
EMBEDDED C CODE 17
‘‘The purpose of analysis is not to

compel belief but rather to suggest doubt.’’
(Imre Lakatos, Proofs and Refutations)

SPIN Version 4 supports the inclusion of embedded C code into PROMELA mod-
els through the following fiv e new primitives:

c_expr
c_code
c_decl
c_state
c_track

The purpose of these new primitives is to provide support for automatic model
extraction from C code. This means that it is not the intent of these extensions
to be used in manually constructed models. The primitives provide a power-
ful extension, opening SPIN models to the full power of, and all the dangers of,
arbitrary C code. The embedded code fragments cannot be checked by SPIN,
neither in the parsing phase nor in the verification phase. They are trusted
blindly and copied through from the text of the model into the code of the ver-
ifier that SPIN generates.

The verifiers that are generated with SPIN version 4 and higher use the embed-
ded code fragments to define state transitions as part of a PROMELA model. As
far as SPIN is concerned, a c_code statement is an uninterpreted state trans-
former, defined in an external language, and a c_expr statement is a
user-defined Boolean guard, also defined in an external language. Since this
‘‘external’’ language cannot be interpreted by SPIN itself, simulations have to
be done in a special way, but all verifications can be performed largely as
before: the C compiler provides the necessary interpretation.

The next three primitives deal with various ways of declaring data and

© 2002 Bell Labs 443 November 13, 2002

CHAPTER SEVENTEEN EMBEDDED C CODE

datatypes in C that either become part of the statevector, that are deliberately
hidden from the statevector, or that refer to data objects declared in separately
compiled code that is linked with the SPIN generated verifier.

If embedded C code is present in a model, the playback of counter-examples
can no longer be done through SPIN’s builtin guided simulation options. The
SPIN generated verifiers, therefore, now hav e their own builtin error-trail play-
back capability. We will illustrate its use with an example.

AN EXAMPLE
We will discuss a short example of a model that makes use of some of the new
features.

c_decl {
typedef struct Coord {

int x, y;
} Coord;

}

c_state "Coord pt" "Global"

int z = 3; /* a standard global declaration */

active proctype example()
{

c_code { now.pt.x = now.pt.y = 0; };

do
:: c_expr { now.pt.x == now.pt.y } ->

c_code { now.pt.y++; }
:: else ->

break
od;
c_code {

printf("values %d: %d, %d,%d\n",
Pexample->_pid, now.z, now.pt.x, now.pt.y);

};
assert(false) /* trigger an error trail */

}

The c_decl primitive introduces a new data type named Coord. The new
data type name may not match any of the existing type names that are already
used inside the SPIN generated verifiers. The compiler will complain if this
accidentally happens.

The c_state primitive introduces a new global data object pt, of type Coord
into the statevector. The object is initialized to zero.

There is only one active process in this model. It re-initializes the global vari-
able pt to zero (in this case this is redundant), and then executes a loop. The
loop continues until the elements of structure pt differ, which of course will

444 — Draft — © 2002 Bell Labs

EMBEDDED C CODE CHAPTER SEVENTEEN

happen after a single iteration. When the loop terminates, the elements of the
C data object pt are printed. To make sure an error trail is generated, the next
statement is a false assertion.

Arbitrary C syntax can be used in any c_code and c_expr statement. The
difference between these two types of statements is that a c_code statement
will always be executed unconditionally and atomically, while a c_expr
statement can only be executed (passed) if it returns non-zero when its body is
evaluated as a C expression. The evaluation of a c_expr is again indivisible
(i.e., atomic). Because SPIN may have to evaluate c_expr statements repeat-
edly, until it is found to be executable, a c_expr must always be side-effect
free: it may only evaluate data, and not modify it.

DATA REFERENCES
A global data object that is declared with the standard declaration syntax in
the PROMELA model (i.e., not with the help of c_decl, c_state, or c_track)
can be referenced from within c_code and c_expr statements, but the refer-
ence has to be prefixed in this case with the string now followed by a period.
In the example above, for instance, the global z can be referenced within a
c_code or c_expr statement as now.z. Outside embedded C code frag-
ments, the same variable can be referenced simply as z.

Any process local data object can also be referenced from within c_code and
c_expr statements, but the syntax is different. The extended syntax again
adds a special prefix that locates each data object in the model checker’s state
vector. The prefix starts with an upper-case letter P which is followed by the
name of the proctype in which the reference occurs, followed by the pointer
arrow. For the data objects declared locally in proctype example, for
instance, the prefix to be used is Pexample->.

In the example above, this is illustrated by the reference to the predefined
local variable _pid from within the c_code statement as Pexample->_pid.

The _pid variable of the process can be referenced, within the init process
itself, as Pinit->_pid.

EXECUTION
When a PROMELA model contains embedded C code, SPIN will not be able to
simulate its execution in the normal way, because it cannot directly parse or
execute the portions of code that are enclosed in c_code or c_expr state-
ments. If we try to run a simulation anyway, SPIN will make a best effort to
comply, but it will only print the c_expr and c_code fragments as uninter-
preted text and it will not try to execute. For the SPIN simulator these primi-
tives are treated as if they were PROMELA skip statement.
To get a real execution that includes a full execution of all c_code and
c_expr statements, we need must first need generate the pan.[chmbt] files,

© 2002 Bell Labs — Draft — 445

CHAPTER SEVENTEEN EMBEDDED C CODE

and compile it. We are now relying on the standard C compiler to accurately
interpret the contents of all c_code and c_expr statements as part of the nor-
mal compilation of all generated code. We proceed as follows:

$ spin -a example # SPIN Version 4
$ cc -o pan pan.c # compile as usual
$./pan # run
values 0: 3, 0,1
pan: error: assertion violated 0 (at depth 5)
pan: wrote coord.trail
(Spin Version 4.0.0 -- 3 May 2002)
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:
never-claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid endstates +

State-vector 20 byte, depth reached 5, errors: 1
6 states, stored
0 states, matched
6 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)
(max size 2ˆ18 states)

1.573 memory usage (Mbyte)

The assertion violation was reported as expected, but note that the embedded
printf statement was also executed, which shows that it works differently
from a PROMELA print statement. We can get around this by using Printf
instead of printf inside embedded c_code fragments. This causes the veri-
fier to enable the execution of the print statement only when reproducing an
error trail, but not during the verification process itself.

Now we hav e a counter-example, stored in a pan.trail file as usual, but
again SPIN cannot interpret the trail file properly, because it has embedded C
code in it. If we try anyway, SPIN produces something like this, printing out
the embedded fragments of code without actually also executing their con-
tents:

446 — Draft — © 2002 Bell Labs

EMBEDDED C CODE CHAPTER SEVENTEEN

$ spin -t -p ex0
c_code2: { now.pt.x = now.pt.y = 0; }

1: proc 0 (ex0) line 11 "coord" (state 1) [{c_code2}]
c_code3: now.pt.x == now.pt.y

2: proc 0 (ex0) line 14 "coord" (state 2) [({c_code3})]
c_code4: { now.pt.y++; }

3: proc 0 (ex0) line 15 "coord" (state 3) [{c_code4}]
4: proc 0 (ex0) line 16 "coord" (state 4) [else]

c_code5: { printf("values %d: %d %d,%d\n", \
Pexample->_pid, now.z now.pt.x, now.pt.y); }

5: proc 0 (ex0) line 19 "coord" (state 9) [{c_code5}]
spin: line 20 "coord", Error: assertion violated
spin: text of failed assertion: assert(0)

6: proc 0 (ex0) line 20 "coord" (state 10) [assert(0)]

spin: trail ends after 6 steps
#processes: 1

6: proc 0 (ex0) line 21 "coord" (state 11)
1 process created

The assertion is violated at the end, but this is merely because it was
hard-wired to fail. None of the C data-objects referenced were ever created
during this run, and thus none of them had any values that were effectively
assigned to them at the end. Note also that the text of the c_code fragment
that is numbered c_code5 here, is printed out, but that the print statement that
it contains is not itself executed, or else the values printed would have shown
up in the output near this line.

Better is to use the trail replay option that is now available inside the gener-
ated pan verifier. The additional options are:

$./pan --
...
-C read and execute trail - columnated output
-PN read and execute trail - restrict output to proc N
-r read and execute trail - default output
...

With the first of these options, the verifier produces the following information
on the execution of the trail:

$./pan -C
1: ex0(0):[now.pt.x = now.pt.y = 0;]
2: ex0(0):[(now.pt.x == now.pt.y)]
3: ex0(0):[now.pt.y++;]
4: ex0(0):[else]
values 0: 3, 0,1
5: ex0(0):[printf("values: %d,%d\n", now.pt.x, now.pt.y);]
pan: error: assertion violated 0 (at depth 6)
spin: trail ends after 6 steps

© 2002 Bell Labs — Draft — 447

CHAPTER SEVENTEEN EMBEDDED C CODE

#processes 1:
6: proc 0 (example) line 20 (state 10)

assert(0)
global vars:

int z: 3
local vars proc 0 (example):

(none)

Note that in this run, the print statement was not just reproduced but also
executed. Similarly, the data object pt was created, and its value is updated in
the c_code statements, so that the final values of its elements pt accurately
reflect the execution. There is only one process here, with _pid value zero, so
the columnation feature of this format is not evident here.

More information can be added to the output by adding option -v, or all out-
put except that generated by print statements can be suppressed by adding
option -n. In long and complex error trails, with multiple process executions,
it can be helpful to restrict the trail output to just one of the executing pro-
cesses.

For an explanation of the special declarators c_decl and c_track we point
to the manual pages that follow.

ISSUES TO CONSIDER
The capability to embed arbitrary fragments of C code into a PROMELA model
is very powerful and therefore easily misused. The intent of these features is
to support mechanized preprocessors that can automatically extract verifica-
tion models from applications that are written in C. The preprocessor can
include all the right safeguards that cannot easily be included in SPIN, without
extending it with a full ANSI-C parser and analyzer that is. Most of the errors
that can be made with the new primitives will be caught, but not necessarily
by SPIN itself. The C compiler, when attempting to compile a model that con-
tains embedded fragments of code, may object to ill-defined structures, or dur-
ing execution the verifier may now get stuck hopelessly on faults that can be
traced back to semantics errors in the embedded code fragments.

If data that is manipulated inside the embedded C code fragments contains
relevant state information, but is not declared as such with c_state or
c_track primitives, then the search process can get confused, and error trails
produced by the verifier may not correspond to feasible executions of the
modeled system. With some experience, these types of errors are relatively
easy to diagnose though. Formally, they correspond to invalid ‘‘abstractions’’
of the model. The unintended ‘‘abstractions’’ then are caused by the missing
c_state or c_track primitives.

How does one determine which data objects contain state information and
which do not? This is ultimately a matter of judgement. The determination
can be automated to some extent, for a given set of logic properties. A data

448 — Draft — © 2002 Bell Labs

EMBEDDED C CODE CHAPTER SEVENTEEN

dependency analysis can then determine what is relevant and what is not. A
more detailed discussion of this issue, though important, is beyond the scope
of this book.

© 2002 Bell Labs — Draft — 449

c_code(4) V4 Extensions CHAPTER SEVENTEEN

NAME
Embedded C Code Fragments

SYNTAX
c_code { /* c code */ }
c_code ’[’ /* c expr */ ’]’ { /* c code */ ; }

EXECUTABILITY
True

EFFECT
As defined by the semantics of the C code fragment placed between the curly
braces.

DESCRIPTION
The c_code primitive supports the use of embedded C code fragments inside
PROMELA models. The code must be syntactically valid C, and must be ter-
minated by a semi-colon (a required statement terminator in C).

There are two forms of the c_code primitive: with our without an embedded
expression in square brackets. A missing expression clause is equivalent to [
1]. If an expression is specified, its value will be evaluated as a general C
expression before the C code fragment inside the curly braces is executed. If
the result of the evaluation is non-zero, the c_code fragment is executed. If
the result of the evaluation is zero, the code between the curly braces is
ignored, and the statement is treated as an assertion violation (see asser t(4)).
The typical use of the expression clause is to add checks for nil-pointers or for
bounds in array indices. For example, as in:

c_code [Pex->ptr != 0 && now.i < 10 && now.i >- 0] {
Pex->ptr.x[now.i] = 12;

}

A c_code fragment can appear anywhere in a PROMELA model, but they must
be meaningful within their context, as determined by the C compiler that is
used to compile the complete pan.[chtmb] program that is generated by
SPIN from the model.

Function and data declarations, for instance, can be placed in global c_code
fragments, that appear in the model before the proctype definitions. Code
fragments that are placed inside a proctype definition cannot contain func-
tion or data declarations. Violations of such rules are caught by the C com-
piler. The SPIN parser merely passes all C code fragments through to the gen-
erated programs uninterpreted, and will therefore not be able to detect such
errors.

450 — Draft — © 2002 Bell Labs

CHAPTER SEVENTEEN V4 Extensions c_code(4)

There can be any number of C statements inside a c_code fragment.

EXAMPLES
int q;
c_code { int *p; };
init {

c_code { *p = 0; *p++; };
c_code [p != 0] { *p = &(now.q); };
c_code { Printf("%d\n", Pinit->_pid); }

}

In this example we first declare a normal PROMELA integer variable q, that
automatically becomes part of the verifier’s internal statevector (called now)
during verification. We also declare a global integer pointer p in a global
c_code fragment. Since the contents of a C code fragment are not interpreted
by SPIN when it generates the verifier, SPIN cannot know about the presence of
the declaration for pointer variable p, and therefore this variable remains
invisible to the verifier: its declaration will appear outside the statevector. It
can be manipulated as shown as a regular global pointer variable, but the val-
ues assigned to this variable will not be considered to be part of the global
system state that the verifier will track.

To arrange for data objects to appear inside the statevector, and to be treated
as system state variables, one or more of the primitives c_decl(4),
c_state(4), and c_track(4) should be used (for details, see the correspond-
ing manual pages).
The local c_code fragment inside the init process manipulates the variable
p in a direct way. Since the variable is not moved into the statevector, no pre-
fix is needed to reference it.

In the second c_code fragment in the body of init, an expression clause is
used that verifies that the pointer p has a non-zero value, which secures that
the dereference operation that follows cannot result in a memory fault. (Of
course, it would be wiser to add this expression clause also to the preceding
c_code statement.) When the c_code statement is executed, the value of p
is set to the address of the PROMELA integer variable q. Since the PROMELA
variable is accessed inside a c_code fragment, we need a special prefix to
identify it in the global statevector. For a global variable, the required prefix
is now.. The ampersand in &(now.q) takes the address of the global variable
within the statevector.

The last c_code statement in init prints the value of the process identifier
for the running process. This is a predefined local variable.
To access the local variable in the init process, the required prefix is
Pinit->. A capital P, followed by the name of the process type, which in
turn is followed by an arrow ->.

© 2002 Bell Labs — Draft — 451

c_code(4) V4 Extensions CHAPTER SEVENTEEN

See also the description on data access in c_expr(4).

NOTES
The embedded C code fragments must be syntactically correct and complete.
That is, they must contain proper punctuation with semi-colons, using the
standard semantics from C, not from PROMELA. Note, for instance, that
semi-colons are statement terminators in C, but statement separators in
PROMELA.

SEE ALSO
c_expr(4), c_decl(4), c_state(4), c_track(4).

452 — Draft — © 2002 Bell Labs

CHAPTER SEVENTEEN V4 Extensions c_decl(4)

NAME
Embedded C Data Declarations

SYNTAX
c_decl { /* c declaration */ }
c_state string string [string]
c_track string string

EXECUTABILITY
True

EFFECT
None. These primitives are used to add embedded C data type and data object
declarations into a PROMELA model.

DESCRIPTION
The primitives c_decl, c_state, and c_track are global primitives, that
can only appear in a model as global declarations outside all proctype decla-
rations.

The c_decl primitive provides a capability to embed general C data type dec-
larations into a model. These type declarations are placed in the generated
pan.h file before the declaration of the statevector structure, which is also
included in that file. This means that the data types introduced in a c_decl
primitive can be referenced anywhere in the generated code, including inside
the statevector with the help of c_state primitives. Data type declarations
can also be introduced in global c_code fragments, but in this case the gener-
ated code is placed in the pan.c file, and therefore appears necessarily after
the declaration of the statevector structure. Therefore these declarations can-
not be refered to from inside the state vector.

The c_state keyword is followed by either two or three quoted strings. The
first argument specifies the type and the name of a data object. The second
argument the scope of that object. A third argument can optionally be used to
specify an initial value for the data object. (It is best not to assume a known
default initial value for objects that are declared in this way.)

There are three possible scopes: global, local, or hidden. A global scope is
indicated by the use of the quoted string "Global". If local, the name
Local must be followed by the name of the proctype in which the declara-
tion is to appear, as in "Local ex2" . If the quoted string "Hidden" is
used for the second argument, the data object will be declared as a global
object that remains outside the statevector.

The primitive c_track is a global primitive that can declare any state object,

© 2002 Bell Labs — Draft — 453

c_decl(4) V4 Extensions CHAPTER SEVENTEEN

or more generally any piece of memory, as holding state information. This
primitive takes two string arguments. The first argument specifies an address,
typically as a pointer to a data object declared elsewhere. The second argu-
ment gives the size in bytes of that object, or more generally the number of
bytes starting at the address that must be tracked as part of the system state.

EXAMPLES
The first example illustrates how c_decl, c_code and c_state declarations
can be used to define either visible or hidden state variables, referring to type
definitions that must precede the internal SPIN statevector declaration. For an
explanation of the rules for prefixing global and local variables inside c_code
and c_expr statements, see the manual pages for these two statements.

c_decl {
typedef struct Proc {

int rlock;
int state;
struct Rendez *r;

} Proc;

typedef struct Rendez {
int lck;
int cond;
Proc *p;

} Rendez;
}
c_code {

Proc H1;
Proc *up0 = &H1;
Rendez RR;

}

/*
* the following two c_state declarations presume type
* Rendez known the first enters R1 into statevector as
* a global variable, and the second enters R2 into
* proctype structure as local variable
*/

c_state "Rendez R1" "Global"
c_state "Rendez R2" "Local ex2" "now.R1"

454 — Draft — © 2002 Bell Labs

CHAPTER SEVENTEEN V4 Extensions c_decl(4)

/*
* the next two c_state declarations are kept outside
* the statevector
* define H1 and up0 as global objects, declared elsewhere
*/

c_state "extern Proc H1" "Hidden"
c_state "extern Proc *up0" "Hidden"

/*
* the following declaration defines that RR is to be
* treated as a state-variable -- no matter how it was
* declared; it can be an arbitrary external variable.
*/

c_track "&RR" "sizeof(Rendez)"
/* RR must be declared elsewhere */

active proctype ex2()
{

c_code { now.R1.cond = 1; }; /* global var */
c_code { Pex2->R2.lck = 0; }; /* local var */
c_code { H1.rlock = up0->state; }; /* non-state */

printf("hello version 4.0\n")
}

NOTES
SPIN instruments the code of the verifier to copy all data pointed to via
c_track primitives into and out of the state vector on forward and backward
moves during the depth-first search that it performs. Where there is a choice,
the use of c_state primitives will always result in more efficiently executing
code, since SPIN can instrument the generated verifier to directly embed data
object into the state vector itself, avoiding the copying process.

To get a better feeling for how precisely these primitives are interpreted by
SPIN, consider generating code from the example above, and look in the gener-
ated files pan.h and pan.c for all appearances of variables R1, R2, P1 and
up0.

Av oid using the typenames State, P0, P1, ..., and Q0, Q1, ..., since these
names are also used internally by SPIN. If the same names appear in user
code, a name clash will result, which is caught by the C compiler.

SEE ALSO
c_expr(4), c_code(4).

© 2002 Bell Labs — Draft — 455

c_expr(4) V4 Extensions CHAPTER SEVENTEEN

NAME
Conditional Expressions as Embedded C Code

SYNTAX
c_expr { /* c code */ }
c_expr ’[’ /* c expr */ ’]’ { /* c code */ }

EXECUTABILITY
True if the return value of the arbitrary C code fragment that appears
between the curly braces is non-zero, and otherwise False.

EFFECT
As defined by the semantics of the C code fragment placed between the curly
braces. The evaluation of the C code fragment should have no side-effects.

DESCRIPTION
This primitive supports the use of embedded C code inside PROMELA models.
A c_expr can be used to express guard-conditions that are not necessarily
expressible in PROMELA, with the more restrictive data types and language
constructs.

There are two forms of the c_expr primitive: with our without an embedded
expression in square brackets. A missing expression clause is equivalent to [
1]. If an expression is specified between square brackets, its value will be
evaluated as a general C expression before the expression inside the curly
braces is evaluated. If the resulting value is non-zero, the C expression
between the curly braces is evaluated next, to determine the executability of
the c_expr statement as a whole. If the evaluation value of the expression
between square brackets is zero, the code between the curly braces is ignored
and the statement is treated as an assertion violation (see asser t(4)). The
typical use of the expression clause is to add checks for nil-pointers or for
bounds in array indices. For example, as in:

c_expr [Pex->ptr != 0] { Pex->ptr->y }

Note that there is no semi-colon at the end of either C expression. If the
expression between square braces yields false (zero), then an assertion viola-
tion is reported. Only if this expression yields true (non-zero), the C expres-
sion between curly braces is evaluated. If the value of this second expression
yields true the c_expr as a whole is deemed executable and can be passed; if
false, the c_expr is unexecutable and it will block execution.

456 — Draft — © 2002 Bell Labs

CHAPTER SEVENTEEN V4 Extensions c_expr(4)

EXAMPLES
The following example contains a single do-loop with four options. The first
two option sequences are equivalent, the only difference being in the way that
the local variable x is accessed: either via embedded C code fragments or with
the normal PROMELA constructs.

active proctype ex1()
{ int x;

do
:: c_expr { Pex1->x < 10 } -> c_code { Pex1->x++; }
:: x < 10 -> x++
:: c_expr { fct() } -> x--
:: else -> break
od

}

The local variable x is declared here as a PROMELA variable. Other primi-
tives, such as c_decl(4), c_state(4), and c_track(4), allow for the declara-
tion of data types that are not directly supported in PROMELA.

The references to local variable x have a pointer prefix that always starts with
a fixed capital letter P that is followed by the name of the proctype and an
pointer arrow. This prefix locates the variable in the local statevector of the
proctype instantiation.

The guard of the third option sequence invokes an externally defined C func-
tion named fct(), that is presumed to return an integer value. That function
can be declared in a global c_code fragment elsewhere in the model, or it can
be declared externally in separately compiled code that is linked with the
pan.[chtmb] verifier when it is compiled to create a pan executable.

NOTES
Note that there is no semi-colon before the closing curly brace of a c_expr
construct. It would cause a syntax error if such a semi-colon appears. All
syntax errors on embedded C code fragments are reported during the compila-
tion of the generated pan.[chtmb] files. These errors are not detectable by
the SPIN parser.

SEE ALSO
c_code(4), c_decl(4), c_state(4), c_track(4).

© 2002 Bell Labs — Draft — 457

