accepting conditions

• IMPORTANT: Remember that not every maximal
path π =π = s0 s1 s2… in the graph determines a model
of the formula: the construction above allows
some node to contain µµ U ψψ while none of the
successor nodes contain ψψ.

• This is solved again by imposing the generalized
Büchi acceptance conditions :
• for each subformula of φφ of the form µµ U ψψ , there

is a set Fφφ ∈∈ F, including the nodes s ∈∈ Q, such that
either µ µ U ψ ψ ∉∉ Old(s), or ψ ψ ∈∈ Old(s).

64

Complexity of the construction

THEOREM: For any LTL formula φφ a Büchi
automaton Aφφ can be constructed which accepts all
an only the ωω−−sequences satisfying φφ.

THEOREM: Given a LTL formula φφ, the Büchi
automaton for φφ whose states are O(2|φφ|) (in the
worst-case). [|φφ| is the number of subformulae of φφ].

THEOREM: Given a LTL formula φ φ and a Kripke
structure Ksys the, the LTL model checking
problem can be solved in time O(|Ksys|⋅⋅2|φφ|).
[actually it is PSPACE-complete].

65

LTL to BA: example

• Consider the following formula:
G p

• where p is an atomic formula.

• Its negation-normal form is

⊥⊥ R p

66

LTL to BA: example

Current node is Node 1
Incoming = [Init]
Old = []
New = [⊥⊥ R p]
Next = []

New(node) not empty, removing η η = = ⊥⊥ R p, node split into 2, 3,
about to expand them

Init

(⊥⊥ R p)) ≡≡ ((p ∧∧ ⊥⊥)) ∨∨
 ((p ∧∧ X(⊥⊥ R p))))

67

LTL to BA: example

Current node is Node 2
Incoming = [Init]
Old = [⊥⊥ R p]
New = [p]
Next = [⊥⊥ R p]

New(node) not empty, removing η η = = p, node replaced by 4
about to expand them

Init

68

LTL to BA: example

Current node is Node 4
Incoming = [Init]
Old = [⊥⊥ R p ; p]
New = []
Next = [⊥⊥ R p]

New(node) empty, no equivalent nodes. About to add,
timeshift and expand.

Init

69

LTL to BA: example

Current node is Node 5
Incoming = [4]
Old = []
New = [⊥⊥ R p]
Next = []

New(node) not empty, removing η η = = ⊥⊥ R p, node split into 6, 7
about to expand them

Init

4 ⊥⊥ R p ; p

(⊥⊥ R p)) ≡≡ ((p ∧∧ ⊥⊥)) ∨∨
 ((p ∧∧ X(⊥⊥ R p))))

70

LTL to BA: example

Current node is Node 6
Incoming = [4]
Old = [⊥⊥ R p]
New = [p]
Next = [⊥⊥ R p]

New(node) not empty, removing η η == p, node replaced by 8,
about to expand it

Init

4 ⊥⊥ R p ; p

71

LTL to BA: example

Current node is Node 8
Incoming = [4]
Old = [⊥⊥ R p ; p]
New = []
Next = [⊥⊥ R p]

New(node) empty, found equivalent old node in Node_Set (4).
Returning it instead.

Init

4 ⊥⊥ R p ; p

72

LTL to BA: example

Current node is Node 7
Incoming = [4]
Old = [⊥⊥ R p]
New = [⊥⊥�; p]
Next = []

New(node) not empty, removing η η == ⊥⊥, inconsistent node
deleted - dead end!.

Init

4 ⊥⊥ R p ; p

From the split
of Node 5

73

LTL to BA: example

Current node is Node 3
Incoming = [Init]
Old = [⊥⊥ R p]
New = [⊥⊥ ; p]
Next = []

New(node) not empty, removing η η == ⊥⊥, inconsistent node
deleted - dead end!.

Init

4 ⊥⊥ R p ; p

From the split
of Node 1

74

LTL to BA: example

Final graph for G p ≡≡ ⊥⊥ R p

Init

4 ⊥⊥ R p ; p

⊥⊥ R p
p

75

LTL to BA: example 2

Consider the following formula:
 p U q

where p and q are atomic formulae.

76

LTL to BA: example 2

Init

Current node is Node 1
Incoming = [Init]
Old = []
New = [p U q]
Next = []

New(node) not empty, removing η η == p U q node split into 3, 2,
about to expand them

(p U q)) ≡≡ q ∨∨ ((p ∧∧ X(p U q))))

77

LTL to BA: example 2

Init

Current node is Node 2
Incoming = [Init]
Old = [p U q]
New = [p]
Next = [p U q]

New(node) not empty, removing η η == p node replaced by 4, about
to expand them

78

LTL to BA: example 2

Init

Current node is Node 4
Incoming = [Init]
Old = [p U q ; p]
New = []
Next = [p U q]

New(node) empty, no equivalent nodes. Add, timeshift and
expand.

79

LTL to BA: example 2

Init

Current node is Node 5
Incoming = [4]
Old = []
New = [p U q]
Next = []

New(node) not empty, removing η η == p U q, node split into 6 , 7,
about to expand.

4 p U q ; p

(p U q)) ≡≡ q ∨∨ ((p ∧∧ X(p U q))))

80

LTL to BA: example 2

Init

Current node is Node 6
Incoming = [4]
Old = [p U q]
New = [p]
Next = [p U q]

New(node) not empty, removing η η == p, node replaced by 8, about
to expand it

4 p U q ; p

81

LTL to BA: example 2

Init

Current node is Node 8
Incoming = [4]
Old = [p U q ; p]
New = []
Next = [p U q]

New(node) empty. Found equivalent old note (4) in Node_Set.
Returning it instead.

4 p U q ; p

82

LTL to BA: example 2

Init

Current node is Node 7
Incoming = [4]
Old = [p U q]
New = [q]
Next = []

New(node) not empty, removing η η == q, node replaced by 9, about
to expand it

4 p U q ; p

From the split
of Node 5

83

LTL to BA: example 2

Init

Current node is Node 9
Incoming = [4]
Old = [p U q ; q]
New = []
Next = []

New(node) empty, no equivalent node found. Add timeshift and
expand

4 p U q ; p

84

LTL to BA: example 2

Init

4 p U q ; p

9 p U q ; q

Current node is Node 10
Incoming = [9]
Old = []
New = []
Next = []

New(node) empty, no equivalent node found. Add timeshift and
expand

85

LTL to BA: example 2

Init

4 p U q ; p

9 p U q ; q

10

Current node is Node 11
Incoming = [10]
Old = []
New = []
Next = []

New(node) empty. Found equivalent old node in Node_Set (10).
Returning it instead.

86

LTL to BA: example 2

Current node is Node 3
Incoming = [Init]
Old = [p U q]
New = [q]
Next = []

New(node) not empty, node replaced by 12, about to expand.

Init

4 p U q ; p

9 p U q ; q

10

From the split
of Node 1

87

LTL to BA: example 2

Current node is Node 12
Incoming = [Init]
Old = [p U q ; q]
New = []
Next = []

New(node) empty. Found equivalent old node (4) in Node_Set.
Returning it instead.

Init

4 p U q ; p

9 p U q ; q

10

88

LTL to BA: example 2

Init

4 p U q ; p

9 p U q ; q

10

Final graph for p U q

89

Comparison of the two algorithms

The graphs for p U q obtained from the two algorithms

p U q
p

p U q
q

p U q
p

p U q

p,q q

p,q
p U q

q

p

90

Notes on the algorithm

• Notice that nodes do not necessarily assign truth
value to all atomic propositions (in AP)!

• Indeed the labeling to be associated to a node can
be any element of 2AP which agrees with the literals
(AP or negations of AP) in Old(Node).

• Let Pos(q) = Old(q) ∩∩ AP

• Let Neg(q) = {{ηη ∈∈ AP| ¬¬ηη ∈∈ Old(q)}}

4(q) = {{ X ⊆⊆ AP | X ⊇⊇ Pos(q) ∧∧ (X ∩∩ Neg(q)) = ∅∅}}

91

Notes on the algorithm

p U q
p

p U q
q

4(q) = {{{{p}},{{p,q}}}}

4(q) = {{{{q}},{{p,q}}}}

4(q) = {{}{{},{{p}},{{q}},{{p,q}}}}

p U q
p

p U q

p,q q

p,q
p U q

q

p

92

Composing Asys and Aφφ

• In general what we need to do is to compute the
intersection of the languages recognized by the
two automata Asys and Aφφ and check for
emptiness.

• We have already seen (slide 12) how this can be
done.

• When the System need not satisfy FAIRNESS
conditions (or in general Asys have the trivial
acceptance condition, i.e. all the states are
accepting) there is a more efficient construction...

93

Efficient composition of Asys and Aφφ

• When Asys have the trivial acceptance condition, i.e.
all the states are accepting there is a more efficient
construction.

• In this case we can just compute:

Asys ∩∩ Aφφ = < ΣΣ, Ssys×× Sφφ, R’, S0sys×× S0φφ, Ssys×× Fφφ >
• where

(<s,t>,a,<s’,t’>)∈∈R’ iff (s,a,s’)∈∈Rsys and (t,a,t’)∈∈Rφφ

94

Efficient composition of Asys and Aφφ

• Notice that in our case both automata have labels in
the states (instead of on the transitions).

• This can be dealt with by simply restricting the set of
states of the intersection automaton to those which
agree on the labeling on both automata.

• Therefore we define

Asys ∩∩ Aφφ = < ΣΣ, S’ , R’, (S 0sys×× S0φφ)∩∩ S’, Ssys×× Fφφ >
• where

S’ = {(s,t) ∈∈ Ssys×× Sφφ | Lsys(s)=Lφφ(t)} and

(<s,t>,<s’,t’>)∈∈R’ iff (s,s’)∈∈Rsys and (t,t’)∈∈Rφφ

