Tecniche di Specificaed
Verifica

Modeling with Transition Systems

An example

The Dining Philosophers

* Possible problems:

— Deadlock: system state where no adion cen be
taken (no transition possible)

— Livelock: When system component is prevented
to take ay adion, or a particular one
(individual starvation)

— Starvation: obvious.

Fairness

The Dining Philosophers

 Possible solutionto deadlock:
— pick up right fork only if both are present
Assumptions:

—weak fairness. any trans. continuously enabled,
will eventually fire (eaing philosophers will
finish)

— strong fairness: any trans. enabled infinitely often,

will eventually occur (if 2 fork available infinitely
often, phil. will eda).

Livelock

The Dining Philosophers

* Possible solution:
— pick up fork only if both are present
Assumptions:

— strong fairness. any trans. enabled infinitely often,
will eventually occur (if 2 fork avallable infinitely
often, phil. will ea).

strong fairnessis not enough to prevent livelock
Why? Think of the case with 4 phil.!
Sol.(?): Try preventing consecutive eating.

Still suffers from livelock with 5 phil.! Why?

Outline

e The model — Transition systems

o Some features
— Paths
— Computations
— Branching

* First order representation

Transition systems

e A transition system (Kripke structure) Is a
structure

TS=(S, S, R)
where;
— S Isafinite set of states.

-5, U Sistheset of initial states.

— R [0 Sx Sisatrangtion relation
= R must betotdl, that is
—0OsOS[k O0S.(s,s) R or, equivaently,

—For every state sin S, there exists S in S such
that (s, s') IsinR.

Notions and Notations

TS=(S S, R)
(ssS) MR R(s,S) s- S
A (finite) path from sis a sequence

such that

—s=s,

-5 - S, for0O<i<n.

ltisfroms tos iIf s, =5S.

An infinite path from sis a sequence......

L abeled transition systems

Sometimes we may use afinite set of actions:
—Act={a, b, ..}

The actions will be used to labd the
transitions.

TS=(S, S, Act, R)
—ROSxAct xS, |labeled transitions.

(ssa,S)UR - R(s,aS) - s—2-8

A vending machine

c-serve

L cau

coffee

coln ‘
t

ea

‘ t-out

t-serve

coin-return

A path

C-serve
coffee c-out
coin
t-out
t-serve

coin-return

10

A non-path

c-serve ‘
coffee c-out
coln 5 3
ted
‘ t-out 123 Nol
Lserve 312 yes!

coin-return

11

A non-total transition relation

C-out

t-out

12

State space

 The dtate space of a system (e.g. program) IS
the set of all possble statesfor it.
 For example, If V={a, b, ¢} and the variables

are over the naturals, then the state space
Includes:

<a=0,b=0,c=0>,<a=1,b=0,c=0><a=1,b=1,c=0>
<a=932b=5609,c=6658>...

13

Atomic transition

e Each atomic transition represents a small
peace of code (or execution step), such that
no smaler peace of code (or step) Is
observable.

e |[sa=at+l atomic?

* |In some systems, e.g., when a is a register
and the transition is executed using an inc
command.

14

(Non)Atomicity

« EXxecute the following when
x=0 In two concurrent

e Result: a=2.
o |sthisawaysthe case?

Consider the actual trandation:

OrOCESSES; ”Pl:_'oa(élm’a
INC

D1 q=

la=atl storeR1,a

P2 a=a+l \
»P2:load R2,a

Inc R2
store R2,a

eamay bealso 1l

15

The common framework

 Many systems need to be model ed.
— Digital circuits
= Synchronous
= Asynchronous
— Programs
o Strategy . Capture the main features using a

logical framework (nothing to do with temporal
logics!) : First order representation

16

The Inefficient way

Asynchronou
circuits

Kripke Structure

synchronous
circuits

Programs
(finite state)

Model checking

17

The efficient way

Asynchronou
circuits

First Order

»| Representation Kripke Structure

synchronous
circuits

Programs
(finite state)

Model checking

18

N\

000

A mod-8 counter

Vi

BYA

o~ Vo Pl

100

19

The mod-8 counter

System variables: v, v, v,

Domain of v, ={0, 1}

Same for v, and v,

Special case : These variables are boolean

A dtate is afunction which assigns to each
variable avalue in its domain.

S(Vo) =0 S(v;) =1 (v;) =1
Itisthestate (110) !

20

State Predicates

Vi

\ ~ V2
b

Vo

A set of states can be picked out by aformula;
X =v,0v, istheset {...}

21

State Predicates
\ ~ Vo Pl Vi
000 001 \\\\ijf///

A set of states can be picked out by aformula;
X =v, v, Isthe set {100, 101, 110, 111, 001, 011}

22

Initial States Predicate

Vi

o V2
P

Vo

A set of states can be picked out by aformula;

X = —IV2 |:|—IV1 D—IVO

23

Initial States Predicate

Vi

o V2
P

Vo

A set of states can be picked out by aformula;
X’ — 7V, |:|—IV1 D—IVO X’ :{ SO} :{ OOO}

24

Transition relation predicate

000 001 010 @

110 101 100

A set of transitions can also be picked out by aformula

25

Transition relation predicate

000 001 010 @

t, b

110 101 100

A set of transitions can also be picked out by aformula.

{to t} OR,

26

Transitionrelation predicate

000 001 @ @
}

T = Formula(v,, vy, Vg, V', Vy', Vg

Not all formulas will define subsds of transitions.

Y ou must pick theright formula.

27

Transitionrelation predicate
N R A

110 101 100

Ro= vy # V, v, —old value v, —new value
R,={(000—(10)),........ }

But thisis not atransition!

28

Transition relation predicate

00— —lor0——13

100

0= Vo % Vg v,—oldvalue v —new value

29

Summary of Predicates

System variablesv,, v, v,V
Each v; has a domain of values
— Boolean, {ab,c,..}, {5,8,0,7} ...
— Each domain isrequired to be finite.

A state I1s afunction s which assigns to each
system variable avalue in its domain.

The set of statesis finite.

n-

30

Summary

Predicates can be used to pick out —succinctly-
sets of states (useful for identifying initia
states).

X =Formula (vy, Vq, Vs,...,V,)

But this works only when al domains are
boolean.

In general Formulawill be afirst order formula.

31

Summary

A set of transitions can also be picked out
using predicates.

T = Formula(v,, V4,..V,, Vg, V.V '}
T Isthe set of all transitions

(Vg Vqy -V) — (Vg, V4, ...V)
such that Formula (above!) Is satisfied.

Not all (state or transition) formulas will be
legitimate.

32

Why use formulas?

 Once and for all, say how to go from the
“logicd” description to Kripke structures.

 Oncewe have aKripke structure, we arein
business

e \Wecan use
— temporal logicsto speafy properties
— Modé checking to verify these properties.

33

First Order Logic

* The general structure

— Syntax
=» Formulas

— Semantics

= \When isaformula true ?

= Moddls

— Interpretations
— Valuations

Syntax

e Terms

— Variables

— Functions symbols, constant symbols
o Atomic formulas

— Relation symbols, equality, terms
e Formulas

— Atomic formulas

— Propositional connectives

— Existential and universal quantifiers

35

Syntax

e (Individua) variables--- X, y, v5, V',...
— System variables in our context

« Function symbols: f "
—nisthearity of f.

— Add®@
— Next (D)

e Function symbols will capture the functions
used in the programs, circuits, ...

36

Constant symbols

o Apart from variables, it will also be
convenient to have constant symbols.

—zero, five, ...
« Variables can be assigned different values

but a constant symbol is assigned afixed
value.

37

Terms

_______ ermsareused topoint at values.
A variableisaterm.

—X,V,V’

A constant symbol is aterm. |
Suppose f isafunction symbol of arity n-
i andt,, t2, .., aretermsthen :

f(tl, t,..,t) Isasoaterm.

38

Terms

L et Plus be afunction symbol of arity 2.
V., V,, Plus(v,, Plus(v,, v,)) areterms.

—the semantics of the last term is intuitively

V, + 2V,

Let weird op be afunction symbol of arity 3
Then

Plus(weird_op(v, Plus(v,, v,), five), Plus(v, v"))
ISaterm.

39

Predicates

e Relation (predicae) symbols:

— P which also has an arity

— Greater-Than has arity 2

— Prime hasarity 1

— Middle has arity 3 -- Middle(t,, X, t,)

= intuitively, x liesbetween t, andt,

 Equal hasarity 2

— will be denoted as =

— It Isa “constant” relation symbol.

40

Atomic formulas.

e If t, and t, are terms then =(t,, t,) Is an
atomic formula.
—asowrittent, =t,

e Suppose P has arity n and t, t,, ..., t, are
terms.

 ThenP(t,,t,, ..., t,) Isan atomic formula.

41

Atomic formulas

Greater-Than(five, zero)
Greater-Than(two, four)
Prime(Plus(v,, v"))

Plus(v,Zero) = weird_op(v,v,four)

v = Greater_Than(v,,v,) ISnot an atomic
formula

42

Terms and Predicates

« A termis meant to denote avalue.
— Makes no sense to talk about aterm being true
or false.
« Anatomic formulamay be true or false
(depends on the interpretation).

— Does not make sense to associate avalue with
an atomic formula.

Formulas

 Every atomic formulaisaformula.
o If ¢ Isaformula then-¢ isaformula

e Ifpand ¢’ areformulasthend ¢’ Isa
formula.

e ¢ LU¢’ abbreviates. ~(~¢ [1-¢’)
e ¢ LI’ abbreviates: ¢ [¢’
e $ =¢ abbreviates: (¢ LI¢’) (¢’ LI 9)

Formulas

If ¢ Isaformulaand x is a variable then [X. ¢
Isaformula

[IX. ¢ abbreviates: = [X.—¢

t

nese are existential and universal quantifiers.

ne power of first order logic comes from
nese operators!

45

Semantics

e Moddls:

—Domain of interpretation

— I nterpretation

= For the function, constant and relation symbals.
— Fixed for all formulas.

= For the individual variables, on a “per formula’
basis.
— Valuations.

46

Semantics

e Domain

— Ead variable will have its domain of vaues.

— We pretend all these domains are the same.

— Or rather, abig enough“universe” that will
contain al these domains.

e Fix D the universe of values.

a7

Semantics

| nterpretation function |

e Assign aconcrete function to each function
symbol (of the same arity!)

» Assign aconcrete member of D to each
constant symbol.

* Assign aconcrete relation to each relation
symbol (of the same arity!).

48

Semantics

D --- The set of integers.

|
|

Greater Than —» >
Zero ——» 0
weird op ——» f wherefor eachi, j, k

f(i,j, k) = 2i +3j - 17k

49

Semantics

« Assume we have fixed an interpretation for
all function symbols, constant symbols and
relational symbols.

e Let ¢ beaformula. Fix avaluation V which
assigns a member of D to each variable.

e V:Vaiables——> D

50

Semantics

 Let ¢ beaformula. Fix avaluationV which
assigns a member of D to each variable.
 V:Variables— D
 ThisextendstoavauationV T for all termsl!
-V _T(v)=V(v) Iifvisavariable.

-V T(c)=d If cisaconstant symbol and the
Interpretation we have fixed assigns the valued to c.

51

Semantics

 Let ¢ beaformula. Fix avaluationV which
assigns a member of D to each variable.

 V:Variables— D
 Thisextendsto avaluationV _T for all termsl

— Supposef isof aritynand t ,t,,....t, aretermswith
V_T({t)=d,....V_T()=d.

— Suppose f has been assigned the function F by our
Interpretation. Then

—V_T(f(t,, t,r..., t)) =F(d,, d,, .., d).

52

Semantics

Let ¢ be aformula. Fix avauation V which assigns
amember of D to each variable.

So we now have V_T that assigns a member of D
each term.

¢ issatisfied under V (and the interpretation we have
fixed for al formulas) if :

suppose P(t,, t,,.., t,) ISan atomic formula
andV_T(t)=d, ...V_T(t,) =d,

and PCON is the relation assigned to P by our
Interpretation.

53

Semantics

o Suppose P(t1, t2,.., tn) Isan atomic formula
andV_T(t)=d,...V_T(t)=d,
and PCON isthereation assigned to P by
our interpretation.

 Then P(t,, t,,.., 1) iIssatisfied under V iff
PCON(d,, d,,...,d) holdsin D.
(d,d,,d)JPCONOD xD x...xD

Semantics

o Suppose ¢ isof theform-¢’.

then ¢ Is satisfied under V iff ¢’ Is not
satisfied under V.

e Suppose ¢ isof theform ¢, LI,

then ¢ Is satisfied under V iff ¢, Is satisfied
under V or ¢, Is satisfied under V.

55

Semantics

 Theonly caseleft iswhen ¢ isof the form

X.¢’.

o ¢ Issatisfied under V Iff there is avaluation
V'’ such that ¢’ is satisfied under V', and V’
IS required to meet the condition :

— V' Isexactly V for all variables except X.

—for x , V' can assign any value in D of Its
choosing.

56

Semantics ||

e Moddls:

—Domain of interpretation

—Inter pretation

= For the function, constant and relation symbols.
— Fixed for al formulas.

» For the individual variables, on aper formula
basis.
— Valuations.

57

Semantics ||

« Assign aconcrete function to each function
symbol (of the same arity!)

» Assign aconcrete member of D to each
constant symbol.

e Assign aconcrete relation to each relation
symbol (of the same arity!).

58

Semantics ||

« Assume we have fixed an interpretation for

all function symbols, constant symbols and
relational symbols.

e Let ¢ beaformula. Fix avaluation V

which assigns a member of D to each
variable.

e V:Vaiables — D

59

Lift V to All Terms

e We have:

— An interpretation for the function symbols and
constant symbols.

—V :Variables — D
e Using this, we can construct (uniquely!)
VT:Teems ——» D

60

ConstructingV_T

et TS .%f(tl’ t2’ t3)
- / B .
RN s 29

\
. V. T

-~ S !

/ \ /

. IConstant\' :
/
. lsymbals, -
~ D 7
* ~ ~ -— /’ ’

.
" ey g

61

- -

ConstructingV_ T

ity b ty)

V_ T
. R
IConstant\' __________________________
\ symbols, 4" [nterpretation
~__"7

62

- -

~< -

/
1Const

|
\
Symboals,

ConstructingV_T

f(ty, th, t

ant\

7/

63

ConstructingV_T

ot

oF(d,, d,, dy)

Semantics ||

e Let ¢ beaformula. Fix avaluationV which
assigns a member of D to each variable.

« Sowenow haveV T that assignsa
member of D each term.

o ¢ Issatisfied under V (and the interpretation
we have fixed for all formulas) If :

65

Semantics ||

e Suppose P(t,, t,,.., t.) ISan atomic formula
andV_T(t)=d,...V_T(t)=d,
and PCON istherédation assigned to P by
our interpretation.

 Then P(t,, t,,.., 1) iIssatisfied under V iff
PCON(d,, d,,...,d) holdsin D.
(d,d,,d) UOPCONUID xD x...xD

66

Semantics ||

Suppose ¢ isof theform - ¢’.

Then ¢ issatisfied under V iff ¢’ isnot
satisfied under V.

Suppose ¢ isof theform ¢,L1¢,

Then ¢ is satisfied under V iff ¢, IS satisfied
under V or ¢, is satisfied

under V.

67

Semantics ||

Greater-Than(Plus(v, 3), Multi(x, 2))
t, t,
V(v)=2 V(x)=1
V_T)=5V_T(t,) =2
(5, 2) > U Integers x Integers
V'(V)=1V'(X) =6
Under V’, the atomic formulais not true.

68

Semantics ||

 Theonly caseleft iswhen ¢ isof the form
(K. ¢’

e ¢ Issatisfied under V iff thereisavaluation
V’ such that ¢’ Is satisfied under V' and V'
IS required to meet the condition :

— V' Isexactly V for all variables except X.
— For x, V' can assign any value of its choosing.

69

Semantics ||

e Whether [X.¢ istrue or not under V
— does not depend on what V doeson x !

e [X.2x =YV Istrueunder V(y) =4
V(x) =1

e Because, we can find V' with V’(y) = 4 but
V’'(X) = 2.

e Onesaysx isboundintheformulaandy is
free.

70

The efficient way

Asynchronou
circuits

First Order
synchronous Representation

circuits

Kripke Structure

Programs
(finite state)

Model checking

71

First Order Representation to
Transition Systems

{V{, Vs, .., V }--- System variables.
D,, D,, .., D, --- The corresponding domains.

D=L D,

s: {Vq, V,, ...,v,} — D such that

s(v,)) 0Dy
S --- The set of states.

72

Initial States

¢ SV, Vs, .., V,) ISaFO formuladescribing the set
of initial states.

e Atomic formula

— v=d wherevisisasystem variable and d is aconstant
symbal interpreted asa member of the domain o v.

Example:

o “S,isthe set of all states where the pc =0 and
Input Is a power of 2"

e [N.(input =EXP(n)) U (pc=0)

73

Transition relation

e R(Vy, vy, .V, V', V5.,V) IsaFO formula
iInvolving the variables v,, v,,..v, (the system
variables) and the new variables (v,’, v,,..,V,').

e (dy, d,,...d))—(d;’, d,,...d") Iff
R (v, Vs, .V, V', V) ,..,v.") IStrue under the
valuationv, =d,,..,v,=d ,v, =d/,.v, =d .

74

Transition Relation

* V={XYy, 7
 Program:{X,YV, z, pc}
o - begin

, . statement,
, . statement,,

I if even(x) thenx = x/2 elsex =x -1

75

Transition Relation
e V={X,V, 7}
e Program:{x,YV, z, pc}
I : If even(x) then x =x/2 elsex =x -1

g1 ...
* ¢ (X,y,z,pc, Xy, Z,pc)
e pc=Il:0 pc =l O(h.(x=2n) Ux =x/2) [
(- [h.(x=2n) Ux =x-1) Usame(y, 2)
which isequivalent to
e pc=I;0 pc =l U
((Ch.(x=2n) OUx’=x/2) U (=[h.(x=2n) 0Ox’ =x-1))) [
same(y, z)
e same(y,z) -y =y U7z =z

76

Transition Relation

 |[nasmilar fashion, we can construct
transition relation formulas for :
— Assignment statement
— While statements
— efc.etc.
— See the text book!

77

Kripke Structures

AP iIsafinite set of atomic propositions.
—“valueof x 1S5’
~“x =y

e M =(S S, R, L), aKripke Structure,
— (S, S, R) isatransition system.
—L:S— 2AF

— 2AP ---- The set of subsets of AP

78

Kripke Structures

e The atomic propositions and L together
convert atransitions system into a model.

« \We can dtart interpreting formulas over the
Kripke structure.

e The atomic propositions make basic (easy)
assertions about system states.

79

Automata and Kripke Structures

AP - set of elementary property

e <SAR,5,L>

e S-set of states

A -set of transition labels

R [0 SxAxS- (labeled) transition relation
e L -interpretation mapping L:S—>2AP

80

Example: a print manager

end;= 1 ends printing
req,=1 requests printing
start;= 1 start printing

AP
W.=1 waits
P.=1 prints

R=1rests

81

S={0,1,2,3,4,5,6,7}

A ={end,,endg, req,, regg, start,, startg}

R ={(0req,,1), (Oreqg,2), (Lreqg,3), (1,start,,6), (2,requ,3),

(2,startg,7), (3,start,,5), (3,starty,4), (4,end;,1), (5.end,,2),

(6,end,,0), (6,reqg,5), (7,endg,0), (7,req,,4).}

L — {O_’ {RA’RB}’ 1_’ {WA’RB}’ 2_’ {RA’WB}’ 3_’ {WA’WB}’
4_’ {WA’PB}1 5_’ {PAWB}’ 6_’ {PA’RB}1 7_’ {RAPB}} 82

Properties of the printing systems

* Every state in which P, holds, is preceded
by a state in which W, holds

* [n any state in which W, holds is followed
(possibly not immediately) by a state In
which P, holds.

e Thefirst can easily be checked to be true

 The second Is false (e.g. 0134134134...) -
In other words the system isnot fair.

83

Synchronization

Usually complex systems are composed of a
number of smaller subsystems (modules)

It Is natural to model the whole system
starting from the models of the subsystems.

And then define how they cooperate.

There are many ways to define cooperation
(synchronization).

Synchronization: no interaction

The system model Is just the cartesian product of
the ssimple modules.

Let TS,,..., TS, be n automata (or TS), where
T15=<5.AiR;.S¢>

The system isthen defined as TS=<S,A,R,s,> where

S= Sl X SZ X . .. X Sn

A=A 0{-} x A,{-} x... xA U{-}

R ={((s,,S5-+»S),(81,85,.-,8,) (S 1,S 5,.--,S y))| forall 1,
a,#- and (s,a,s;)UR, or a,=- and s, =5}

S = (S10:S201++18h0)

inc TS TS, Ing
Q e TS, contatore Q @
. modulo 2 .)inc
INC
INnC, inc e @
v

inc (e
TS,: contatore
modulo 4

Inc, | TS= TSl X TSZ

86

Synchronization: interaction

To allow for Interaction, or synchronization on
specific actions we can introduce a Synchro-
nization Set (to inhibit undesired transitions) :

o Synchronization set Is just a subset of the
composite actions:
Sync O A 0{-} x A,U{-} x... xA {-}
« Then we will have to define the possble
transitions as:

R=1((S1,820++,80)(81,82-4180),(S 1,8 2-+:8n)) |
(a,,a,,...,a,)dSync and for all 1,

a,# - and (s,a,s)R, or a,=- and s, =5} &

Free synchronization (Asynchronous systems):
Sync ={inc,-} x {inc,-}

INC, inc

88

Free synchronization

Asynchronous systems:

Sync ={inc,-} x {inc,-}

+ R(V\V) = LIR (v,v') D same(v,)) O~

kame(v)

/

If one wants to discard
the situation where no
component acts

89

Synchronization on all
systems):
Sync ={(inc,inc)}

INC,inC

INC,iNC

actions (Synchronous

Synchronous systems

Synchronous systems:

Sync = {(inc,inc)}
* R(V,V') = :hi(Vi’Vi’)

1]

91

Asynchronous systems with interleaving (only one
component acts at any time):

Sync = {(-,inc),(inc,-)}

-,IﬂC

C)Ul
‘_/'

;_.m,.@_mc/@ @
/

TS TS XTS,

Asynchronous systems;

| nterleaving

Asynchronous systems:
Sync = {inc,-} x {inc,-}

* R(V,V') = :kRi(VhVi’) D.:Isame(\/j))

inl | Z1i

93

Concurrent programs

Many systems to be verified can be viewed
as concurrent programs

— operating system routines
— cache protocols
— communication protocols

P = cobegin (P, || P, || ...|| P,) coend
P, P,,..P,, --- Sequential Programs.
UJsually interleaving semantics is assumed

94

Seguential Programs

Generd Structure

l |

Statement

C(l, statement, I’)

ll,

C Is a transition procedure which
takes a label, a program statement
and a label and gives the FOL
formula specifying the transition
relation.

95

l |

Assignments

| C(l, assignment, I’

V.= expression
(V:=2X —Vv+3-y)

pc=1 0O pc =" [

ll,

V' = expression [1same (V —{v})

[Y ={Y1, Yo - Y}
y, =y, Oy, =y, 0. Oy,

96

Skip

C(, skip, I')

pc=I| O pc =1 Osame (V)

97

Conditional statement

‘C(I, b, IF-THEN-ELSE, I, 1, I') ‘

Iﬂb (pc=1 O pc’ =1, Ob Osame(V)) O
’ (pc=1 O pc =1, O~ b Osame(V)) O
Q (., P, I') 0
C(IZ’ Q,I’)

IFb THEN PELSE Q FlI

98

While statement

‘ c(,b, 1, WHILE,I")

(pc=1 0O pc’ =1, b Osame(V)) U
(pc=I| O pc =" = b Osame(V)) O
C(, P, 1)

WHILE b DO PEND_WHILE

99

Concurrent programs

 P=cobegin (P, ||P,]|...]| P,) coend
e P, P,,..P, --- Sequential Programs.

i L
1 P v”
P, P, | e P
1, , M

100

Concurrent programs

 P=cobegin (P, ||P,]|...]| P,) coend

e P, P,,..P, --- Sequential Programs.

e C(l, Py, I{") --- The trangtions of P,
(defined inductively!).

e V, ---- The set of variables of P,.

* Programs may share variables!
* pc — The program counter of P..

101

Concurrent programs

e pc ---- the program counter of the concurrent
orogram,; It could be part of alarger program!

e [1 denotes the program counter value Is
undefined .

e S(V,PC)=pre(V) Upc=L [

102

The Transition Predicate

(pc=L Opc, =1, L....
[Jpc, =1, Upc =0) 0
(pc=0UUpc, =1, L...
pc,=I,; Upc =L" U
pc,’ =00...pc,’ =0) O

(C(l, Py, 1) OSame (V -V,)

[1Same(PC —{pc,})) L...

c(.,P., 1) OSame(V -V,)

1 Same(PC H{pc,}))

103

Summary

System variables
Domain of values

States

Initial state predicate
Transition predicate

pc values (for programs)

104

