Tecniche di Specifica e di Verifica

Automata-based
LTL Model-Checking



Finite state automata

A finite state automaton isa tuple A = (2,S,S,,R,F)

e 2. set of input symbols

e S set of states-- S;: set of initial states( S, S)

e R:Sx % - 25:thetranstion relation.

o F: setof accepting states( FO S)

« Arunr onw-=a,,...,a,1sasequences,,...,S, such that
S, S, and s, R(s,&) for O<i<n.

« A run r Is accepting If s,lUF, while a word w is
accaoted by A if thereisan accepting run of A on w.

 Thelanguage L(A) accepted by A isthe set of finite
wor ds accepted by A.




Finite state automata: union

Given automata A, and A,, there is an automaton A
accepting L(A) =L(A,) OL(A,)

A = (2,55,R,F) is an automaton which just runs non-
deterministically either A, or A, on the input word.

S=50S

F=F,OF,

Sp =S U Spp

R.(sa)if sOS;
R(sa)if sOS,

R(s,a) :{



Finite state automata: union

A, A,
e | e
e b @ a
L(A,)=b"(ab)"a L (A,)=a(a*ba)’

b a
N
C%>
] L(A)=L(A;) O L(A))

L
 a

OO

A, OA,



Finite state automata: intersection

Given automata A, and A,, there is an automaton A
acceptingL(A) =L(A,) n L(A),)

A = (2,55,,R,F) runs smultaneously both automata A,
and A, on the input word.

S=S XS
F=F,xF,

S = S X S

R((s1).a) = Ry(s8) X Ry(t,)



Finite state automata: intersection

A, A,
e | e
a b @ a
L(A,)=b"(ab)"a L (A,)=a(a*ba)’

L(A)=L(A) n L(A,)




Finite state automata: complementation

If the automaton is deter ministic, then it just suffices
toset F¢= S—F.

This doesn't work, though, for non-deterministic
automata.

Solution:
[1 Determinize the automaton using the subset construction.
[1 Complement theresulting deter ministic automaton

The complexity of this process is exponential in the
sizeof the original automaton.

The number of states of the final automaton is 28, in
the worst case.



Finite state automata: complementation

commolh

L(A)=(a*b)’a
A




Bluchi automata (BA)

A Buchi automaton isatuple A = (2,5,5,,R,F)

2. set of input symbols

e S set of states-- S;: set of initial states( S, S)

R:Sx3 - 25:thetranstion relation.
F: set of accepting states( F S)

A run r on w=a;,a,,... IS an infinite sequence s,,s;,...

such that s,JS, and s, UR(s,&) for 1=0.

A run r is accepting iIf some accepting state in F occurs

In r infinitely often.

A word w Is accepted by A if there Isan acce

pting run

of A on w, and the language L (A) accepted by A IS

the set of (infinite) w-words accepted by A.

9




Bluchi automata (BA)

A Buchi automaton isatuple A = (2,5,5,,R,F)

 Arunr on w=a,;,a,,... ISan infinite sequence s,,s,,...
such that s,JS, and s, UR(s,&) for 1=0.

e LetLim(r) ={s|s=s for infinitely many i }
o Arunr isaccepting if

Lim(r) n F # [

« A word w Is accepted by A If there Is an accepting
run of A on w.

 The language L (A) accepted by A iIs the set of
(infinite) w-words acceted by A.

10



Buchi automata: union

Given Buchi automata A; and A,, there is an Buchi
automaton A accepting L (A) =L (A O L_(A,).
The construction isthe same asfor ordinary automata.

A = (2,55, R,F) Is an automaton which just runs non-
deterministically either A; or A, on theinput word.

S=50S,
F=F,0OF,
S = So1 U S

R,(sa)iIf s S,

R(s.a) ={ .
Ry(sa)If sUIS,




Blchi automata: intersection

e Theintersedion construction for automata does not work
for Buchi automata.

e |nstead, the intersedion for Blchi automata can be
defined as follows:

A=(2,S,S,,R,F) Intuitively runs sSmultaneously both
automata A,=(2,5,5,,R,,F) and A=(2,S,S,,R,,F,) on

theinput word.
S=5,%x35,%{12

F=F,x5,x{1}
S = Spp X S {1}
(s,t',2) if SUR,(sa),t'UR,(t,a), sl F,andi=1
R((st,i),a) =¢ (s.t',1) if SOR,(sa),t'0R,(s,a),tOF,andi=2
(s,t',1) If SUR(sa), t'lIR,(t,a) 12



Blchi automata: intersection

A = (2,SS,R,F) runs ssmultaneoudy both automata A, and
A, on the input word.

S=5,x5,x{1,2} <
F=F,xS,x{1}
So = Spp X S * {1}
(s.1',2) if SUR,(sa), t'IR,(t,a), sSLIF,and i=1
R((st,i),a) = (s.1,1) If SUR(sa), t'URy(t,a), tUF,and 1=2
(s.t,1) IfsUR(sa),t'lIR,(t,a)
The automaton remember 52 track§onefor each automaton,

and points to one of the tracks. |As soon as It goes through
an accepting state on the current track, it changestrack.

The accepting condition and the transition relation ensure
that this change of track must happensinfinitely often.



Blchi automata: intersection

A = (2,SS,R,F) runs ssmultaneoudy both automata A, and
A, on the input word.

S=5, x5x%x{1,2}
F=F; xS,x {1}
Sy = Sy X Spp * {1}
(s.1',2) if SUR,(sa), t'IR,(t,a), sSLIF,and i=1
R((st,i),a) = (s.1,1) If SUR(sa), t'URy(t,a), tUF,and 1=2
(s.t,1) IfsUR(sa),t'lIR,(t,a)
As soon as it visits an accepting state in track 1, it switchesto

track 2 and then to track 1 again but only after visiting an
accepting statein thetrack 2.

Therefore, to vigt infinitely often a state in F (F,), the
automaton must also visit infinitely often some state of F .1



Blchi automata: complementation

It's a complicated construction -- the standard subset
construction for determinizing automata doesn’t work
as non-deterministic automata are more powerful than

deterministic ones (e.g. L ,=(0+1)"1%) LN 1
1

Solution (resortsto another kind of automaton):

e Transform the (non-deterministic) Buchi automaton into a
(non-deterministic) Rabin automaton (a more general kind
of w-automaton).

* Determinize and then complement the Rabin automaton.
 Transform the Rabin automaton into aBuichi automaton.

e Therefore, also Blchi automata are dosed under
complementation.

15



Rabin automata

e A Rabin automaton iIs like a Buchi automaton,

except that the acceting condition Is defined
differently.

A = (2,S,S,,R,F), where F=((G,,B,),...(G ..,B,.)).

and the acceptance ondition for arunr = §,,Sy,... IS
as follows: for some |

e Lim(r) n G, # U and
e Lim(r) n B; = [
In other words, thereis a pair (G;,B;) such that the

left- hand set (G)) Is visited infinitely often, while the
right-hand (B;) set isvisited finitely often.

16



Rabin versus Buchl automata

1,0 The Bilchi automaton
O @) e
1

/ 1 The Rabin automaton
0 i 8 1 f — * 40
e ot L, =(0+1)'1
0

The Rabin automaton hes F=(({t}.{s}))
Note that the Rabin automaton iIs deterministic.

17



Language emptiness for Bluchi automata

The emptiness problem for Blichi automata is the problem
of deciding whether the language accepted by a Buchi
automaton A isempty, i.e. if L(A)=0.

Theorem: The emptiness problem for Blchi automata is
deadablein linear time, 1.e. intime O(|A|).

Fact: L(A) = O Iff in the Buchi automaton there is no
reachable cyle A containing astatein F.

18



Language emptiness for Bluchi automata

In other words, L(A) =0 iff thereisacycle containing an

accepting state, which is also reachable from some
Initial state of the automaton.

We need to find whether thereis such a reachable cycle

We could simply compute the SCCs of A using the
standard DFS agorithm, and check If there exists a
reachable (nontrivial) SCC containing astatein F.

But thisistoo inefficient in practice. We will therefore use
a more efficient nested DFS (more efficient in the
average-case).

19



Efficient language emptiness for BA

Input: A
Initialize Stack,:=0, Stack,:= [
Table;:=0, Table,;= 1
Algorithm Main()
foreach s Init
If sl Table, then
DFS1(s);
output(“ empty”);
return;

Algorithm DFS1(s)
push(s,Stack,);
hash(s, Table);
foreach t [ Succ(s)

If t U Table, then
DFS1(t);
If sUF then
DFS2(s);
pop(Stack,);

Algorithm DFS2(s)
push(s,Stack.,);
hash(s,Table,) ;
foreach t J Succ(s) do

If t ] Table, then
DFS2(t)
else if tison Stack,
output(“ not empty”);
output(Stack ,Stack,t);
return;
pop(Stack,);

Note: upon finding abad cycle,
Stack,+Stack,+t, determines

a counterexample: a bad cycle

reached from an init state.
20



Generalized Buchi automata (GBA)
Generalized Buchi automaton: A = (2 ,S,.5,,R,(F1,....F))

« A runr on w=a;a,... IS an Infinite sequence s,,S;,...
such that s,[JS, and s, UR(s,&) for 1=0.

e LetLim(r) ={s|s=s for infinitely many i }
e Arunrisaccatingif foreachl<i<m

Lim(r) n F; #

Any Generalized Bulchi automaton can be eadsly
transformed into a Buchi automaton as follows:

L(Z,SS R(F,,...F,) = N L(Z,SS,,RF))

i0{1,..,m}

Thistransformation is not very dficient, though.

21



From GBA to BA efficiently
Generalized Buchi automaton: A = (2 ,S,.5,,R,(F1,....F))

A Generalized Buchi automaton can be efficiently
transformed into aBuchi automaton as follows:

S =5x{1,....m}
F'=F x{i} for somel<i<m
S;=5 x{i}forsomel<i<m

(s, (i mod m)+1) if s OR(s,a) and sOF,

R((s1).8) :{ (s,i) If SR (s,a) and sLIF,

Notice that the transformation above epands the
automaton size by a factor or m (see Biuchi
| ntersedion).

22



LTL-semantics and Buchil automata

« Wecan interpret aformula g as expressing a property
of w-words, i.e, an w-language L(Y) O Z,5".

 For w-word 0 = 0,, 0;,0,,..-.

0..... bethe suffix of o starting at position |I.

defined the “ satisfies’ relation, k, inductively:

« Wefinally definethelanguageL(p)={o| ok }.

CED, Iff
ok~ Iff
ok, Uy, Iiff
o E XY I
ok, Uy, Iff

p0ag, (foranyp, OP).
not o E .
Ok Y,0r ok ..
olE .
di=0suchthat o'k W,
and 0j, 0< j<i, ol E Y.

0>,.% letoc'=0,,0,,,

We

23



Relation with Kripke structures

We extend our definition of “satisfies’ to transition
systems, or Kripke structures, asfollows:

« Kuyp E W Iff for all computations (runs) mmof K ,p,
L (1) E Y, or in other words, Iff

L(Kap) D L(W).

24



Relation with Kripke structures

We can transform any Kripke structure into a
Blchi automaton as follows:

K ap

where every state is accepting!



LTL Model Checking

System Modd Model Checker Ves|
K S~ ChethhatKhl.lJ —Pp———— -
“*— by cheding that
L(K)nL(ALp) =0 [Pr----">
5 Nol +
“counterexample”
LTL Convert = to a
property  y=--=--- " Biichi automaton
1] A-IL|J , SO that
L~g) =LA,
26



LTL Model Checking: explanation

MEU

A==

L=

A==

A==

L(Kae) O L()

L(Kap) N (Zap”\L(W)) =00
L(Kap) N L(=g) = O
L(Kap) N L(Ay) =01

27



The algorithmic tasks to perform

We have reduced L TL model checking to two tasks:

1 Convert an LTL formula ¢ (i.e. =) to a Biichi
automaton A, , such that L(¢) = L(A,).

« Canwein general dothis? yes.....

2 Chedk whether K,p E U, by checking whether the
Intersedion of languagesL (Kp) N L(A_,) Isempty.
|t is actually unwiseto first construct all of K., because

K ,p Can befar too big (state explosion).

e |Instead, we dall se2how it ispossible perform the check by
constructing states of K ,» only as needed.

28



LTL to BA translation

o First, let’sput LTL formulas ¢ in normal form where:
e - ‘shavebeen “pushed in”, applying only to propositions.
e theonly propositional operatorsare-, L[l
e theonly temporal operators are X, U and its dual R.

* |n arder to dothat we wse thefollowingrules:
* p-Qg=-pUg;p-q=(-pUgU(=qglp
 2(pUg)=-pU-q;-(pUg=-pl-q ; == p=p

* 2(pUg)=-PREQ ;" (PRYP=(=p UG-
e Fp=TUp ;Gp=lURp ;" XpEXp

29



LTL to BA translation

e Hrst, let’'sput LTL formulas¢ in normal form
e = ‘shavebeen “pushed Iin”, applying only to propositions.

 We usethefollowingrules:

* p-q=-pUg;pe-q=(-plgU(=qlp)

* ~(pUg=-pl-q;~(pUg=-pL-q

;—l—lpEp

* " (PU=EEPREQ - (PRO=E(EP U

e Fp=TUp ;Gp=slURp ;" XpEX-p

Examples:

(pUQ) - Fr)

(=pR-QO(TUr)

s(pUQq OFr==(pUQq O(TUr)=

GFp - FrE(UR(Fp) - (TUp)=(LR(TUP) - (TUN=

(TUR=-p)O(TUY)

- (OR(MTUP)O(MUN=(TU-(TUp)O(TUTr)=

30



LTL to BA translation

States of Ay will be sets of subformulasof ¢, thusif we
have ¢= p,U-p,, astateisgiven byl L{p;,m P-,P, U~ P2}
Consider aword 0 = 0,, 0,,0,,...00Z,,* such that 0 E ¢,
where, e.g., ¢ = P, U, .

Mark ead position with the set of subformulasT; of ¢
that hold true there:

Op 010y wevvrvnnnnn.
Clealy, ¢ U I, . But then, by consistency, either:
e Y, 0lyando Ol or
* 0T,
The consistency rules dictate our states and transitions.




LTL to BA translation

Let sub(¢) denote the set of subformulas of ¢.
We define Ay = (Q, 2, R, L, Init, F) asfollows.
First, the state set:

e Q={I 0 sub(¢) |st. T islocally consistent }.
e For I' to be locally consistent we should, e.g., have:

e LT

eifUydr,thenyOror yar.

e ifYOyOl, thenyOTrandyOT.

e ifp Orthen-pUr andif - p, O thenpLT.
e fYUyONthen(Oror yar).

e ifYRyYOTl, thenyOT.

32



LTL to BA translation

Now, labeling the states of A
e ThelabdingL: Q2 isL(IN)={l Usub(¢) |l T}.

* Now, aword 0 = 0,0, ... U (Z,p)?IsIn L(A,) Iff
thereisarunm=r, > I, - I, - ... of Ay, st,
Li0N, we have that o, “satisfies’ L ("), I.e., 0, isa
“satisfying assignment” for L(I';) .

 This constitutes a dight redefinition d Bdchi

automata, where labeling is on the states instead of
onthe alges. This faalitates a much more compad

Ay

33



LTL to BA translation

Now, the transition relation, and the rest of A¢.
Based on the following LTL rules:

* (WUy) =yO(pOX(gUYy))

* (WRyY) =yUOWOX(WRY)=(yOy) OyUXWRY))
and on the semantics of X, we define;
e RUOQxQ,where(',I") U R iff:
e if(WUY OTlthenyOlNor(OrMand(QUy OI).
e f(WRY)OTlthen yOTI,and(W Ol or (YRY) LIT).
e if XOTl, thenp O,




LTL to BA translation

e INit={FUQ |¢ LI}
e For each (Y U y) U sub(¢), thereisaset F; L1 F, such
that:
 F={rd0Q|(WuUyOrorydr}
o (orequivdently F={ LQ|if(Uy Ul thenylll})

e (notice that if there are no (Y U y) 0 sub(¢), then the
acceptance condition isthe trivial one: all states are accepting)

Lemma: L () = L(Ag) -

but, at this point, A¢ IS ageneralized Blichi automaton ...

35



LTL to BA translation: example

O

Consider thefollowingformula: Fp=TUQPp
sub(TU p) ={TUp,p}
Init={F Osub(TUpP)|TUpOT}

O &

36



LTL to BA translation: example

Consider thefollowing formula: TU p
(TUp)=pUX(TUDp)

37



LTL to BA translation: example

Consider thefollowing formula: TU p
(TUp)=pUX(TUDp)

38



LTL to BA translation: example

Consider thefollowing formula: TU p
(TUp)=pUX(TUDp)

39



LTL to BA translation: example

Consider thefollowing formula: TU p
(TUp)=pUX(TUDp)



LTL to BA translation: example

\
=
Gy O

Consider thefollowing formula: TU p
sub(T U p)={TUp, p}
F={Frp}t={T0Osub(TUp)|[(TUp)OTorpUrl} .



LTL to BA translation: example

®C

Consider thefollowing formula: Gp=0ORDPp
sub(DRp)={0Rp,p}
Init={ Osub(OR p) |OCR p LT}

42



LTL to BA translation: example
P

Consider thefollowing formula: Gp=0ORPp
sub(DRp)={0Rp,p}
(ORp) =pUX(ORP)



LTL to BA translation: example

Thetrivial
acceptance condition

Consider thefollowing formula: Gp=0ORPp
sub(DRp)={0Rp,p}
There are no eventualities, henceF ={ Q }



LTL to BA translation: example
P.9

Consider thefollowing formula: pU g

sub(pUq)={pUq,p,q;
Init={ Osub(pUp)|pUqlrl}

45



LTL to BA translation: example
P.9

Consider thefollowing formula: pU g

sub(pUqg)={pUaq,p,q
Init={F Jsub(pUp)|puqlrl}

46



LTL to BA translation: example

Consider thefollowing formula: pU g

sub(pUqg)={pUaq,p,q
(pPUQ)=ql(pUX (pU Q)



LTL to BA translation: example

Syt
G
(DA

¢@7‘}:

Consider thefollowing formula: pU g

sub(pUqg)={pUq,p,a}
F={F ugt={F Usub(pUqg)|(pUqg)Trorqll} .




On-the-fly translation algorithm

There is another more efficient way to build the BUlchi
automaton correspondingto aL TL formula.

 The algorithm proposed by Vardi and his colleagues,
Isbased on theidea d refining states only as needed.

e |t only record the necessary information (what must
hold) of a state, instead of recording the complete
Information about each state (both what must hold
and what might or might-not hold).

* |n away what “might or might-not hold” is treated as
‘don’t care’ information (which can be filled in, but
whose value has no relevant effed).

49



Algorithm data structure: node

Name: A string identifying the current node.
Father: The name of the father node of current node.

Incoming: List of fully expanded nodes with edgesto the
current node.

Old: A set of temporal formulae which must hold and in
the current node have been processed already.

New: A set of temporal formulae which must hold but In
the current node have not been processed yet.

Next: A set of temporal formulae which should hold In
the next node (immediate successor) of the current
node.

50



Name:
Father:

Incoming: Init

Nodel
Nodel

NODE > New: {pUq}

Next: {}

Old: {}
Name: NodeZ\ \ Name: Node3
Father: Nodel Father: Nodel
lncoming: Init lncoming: Init
New. {p} New: {a}
Next: {pUq} Next: {}
Old: {pUq} Old: {pUq}

51



function create graph()
return(expand(|Namell FatherlLl new_name(),
IncomingC {Init}, New { @},
Oldd O, Nextd O], O)

function expand (Node, Nodes_Set)

If New(Node)=L] then
If CNDCONodes Set with Old(ND)=0Old(Node) and
and Next(ND) = Next(Node) then
Incoming(ND) := Incoming(ND) U Incoming(Node);
return(Nodes Set);
elsereturn(expand([Name L Father 1 new name(),
Incoming L {Name(Node)},
New [0 Next(Node), Old O [, Next [ ],
Nodes Set [ { Node});

gse.... 52



Nodes Set

I nit

URp;p

Name: Node8
Father: Nodeb

lncoming: 4
New: {}
Next: {0R p}

Old: {OURPp; p}

53



Init

Nodes Set L
4 puqg;p
9 pUQ;Q

Name; Noded

Father: Node7

lncoming: 4

New: {}

Next: {}

Old: {pUQq;q




function expand (Node, Nodes Set)
If New(Node)=L1 then{ preceding block}
else

let n U New; Contradiction found

New(Node) := New(Node) \ {n};
casen of /
n=p;or-porTorll: Ve
f n = [ or Neg(n)dOId(Nodepthen
retur . [* Discard current node */

else Old(Node) := Old(Node) [ {n};
return(expand(Node, Nodes Set));

n=pUgorpRYorpdy:....

55



Additional functions

Thefunction Neg() isapplied only to literals:
Neg(p)=-p;  Neg(T)=0O
Neg(-p;) = p; Neg(D) =T

The functions New1(), New2() and Next1(), used

for gplitting nodes, are applied to temporal
formulae and defined as follows:

N Newl(n) Nextl(n) New2(n)
LUy | {p {nU g} {y}
LRy | {y} {HR g} {1 .y}
L Oy {1} [ {W}




function expand (Node, Nodes Set)

IT New(Node)=[ then { preceding block}
else

let nLJ New;

New(Node) := New(Node) \ {n};
casen of

n=p;or-p;or T or: {preceding block}
N=pUPorpRY orpuldy:
Nodel:=[Name [l new _name(), Father 1 Name(Node),
Incoming [J Incoming(Node),

New [0 New(Node) [1 ({Newl(n)} \ Old(Node)),
splitfing Old O Old(Node) U {n},

Next (1 Next(Node) [ {Nextl(n)}I;
Node2:=[Name [l new_name(), Father 1 Name(Node),
Incoming [J Incoming(Node),
New [ New(Node) [0 ({New2(n)} \ Old(Node)),

Old O Old(Node) LI {n}, Next I Next(Node)];

return(expand(Node2, expand(Nodel, Nodes Set)));
n=puy:...

57




Name: Nodel
Nodel

Father:

Incoming: Init

Name:
Father:

New:
Next:
Old:

Node2
Nodel

lncoming: Init

1p Uq;
1p Uq;

New: {pUq}
Next: {}
Old: {}
/SDN
Name: Node3
Father: Nodel

lncoming: Init
New: {a}
Next: {}

Old: {p Uq}

58



function expand (Node, Nodes Set)
If New(Node)=L1 then { preceding block}
else
let nLJ New;
New(Node):=New(Node) \ {n};
casen of
N =p;or-p;or T or LI { preceding block}
N=pUyPoruRPorpudyY:{preceding block}

n=pUy:
return(expand([Name LI Name(Node),
Father [ Father(Node),
Incoming LI Incoming(Node),
New [ (New(Node) L1 {p , } \ Old(Node)),
Old O Old(Node) (1 {n}, Next = Next(Node)],
Nodes Set);

59



Name: Nodel
Father: Nodel

Incoming: Init

New: {p0q,..}
Next: {...}
Old: {..}

l expand
Name: Node2

Father: Nodel
Incoming: Init

New: {p,q,..}
Next: {...}

Old: {....0o0q}

60



function expand (Node, Nodes Set)
If New(Node)=[ then { preceding block}
else
let nLJ New;
New(Node):=New(Node) \ {n};
casen of
N =p;or=p;or T or LI { preceding block}
N=pUPoruRYorpudyY:{preceding block}
n=p Oy : {preceding block}

nN=Xy:
return(expand(
[Name [0 Name(Node),Father [1 Father(Node),
Incoming LI Incoming(Node), New 1 New(Node),
Old O Old(Node) I {n}, Next = Next(Node) L1 {y} ],
Nodes Set);

esac;
end expand,;

61



Name: Nodel
Father: Nodel

Incoming: Init

New: {Xp,..}
Next: {...}
Old: {..}

l expand
Name: Nodel

Father: Nodel
Incoming: Init
New: {..}
Next: {....p}
Old: {..., X p}

62



The need for accepting conditions

e IMPORTANT: Remember that not evey maximal
path T=s;s;S,... In the graph determines a model
of the formula: the construction above allows

some node to contain p U Y while none of the
successor nodes contain .

 This is solved again by imposing the generalized
Blchi acceptance conditions:

e for each subformula of ¢ of theform p U { , there
Isaset F,UF,including thenodess I Q, such that

either pU P O Old(s), or Y [ Old(s).

63



Complexity of the construction

THEOREM: For any LTL formula ¢ a Bduchi
automaton A, can be constructed which accepts all
an only the w—sequences satisfying .

THEOREM: Given a LTL formula @, the Bduchi
automaton for ¢ whose states are O(29) (in the
worst-case). [|@| Isthe number of subfor mulae of ().

THEOREM: Given a LTL formula ¢ and a Kripke
structure Ky the, the LTL model checking
problem can be solved in time O(|K214).
[actually it is PSPACE-complete].




LTL to BA: example

 Consider thefollowing formula:

Gp
 wherepisan atomic formula.
e |tsnegation-normal formis

ORDP

65



LTL to BA: example

Init
Current nodeis Node 1
Incoming = [Init]
g'd:[-_ . (ORp) =(pO0) C
ew=10Rp OX(OR
Next = ] (P UX(@ER p))

New(node) not empty, removing n =0 R p, hode split into 2, 3,
about to expand them 66



LTL to BA: example

Current node is Node 2
Incoming = [Init]
Old=[0OR p]

New = [p]

Next = [OR p]

New(node) not empty, removing N = p, hode replaced by 4

about to expand them

INit

67



LTL to BA: example

Current node is Node 4
Incoming = [Init]
Old=[0Rp; p]

New =[]

Next = [OR p]

New(node) empty, no equivalent nodes. About to add,

timeshift and expand.

INit

68



LTL to BA: example

Init
4 ORp;p
Current nodeis Node 5
Incoming = [4]
Old:[:_ (ORp) =(p0O0O) O
New =[OR p] (p OX(OR p))
Next =[]

New(node) not empty, removing N = O R p, node split into 6, 7
about to expand them 69



LTL to BA: example

INit

!

4 ORp;p

Current node is Node 6
Incoming = [4]
Old=[0OR p]

New = [p]

Next = [OR p]

New(node) not empty, removing n = p, node replaced by 8,
about to expand it



LTL to BA: example

Init
4 ORp;p
Current nodeis Node 8
Incoming = [4]
Old=[0Rp;p]
New =[]
Next = [OR p]

New(node) empty, found equivalent old node in Node Set (4).
Returning it instead. 7



LTL to BA: example

From the split Init
of Node 5 \l/

4 ORp:p O

Current node is Node 7
Incoming = [4]
Old=[0OR p]

New =[O ; p]

Next =[]

New(node) not empty, removing n = O, inconsi stent node
deleted - dead end!.



LTL to BA: example

From the split Init
of Node 1 \l/

4 ORp:p O

Current node is Node 3
Incoming = [Init]
Old=[0OR p]

New =[O p]

Next =[]

New(node) not empty, removing n = 0, inconsistent node
deleted - dead end!.



LTL to BA: examp

le

INit

!

URp;p

Final graphfor Gp=LORp

/

@

74



LTL to BA: example 2

Consider thefollowing for mula:

pUQg
where p and g are atomic formulae.

75



LTL to BA: example 2

Current nodeis Node 1
Incoming = [Init]

Old =]
New =[p U q
Next =[]

INit

(PUQ) =q0(pOX

(

pUQ)

Nt 3

New(node) not empty, removing N = p U g node split into

about to expand them

)

121

76




LTL to BA: example 2

Current node is Node 2
Incoming = [Init]
Old=[pUq]

New = [p]

Next =[p U (]

New(node) not empty, removing N = p node replaced by 4, about

to expand them

INit

77



LTL to BA: example 2

Current nodeisNode 4
Incoming = [Init]
Old=[pUq; p]

New = []

Next =[p U (]

New(node) empty, no equivalent nodes. Add, timeshift and

expand.

INit

78



LTL to BA: example 2

Current nodeis Node 5

INit

!

A

pUuq;p

Incoming = [4]

old=T[

New =
Next =

pUq
]

(PUQ =9UpEUX(PUq)

\'\

New(node) not empty, removingn =p U g, node splitinto 6, 7,

about to expand.




LTL to BA: example 2

INit

!

A

pUuq;p

Current node is Node 6

Incoming = [4]

Old=[p U q]
New = [p]

Next =[p U q]

New(node) not empty, removing N = p, hode replaced by 8, about

to expand it

80



LTL to BA: example 2

Init
4 pUq;p
Current node is Node 8
Incoming = [4]
Old=[pUq;p]
New =]
Next =[p U q]

New(node) empty. Found equivalent old note (4) in Node Set.
Returning it instead.



LTL to BA: example 2

From the split Init
of Node 5 \l/
4 puqg;p

Current nodeis Node 7

Incoming = [4]

Old=[p U q]
New = [q]
Next =[]

New(node) not empty, removing N = g, hode replaced by 9, about

to expand it

82



LTL to BA: example 2

INit

4 pUiq;p D

Current nodeisNode 9
Incoming = [4]
Old=[pUq;q]

New =]

Next =[]

New(node) empty, no equivalent node found. Add timeshift and
expand



LTL to BA: example 2

Init
4 puqg;p
Current node is Node 10 J/
Incoming = [9] _
old=[ 0 pUd;Q
New =]
Next =[]

New(node) empty, no equivalent node found. Add timeshift and
expand



LTL to BA: example 2

INnit
4 pug;p
Current node is Node 11 l
Incoming = [10]
old =T 9 pUd;Q
New = ] |
Next =[]

10

New(node) empty. Found equivalent old node in Node Set (10).
Returning it instead.




LTL to BA: example 2

From the split
of Node 1 Init
4 puqg;p
Current node is Node 3 J/
Incoming = [Init] :
Old=[pU (] ) PUG;q
New =[q] J/

Next =] 10 D

New(node) not empty, node replaced by 12, about to expand.




LTL to BA: example 2

Init
4 puqg;p
Current node is Node 12 J/
Incoming = [Init]
old=[pUq:q] L° pU(q;q
New =[] |

Next =[] 10 D

New(node) empty. Found equivalent old node (4) in Node Set.
Returning it instead.




LTL to BA: example 2

Init

!

pUuq;p

l

pUd;Q

Final graphforp U g

!

10

88



Comparison of the two algorithms

The graphsfor p U g obtained from the two algorithms



Notes on the algorithm

* Notice that nodes do not necessarily assign truth
valueto all atomic propositions (in AP)!

* Indeed the labeling to be associated to a node can
be any element of 2AFP which agrees with the literals
(AP or negationsof AP) in Old(Node).

e Let Pos(g) = Old(g) n AP
 Let Neg(q) ={n U AP|-n U Old(a)}

£(9) ={ X UAP| X U Pos(g) (X n Neg(q)) = L}

0



Notes on the algorithm

() ={{}A{p}{a}.{p.a}}




Composing A, and A,

* |n general what we need to do Is to compute the
Intersection of the languages recognized by the
two automata Ay and A, and check for
emptiness.

« We have already seen (dide 12) how this can be
done.

e When the System need not satisfy FAIRNESS
conditions (or in general Ay  have the trivial
acceptance condition, I1.e. all the states are
accepting) thereisamore efficient construction...

92



Efficient composition of A, and A,

* When A, have the trivial acceptance condition, I.e.

all the states are accepting there is a more efficient
construction.

* |nthiscasewe can just compute:

ASyS N A(p: <2, Ssysx S(p, R’, SOSny So(p, Ssysx F(p>
e where

(<st>,a,<s,t'>)UR" 1ff (sa,s )Ry and (t,at')0R,,

93



Efficient composition of A, and A,

Notice that in our case both automata have labels in
the states (instead of on the transitions).

This can be dealt with by ssmply restricting the set of
states of the intersection automaton to those which
agree on the labeling on both automata.

Thereforewe define
AgsN Apg=<2Z, S, R, (SpgsX SppN S, Syex Fy>
where
S ={(st) U Syex Syl Lge(9)=L (1)} and
(<st><s,U'>)0OR" 1ff (s5)0Ry and (tt)UR,

94



