Tecniche di Specifica e di Verifica

Modeling with Transition Systems

An example

The Dining Philosophers

- Possible problems:
- Deadlock: system state where no action cen be taken (no transition possible)
- Livelock: When system component is prevented to take any action, or a particular one (individual starvation)
- Starvation: obvious.

Fairness

The Dining Philosophers

- Possible solutionto deadlock:
- pick up right fork only if both are present

Assumptions:

- weak fairness: any trans. continuously enabled, will eventually fire (eating philosophers will finish)
- strong fairness: any trans. enabled infinitely often, will eventually occur (if 2 fork available infinitely often, phil. will eat).

Livelock

The Dining Philosophers

- Possible solution:
- pick up fork only if both are present

Assumptions:

- strong fairness: any trans. enabled infinitely often, will eventually occur (if 2 fork available infinitely often, phil. will eat).
strong fairness is not enough to prevent livelock
Why? Think of the case with 4 phil.!
Sol.(?): Try preventing consecutive eating.
Still suffers from livelock with 5 phil.! Why?

Outline

- The model - Transition systems
- Some features
- Paths
- Computations
- Branching
- First order representation

Transition systems

- A transition system (Kripke structure) is a structure

$$
T S=\left(S, S_{0}, \mathbf{R}\right)
$$

where:

- \mathbf{S} is a finite set of states.
$-\mathbf{S}_{\mathbf{0}} \subseteq \mathbf{S}$ is the set of initial states.
$-\mathbf{R} \subseteq \mathbf{S} \times \mathbf{S}$ is a transition relation
- \mathbf{R} must be total, that is
$-\forall \mathbf{s} \in \mathbf{S} \exists \mathbf{s}^{\prime} \in \mathbf{S} .\left(\mathbf{s}, \mathbf{s}^{\prime}\right) \in \mathbf{R}$ or, equivalently,
- For every state \mathbf{s} in \mathbf{S}, there exists \mathbf{s}^{\prime} in \mathbf{S} such that ($\mathbf{s}, \mathbf{s}^{\prime}$) is in \mathbf{R}.

Notions and Notations

- $\mathbf{T S}=\left(\mathbf{S}, \mathbf{S}_{\mathbf{0}}, \mathbf{R}\right)$
- $\left(\mathbf{s}, \mathbf{s}^{\prime}\right) \in \mathbf{R} \quad \mathbf{R}\left(\mathbf{s}, \mathbf{s}^{\prime}\right) \quad \mathbf{s} \rightarrow \mathbf{s}^{\prime}$
- A (finite) path from \mathbf{s} is a sequence

$$
s_{1}, s_{2}, \ldots, s_{n}
$$

such that
$-\mathrm{S}=\mathrm{S}_{1}$
$-\mathbf{s}_{\mathbf{i}} \rightarrow \mathbf{s}_{\mathrm{i}+1}$ for $0<\mathrm{i}<\mathrm{n}$.

- It is from s^{\prime} to \mathbf{s}^{\prime} if $\mathbf{s}_{\mathbf{n}}=\mathbf{s}^{\prime}$.
- An infinite path from \mathbf{s} is a sequence

Labeled transition systems

- Sometimes we may use a finite set of actions:
$-\mathbf{A c t}=\{\mathbf{a}, \mathbf{b}, .$.
- The actions will be used to label the transitions.
- $\mathbf{T S}=\left(\mathbf{S}, \mathrm{S}_{0}\right.$, Act, R)
$-\mathbf{R} \subseteq \mathbf{S} \times \mathbf{A c t} \times \mathbf{S}$, labeled transitions.
- $\left(\mathbf{s}, \mathbf{a}, \mathbf{s}^{\prime}\right) \in \mathbf{R}-\mathbf{R}\left(\mathbf{s}, \mathbf{a}, \mathbf{s}^{\prime}\right)-\mathbf{s} \xrightarrow{\mathbf{a}} \mathbf{s}^{\prime}$

A vending machine

A path

A non-path

A non-total transition relation

State space

- The state space of a system (e.g. program) is the set of all possible states for it.
- For example, if $\mathbf{V}=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ and the variables are over the naturals, then the state space includes:

$$
\begin{aligned}
& <\mathrm{a}=0, \mathrm{~b}=0, \mathrm{c}=0>,<\mathrm{a}=1, \mathrm{~b}=0, \mathrm{c}=0>,<\mathrm{a}=1, \mathrm{~b}=1, \mathrm{c}=0> \\
& ,<\mathrm{a}=932, \mathrm{~b}=5609, \mathrm{c}=6658>\ldots
\end{aligned}
$$

Atomic transition

- Each atomic transition represents a small peace of code (or execution step), such that no smaller peace of code (or step) is observable.
- Is $\mathrm{a}:=\mathrm{a}+1$ atomic?
- In some systems, e.g., when a is a register and the transition is executed using an inc command.

(Non)Atomicity

- Execute the following when $\mathbf{x}=\mathbf{0}$ in two concurrent processes: P1:a=a+1 $\mathbf{P} 2: \mathbf{a}=\mathbf{a}+1$
- Result: $\mathbf{a}=\mathbf{2}$.
- Is this always the case?
- Consider the actual translation:
$\rightarrow P 1$:load R1,a
inc R1
store R1,a
\rightarrow P2:load R2,a
inc $\mathbf{R} 2$
store R2,a
- a may be also 1

The common framework

- Many systems need to be modeled.
- Digital circuits
- Synchronous
- Asynchronous
- Programs
- Strategy : Capture the main features using a logical framework (nothing to do with temporal logics!) : First order representation

The inefficient way

The efficient way

A mod- 8 counter

The mod- 8 counter

- System variables: $\mathrm{v}_{2} \mathrm{v}_{1} \mathrm{v}_{0}$
- Domain of $\mathrm{v}_{2}=\{0,1\}$
- Same for v_{1} and v_{0}
- Special case : These variables are boolean
- A state is a function which assigns to each variable a value in its domain.
- $\mathrm{s}\left(\mathrm{v}_{0}\right)=0 \mathrm{~s}\left(\mathrm{v}_{1}\right)=1 \mathrm{~s}\left(\mathrm{v}_{2}\right)=1$
- It is the state (110) !

State Predicates

A set of states can be picked out by a formula;
$\mathbf{X}=\mathbf{v}_{\mathbf{2}} \vee \mathbf{v}_{\mathbf{0}}$ is the set $\{\ldots\}$

State Predicates

A set of states can be picked out by a formula; $\mathbf{X}=\mathbf{v}_{\mathbf{2}} \vee \mathbf{v}_{\mathbf{0}}$ is the set $\{100,101,110,111,001,011\}$

Initial States Predicate

A set of states can be picked out by a formula;

$$
\mathbf{X}^{\prime}=\neg \mathbf{v}_{2} \wedge \neg \mathbf{v}_{1} \wedge \neg \mathbf{v}_{\mathbf{0}}
$$

Initial States Predicate

A set of states can be picked out by a formula;

$$
\mathbf{X}^{\prime}=\neg \mathbf{v}_{\mathbf{2}} \wedge \neg \mathbf{v}_{\mathbf{1}} \wedge \neg \mathbf{v}_{\mathbf{0}} \quad \mathbf{X}^{\prime}=\left\{\mathbf{S}_{\mathbf{0}}\right\}=\{000\}
$$

Transition relation predicate

A set of transitions can also be picked out by a formula.

$$
\mathbf{R}_{\mathbf{2}}=\mathbf{v}_{\mathbf{2}}^{\prime}=\left(\mathbf{v}_{\mathbf{0}} * \mathbf{v}_{\mathbf{1}}\right) \oplus \mathbf{v}_{\mathbf{2}} \quad \mathbf{v}_{\mathbf{2}}-\text { old value } \quad \mathbf{v}_{\mathbf{2}}^{\prime}-\text { new value }
$$

Transition relation predicate

A set of transitions can also be picked out by a formula.
$\mathbf{R}_{\mathbf{2}}=\mathbf{v}_{\mathbf{2}}{ }^{\prime}=\left(\mathbf{v}_{\mathbf{0}} \wedge \mathbf{v}_{\mathbf{1}}\right) \oplus \mathbf{v}_{\mathbf{2}} \quad \mathbf{v}_{\mathbf{2}}$ - old value $\quad \mathbf{v}_{\mathbf{2}}{ }^{\prime}$ - new value
$\left\{\mathrm{t}_{0}, \mathrm{t}_{1}\right\} \subseteq \mathbf{R}_{\mathbf{2}}$

Transition relation predicate

Not all formulas will define subsets of transitions.
You must pick the right formula .

Transition relation predicate

But this is not a transition!

Transition relation predicate

$$
\begin{aligned}
& \mathbf{R}_{\mathbf{0}}=\mathbf{v}_{\mathbf{0}}^{\prime} \neq \mathbf{v}_{\mathbf{0}} \quad \mathbf{v}_{\mathbf{i}}-\text { old value } \mathbf{v}_{\mathbf{i}}^{\prime}-\text { new value } \\
& \mathbf{R}_{1}=\mathbf{v}_{\mathbf{1}}^{\prime}=\left(\mathbf{v}_{\mathbf{0}} \oplus \mathbf{v}_{\mathbf{1}}\right) \\
& \mathbf{R}_{\mathbf{2}}=\mathbf{v}_{\mathbf{1}}^{\prime}=\left(\mathbf{v}_{\mathbf{0}} \wedge \mathbf{v}_{\mathbf{1}}\right) \oplus \mathbf{v}_{\mathbf{2}} \\
& \mathbf{R}=\mathbf{R}_{\mathbf{0}} \wedge \mathbf{R}_{\mathbf{1}} \wedge \mathbf{R}_{\mathbf{2}}
\end{aligned}
$$

Summary of Predicates

- System variables $\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . \mathrm{v}_{\mathrm{n}}$.
- Each $\mathbf{v}_{\mathbf{i}}$ has a domain of values
- Boolean , \{a,b,c,..\}, \{5,8,0,7\}...
- Each domain is required to be finite.
- A state is a function \mathbf{s} which assigns to each system variable a value in its domain.
- The set of states is finite.

Summary

- Predicates can be used to pick out -succinctlysets of states (useful for identifying initial states).
- $\mathbf{X}=$ Formula $\left(\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right)$
- But this works only when all domains are boolean.
- In general Formula will be a first order formula.

Summary

- A set of transitions can also be picked out using predicates.
- $\mathbf{T}=$ Formula $\left(\mathrm{v}_{0}, \mathrm{v}_{1}, . . \mathrm{v}_{\mathrm{n}}, \mathrm{v}_{0}{ }^{\prime}, \mathrm{v}_{1}, ., \mathrm{v}_{\mathrm{n}}{ }^{\prime}\right\}$
- \mathbf{T} is the set of all transitions

$$
\left(\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right) \longrightarrow\left(\mathrm{v}_{0}^{\prime}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}^{\prime}\right)
$$ such that Formula (above!) is satisfied.

- Not all (state or transition) formulas will be legitimate.

Why use formulas?

- Once and for all, say how to go from the "logical" description to Kripke structures.
- Once we have a Kripke structure, we are in business.
- We can use
- temporal logics to specify properties
- Model checking to verify these properties.

First Order Logic

- The general structure :
- Syntax
- Formulas
- Semantics
- When is a formula true?
- Models
- Interpretations
- Valuations

Syntax

- Terms
- Variables
- Functions symbols, constant symbols
- Atomic formulas
- Relation symbols, equality, terms
- Formulas
- Atomic formulas
- Propositional connectives
- Existential and universal quantifiers

Syntax

- (individual) variables --- $\mathbf{x}, \mathbf{y}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}^{\prime}, \ldots$
- System variables in our context
- Function symbols : $\mathbf{f}^{(\mathbf{n})}$
$-\mathbf{n}$ is the arity of \mathbf{f}.
$-\operatorname{Add}{ }^{(2)}$
$-\operatorname{Next}^{(1)}$
- Function symbols will capture the functions used in the programs, circuits, ...

Constant symbols

- Apart from variables, it will also be convenient to have constant symbols.
- zero, five, ...
- Variables can be assigned different values but a constant symbol is assigned a fixed value.

Terms

- Terms are used to point at values.
- A variable is a term.
$-\mathbf{x}, \mathbf{v}, \mathbf{v}$ "
- A constant symbol is a term.
- Suppose f is a function symbol of arity n and $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}$ are terms then $f\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}\right)$ is also a term.

Terms

- Let Plus be a function symbol of arity 2.
- $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \operatorname{Plus}\left(\mathbf{v}_{\mathbf{2}}, \operatorname{Plus}\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{1}}\right)\right)$ are terms.
- the semantics of the last term is intuitively

$$
v_{2}+2 v_{1}
$$

- Let weird_op be a function symbol of arity 3
- Then
$\operatorname{Plus}\left(\right.$ weird_op($\mathbf{v}, \operatorname{Plus}\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right)$, five $\left.), \operatorname{Plus}\left(\mathbf{v}, \mathbf{v}{ }^{\prime}\right)\right)$ is a term.

Predicates

- Relation (predicate) symbols :
- P which also has an arity
- Greater-Than has arity 2
- Prime has arity 1
$-\operatorname{Middle}$ has arity $3-\operatorname{Middle}\left(\mathbf{t}_{\mathbf{1}}, \mathbf{x}, \mathbf{t}_{\mathbf{2}}\right)$
- intuitively, \mathbf{x} lies between \mathbf{t}_{1} and \mathbf{t}_{2}
- Equal has arity 2
- will be denoted as =
- It is a "constant" relation symbol.

Atomic formulas.

- If $\mathbf{t}_{\mathbf{1}}$ and $\mathbf{t}_{\mathbf{2}}$ are terms then $=\left(\mathbf{t}_{1}, \mathbf{t}_{\mathbf{2}}\right)$ is an atomic formula.
- also written $\mathbf{t}_{\mathbf{1}}=\mathbf{t}_{\mathbf{2}}$
- Suppose \boldsymbol{P} has arity \mathbf{n} and $\mathbf{t}_{\mathbf{1}}, \mathbf{t}_{\mathbf{2}}, \ldots, \mathbf{t}_{\mathbf{n}}$ are terms.
- Then $\boldsymbol{P}\left(\mathbf{t}_{1}, \mathbf{t}_{\mathbf{2}}, \ldots, \mathbf{t}_{\mathbf{n}}\right)$ is an atomic formula.

Atomic formulas

- Greater-Than(five, zero)
- Greater-Than(two,four)
- Prime (Plus($\left.\mathbf{v}_{1}, \mathbf{v}^{\text {" }}\right)$)
- Plus(v,Zero) = weird_op(v,v,four)
- $\mathbf{v}=\boldsymbol{\operatorname { G r e a t e r }} _\boldsymbol{T h a n}\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{2}\right)$ is not an atomic formula!

Terms and Predicates

- A term is meant to denote a value.
- Makes no sense to talk about a term being true or false.
- An atomic formula may be true or false (depends on the interpretation).
- Does not make sense to associate a value with an atomic formula.

Formulas

- Every atomic formula is a formula.
- If φ is a formula then $\neg \varphi$ is a formula.
- If φ and φ^{\prime} are formulas then $\varphi \vee \varphi^{\prime}$ is a formula.
- $\varphi \wedge \varphi^{\prime}$ abbreviates: $\neg\left(\neg \varphi \vee \neg \varphi^{\prime}\right)$
- $\varphi \supset \varphi^{\prime}$ abbreviates : $\neg \varphi \vee \varphi^{\prime}$
- $\varphi \equiv \varphi^{\prime}$ abbreviates : $\left(\varphi \supset \varphi^{\prime}\right) \wedge\left(\varphi^{\prime} \supset \varphi\right)$

Formulas

- If φ is a formula and \mathbf{x} is a variable then $\exists \mathbf{x} . \varphi$ is a formula.
- $\forall \mathbf{x} . \varphi$ abbreviates $: ~ \neg \exists \mathbf{x} . \neg \varphi$
- These are existential and universal quantifiers.
- The power of first order logic comes from these operators!

Semantics

- Models :
- Domain of interpretation
- Interpretation
- For the function, constant and relation symbols.
- Fixed for all formulas.
- For the individual variables, on a "per formula" basis.
- Valuations.

Semantics

- Domain
- Each variable will have its domain of values.
- We pretend all these domains are the same.
- Or rather, a big enough "universe" that will contain all these domains.
- Fix \mathbf{D} the universe of values.

Semantics

Interpretation function I

- Assign a concrete function to each function symbol (of the same arity!)
- Assign a concrete member of \mathbf{D} to each constant symbol.
- Assign a concrete relation to each relation symbol (of the same arity!).

Semantics

- D --- The set of integers.
- Plus $\xrightarrow{I}+$
- Greater_Than \xrightarrow{I} >
- Zero $\xrightarrow{I} 0$
- weird_op $\xrightarrow{\boldsymbol{I}} \boldsymbol{f}$ where for each i, j, k $f(i, j, k)=2 i+3 j-17 k$

Semantics

- Assume we have fixed an interpretation for all function symbols, constant symbols and relational symbols.
- Let φ be a formula. Fix a valuation \mathbf{V} which assigns a member of \mathbf{D} to each variable.
- V : Variables $\longrightarrow \mathbf{D}$

Semantics

- Let φ be a formula. Fix a valuation \mathbf{V} which assigns a member of \mathbf{D} to each variable.
- \mathbf{V} : Variables $\longrightarrow \mathbf{D}$
- This extends to a valuation $\mathbf{V} _\mathbf{T}$ for all terms!
$-\mathbf{V} _\mathbf{T}(\boldsymbol{v})=\mathbf{V}(\boldsymbol{v}) \quad$ if \boldsymbol{v} is a variable.
$-\mathbf{V} _\mathbf{T}(\boldsymbol{c})=\mathbf{d} \quad$ if \boldsymbol{c} is a constant symbol and the interpretation we have fixed assigns the value d to \boldsymbol{c}.

Semantics

- Let φ be a formula. Fix a valuation \mathbf{V} which assigns a member of \mathbf{D} to each variable.
- V : Variables $\longrightarrow \mathbf{D}$
- This extends to a valuation $\mathbf{V} _\mathbf{T}$ for all terms!
- Suppose \boldsymbol{f} is of arity n and $\boldsymbol{t}_{\boldsymbol{1}}, \boldsymbol{t}_{2}, \ldots, \boldsymbol{t}_{\boldsymbol{n}}$ are terms with $\mathbf{V} _\mathbf{T}\left(\boldsymbol{t}_{\boldsymbol{1}}\right)=\mathrm{d}_{1}, \ldots . \mathbf{V}_{-} \mathbf{T}\left(\boldsymbol{t}_{\boldsymbol{n}}\right)=\mathrm{d}_{\mathrm{n}}$.
- Suppose f has been assigned the function F by our interpretation. Then
$-\mathrm{V}_{-} \mathbf{T}\left(\boldsymbol{f}\left(\boldsymbol{t}_{\boldsymbol{1}}, \boldsymbol{t}_{\boldsymbol{2}}, \ldots, \boldsymbol{t}_{\boldsymbol{n}}\right)\right)=\mathrm{F}\left(\mathrm{d}_{1}, \mathrm{~d}_{2}, . ., \mathrm{d}_{\mathrm{n}}\right)$.

Semantics

- Let φ be a formula. Fix a valuation \mathbf{V} which assigns a member of \mathbf{D} to each variable.
- So we now have $\mathbf{V}_{-} \mathbf{T}$ that assigns a member of \mathbf{D} each term.
- φ is satisfied under \mathbf{V} (and the interpretation we have fixed for all formulas) if :
- suppose $\boldsymbol{P}\left(\boldsymbol{t}_{\boldsymbol{l}}, \boldsymbol{t}_{2}, \ldots, \boldsymbol{t}_{n}\right)$ is an atomic formula and $\mathbf{V}_{-} \mathbf{T}\left(\boldsymbol{t}_{\boldsymbol{I}}\right)=\mathrm{d}_{1}, \ldots . \mathbf{V}_{-} \mathbf{T}\left(\boldsymbol{t}_{n}\right)=\mathrm{d}_{\mathrm{n}}$ and PCON is the relation assigned to \boldsymbol{P} by our interpretation.

Semantics

- Suppose $\boldsymbol{P}(\boldsymbol{t 1}, \boldsymbol{t 2}, . ., \boldsymbol{t n})$ is an atomic formula and $\mathbf{V}_{-} \mathbf{T}\left(\boldsymbol{t}_{\boldsymbol{l}}\right)=\mathrm{d}_{1}, \ldots . \mathbf{V}_{-} \mathbf{T}\left(\boldsymbol{t}_{\boldsymbol{n}}\right)=\mathrm{d}_{\mathrm{n}}$ and PCON is the relation assigned to \boldsymbol{P} by our interpretation.
- Then $\boldsymbol{P}\left(\boldsymbol{t}_{\boldsymbol{l}}, \boldsymbol{t}_{2}, . ., \boldsymbol{t}_{\boldsymbol{n}}\right)$ is satisfied under \mathbf{V} iff $\operatorname{PCON}\left(\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{\mathrm{n}}\right)$ holds in \mathbf{D}. $\left(\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{\mathrm{n}}\right) \in \mathrm{PCON} \subseteq \mathbf{D} \times \mathbf{D} \times \ldots \times \mathbf{D}$

Semantics

- Suppose φ is of the form $\neg \varphi^{\prime}$. then φ is satisfied under \mathbf{V} iff φ^{\prime} is not satisfied under \mathbf{V}.
- Suppose φ is of the form $\varphi_{1} \vee \varphi_{2}$ then φ is satisfied under \mathbf{V} iff φ_{1} is satisfied under \mathbf{V} or φ_{2} is satisfied under \mathbf{V}.

Semantics

- The only case left is when φ is of the form $\exists \mathbf{x} . \varphi^{\prime}$.
- φ is satisfied under \mathbf{V} iff there is a valuation \mathbf{V}^{\prime} such that φ^{\prime} is satisfied under \mathbf{V}^{\prime}, and \mathbf{V}^{\prime} is required to meet the condition :
$-\mathbf{V}^{\prime}$ is exactly \mathbf{V} for all variables except \mathbf{x}.
- for $\mathbf{x}, \mathbf{V}^{\prime}$ can assign any value in \mathbf{D} of its choosing.

Semantics II

- Models :
- Domain of interpretation
- Interpretation
- For the function, constant and relation symbols.
- Fixed for all formulas.
- For the individual variables, on a per formula basis.
- Valuations.

Semantics II

- Assign a concrete function to each function symbol (of the same arity!)
- Assign a concrete member of \mathbf{D} to each constant symbol.
- Assign a concrete relation to each relation symbol (of the same arity!).

Semantics II

- Assume we have fixed an interpretation for all function symbols, constant symbols and relational symbols.
- Let φ be a formula. Fix a valuation \mathbf{V} which assigns a member of \mathbf{D} to each variable.
- V : Variables $\longrightarrow \mathbf{D}$

Lift V to All Terms

- We have :
- An interpretation for the function symbols and constant symbols.
$-\mathbf{V}$: Variables $\longrightarrow \mathbf{D}$
- Using this, we can construct (uniquely!)

V_T : Terms $\longrightarrow \mathbf{D}$

Constructing V_T

Constructing V_T

Constructing V_T

Constructing V_T

Semantics II

- Let φ be a formula. Fix a valuation \mathbf{V} which assigns a member of \mathbf{D} to each variable.
- So we now have V_T that assigns a member of \mathbf{D} each term.
- φ is satisfied under \mathbf{V} (and the interpretation we have fixed for all formulas) if :

Semantics II

- Suppose $\boldsymbol{P}\left(\boldsymbol{t}_{\boldsymbol{l}}, \boldsymbol{t}_{2}, . ., \boldsymbol{t}_{\boldsymbol{n}}\right)$ is an atomic formula and $\mathbf{V}_{-} \mathbf{T}\left(\boldsymbol{t}_{\boldsymbol{l}}\right)=\mathrm{d}_{1}, \ldots . \mathbf{V}_{-} \mathbf{T}\left(\boldsymbol{t}_{\boldsymbol{n}}\right)=\mathrm{d}_{\mathrm{n}}$ and PCON is the relation assigned to \boldsymbol{P} by our interpretation.
- Then $\boldsymbol{P}\left(\boldsymbol{t}_{\boldsymbol{t}}, \boldsymbol{t}_{2}, . ., \boldsymbol{t}_{\boldsymbol{n}}\right)$ is satisfied under \mathbf{V} iff $\operatorname{PCON}\left(\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{\mathrm{n}}\right)$ holds in \mathbf{D}. $\left(\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{\mathrm{n}}\right) \in \mathrm{PCON} \subseteq \mathbf{D} \times \mathbf{D} \times \ldots \times \mathbf{D}$

Semantics II

- Suppose φ is of the form $\neg \varphi^{\prime}$.
- Then φ is satisfied under \mathbf{V} iff φ^{\prime} is not satisfied under \mathbf{V}.
- Suppose φ is of the form $\varphi_{1} \vee \varphi_{2}$
- Then φ is satisfied under \mathbf{V} iff φ_{1} is satisfied under \mathbf{V} or φ_{2} is satisfied under \mathbf{V}.

Semantics II

- Greater-Than $(\operatorname{Plus}(v, 3), \operatorname{Multi}(x, 2))$
- $\mathrm{V}(\mathrm{v})=2 \mathrm{~V}(\mathrm{x})=1$
- $\mathrm{V} _\mathrm{T}\left(\mathrm{t}_{1}\right)=5 \mathrm{~V} _\mathrm{T}\left(\mathrm{t}_{2}\right)=2$
- $(5,2) \in>\subseteq$ Integers \times Integers
- $\mathrm{V}^{\prime}(\mathrm{v})=1 \mathrm{~V}^{\prime}(\mathrm{x})=6$
- Under V^{\prime}, the atomic formula is not true.

Semantics II

- The only case left is when φ is of the form $\exists \mathbf{x} . \varphi^{\prime}$
- φ is satisfied under \mathbf{V} iff there is a valuation \mathbf{V}^{\prime} such that φ^{\prime} is satisfied under \mathbf{V}^{\prime} and \mathbf{V}^{\prime} is required to meet the condition :
$-\mathbf{V}^{\prime}$ is exactly \mathbf{V} for all variables except \mathbf{x}.
- For \mathbf{x}, V^{\prime} can assign any value of its choosing.

Semantics II

- Whether $\exists \mathbf{x} . \varphi$ is true or not under \mathbf{V}
- does not depend on what \mathbf{V} does on \mathbf{x} !
- $\exists \mathbf{x} \cdot \mathbf{2 x}=\mathbf{y}$ is true under $V(\mathbf{y})=\mathbf{4}$ $\mathbf{V}(\mathbf{x})=1$!
- Because, we can find \mathbf{V}^{\prime} with $\mathbf{V}^{\prime}(\mathbf{y})=\mathbf{4}$ but $\mathbf{V}^{\prime}(\mathbf{x})=2$.
- One says \mathbf{x} is bound in the formula and \mathbf{y} is free.

The efficient way

First Order Representation to Transition Systems

- $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, . ., \mathbf{v}_{\mathbf{n}}\right\}$--- System variables.
- $\mathbf{D}_{1}, \mathbf{D}_{2}, \ldots, \mathbf{D}_{\mathrm{n}}$--- The corresponding domains.
- $D=\cup D_{i}$
- $\mathbf{s}:\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\} \longrightarrow \mathrm{D}$ such that $s\left(v_{1}\right) \in D_{1} \ldots \ldots$
- \mathbf{S}--- The set of states.

Initial States

- $S_{0}\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is a FO formula describing the set of initial states.
- Atomic formula
$-v=\boldsymbol{d}$ where \boldsymbol{v} is is a system variable and \boldsymbol{d} is a constant symbol interpreted as a member of the domain of \boldsymbol{v}.
Example:
- " $\mathbf{S}_{\mathbf{0}}$ is the set of all states where the $\mathbf{p c}=\mathbf{0}$ and input is a power of 2 "
- $\exists \mathrm{n} .($ input $=\boldsymbol{E X P}(n)) \wedge(p c=0)$

Transition relation

- $R\left(v_{1}, v_{2}, . . v_{n}, v_{1}^{\prime}, v_{2}^{\prime}, . ., v_{n}{ }^{\prime}\right)$ is a FO formula involving the variables $\mathrm{v}_{1}, \mathrm{v}_{2}, . . \mathrm{v}_{\mathrm{n}}$ (the system variables) and the new variables ($\mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}{ }^{\prime}, \ldots, \mathrm{v}_{\mathrm{n}}{ }^{\prime}$).
- $\left(d_{1}, d_{2}, . ., d_{n}\right) \longrightarrow\left(d_{1}{ }^{\prime}, \mathbf{d}_{\mathbf{2}}{ }^{\prime}, . ., d_{\mathrm{n}}{ }^{\prime}\right)$ iff
$R\left(v_{1}, v_{2}, . . v_{n}, v_{1}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right)$ is true under the valuation $v_{1}=d_{1}, \ldots, v_{n}=d_{n}, v_{1}{ }^{\prime}=d_{1}{ }^{\prime}, . . v_{n}{ }^{\prime}=d_{n}{ }^{\prime}$.

Transition Relation

- $\mathrm{V}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$
- Program : $\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{pc}\}$
1_{0} : begin
$1_{1}:$ statement $_{1}$
1_{2} : statement $_{2}$
1_{5} : if even (x) then $x=x / 2$ else $x=x-1$
$1_{6}: \ldots$

Transition Relation

- $\mathbf{V}=\{\mathbf{x}, \mathbf{y}, \mathrm{z}\}$
- Program : $\{\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{p c}\}$

$$
1_{5} \text { : if even }(x) \text { then } x=x / 2 \text { else } x=x-1
$$

$$
\mathbf{I}_{6}: \ldots
$$

- $\varphi\left(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{p c}, \mathbf{x}^{\prime}, \mathbf{y}^{\prime}, \mathbf{z}^{\prime}, \mathbf{p c}{ }^{\prime}\right)$
- $p c=l_{5} \wedge p c^{\prime}=l_{6} \wedge\left(\exists n .(x=2 n) \supset x^{\prime}=x / 2\right) \wedge$

$$
\left(\neg \exists \mathrm{n} .(\mathrm{x}=2 \mathrm{n}) \supset \mathrm{x}^{\prime}=\mathrm{x}-1\right) \wedge \operatorname{same}(\mathrm{y}, \mathrm{z})
$$

which is equivalent to

- $p c=l_{5} \wedge \quad p c^{\prime}=l_{6} \wedge$

$$
\begin{aligned}
& \left.\left(\left(\exists \mathrm{n} .(x=2 n) \wedge x^{\prime}=x / 2\right) \vee\left(\neg \exists n .(x=2 n) \wedge x^{\prime}=x-1\right)\right)\right) \wedge \\
& \quad \operatorname{same}(y, z)
\end{aligned}
$$

- $\operatorname{same}(\mathrm{y}, \mathrm{z})---y^{\prime}=\mathrm{y} \wedge \mathrm{z}^{\prime}=\mathrm{z}$

Transition Relation

- In a similar fashion, we can construct transition relation formulas for :
- Assignment statement
- While statements
- etc.etc.
- See the text book!

Kripke Structures

- AP is a finite set of atomic propositions. - "value of x is 5 "
- "x = 5"
- $\mathbf{M}=\left(\mathbf{S}, \mathbf{S}_{\mathbf{0}}, \mathbf{R}, \mathbf{L}\right)$, a Kripke Structure.
$-\left(\mathbf{S}, \mathbf{S}_{\mathbf{0}}, \mathbf{R}\right)$ is a transition system.
$-\mathrm{L}: \mathrm{S} \longrightarrow 2^{\mathrm{AP}}$
$-\mathbf{2}^{\text {AP }} \quad---$ The set of subsets of AP

Kripke Structures

- The atomic propositions and \mathbf{L} together convert a transitions system into a model.
- We can start interpreting formulas over the Kripke structure.
- The atomic propositions make basic (easy) assertions about system states.

Automata and Kripke Structures

- AP - set of elementary property
- <S,A,R, $\mathbf{s}_{\mathbf{0}}$,L>
- S - set of states
- A - set of transition labels
- $\mathbf{R} \subseteq \mathbf{S} \times \mathbf{A} \times \mathbf{S}$ - (labeled) transition relation
- L - interpretation mapping $\mathrm{L}: \mathrm{S} \longrightarrow 2^{\mathrm{AP}}$

Example: a print manager

- $S=\{\mathbf{0 , 1 , 2 , 3 , 4 , 5 , 6 , 7}\}$
- $A=\left\{\right.$ end $_{A}$, end $_{B}$, req $_{A}$, req $_{B}$, start $_{A}$, start $\left._{B}\right\}$
- $R=\left\{\left(0\right.\right.$, req $\left._{A}, 1\right),\left(0\right.$, req $\left._{B}, 2\right),\left(1\right.$, req $\left._{B}, 3\right),\left(1\right.$, start $\left._{A}, 6\right),\left(2\right.$, req $\left._{A}, 3\right)$, $\left(2, \operatorname{start}_{\mathrm{B}}, 7\right),\left(3, \operatorname{start}_{\mathrm{A}}, 5\right),\left(3, \operatorname{start}_{\mathrm{B}}, 4\right),\left(4\right.$, end $\left._{\mathrm{B}}, 1\right),\left(5\right.$, end $\left._{\mathrm{A}}, 2\right)$, (6,end $\left.{ }_{\mathrm{A}}, 0\right),\left(6\right.$, req $\left._{\mathrm{B}}, 5\right),\left(7\right.$, end $\left._{\mathrm{B}}, \mathbf{0}\right),\left(7\right.$, req $\left.\left._{\mathrm{A}}, 4\right),\right\}$
- $\mathbf{L}=\left\{\mathbf{0} \rightarrow\left\{\mathbf{R}_{\mathrm{A}}, \mathbf{R}_{\mathrm{B}}\right\}, \mathbf{1} \rightarrow\left\{\mathbf{W}_{\mathrm{A}}, \mathbf{R}_{\mathrm{B}}\right\}, \mathbf{2} \rightarrow\left\{\mathbf{R}_{\mathrm{A}}, \mathbf{W}_{\mathrm{B}}\right\}, \mathbf{3} \rightarrow\left\{\mathbf{W}_{\mathrm{A}}, \mathbf{W}_{\mathbf{B}}\right\}\right.$, $\left.\mathbf{4} \rightarrow\left\{\mathbf{W}_{A}, \mathbf{P}_{B}\right\}, 5 \rightarrow\left\{\mathbf{P}_{A} \mathbf{W}_{B}\right\}, \mathbf{6} \rightarrow\left\{\mathbf{P}_{A}, \mathbf{R}_{B}\right\}, \mathbf{7} \rightarrow\left\{\mathbf{R}_{A} \mathbf{P}_{B}\right\}\right\}$

Properties of the printing systems

- Every state in which $\mathbf{P}_{\mathbf{A}}$ holds, is preceded by a state in which $\mathbf{W}_{\mathbf{A}}$ holds
- In any state in which $\mathbf{W}_{\mathbf{A}}$ holds is followed (possibly not immediately) by a state in which $\mathbf{P}_{\mathbf{A}}$ holds.
- The first can easily be checked to be true
- The second is false (e.g. 0134134134...) in other words the system is not fair.

Synchronization

- Usually complex systems are composed of a number of smaller subsystems (modules)
- It is natural to model the whole system starting from the models of the subsystems.
- And then define how they cooperate.
- There are many ways to define cooperation (synchronization).

Synchronization: no interaction

The system model is just the cartesian product of the simple modules.
Let $\boldsymbol{T S}_{1}, . ., \boldsymbol{T S}_{\boldsymbol{n}}$ be \boldsymbol{n} automata (or $\mathbf{T S}$), where $T S_{i}=\left\langle S_{i}, A_{i}, R_{i j} s_{i 0}\right\rangle$
The system is then defined as $\boldsymbol{T S}=\left\langle\boldsymbol{S}, \boldsymbol{A}, \boldsymbol{R}, \boldsymbol{s}_{0}\right\rangle$ where

$$
\left\lvert\, \begin{aligned}
& S=S_{1} \times S_{2} \times \ldots \times S_{n} \\
& A=A_{1} \cup\{-\} \times A_{2} \cup\{-\} \times \ldots \times A_{n} \cup\{-\} \\
& R=\left\{\left(\left(s_{1}, s_{2}, \ldots, s_{n}\right),\left(a_{1}, a_{2}, \ldots, a_{n}\right),\left(s^{\prime},{ }_{1}, s_{2}, \ldots, s^{\prime}, n\right) \mid \text { forall } i,\right.\right. \\
& \left.a_{1} \neq- \text { and }\left(s_{i}, a_{i}, s_{i}\right) \in R_{\dot{v}} \text { or } a_{1}=- \text { and } s_{i}{ }_{i}=s_{i}\right\} \\
& s_{0}=\left(s_{10} s_{20} \ldots, s_{n 0}\right)
\end{aligned}\right.
$$

Synchronization: interaction

To allow for interaction, or synchronization on specific actions we can introduce a Synchronization Set (to inhibit undesired transitions) :

- Synchronization set is just a subset of the composite actions:

$$
\text { Sync } \subseteq A_{1} \cup\{-\} \times A_{2} \cup\{-\} \times \ldots \times A_{n} \cup\{-\}
$$

- Then we will have to define the possible transitions as:

$$
\begin{aligned}
& R=\left\{\left(\left(s_{1}, s_{2}, \ldots, s_{n}\right),\left(a_{1}, a_{2}, \ldots, a_{n}\right),\left(s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{n}^{\prime}\right)\right) \mid\right. \\
&\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in S y n c \text { and for all } i, \\
&\left.a_{1} \neq- \text { and }\left(s_{i}, a_{i}, s_{i}^{\prime}\right) \in R_{\dot{v}} \text { or } a_{1}=- \text { and } s_{i}^{\prime}=s_{i}\right\}
\end{aligned}
$$

Free synchronization (Asynchronous systems): Sync $=\{$ inc, -$\} \times\{$ inc, -$\}$

Free synchronization

Asynchronous systems:
Sync $=\{i n c,-\} \times\{i n c,-\}$

- $R\left(V, V^{\prime}\right)=\widehat{i \in I}\left(R_{i}\left(v_{i}, v_{i}^{\prime}\right) \vee \operatorname{same}\left(v_{i}\right)\right) \wedge \neg \wedge \operatorname{same}\left(v_{i}\right)$
if one wants to discard the situation where no component acts

Synchronization on all actions (Synchronous systems):
Sync $=\{($ inc, inc $)\}$

Synchronous systems

Synchronous systems:
Sync $=\{($ inc, inc $)\}$

- $R\left(V, V^{\prime}\right)=\lambda R_{i}\left(v_{i}, v_{i}^{\prime}\right)$
$i \in I$

Asynchronous systems with interleaving (only one

 component acts at any time):Sync $=\{(-$, inc $),($ inc,--) $\}$

Asynchronous systems: Interleaving

Asynchronous systems:
Sync $=\{$ inc,,-$\} \times\{$ inc, -$\}$

- $R\left(V, V^{\prime}\right)=\bigvee_{i \in I}\left(R_{i}\left(v_{i}, v_{i}^{\prime}\right) \wedge \wedge_{i \neq i}^{\left.\wedge \operatorname{same}\left(v_{j}\right)\right)}\right.$

Concurrent programs

- Many systems to be verified can be viewed as concurrent programs
- operating system routines
- cache protocols
- communication protocols
- $P=$ cobegin $\left(P_{1}\left\|P_{2}\right\| \ldots P_{n}\right)$ coend
- $\mathbf{P}_{\mathbf{1}}, \mathbf{P}_{\mathbf{2}}, . . \mathbf{P}_{\mathbf{n}}$--- Sequential Programs.
- Usually interleaving semantics is assumed

Sequential Programs

Assignments

Skip

Conditional statement

While statement

Concurrent programs

- $P=$ cobegin $\left(P_{1}\left\|P_{2}\right\| \ldots P_{n}\right)$ coend
- $\mathbf{P}_{1}, \mathbf{P}_{2}, . . \mathbf{P}_{\mathbf{n}}$--- Sequential Programs.

Concurrent programs

- $P=\operatorname{cobegin}\left(P_{1}\left\|P_{2}\right\| \ldots P_{n}\right)$ coend
- $\mathbf{P}_{1}, \mathbf{P}_{2}, . . \mathbf{P}_{\mathrm{n}}$--- Sequential Programs.
- $\mathbf{C}\left(\mathbf{l}_{1}, \mathbf{P}_{\mathbf{1}}, \mathbf{l}_{\mathbf{1}}{ }^{\prime}\right)$--- The transitions of $\mathbf{P}_{\mathbf{1}}$ (defined inductively!).
- $\mathbf{V}_{\mathbf{i}}$---- The set of variables of $\mathbf{P}_{\mathbf{i}}$.
- Programs may share variables!
- $\mathbf{p c}_{\mathbf{i}}$ - The program counter of $\mathbf{P}_{\mathbf{i}}$.

Concurrent programs

- pc ---- the program counter of the concurrent program; it could be part of a larger program!
- \perp denotes the program counter value is undefined.
- $S_{0}(V, P C)=\operatorname{pre}(V) \wedge p c=L \wedge$

$$
\mathbf{p c}_{1}=\perp \wedge \ldots \ldots \wedge \mathbf{p c}_{\mathrm{n}}=\perp
$$

The Transition Predicate

Summary

- System variables
- Domain of values
- States
- Initial state predicate
- Transition predicate
- pc values (for programs)

