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Tecniche di Specifica e di
Verifica

Modeling with Transition Systems
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An example

The Dining Philosophers

• Possible problems:
– Deadlock: system state where no action cen be

taken (no transition possible)

– Livelock: When system component is prevented
to take any action, or a particular one
(individual starvation)

– Starvation: obvious.
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Fairness

The Dining Philosophers

• Possible solutionto deadlock:
– pick up right fork only if both are present

Assumptions:

– weak fairness: any trans. continuously enabled,
will eventually fire (eating philosophers will
finish)

– strong fairness: any trans. enabled infinitely often,
will eventually occur (if 2 fork available infinitely
often, phil. will eat).
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Livelock
The Dining Philosophers

• Possible solution:
– pick up fork only if both are present

Assumptions:

– strong fairness: any trans. enabled infinitely often,
will eventually occur (if 2 fork available infinitely
often, phil. will eat).

strong fairness is not enough to prevent livelock

Why? Think of the case with 4 phil.!

Sol.(?): Try preventing consecutive eating.

         Still suffers from livelock with 5 phil.! Why?
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Outline

• The model – Transition systems

• Some features
– Paths

– Computations

– Branching

• First order representation
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Transition systems

• A transition system (Kripke structure) is a
structure

    TS = (S, S0, R)
    where:

– S  is a finite set of states.
– S0  ⊆⊆  S is the set of initial states.
– R  ⊆⊆  S ×× S is a transition relation

� R  must be total, that is
– ∀∀s ∈∈ S ∃∃s’  ∈∈ S . (s, s’ ) ∈∈ R or, equivalently,
– For every state s in S, there exists s’  in S such

that (s, s’ ) is in R.
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Notions and Notations

• TS = (S, S0, R)

• (s, s’) ∈∈ R     R(s, s’ )    s →→ s’
• A (finite) path from s is a sequence

    s1, s2,…,sn

    such that

– s = s1

– si →→ si+1 for 0 < i < n.

• It is from s  to s’  if sn = s’ .

• An infinite path from s is a sequence …..
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Labeled transition systems

• Sometimes we may use a finite set of actions:
– Act = {a, b, ..}

• The actions will be used to label the
transitions.

• TS = (S, S0, Act, R)
– R ⊆⊆ S ×× Act ×× S, labeled transitions.

• (s, a, s’) ∈∈ R  -   R(s, a, s’)   -   s         s’a
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A vending machine

coin

coffee

tea

c-out

t-out

t-serve

c-serve

coin-return
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A path

coin

coffee

tea

c-out

t-out

t-serve

c-serve

coin-return
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A non-path

coin

coffee

tea

c-out

t-out

t-serve

c-serve

coin-return

1  2  3

1 2 3  No!

3 1 2   yes!
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A non-total transition relation

coin

coffee

tea

c-out

t-out

t-serve

c-serve

1  2  3
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State space

• The state space of a system (e.g. program) is
the set of all possible states for it.

• For example, if V={a, b, c} and the variables
are over the naturals, then the state space
includes:

<a=0,b=0,c=0>,<a=1,b=0,c=0>,<a=1,b=1,c=0>
,<a=932,b=5609,c=6658>…
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Atomic transition

• Each atomic transition represents a small
peace of code (or execution step), such that
no smaller peace of code (or step) is
observable.

• Is a:=a+1 atomic?

• In some systems, e.g., when a is a register
and the transition is executed using an inc
command.
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(Non)Atomicity

• Execute the following when
x=0 in two concurrent
processes:

    P1:a=a+1

    P2:a=a+1
• Result: a=2.

• Is this always the case?

• Consider the actual translation:
P1:load R1,a
     inc R1
     store R1,a

P2:load R2,a
     inc R2
     store R2,a

• a may be also 1
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The common framework

• Many systems need to be modeled.
– Digital circuits

� Synchronous

�Asynchronous
– Programs

• Strategy : Capture the main features using a
logical framework (nothing to do with temporal
logics!) : First order representation
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The inefficient way

    Asynchronous 
circuits

    synchronous 
circuits

    Programs
(finite state)

    Kripke Structure   

Model checking
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The efficient way

    Asynchronous 
circuits

    synchronous 
circuits

    Programs
(finite state)

    Kripke Structure   

Model checking

First Order 
Representation



19

A mod-8 counter

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

v2 v1

v0
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The mod-8 counter

• System variables : v2 v1 v0

• Domain of v2 = {0, 1}

• Same for v1 and v0

• Special case : These variables are boolean

• A state is a function which assigns to each
variable a value in its domain.

• s(v0) = 0  s(v1) = 1  s(v2) = 1

• It is the state (1 1 0) !
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State Predicates

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

v2 v1

v0

A set of states can be picked out by a formula;

X = v2 ∨∨ v0  is the set {...}
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State Predicates

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

v2 v1

v0

A set of states can be picked out by a formula;

X = v2 ∨∨ v0  is the set {100, 101, 110, 111, 001, 011}
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Initial States Predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

v2 v1

v0

A set of states can be picked out by a formula;

X’ = ¬¬v2 ∧∧ ¬¬v1 ∧∧ ¬¬v0
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Initial States Predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

v2 v1

v0

A set of states can be picked out by a formula;

X’ = ¬¬v2 ∧∧ ¬¬v1 ∧∧ ¬¬v0     X’ = { S0 } = { 000}
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Transition relation predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

A set of transitions can also be picked out by a formula.

R2=  v2’ = (v0 * v1) ⊕⊕ v2      v2 – old value      v2’ – new value
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Transition relation predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

A set of transitions can also be picked out by a formula.

R2=  v2’ = (v0 ∧∧ v1) ⊕⊕ v2      v2 – old value     v2’ – new value

{t0, t1} ⊆ R2

t1
t0
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Transition relation predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

T = Formula(v2, v1, v0, v2’ , v1’ , v0’ }

Not all formulas will define subsets of transitions.

You must pick the right formula .
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Transition relation predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

R0 =   v0’   ≠≠  v0   v0 – old value   v0’ – new value

R0 = { (000)       (101) ,……..}

But this is not a transition!
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Transition relation predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

R0 =  v0’   ≠≠  v0   vi – old value   vi’ – new value

R1 =  v1’   =  (v0 ⊕⊕ v1)

R2 =  v1’   =  (v0 ∧∧ v1) ⊕⊕ v2

R = R0 ∧∧ R1 ∧∧ R2
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Summary of Predicates

• System variables v0, v1, v2, …..v n.

• Each vi has a domain of values
– Boolean , {a,b,c,..}, {5,8,0,7}…

– Each domain is required to be finite.

• A state is a function s which assigns to each
system variable a value in its domain.

• The set of states is finite.
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Summary

• Predicates can be used to pick out –succinctly-
sets of states (useful for identifying initial
states).

• X = Formula (v0, v1, v2,...,vn)

• But this works only when all domains are
boolean.

• In general Formula will be a first order formula.
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Summary

• A set of transitions can also be picked out
using predicates.

• T = Formula (v0, v1,..vn,  v0’, v 1’..,v n’}
• T is the set of all transitions
    (v0, v1, …,v n)             (v0’, v 1’, …,v n’)
    such that Formula (above!) is satisfied.
• Not all (state or transition) formulas will be

legitimate.
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Why use formulas?

• Once and for all , say how to go from the
“ logical” description to Kripke structures.

• Once we have a Kripke structure, we are in
business.

• We can use
– temporal logics to specify properties

– Model checking to verify these properties.
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First Order Logic

• The general structure :
– Syntax

� Formulas

– Semantics
�When is a formula  true ?

�Models
– Interpretations

– Valuations
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Syntax

• Terms
– Variables
– Functions symbols, constant symbols

• Atomic formulas
– Relation symbols, equality, terms

• Formulas
– Atomic formulas
– Propositional connectives
– Existential and universal quantifiers
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Syntax
• (individual) variables --- x, y, v3, v’,…

– System variables in our context

• Function symbols : f (n)

– n is the arity of f.

– Add (2)

– Next (1)

• Function symbols will capture the functions
used in the programs, circuits, …
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Constant symbols

• Apart from variables, it will also be
convenient to have constant symbols.
– zero , five,  ….

• Variables can be assigned different values

    but a constant symbol is assigned a fixed
value.
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Terms

• Terms are used to point at values.

• A variable is a term.
– x , v , v’’

• A constant symbol is a term.

• Suppose f is a function symbol of arity n

    and t1, t2, …,t n are terms then

    f(t1, t2,…,t n) is also a term.
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Terms

• Let Plus be a function symbol of arity 2.

• v1 , v2, Plus(v2, Plus(v1, v1)) are terms.

– the semantics of the last term is intuitively
v2 + 2v1

• Let weird_op be a function symbol of arity 3

• Then
    Plus(weird_op(v, Plus(v1, v2), five), Plus(v, v” ))

   is a term.
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Predicates

• Relation (predicate) symbols :

–  P which also has an arity

– Greater-Than has arity  2

– Prime  has arity 1

– Middle has arity 3  -- Middle(t1, x, t2)
� intuitively, x lies between t1 and t2

• Equal has arity 2

– will be denoted as =
– It is a “constant” relation symbol.
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Atomic formulas.

• If t1 and t2 are terms then =(t1, t2) is an
atomic formula.
– also written t1 = t2

• Suppose P has arity n and t1, t2, …, tn are
terms.

• Then P(t1, t2, …, tn) is an atomic formula.
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Atomic formulas

• Greater-Than(five, zero)

• Greater-Than(two, four)

• Prime(Plus(v1, v” ))
• Plus(v,Zero) = weird_op(v,v,four )
• v = Greater_Than(v1,v2) is not an atomic

formula !
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Terms and Predicates

• A term is meant to denote a value.
– Makes no sense to talk about a term being true

or false.

• An atomic formula may be true or false
(depends on the interpretation).
– Does not make sense to associate a value with

an atomic formula.
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Formulas

• Every atomic formula is a formula.

• If ϕϕ is a formula  then ¬¬ϕϕ is a formula.

• If ϕϕ and ϕϕ’ are formulas then ϕϕ ∨∨ ϕϕ’ is a
formula.

•  ϕϕ ∧∧ ϕϕ’  abbreviates:  ¬¬(¬¬ϕϕ ∨∨ ¬¬ϕϕ’)
• ϕϕ ⊃⊃ ϕϕ’  abbreviates : ¬¬ϕϕ ∨∨  ϕϕ’
• ϕϕ ≡≡ ϕϕ’ abbreviates : (ϕϕ ⊃⊃ ϕϕ’) ∧∧ (ϕϕ’ ⊃⊃ ϕϕ)
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Formulas

• If ϕϕ is a formula and x is a variable then ∃∃x. ϕϕ
is a formula.

• ∀∀x. ϕϕ abbreviates : ¬¬∃∃x. ¬¬ϕϕ

• These are existential and universal quantifiers.

• The power of first order logic comes from
these operators!
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Semantics
• Models :

– Domain of interpretation

– Interpretation
� For the function, constant and relation symbols.

– Fixed for all formulas.

� For the individual variables, on a “per formula”
basis.

– Valuations.
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Semantics

• Domain
– Each variable will have its domain of values.

– We pretend all these domains are the same.

– Or rather, a big enough “universe” that wil l
contain all these domains.

• Fix D the universe of values.
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Semantics

Interpretation function I

• Assign a concrete function to each function
symbol (of the same arity!)

• Assign a concrete member of D to each
constant symbol.

• Assign a concrete relation to each relation
symbol (of the same arity!).
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Semantics

• D --- The set of integers.

• Plus               +
• Greater_Than                >

• Zero              0
• weird_op               f  where for each i, j, k

    f(i, j, k) = 2i + 3j - 17k

I

I

I

I



50

Semantics

• Assume we have fixed an interpretation for
all function symbols, constant symbols and
relational symbols.

• Let ϕϕ be a formula. Fix a valuation V which
assigns a member of D to each variable.

• V : Variables             D
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Semantics

• Let ϕϕ be a formula. Fix a valuation V which
assigns a member of D to each variable.

• V : Variables         D
• This extends to a valuation V_T for all terms!

– V_T(v) = V(v)    if v is a variable.

– V_T(c) = d         if c is a constant symbol and the
interpretation we have fixed assigns the value d to c.
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Semantics

– Suppose f  is of arity n and  t1 , t2 ,…,tn are terms with
V_T(t1) = d1, ….. V_T(tn) = dn.

– Suppose f  has been assigned the function F by our
interpretation. Then

– V_T(f(t1, t2,…, tn)) = F(d1, d2, …, d n).

• Let ϕϕ be a formula. Fix a valuation V which
assigns a member of D to each variable.

• V : Variables         D
• This extends to a valuation V_T for all terms!
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Semantics
• Let ϕϕ be a formula. Fix a valuation V which assigns

a member of D to each variable.

• So we now have V_T that assigns a member of D
each term.

• ϕϕ is satisfied under V (and the interpretation we have
fixed for all formulas) if :

• suppose P(t1, t2,.., tn) is an atomic formula

    and V_T(t1) = d1, ….V_T(tn) = dn

  and  PCON is the relation assigned to P by our
interpretation.
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Semantics

• Suppose P(t1, t2,.., tn) is an atomic formula

    and V_T(t1) = d1, ….V_T(tn) = dn

    and  PCON is the relation assigned to P by
our interpretation.

• Then P(t1, t2,.., tn) is satisfied under V iff

    PCON(d1, d2,…,dn) holds in D.

    (d1, d2, ….,dn) ∈∈ PCON ⊆⊆ D   ×× D ××…×× D
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Semantics

• Suppose ϕϕ is of the form ¬¬ ϕϕ’.
  then ϕϕ is satisfied under V iff ϕϕ’ is not

satisfied under V.

• Suppose ϕϕ is of the form ϕϕ1 ∨∨ ϕϕ2

   then ϕϕ is satisfied under V iff ϕϕ1 is satisfied
under V or ϕϕ2 is satisfied under V.
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Semantics

• The only case left is when ϕϕ is of the form

    ∃∃x. ϕϕ’.
• ϕϕ is satisfied under V iff there is a valuation

V’ such that ϕϕ’ is satisfied under V’, and V’
is required to meet the condition :
– V’ is exactly V for all variables except x.

– for x , V’ can assign any value in D of its
choosing.
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Semantics II

• Models :
– Domain of interpretation

– Interpretation
� For the function, constant and relation symbols.

–  Fixed for all formulas.

� For the individual variables, on a per formula
basis.

–  Valuations.
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Semantics II

• Assign a concrete function to each function
symbol (of the same arity!)

• Assign a concrete member of D to each
constant symbol.

• Assign a concrete relation to each relation
symbol (of the same arity!).
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Semantics II

• Assume we have fixed an interpretation for
all function symbols, constant symbols and
relational symbols.

• Let ϕϕ be a formula. Fix a valuation V
which assigns a member of D to each
variable.

• V : Variables             D
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Lift V to All Terms

• We have :
– An interpretation for the function symbols and

constant symbols.

– V : Variables               D

• Using this, we can construct (uniquely!)

    V_T : Terms              D
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Constructing V_T

Variables

Constant 
symbols

f(t1, t2, t3)

V_T

??

D
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Constructing V_T

Variables

Constant 
symbols

V_T

Interpretation

V

D

f(t1, t2, t3)
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Constructing V_T

Variables

Constant 
symbols

V

D

d1   d2     d3

F

f(t1, t2, t3)
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Constructing V_T
f(t1, t2, t3) V

D

d1    d2    d3

F

F(d1, d2, d3)
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Semantics II

• Let ϕϕ be a formula. Fix a valuation V which
assigns a member of D to each variable.

• So we now have V_T that assigns a
member of D each term.

• ϕϕ is satisfied under V (and the interpretation
we have fixed for all formulas) if :
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Semantics II

• Suppose P(t1, t2,.., tn) is an atomic formula

    and V_T(t1) = d1, ….V_T(tn) = dn

    and  PCON is the relation assigned to P by
our interpretation.

• Then P(t1, t2,.., tn) is satisfied under V iff

    PCON(d1, d2,…,dn) holds in D.

    (d1, d2, ….,dn)  ∈ PCON ⊆⊆ D   ×× D ××…×× D
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Semantics II

• Suppose ϕϕ is of the form ¬¬ ϕϕ’.
• Then ϕϕ is satisfied under V iff ϕϕ’ is not

     satisfied under V.

• Suppose ϕϕ is of the form ϕϕ1∨∨ ϕϕ2

• Then ϕϕ is satisfied under V iff ϕϕ1 is satisfied
under V or ϕϕ2 is satisfied

    under V.
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Semantics II

• Greater-Than(Plus(v, 3), Multi(x, 2))

                               t1                 t2

• V(v) = 2  V(x) = 1

• V_T(t1) = 5  V_T(t2) = 2

• (5, 2) ∈ >  ⊆ Integers × Integers

• V’(v) = 1 V’(x) = 6

• Under V’, the atomic formula is not true.
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Semantics II

• The only case left is when ϕϕ is of the form

    ∃∃x. ϕϕ’
• ϕϕ is satisfied under V iff there is a valuation

V’ such that ϕϕ’ is satisfied under V’ and V’
is required to meet the condition :
– V’ is exactly V for all variables except x.

– For x , V’ can assign any value of its choosing.
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Semantics II

• Whether ∃∃x. ϕϕ is true or not under V
–  does not depend  on what V does on x !

• ∃∃x. 2x = y  is true under V(y) = 4
   V(x) = 1!
• Because, we can find V’ with V’(y) = 4 but
    V’(x) = 2.
• One says x is bound in the formula and y is

free.
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The efficient way

    Asynchronous 
circuits

    synchronous 
circuits

    Programs
(finite state)

    Kripke Structure
First Order 

Representation

Model checking
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First Order Representation to
Transition Systems

• {v1, v2, …, vn}--- System variables.

• D1, D2, …, Dn --- The corresponding domains.

• D = ∪∪ Di

• s : {v1, v2, …,vn}            D such that

    s(v1) ∈∈ D1 …..
• S --- The set of states.
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Initial States

• S0(v1, v2, …, vn) is a FO formula describing the set
of initial states.

• Atomic formula
– v = d  where v is is a system variable and d is a constant

symbol interpreted as a member of the domain of v.

Example:

• “S0 is the set of all states where the pc = 0 and
input is a power of 2”

• ∃∃n. (input = EXP(n))  ∧∧  (pc = 0)
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Transition relation

• R (v1, v2, ..vn, v1’ , v2’ ,..,vn’ ) is a FO formula
involving the variables v1, v2,..vn (the system
variables) and the new variables (v1’, v 2’,.., vn’).

• (d1, d2,..,dn)        (d1’, d2’,..,dn’) iff
   R (v1, v2, ..vn, v1’ , v2’ ,..,vn’ ) is true under the

valuation v1 = d1,…, vn =dn, v1’ = d1’,..vn’ = dn’.



75

Transition Relation

• V = {x, y, z}

• Program : {x, y, z, pc}

    l0 : begin

    l1 : statement1

    l2 : statement2

    ….

    l5 : if even(x) then x = x/2  else x = x –1

    l6 : ….
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Transition Relation
• V = {x, y, z}
• Program : {x, y, z, pc}

    l5 : if even(x) then x = x/2  else x = x –1

    l6 : ….

• ϕϕ (x, y, z, pc, x’ , y’ , z’ , pc’ )
• pc = l5 ∧∧   pc’  = l6  ∧∧ (∃∃n. (x = 2n) ⊃⊃ x’  = x/2) ∧∧
       (¬¬ ∃∃n. (x = 2n) ⊃⊃ x’  = x-1) ∧∧ same(y, z)
which is equivalent to
• pc = l5 ∧∧   pc’  = l6  ∧∧
       ((∃∃n.(x=2n) ∧∧ x’=x/2) ∨∨ (¬¬∃∃n.(x=2n) ∧∧ x’=x-1))) ∧∧
         same(y, z)

• same(y, z) ---  y’  = y  ∧∧ z’  = z
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Transition Relation

• In a similar fashion , we can construct
transition relation formulas for :
– Assignment statement

– While statements

– etc.etc.

– See the text book!
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Kripke Structures

• AP is a finite set of atomic propositions.
– “value of x is 5”

– “x = 5”

• M = (S, S0, R, L), a Kripke Structure.
– (S, S0, R) is a transition system.

– L : S              2AP

– 2AP          ---- The set of subsets of AP
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Kripke Structures

• The atomic propositions and L together
convert a transitions system into a model.

• We can start interpreting formulas over the
Kripke structure.

• The atomic propositions make basic (easy)
assertions about system states.
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Automata and Kripke Structures

• AP - set of elementary property
• <S,A,R,s0,L>
• S - set of states
• A - set of transition labels

• R ⊆⊆ S××A××S - (labeled) transition relation
• L - interpretation mapping L:S        2AP
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Example: a print manager

Wi= i waits
Pi= i prints
Ri= i rests0,

RA,RB

6,
PA,RB

1,
WA,RB

2,
RA,WB

7,
RA,PB

4,
WA,PB

3,
WA,WB

5,
PA,WB

endA

reqA

endB

reqB

reqB

reqA

reqB reqA

startA

startB startA

startB

endB endA

endi= i ends printing
reqi= i requests printing
starti= i start printing

AP
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• S = {0,1,2,3,4,5,6,7}
• A = {endA,endB, reqA, reqB, startA, startB}
• R = {(0,reqA,1), (0,reqB,2), (1,reqB,3), (1,startA,6), (2,reqA,3),

(2,startB,7), (3,startA,5), (3,startB,4), (4,endB,1), (5,endA,2),
(6,endA,0), (6,reqB,5), (7,endB,0), (7,reqA,4),}

• L = {0→→ {RA,RB}, 1→→ {WA,RB}, 2→→ {RA,WB}, 3→→ {WA,WB},
             4→→ {WA,PB}, 5→→ {PAWB}, 6→→ {PA,RB}, 7→→ {RAPB} }

0,
RA,RB

6,
PA,RB

1,
WA,RB

2,
RA,WB

7,
RA,PB

4,
WA,PB

3,
WA,WB

5,
PA,WB

endA

reqA

endB

reqB

reqB

reqA

reqB reqA

startA

startB startA

startB

endB endA
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Properties of the printing systems

• Every state in which PA holds, is preceded
by a state in which WA holds

• In any state in which WA holds is followed
(possibly not immediately) by a state in
which PA holds.

• The first can easily be checked to be true

• The second is false (e.g. 0134134134…) -
in other words the system is not fair.
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Synchronization

• Usually complex systems are composed of a
number of smaller subsystems (modules)

• It is natural to model the whole system
starting from the models of the subsystems.

• And then define how they cooperate.

• There are many ways to define cooperation
(synchronization).



85

Synchronization: no interaction

The system model is just the cartesian product of
the simple modules.

Let TS1,…, TSn be n automata (or TS), where
TSi=<Si,Ai,Ri,si0>

The system is then defined as TS=<S,A,R,s0> where

 S = S1 ×× S2 ×× … ×× Sn

 A = A1∪∪{-} ×× A2∪∪{-} ×× … ×× An∪∪{-}
 R = {((s1,s2,...,sn),(a1,a2,...,an),(s’1,s’2,...,s’n))| forall i,

a1≠≠-  and  (si,ai,s’i) ∈∈ Ri, or a1=-  and  s’i =si}
 s0  = (s10,s20,...,sn0)
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c
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c
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c

- , inc
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- , inc - , inc - , inc

inc , inc

- , inc

TS= TS1 ×× TS2

TS1 contatore
modulo 2

0 1

3 2

inc

inc

inc

inc

TS2

TS2: contatore
modulo 4
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To allow for interaction, or synchronization on
specific actions we can introduce a Synchro-
nization Set (to inhibit undesired transitions) :

• Synchronization set is just a subset of the
composite actions:

Sync ⊆⊆ A1∪∪{-} ×× A2∪∪{-} ×× … ×× An∪∪{-}

• Then we will have to define the possible
transitions as:

   R={((s1,s2,...,sn),(a1,a2,...,an),(s’1,s’2,...,s’n)) |  
            (a1,a2,...,an)∈∈Sync and for all i,

   a1≠≠ -  and (si,ai,s’i) ∈∈ Ri, or a1=-  and  s’i =si}

Synchronization: interaction
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Free synchronization (Asynchronous systems):
   Sync = {inc,-} ×× {inc,-}

0,0

1,0

0,1

1,1

0,3

1,3

0,2

1,2

inc , inc

inc , -

- , inc - , inc - , inc

inc , inc

inc , -

inc , -

inc , -
inc , inc

inc , in
c

inc , in
c

inc , in
c

- , inc

inc , inc

- , inc - , inc - , inc

inc , inc

- , inc

TS= TS1 ×× TS2
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Free synchronization

Asynchronous systems:
   Sync = {inc,-} ×× {inc,-}

• R(V,V’) = ∧∧(Ri(vi,vi’) ∨∨ same(vi))
i∈∈I

∧∧ ¬¬∧∧same(vi)

if one wants to discard
the situation where no
component acts
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0,0

1,0

0,1

1,1

0,3

1,3

0,2

1,2

inc,inc
inc,inc

inc,inc

inc,in
c

inc,inc
inc,inc

inc,inc

inc,inc

TS= TS1 ×× TS2

Synchronization on all actions (Synchronous
systems):

   Sync = {(inc,inc)}
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Synchronous systems

Synchronous systems:
   Sync = {(inc,inc)}

• R(V,V’) = ∧∧Ri(vi,vi’)
i∈∈I



92

0,0

1,0

0,1

1,1

0,3

1,3

0,2

1,2

inc , -

- , inc - , inc - , inc

inc , -

inc , -

inc , -

- , inc

- , inc - , inc - , inc

- , inc
TS= TS1 ×× TS2

Asynchronous systems with interleaving (only one
component acts at any time):

   Sync = {(-,inc),(inc,-)}
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Asynchronous systems:
Interleaving

Asynchronous systems:
   Sync = {inc,-} ×× {inc,-}

• R(V,V’) = ∨∨(Ri(vi,vi’) ∧∧ ∧∧same(vj))
i∈∈I i ≠≠ i
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Concurrent programs

• Many systems to be verified can be viewed
as concurrent programs
– operating system routines

– cache protocols

– communication protocols

• P = cobegin (P1 |||| P2 |||| …|||| Pn) coend
• P1, P2,..Pn --- Sequential Programs.

• Usually interleaving semantics is assumed
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Sequential Programs

General Structure

Statement

l

l’

C(l, statement, l’)

C is a transition procedure which
takes a label, a program statement
and a label and gives the FOL
formula specifying the transition
relation.
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Assignments

v:= expression
(v := 2x – v +3·y)

l

l’

pc = l  ∧∧  pc’  = l’  ∧∧ 
 v’  = expression ∧∧ same (V – {v}) 

[Y = {y1, y2, ..ym}
y1’  = y1 ∧∧ y2’  = y2 ∧∧… ∧∧ ym]

C(l, assignment, l’)
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Skip

Skip 

l

l’

pc = l  ∧∧  pc’ = l’ ∧∧ same (V) 

C(l, skip, l’)
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Conditional statement

l’

P Q

IF b THEN P ELSE  Q FI

l
C(l, b, IF-THEN-ELSE, l1, l2,  l’)

b ¬¬b

l1 l2

(pc = l   ∧∧  pc’ = l1  ∧∧ b ∧∧ same(V)) ∨∨

(pc = l   ∧∧  pc’ = l2  ∧∧ ¬¬ b ∧∧ same(V)) ∨∨

C(l1, P, l’) ∨∨

C(l2, Q, l’)
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While statement

l’

P

WHILE b DO P END_WHILE

l
C(l, b, l1,  WHILE, l’)

b

¬¬ b

l1
(pc = l   ∧∧  pc’ = l1  ∧∧ b ∧∧ same(V)) ∨∨

(pc = l   ∧∧  pc’ = l’ ∧∧ ¬¬ b ∧∧ same(V)) ∨∨

C(l1, P, l)
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Concurrent programs

• P = cobegin (P1 |||| P2 |||| …|||| Pn) coend
• P1, P2,..Pn --- Sequential Programs.

L

L’

P1 P2 Pn
………..

l1

 11’

l2

l2’

ln

ln’
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Concurrent programs

• P = cobegin (P1 |||| P2 |||| …|||| Pn) coend
• P1, P2,..Pn --- Sequential Programs.

• C(l1, P1, l1’) --- The transitions of P1

(defined inductively!).

• Vi ---- The set of variables of Pi.

• Programs may share variables !

• pci – The program counter of Pi.
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Concurrent programs

• pc ---- the program counter of the concurrent
program; it could be part of a larger program!

• ⊥⊥ denotes the program counter value is
undefined .

• S0(V, PC) = pre(V) ∧∧ pc = L ∧∧
                        pc1 = ⊥⊥ ∧∧ …… ∧∧ pcn = ⊥⊥
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The Transition Predicate

L

L’

P1

l1

……………….. Pn

ln

(pc = L ∧∧ pc1’ = l1 ∧∧…. 
∧pcn’ = ln ∧∧ pc’ = ⊥⊥) ∨∨
(pc = ⊥⊥ ∧∧ pc1 = l1’ ∧∧…
pcn = ln’ ∧∧ pc’ = L’ ∧∧ 

pc1’ = ⊥⊥ ∧∧ …pcn’ = ⊥⊥) ∨∨
(C(l1, P1, l1’) ∧∧ Same (V – V1) 

∧∧ Same(PC –{pc1})) ∨∨… 
C(ln, Pn, ln’) ∧∧ Same (V – Vn) 

∧∧ Same(PC –{pcn})) 
l1’ ln’
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Summary

• System variables

• Domain of values

• States

• Initial state predicate

• Transition predicate

• pc values (for programs)


