Tecniche di Specifica e di Verifica

Modeling with Transition Systems

1

An example

The Dining Philosophers

- Possible problems:
 - *Deadlock*: system state where no action can be taken (no meaningful transition possible)
 - *Starvation*: When a system component is prevented access to resources.
 - *Livelock*: When the system components are not blocked but the system as a whole does not progress (e.g., some components are prevented to take specific actions).

Fairness

The Dining Philosophers

- A possible solution to deadlock:
 - pick up right fork only if both are present

Useful assumptions on the system:

- *weak fairness*: any phil. trans. *continuously* enabled will *eventually* fire (e.g. eating philosophers will finish)
- *strong fairness*: any phil. trans. enabled *infinitely often* will *eventually* occur (e.g. if 2 fork available
 infinitely often, phil. will eventually eat).

Starvation

The Dining Philosophers

• Possible solution:

– pick up fork only if both are present Assumptions:

strong fairness: any phil. trans. enabled infinitely often, will eventually occur (if 2 fork available infinitely often, philosopher will eventually eat). *strong fairness* is not enough to prevent *starvation Why*? Think of the case with 4 philosophers!
Sol.(?): Try *preventing consecutive eating*.
Still suffers from *starvation* with 5 phils! *Why*?

Outline

- The model Transition systems
- Some features
 - Paths
 - Computations
 - Branching
- First order representation

Transition systems

• A transition system (*Kripke structure*) is a structure

$$\mathbf{TS} = (\mathbf{S}, \mathbf{S}_0, \mathbf{R})$$

where:

- S is a finite set of states.
- $-S_0 \subseteq S$ is the set of initial states.
- $\mathbf{R} \subseteq \mathbf{S} \times \mathbf{S}$ is a transition relation
 - **R** must be *total*, that is
 - $-\forall s \in S \exists s' \in S . (s, s') \in R$ or, equivalently,
 - for every state s in S, there exists s' in S such that (s, s') is in R.

Notions and Notations

- $TS = (S, S_0, R)$
- $(s, s') \in \mathbb{R}$ $\mathbb{R}(s, s')$ $s \to s'$
- A (finite) *path* from **s** is a sequence

s₁, s₂,...,s_n

such that

 $-s = s_1$

 $-\mathbf{s_i} \rightarrow \mathbf{s_{i+1}}$ for 0 < i < n.

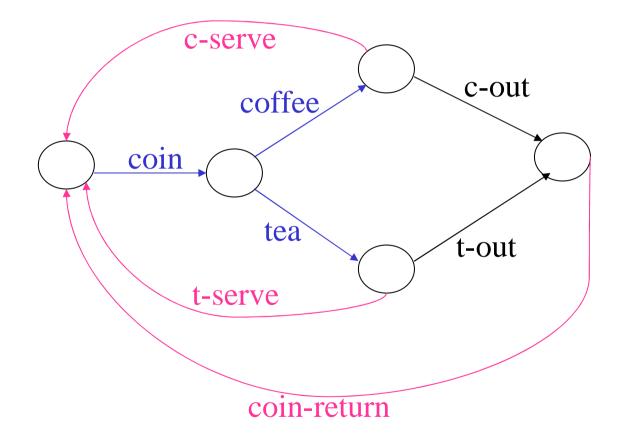
- It is from s to s' if $s_n = s'$.
- An **infinite** path from **s** is an *infinite sequence*

Labeled transition systems

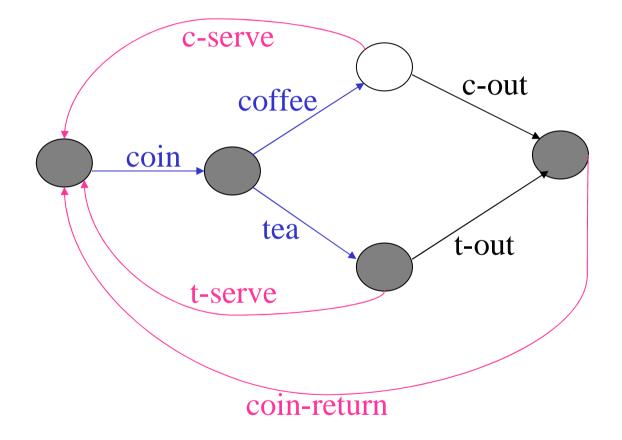
- Sometimes we may use a *finite* set of actions:
 Act = {a, b, ..}
- The actions will be used to label the transitions.
- $TS = (S, S_0, Act, R)$
 - $\mathbf{R} \subseteq \mathbf{S} \times \mathbf{Act} \times \mathbf{S}$, labeled transitions.

 $-(s, a, s') \in \mathbb{R} - \mathbb{R}(s, a, s') - s \xrightarrow{a} s'$

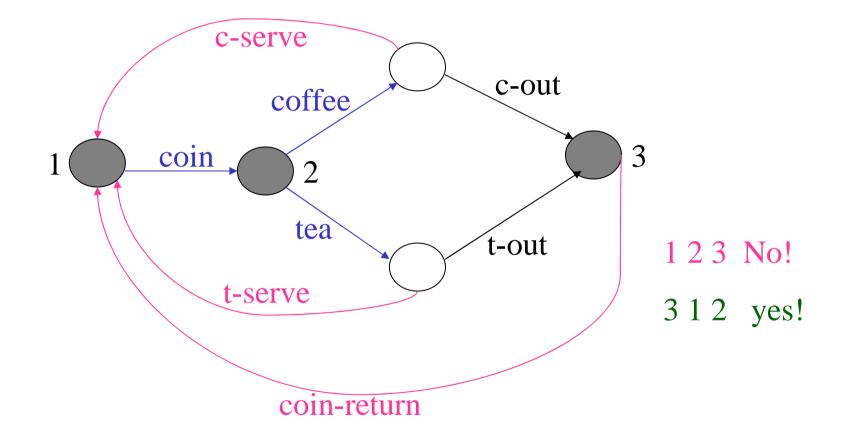
A vending machine



A path

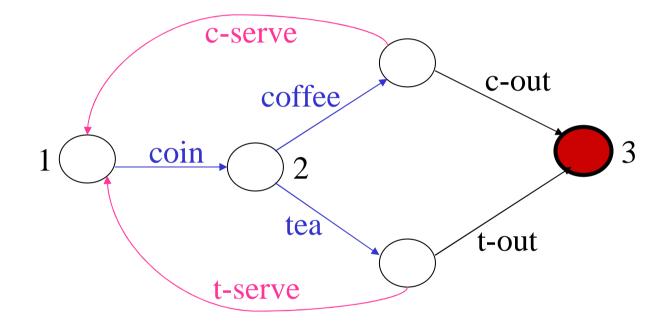


A non-path



11

A non-total transition relation



State space

- The *state space* of a system (e.g. program) is the set of *all its possible states*.
- For example, if **V={a, b, c}** and the variables range over the naturals, then the *state space* includes:

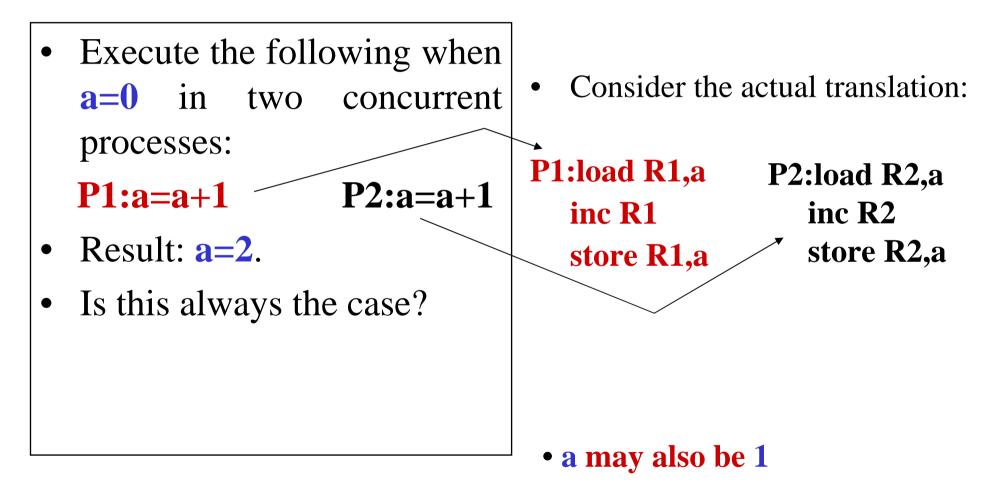
<a=0,b=0,c=0>, <a=1,b=0,c=0>,

<a=1,b=1,c=0>, <a=932,b=5609,c=6658>

Atomic transition

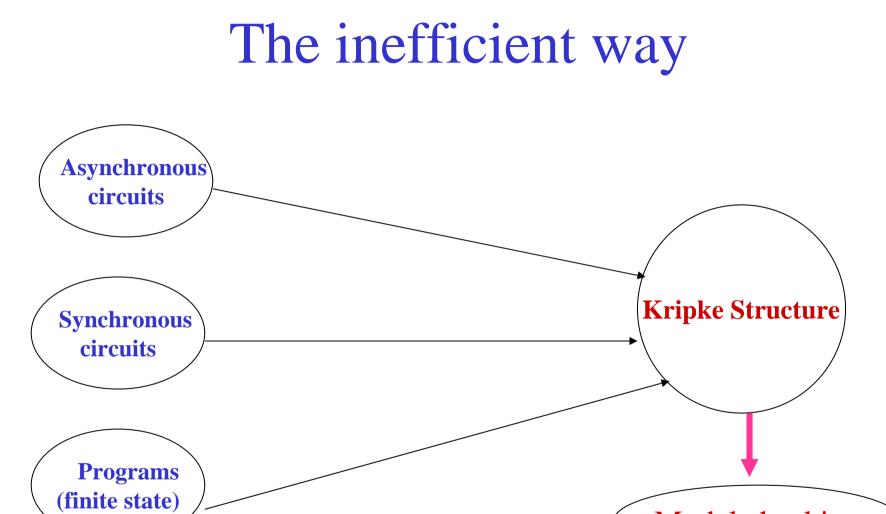
- Each *atomic transition* represents a small peace of code (or *execution step*), such that *no smaller* peace of code (or *step*) is observable.
- Is a:=a+1 atomic?
- In some systems it is, e.g., when a is a register and the transition is executed using an inc command.

(Non)Atomicity (race conditions)



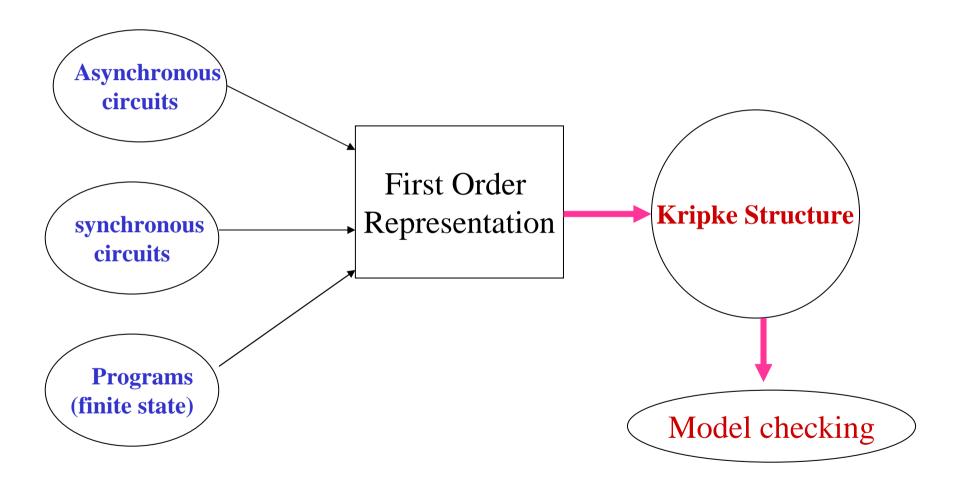
The common framework

- Many systems need to be modeled.
 - Digital circuits
 - Synchronous
 - Asynchronous
 - Programs
- Strategy : Capture the main features using a logical framework (nothing to do with temporal logics!) : *First order representation*

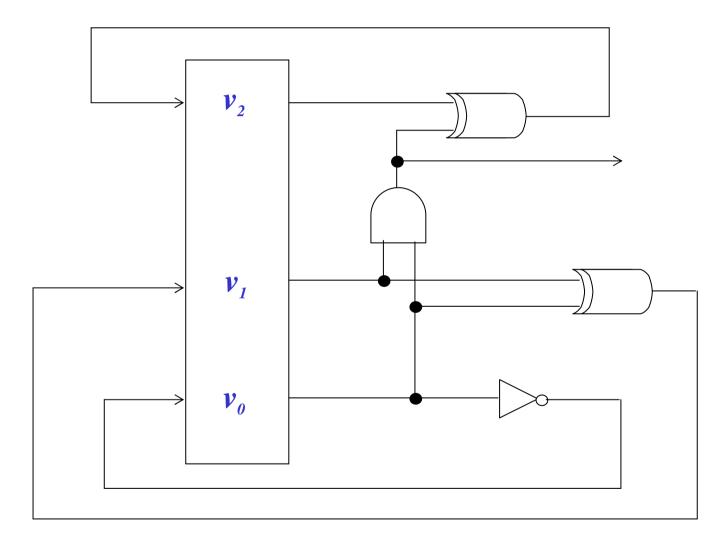


Model checking

The efficient way



Synchronous counter modulo 8

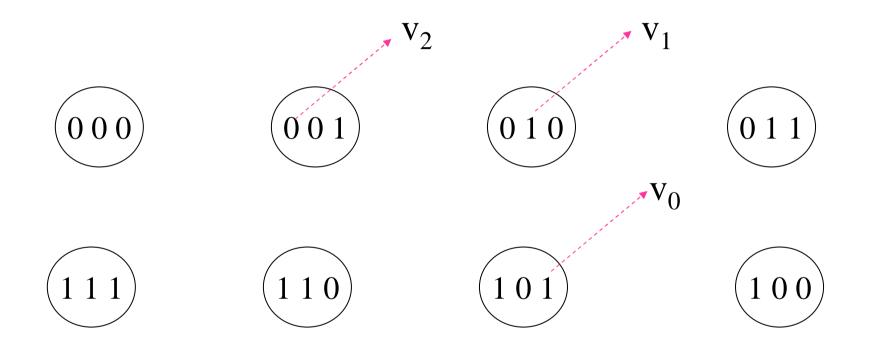


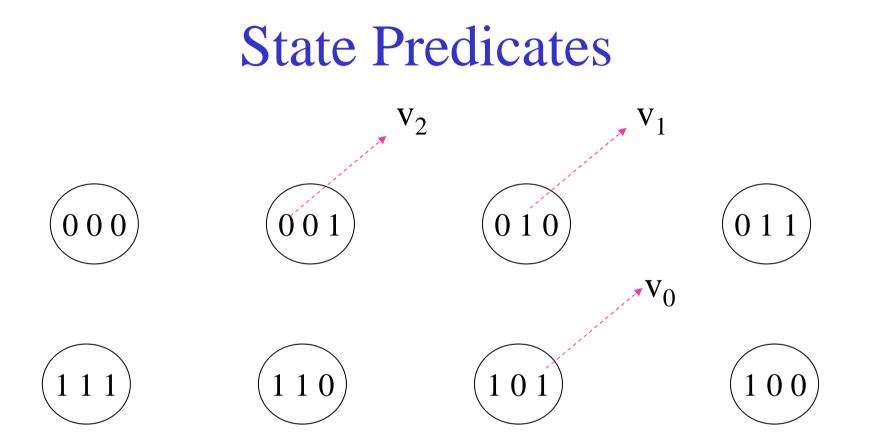
The mod-8 counter

- System variables : $V = \{v_2 v_1 v_0\}$
- Domain of v₂ is {0, 1}
 Same domain for v₁ and v₀ as well.
- Special case : These variables are boolean
- Each state s can also be seen as a function assigning to each variable a value in its domain.
 − s : V → B
 - $s(v_0) = 0 \ s(v_1) = 1 \ s(v_2) = 1$

- This specifies the state $s = (1 \ 1 \ 0) !$

A mod-8 counter: states

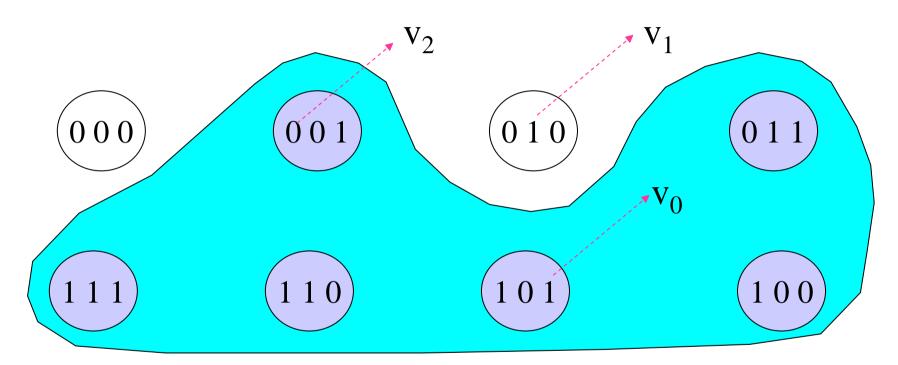




A set of states can be picked out by a propositional formula:

 $\mathbf{X} = \mathbf{v}_2 \lor \mathbf{v}_0$ is the set {...}

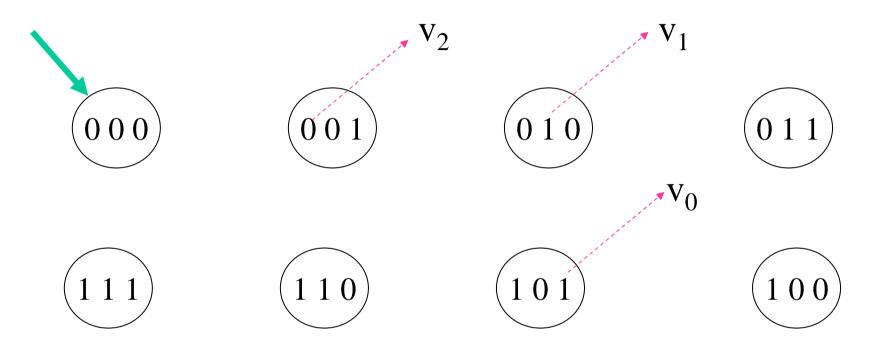
State Predicates



A set of states can be picked out by a propositional formula:

 $X = v_2 \vee v_0$ is the set {100, 101, 110, 111, 001, 011}

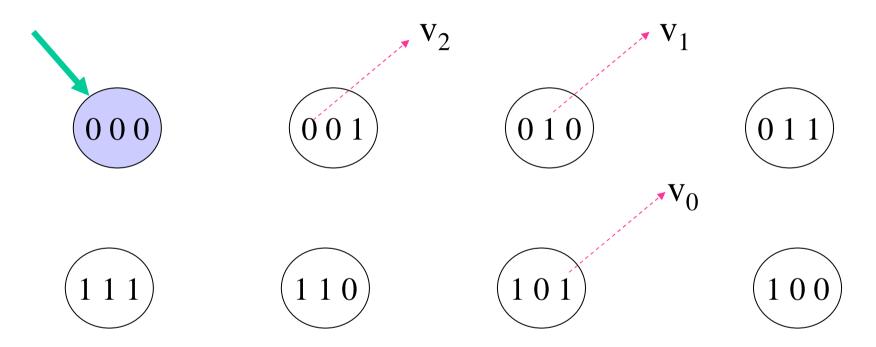
Initial States Predicate



A set of states can be picked out by a formula;

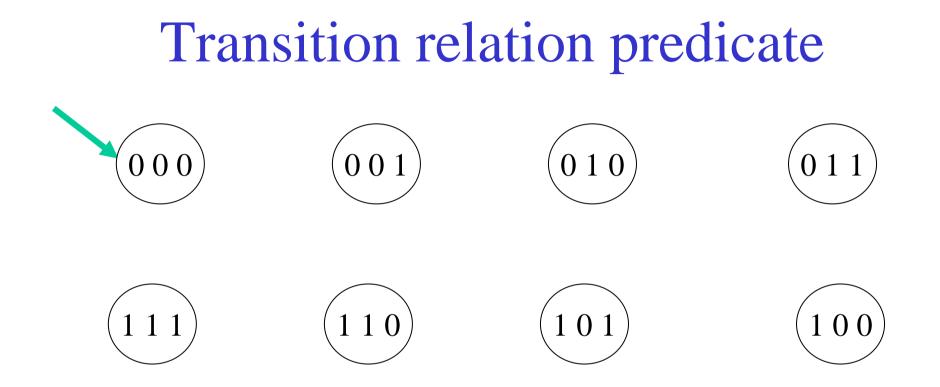
 $\mathbf{S}_0 = \neg \mathbf{v}_2 \land \neg \mathbf{v}_1 \land \neg \mathbf{v}_0$

Initial States Predicate



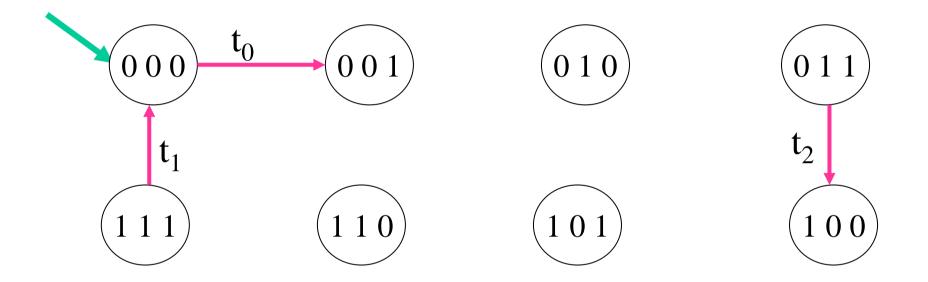
A set of states can be picked out by a formula;

 $\mathbf{S}_0 = \neg \mathbf{v}_2 \land \neg \mathbf{v}_1 \land \neg \mathbf{v}_0$ therefore $\mathbf{X}_1 = \{ \mathbf{S}_0 \} = \{ 000 \}$



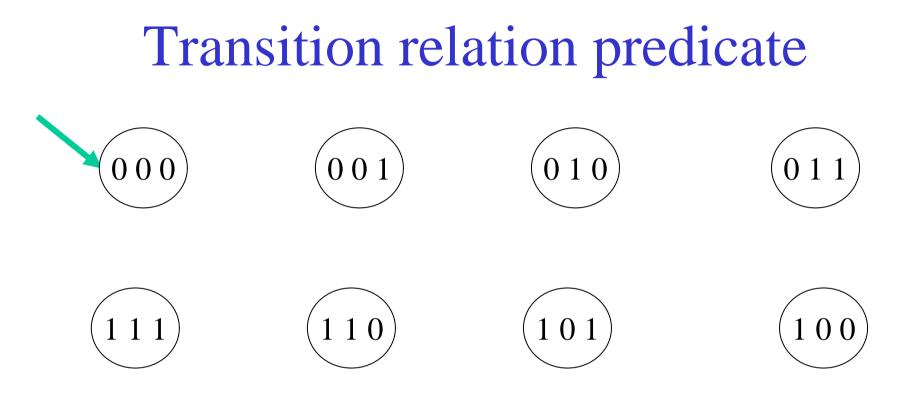
A set of *transitions* can also be picked out by a formula. $\mathbf{R}_2 = \mathbf{v}_2' \Leftrightarrow (\mathbf{v}_0 \land \mathbf{v}_1) \oplus \mathbf{v}_2$ $\mathbf{v}_2 - \text{current value} \mathbf{v}_2' - \text{next value}$

Transition relation predicate



A set of transitions can also be picked out by a formula.

 $\mathbf{R}_2 = \mathbf{v}_2' \Leftrightarrow (\mathbf{v}_0 \land \mathbf{v}_1) \oplus \mathbf{v}_2 \qquad \mathbf{v}_2 - \text{current value} \quad \mathbf{v}_2' - \text{next value}$ $\{\mathbf{t}_0, \mathbf{t}_1, \mathbf{t}_2\} \subseteq \mathbf{R}_2$

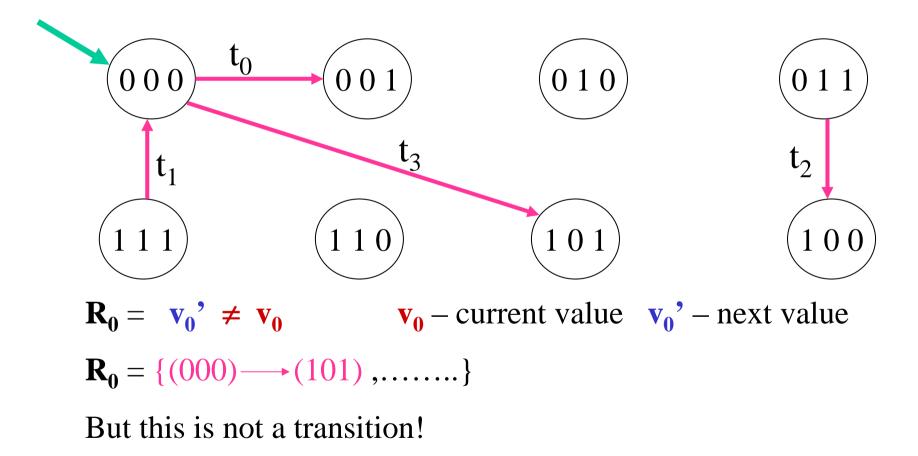


 $\mathbf{R} = \mathbf{Formula}(\mathbf{v}_2, \mathbf{v}_1, \mathbf{v}_0, \mathbf{v}_2', \mathbf{v}_1', \mathbf{v}_0')$

Not all formulae will define subsets of transitions.

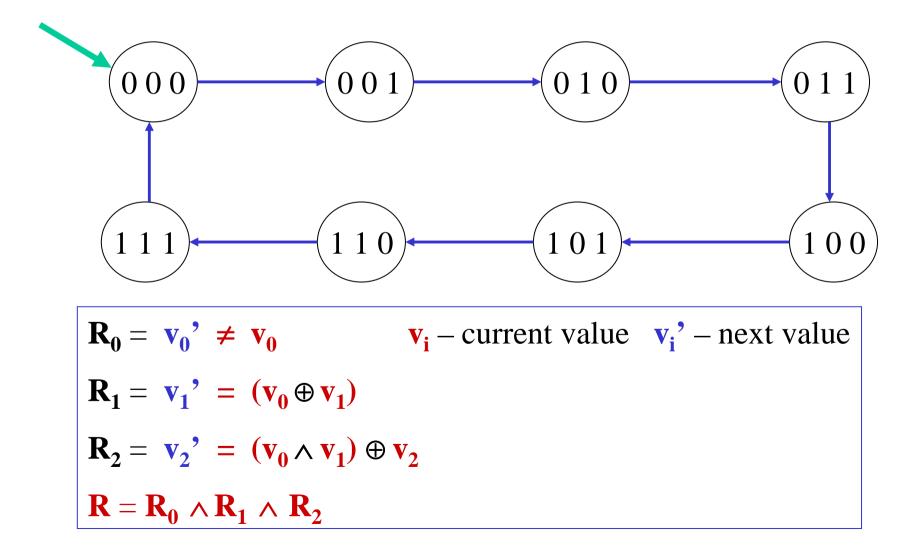
You must pick the right formula .

Transition relation predicate



 $\{\mathbf{t}_0, \mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3\} \subseteq \mathbf{R}_0 \text{ but } \mathbf{t}_3 \notin \mathbf{R}_2$

Transition relation predicate



Summary of Predicates

- System variables $\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$.
- Each v_i has a domain of values
 - Boolean , $\{a,b,c,..\}, \{5,8,0,7\}...$
 - We require that each domain be *finite*.
- A state is a function s which assigns to each system variable a value in its domain.
- The set of states is *finite*.

Summary

- Predicates can be used to pick out –succinctlysets of states (useful for identifying initial states).
- $X = Formula(v_0, v_1, v_2,...,v_n)$
- But this works well only when all domains are boolean.
- In general, we can use *first order formulae*.

Summary

- A set of transitions can also be picked out using predicates.
- $\mathbf{T} = \mathbf{Formula}(\mathbf{v}_0, \mathbf{v}_1, ..., \mathbf{v}_n, \mathbf{v}_0', \mathbf{v}_1', ..., \mathbf{v}_n')$
- T is the set of all transitions
 (v₀, v₁,...,v_n) → (v₀', v₁',...,v_n') such that Formula (above!) is satisfied.
- Not all (state or transition) formulas will be legitimate.

Why use formulae?

- *Formulae* allow us to compactly describe a system and its dynamics
- It's easy to go from a "*logical*" description to *Kripke structures*.
- Once we have a *Kripke structure*, we are in business.
- We can use
 - *Temporal Logics* to specify properties
 - -*Model checking* to verify these properties.

First Order Logic

- The general structure :
 - Syntax
 - Formulae
 - Semantics
 - When is a formula true?
 - Models
 - Interpretations
 - Valuations

• Terms

– Variables

– Functions symbols, constant symbols

Atomic formulas

- Relation symbols, equality, terms

• Formulas

- Atomic formulas
- Propositional connectives
- Existential and universal quantifiers

Syntax

• (individual) variables --- **x**, **y**, **v**₃, **v**^{*},...

- System variables in our context

• Function symbols : **f**⁽ⁿ⁾

– **n** is the arity of **f**.

- Add ⁽²⁾

- Next (1)

• Function symbols will capture the functions used in the programs, circuits, ...

Constant symbols

- Apart from variables, it will also be convenient to have constant symbols.
 zero, *five*,
- Variables can be assigned different values but a constant symbol is assigned a fixed value.

Terms

- Terms are used to point at values.
- Any variable **v** is a term.
 - -x, v, v
- Any constant symbol *c* is a term.
- Suppose f is a function symbol of arity nand t_1, t_2, \dots, t_n are terms, then $f(t_1, t_2, \dots, t_n)$ is a also term.

Terms

- Let Plus be a function symbol of arity 2.
- v₁, v₂, Plus(v₂, Plus(v₁, v₁)) are terms.
 the semantics of the last term is intuitively

 $v_2 + 2v_1$

- Let weird_op be a function symbol of arity 3
- Then

 $Plus(weird_op(v, Plus(v_1, v_2), five), Plus(v, v''))$ is a term.

Predicates

- Relation (predicate) symbols :
 - **P** which also has an arity
 - *Greater-Than* has arity 2
 - Prime has arity 1
 - *Middle* has arity 3 -- *Middle*(t_1 , x, t_2)
 - intuitively, **x** lies between t_1 and t_2
- *Equal* has arity 2
 - will be denoted as =
 - It is a "**constant**" relation symbol.

Atomic formulas.

• If t_1 and t_2 are terms then $=(t_1, t_2)$ is an atomic formula.

- also written $\mathbf{t}_1 = \mathbf{t}_2$

- Suppose *P* has arity **n** and **t**₁, **t**₂, ..., **t**_n are terms.
- Then $P(t_1, t_2, ..., t_n)$ is an atomic formula.

Atomic formulas

- Greater-Than(five, zero)
- Greater-Than(two, four)
- *Prime*(**Plus**(**v**₁, **v**''))
- **Plus(v,Zero) = weird_op(v,v,four)**
- **v** = *Greater_Than*(**v**₁,**v**₂) is *not* an atomic formula !

Terms and Predicates

- A *term* is meant to denote a domain value.
 - It makes no sense to talk about a term being true or false.
- An *atomic formula* may be *true* or *false* (depends on the interpretation).
 - It does not make sense to associate a domain value with an atomic formula.

Formulas

- Every atomic formula is a formula.
- If ϕ is a formula then $\neg \phi$ is a formula.
- If φ and φ' are formulas then φ ∨ φ' is a formula.
- $\phi \land \phi'$ abbreviates: $\neg(\neg \phi \lor \neg \phi')$
- $\phi \supset \phi'$ abbreviates : $\neg \phi \lor \phi'$
- $\phi \equiv \phi'$ abbreviates : $(\phi \supset \phi') \land (\phi' \supset \phi)$

Formulas

- If ϕ is a formula and x is a variable then $\exists x. \phi$ is a formula.
- $\forall \mathbf{x}. \boldsymbol{\phi}$ abbreviates : $\neg \exists \mathbf{x}. \neg \boldsymbol{\phi}$
- These are *existential* and *universal* quantifiers.
- The power of first order logic comes from these operators!

- Models :
 - -Domain of interpretation
 - -Interpretation
 - For the function, constant and relation symbols.
 - Fixed for all formulas.
 - For the individual variables, on a "per formula" basis.
 - Valuations.

• Domain

- Each variable will have its domain of values.
- We pretend all these domains are the same.
- Or rather, a big enough "universe" that will contain all these domains.
- Fix **D** the universe of values.

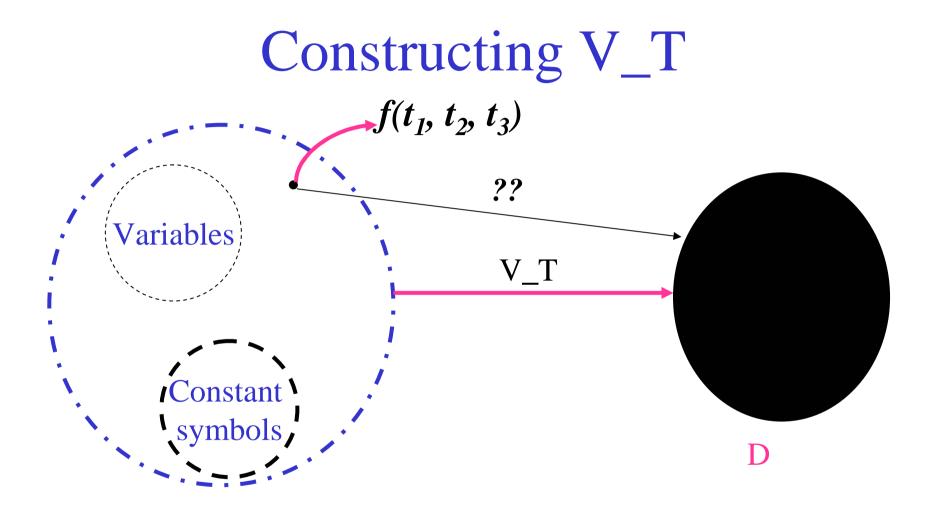
Interpretation function I

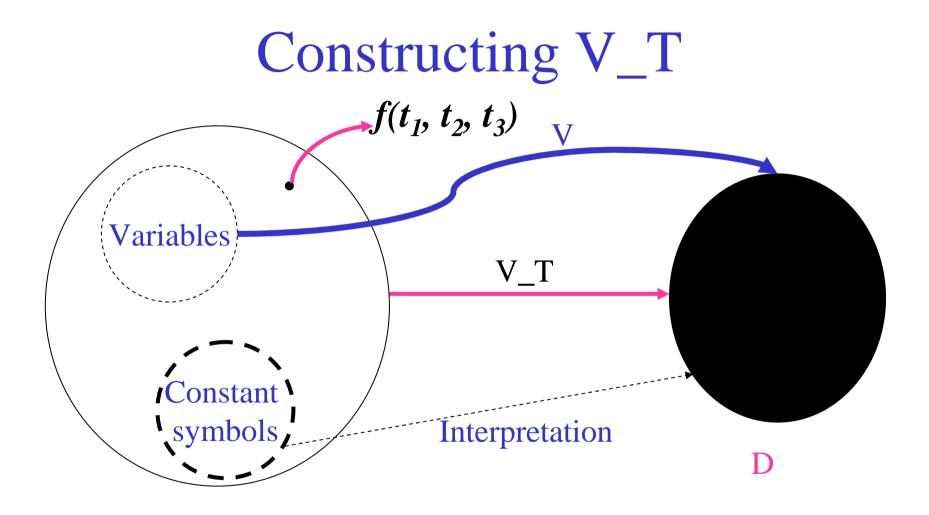
- Assign a concrete function to each function symbol (of the same arity!)
- Assign a concrete member of **D** to each constant symbol.
- Assign a concrete relation to each relation symbol (of the same arity!).

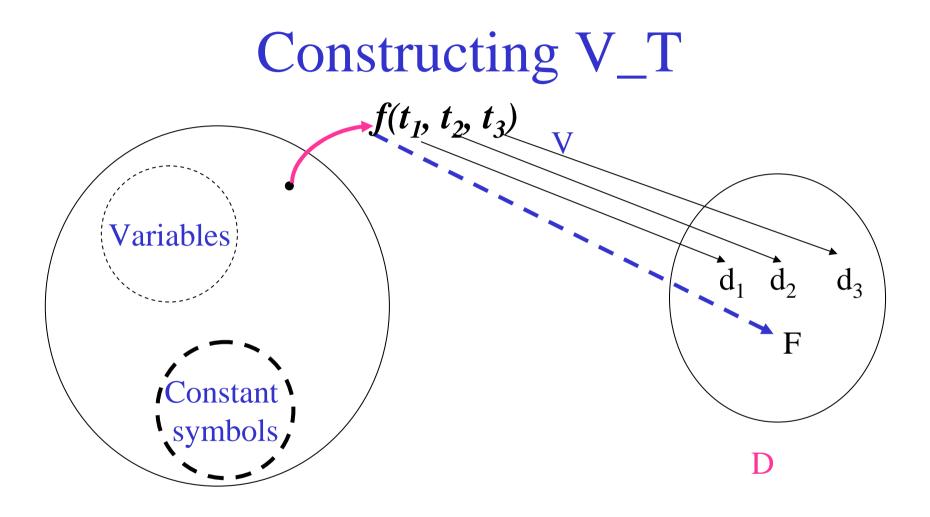
- Assume we have fixed an interpretation for all function symbols, constant symbols and relational symbols.
- Let φ be a formula. Fix a *valuation* (or *assignment*) V which assigns a member of D to each variable.
- $\mathbf{V}: \mathbf{Var} \longrightarrow \mathbf{D}$

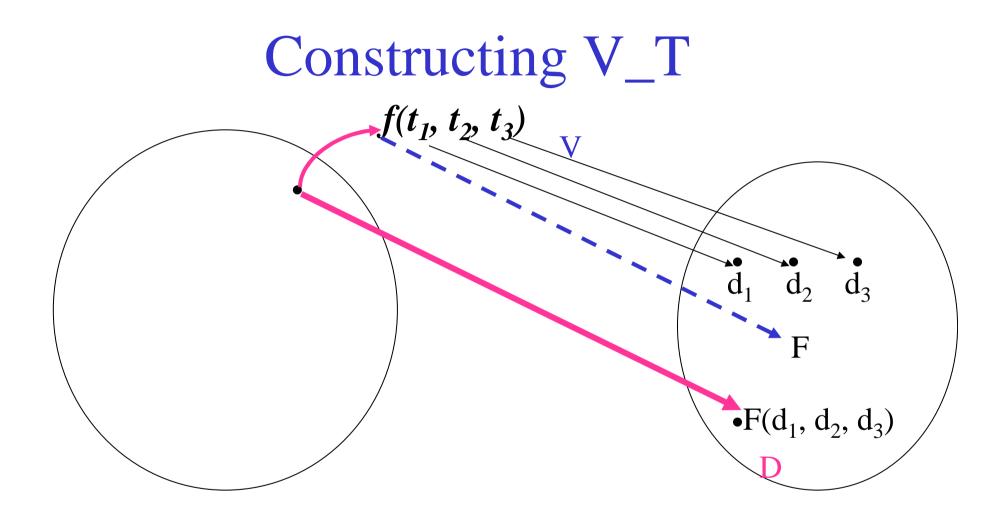
Lift V to All Terms

- We have :
 - An *interpretation* for the function symbols and constant symbols.
 - An *assignment* V : Var → D
- Using these, we can construct (uniquely!)
 V_T : Terms → D
 the interpretation of terms!









- Let ϕ be a formula. Fix a valuation V which assigns a member of **D** to each variable.
- So we now have **V_T** that assigns a member of **D** to each term.
- φ is satisfied under V (and the interpretation we have fixed, for all formulae) if :

- Suppose *P*(*t*₁, *t*₂,.., *t*_n) is an atomic formula and V_T(*t*₁) = d₁,V_T(*t*_n) = d_n and PCON is the relation assigned to symbol *P* by our interpretation I.
- Then $P(t_1, t_2, ..., t_n)$ is satisfied under V iff PCON($d_1, d_2, ..., d_n$) holds in D, that is: $(d_1, d_2, ..., d_n) \in PCON \subseteq D \times D \times ... \times D$

- Suppose φ is of the form ¬φ'.
 Then φ is satisfied under V iff φ' is not satisfied under V.
- Suppose φ is of the form φ₁ ∨ φ₂
 Then φ is satisfied under V iff φ₁ is satisfied under V or φ₂ is satisfied under V.

• Greater-Than(Plus(v, 3), Multi(x, 2))

- V'(v) = 1 V'(x) = 6 and $V'_T(t_1) = 3$ $V'_T(t_2) = 12$ (3, 12) $\notin > \subseteq$ Integers × Integers
- Under V the atomic formula is true, but under V' the atomic formula is not.

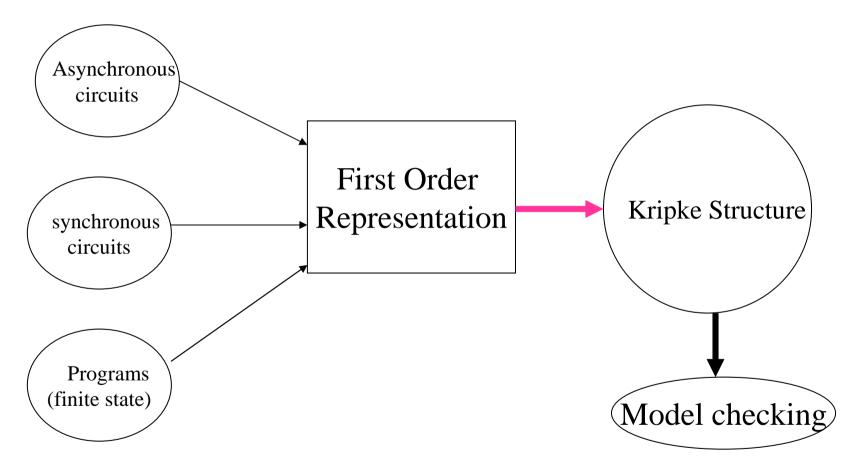
- The only case left is when φ is of the form $\exists x. \varphi'$
- φ is satisfied under V iff there is a valuation
 V' such that φ' is satisfied under V' and V' is required to meet the condition:
 - V' is exactly V for all variables except x.
 - To x, V' can assign *any value* of its choosing.

• Whether $\exists \mathbf{x}. \boldsymbol{\phi}$ is true or not under **V**

- does not depend on what \mathbf{V} does on \mathbf{x} !

- $\exists x. 2x = y$ is true under V(y) = 4, V(x) = 1!
- Because, we can find V', with V'(y) = 4 but
 V'(x) = 2.
- One says **x** is *bound* in the formula and **y** is *free*.

The efficient way



First Order Representation to Transition Systems

- $\{v_1, v_2, \dots, v_n\}$ --- System variables.
- **D**₁, **D**₂, ..., **D**_n --- The corresponding domains.
- $\mathbf{D} = \bigcup \mathbf{D}_{\mathbf{i}}$
- $s : \{v_1, v_2, ..., v_n\} \longrightarrow D$ such that $s(v_1) \in D_1 \dots$
- S --- The set of states.

Initial States

- $S_0(v_1, v_2, ..., v_n)$ is a FO formula describing the set of initial states.
- Atomic formula
 - v = d where v is is a system variable and d is a constant symbol interpreted as a member of the domain of v.

Example:

- "S₀ is the set of all states where the pc = 0 and *input* is a power of 2"
- $\exists n. (input = EXP(n)) \land (pc = 0)$

Transition relation

- $R(v_1, v_2, ..., v_n, v_1, v_2, ..., v_n)$ is a FO formula involving the *current variables* $v_1, v_2, ..., v_n$ (the system variables) and the *next variables* $(v_1, v_2, ..., v_n)$.
- $(\mathbf{d}_1, \mathbf{d}_2, ..., \mathbf{d}_n) \longrightarrow (\mathbf{d}_1', \mathbf{d}_2', ..., \mathbf{d}_n')$ iff $R(v_1, v_2, ..., v_n, v_1', v_2', ..., v_n')$ is true under the valuation $\mathbf{v}_1 = \mathbf{d}_1, ..., \mathbf{v}_n = \mathbf{d}_n, \mathbf{v}_1' = \mathbf{d}_1', ..., \mathbf{v}_n' = \mathbf{d}_n'.$

Transition Relation

- $V = \{x, y, z\}$
- Program : {x, y, z, pc}
 - l_0 : begin
 - l_1 : statement₁
 - l_2 : statement₂
 - • •
 - l_5 : if even(x) then x = x/2 else x = x -1 l_6 :

Transition Relation

- $V = \{x, y, z\}$
- Program : {x, y, z, pc}
 l₅ : if even(x) then x = x/2 else x = x -1
 l₆ :
- φ (x, y, z, pc, x', y', z', pc')
- $\mathbf{pc} = \mathbf{l}_5 \land \mathbf{pc'} = \mathbf{l}_6 \land (\exists \mathbf{n}. (\mathbf{x} = 2\mathbf{n}) \supset \mathbf{x'} = \mathbf{x}/2) \land (\neg \exists \mathbf{n}. (\mathbf{x} = 2\mathbf{n}) \supset \mathbf{x'} = \mathbf{x}-1) \land \mathbf{same}(\mathbf{y}, \mathbf{z})$

Notice that the formula above is equivalent to:

- $\mathbf{pc} = \mathbf{l}_5 \land \mathbf{pc'} = \mathbf{l}_6 \land$ ($(\exists \mathbf{n}.(\mathbf{x}=2\mathbf{n}) \land \mathbf{x'}=\mathbf{x}/2) \lor (\neg \exists \mathbf{n}.(\mathbf{x}=2\mathbf{n}) \land \mathbf{x'}=\mathbf{x}-1)) \land$ same(y, z)
- where same(y, z) stands for $y' = y \land z' = z$

Transition Relation

- In a similar fashion, we can specify the transition relation formulae for :
 - Assignment statement
 - While statements
 - etc.etc.
 - See the text book!

Kripke Structures

• **AP** is a finite set of atomic propositions.

- "value of x is 5"

- "**x** = 5"

- $M = (S, S_0, R, L)$, a Kripke Structure.
 - $-(S, S_0, R)$ is a transition system.
 - $-L:S \longrightarrow 2^{AP}$
 - 2^{AP} ---- The set of subsets of AP (L(s) $\in 2^{AP}$ identifies a state

2^{AP} identifies the state space)

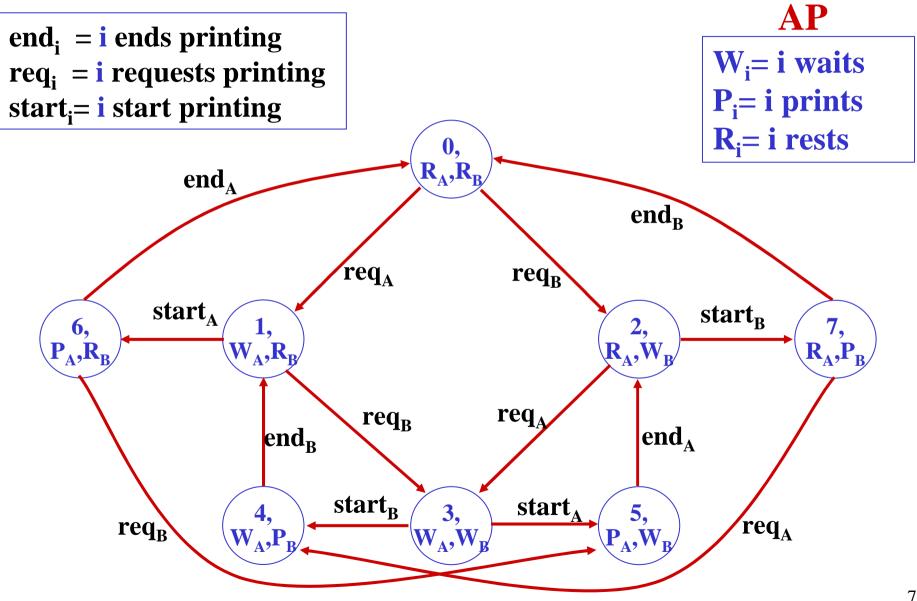
Kripke Structures

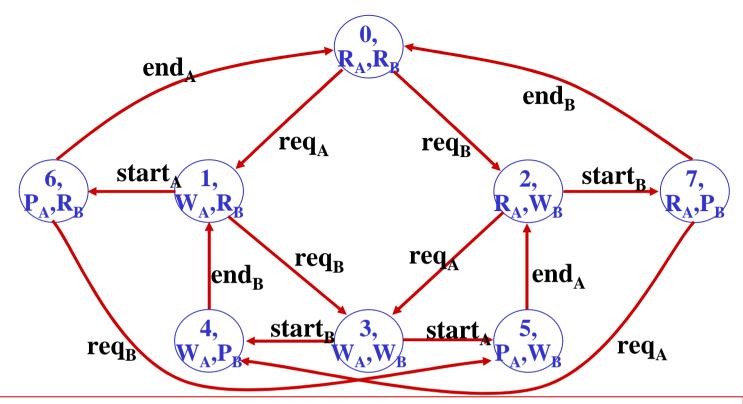
- The atomic propositions and L together convert a transitions system into a model.
- We can start interpreting *formulas* over the *Kripke structure*.
- The atomic propositions make basic (easy) assertions about system states.

Automata and Kripke Structures

- **AP** set of elementary property
- <**S**,**A**,**R**,**s**₀,**L**>
- **S** set of states
- A set of transition labels
- $\mathbf{R} \subseteq \mathbf{S} \times \mathbf{A} \times \mathbf{S}$ (labeled) transition relation
- L interpretation mapping $L:S \longrightarrow 2^{AP}$
- In *FO representation* we would need two sets of variables: V and Act (for actions or input).

Example: a print manager





- $S = \{0, 1, 2, 3, 4, 5, 6, 7\}$
- $A = \{end_A, end_B, req_A, req_B, start_A, start_B\}$
- $R = \{(0, req_A, 1), (0, req_B, 2), (1, req_B, 3), (1, start_A, 6), (2, req_A, 3), (2, start_B, 7), (3, start_A, 5), (3, start_B, 4), (4, end_B, 1), (5, end_A, 2), (6, end_A, 0), (6, req_B, 5), (7, end_B, 0), (7, req_A, 4), \}$
- $\mathbf{L} = \{\mathbf{0} \rightarrow \{\mathbf{R}_{A}, \mathbf{R}_{B}\}, \mathbf{1} \rightarrow \{\mathbf{W}_{A}, \mathbf{R}_{B}\}, \mathbf{2} \rightarrow \{\mathbf{R}_{A}, \mathbf{W}_{B}\}, \mathbf{3} \rightarrow \{\mathbf{W}_{A}, \mathbf{W}_{B}\}, \mathbf{4} \rightarrow \{\mathbf{W}_{A}, \mathbf{P}_{B}\}, \mathbf{5} \rightarrow \{\mathbf{P}_{A}\mathbf{W}_{B}\}, \mathbf{6} \rightarrow \{\mathbf{P}_{A}, \mathbf{R}_{B}\}, \mathbf{7} \rightarrow \{\mathbf{R}_{A}\mathbf{P}_{B}\}\} \right\}_{73}$

Properties of the printing systems

- 1. Every state in which P_A holds, is preceded by a state in which W_A holds
- 2. Any state in which W_A holds is followed (possibly not immediately) by a state in which P_A holds.
- The first can easily be checked to be true
- The second is *false* (e.g. 0134134134...) in other words the system is *not fair*.

Synchronization

- Usually complex systems are composed of a number of smaller *subsystems* (*modules*)
- It is natural to model the whole system starting from the models of the subsystems.
- And then define how they cooperate.
- There are many ways to define cooperation (*synchronization*).

Synchronization: no interaction

- The system model is just the *cartesian product* of the simpler modules.
- Let $TS_1, ..., TS_n$ be *n* automata (or TSs), where $TS_i = \langle S_i A_i, R_i S_{i0} \rangle$

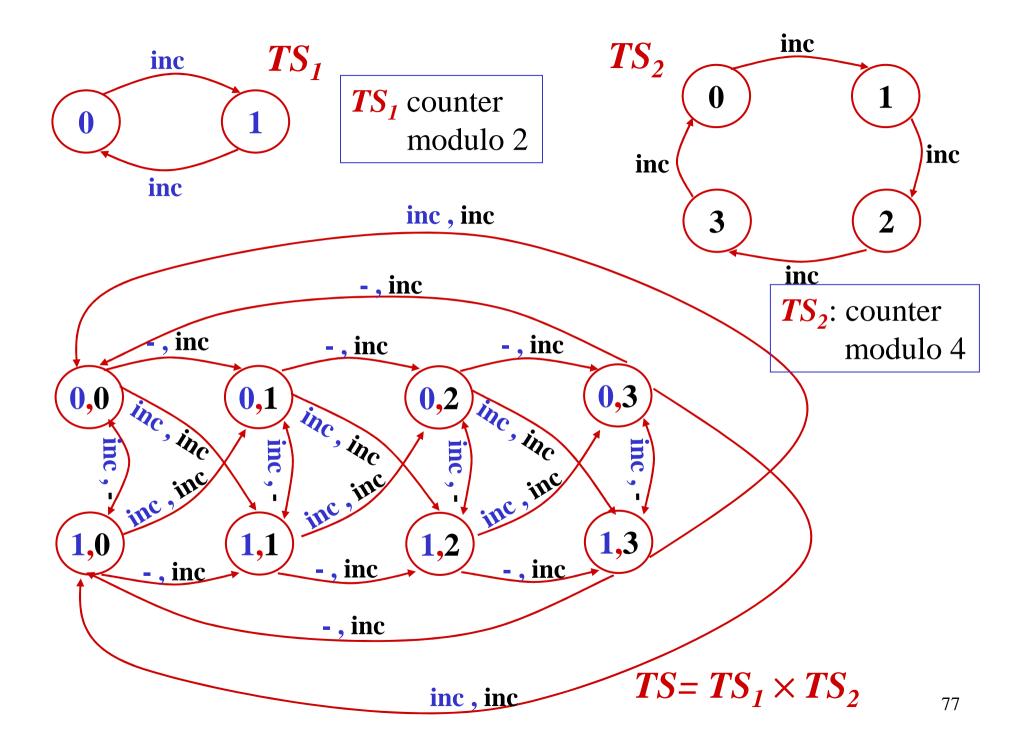
The system is then defined as $TS = \langle S, A, R, s_0 \rangle$ where

$$S = S_1 \times S_2 \times ... \times S_n$$

$$A = A_1 \cup \{-\} \times A_2 \cup \{-\} \times ... \times A_n \cup \{-\}$$

$$R = \{(, ,)/ forall i, a_i \neq -and (s_i, a_i, s'_i) \in R_i, or a_i = -and s'_i = s_i\}$$

$$s_0 =$$



Synchronization: interaction

- To allow for interaction, or synchronization on specific actions we can introduce a Synchronization Set (to inhibit undesired transitions) :
- Synchronization set is just a subset of the composite actions:

 $Sync \subseteq A_1 \cup \{-\} \times A_2 \cup \{-\} \times \ldots \times A_n \cup \{-\}$

• Then we will have to define the possible transitions as:

$$R = \{(\langle s_{1}, ..., s_{n} \rangle, \langle a_{1}, ..., a_{n} \rangle, \langle s'_{1}, ..., s'_{n} \rangle) | \\ (a_{1}, ..., a_{n}) \in Sync \text{ and for all } i, a_{i} \neq - \\ and (s_{i}, a_{i}, s'_{i}) \in R_{i}, \text{ or } a_{i} = - and s'_{i} = s_{i}\}$$

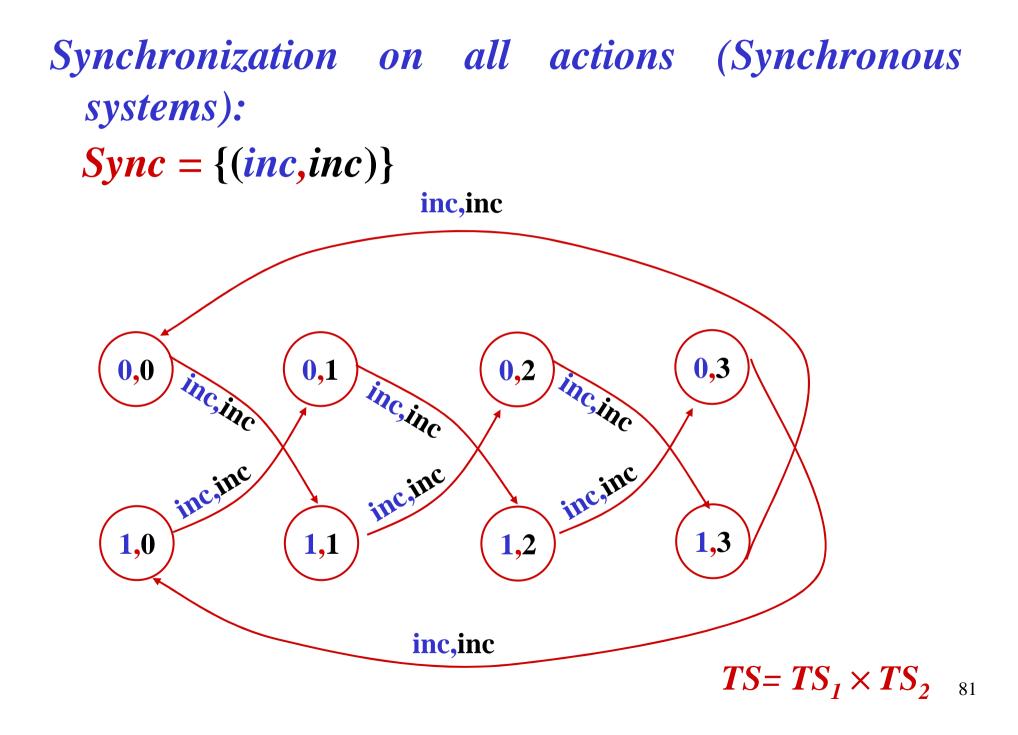
78

Free synchronization (Asynchronous systems): **Sync** = {*inc*,-} × {-,*inc*} = {(-,-), (*inc*,-), (-,*inc*), (*inc*,*inc*)} inc, inc -, inc inc -, inc -, inc 0,0 0,3 0,1 0,2 inc, inc inc, inc inc, inc inc, inc inc inc inc inc inc inc inc, inc 1,2 1,3 1,1 1,0 -, inc -, inc -, inc -, inc $TS = TS_1 \times TS_2$ inc, inc

79

Free synchronization

Asynchronous systems: $Sync = \{inc, -\} \times \{-, inc\} \mid \setminus \{(-, -)\}$ $R(V,V') = \bigwedge_{i \in I} (R_i(v_i,v_i') \lor \operatorname{same}(v_i)) \land \neg \bigwedge_{i \in I} \operatorname{same}(v_i)$ if one wants to discard the situation where *no* component acts

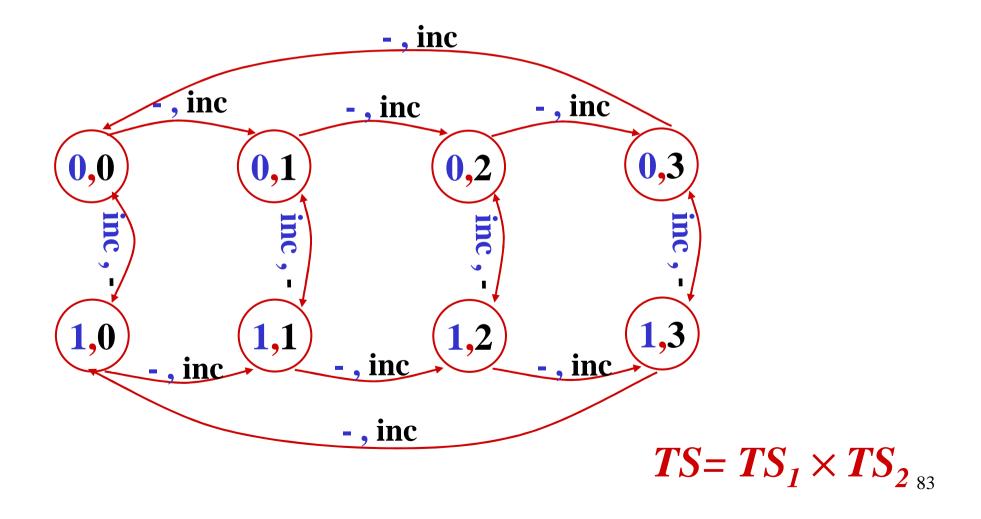


Synchronous systems

Synchronous systems: Sync = {(inc,inc)}

 $R(V,V') = \bigwedge_{i \in I} R_i(v_i,v_i')$

Asynchronous systems with interleaving (only one component acts at any time): Sync = {(-,inc),(inc,-)}



Asynchronous systems: Interleaving

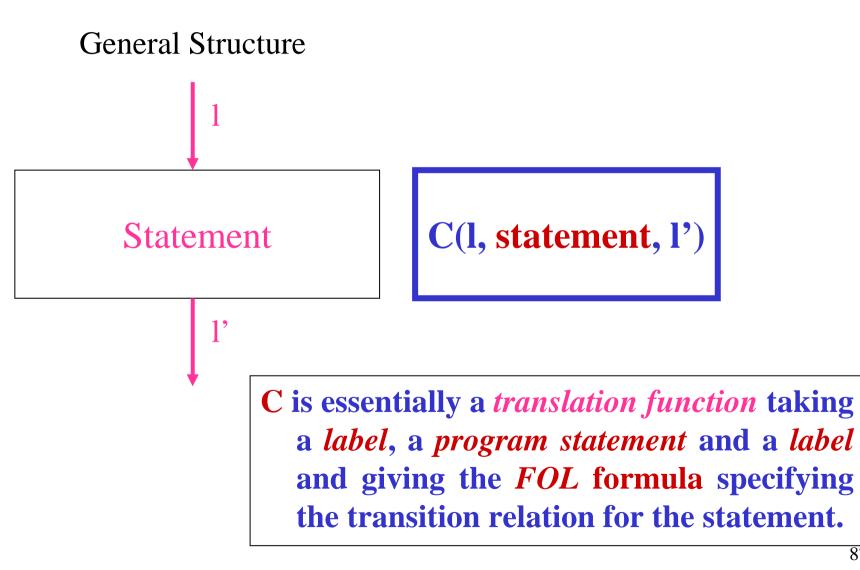
Asynchronous systems: only one component acts at any time. $Sync = \{(-,inc),(inc,-)\}$ $R(V,V') = \bigvee_{i \in I} (R_i(v_i,v_i') \land \bigwedge_{i \neq i} same(v_j))$

- Many systems to be verified can be viewed as concurrent programs
 - operating system routines
 - cache protocols
 - communication protocols
- $P = cobegin (P_1 || P_2 || ... || P_n) coend$
- P₁, P₂,..P_n --- Sequential Programs.
- **Program variables** set $\mathbf{V} = \mathbf{V}_1 \cup \ldots \cup \mathbf{V}_n$ (set \mathbf{V}_i for program **i**)
- *Program counters* set **PC** (one for each program)
- Usually interleaving semantics is assumed

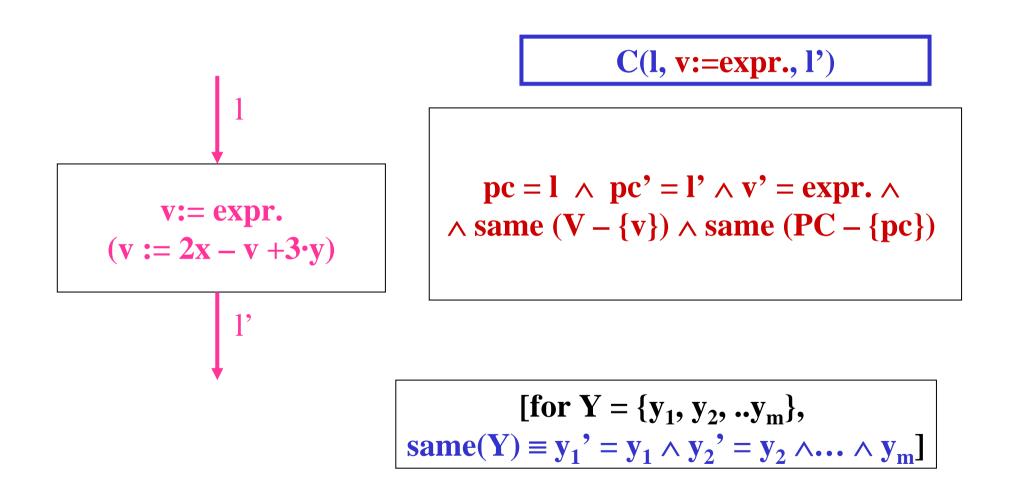
Program Statements

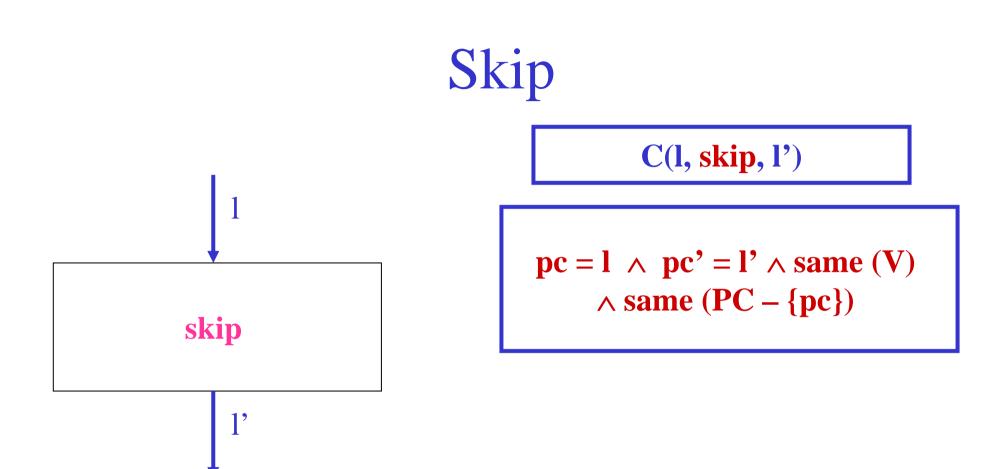
- A program **P** is a sequence of statements of the following form:
- skip
- **v:= Expr** (Expr an arithmetical expression)
- wait(Cond) (Cond an boolean expression)
- lock(v) (v a varible: semaphore)
- **unlock(v)** (v a varible: semaphore)
- Statm₁; Statm₂; ...; Statm_n (sequential composition)
- IF Cond THEN Statm₁ ELSE Statm₂ ENDIF
- WHILE Cond DO Statm DONE
- COBEGIN ($\mathbf{P}_1 \parallel \mathbf{P}_2 \parallel \dots \parallel \mathbf{P}_n$) COEND

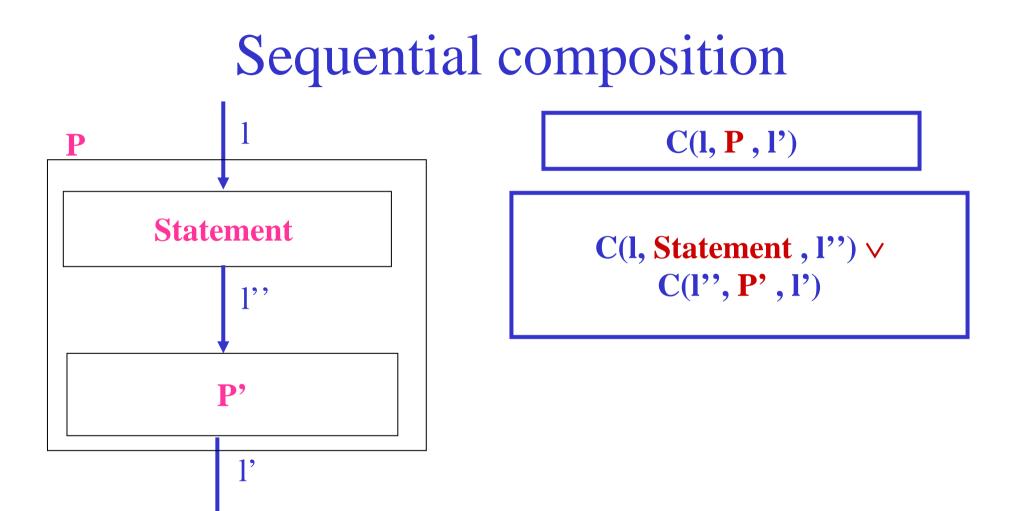
Sequential Programs: the transition predicate C



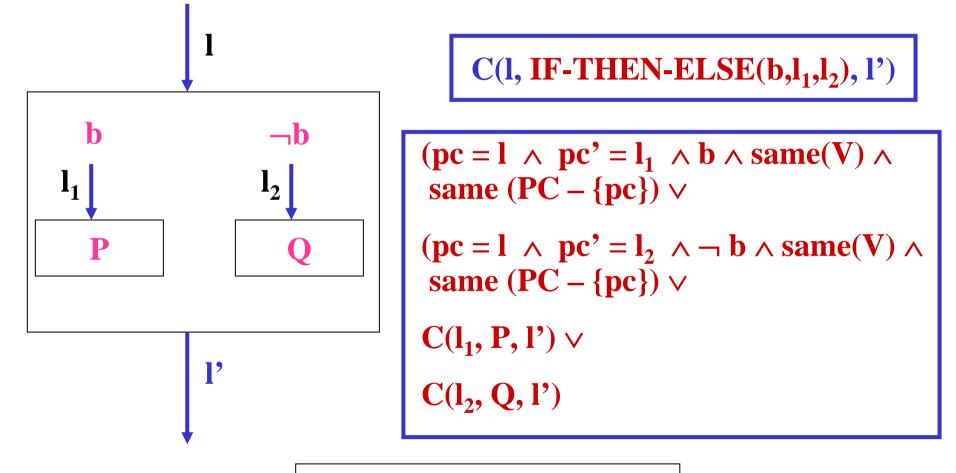
Assignments





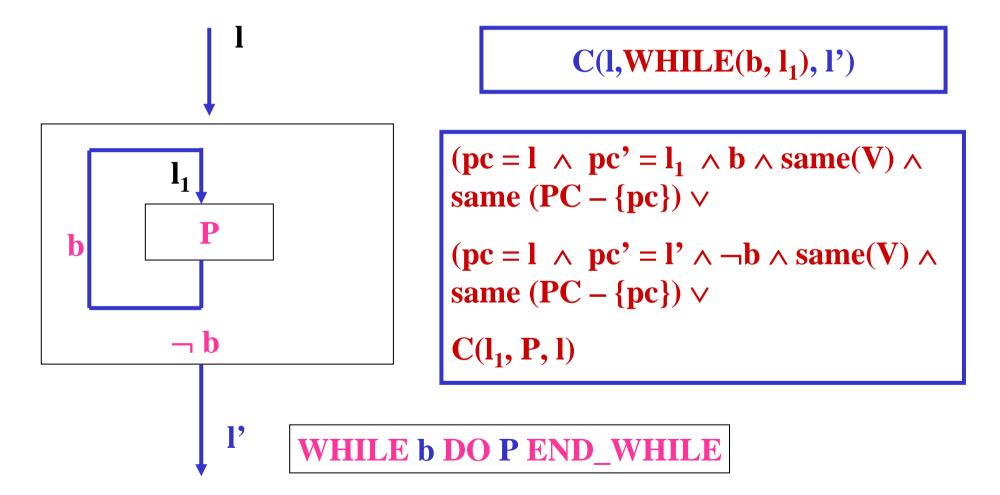


Conditional statement

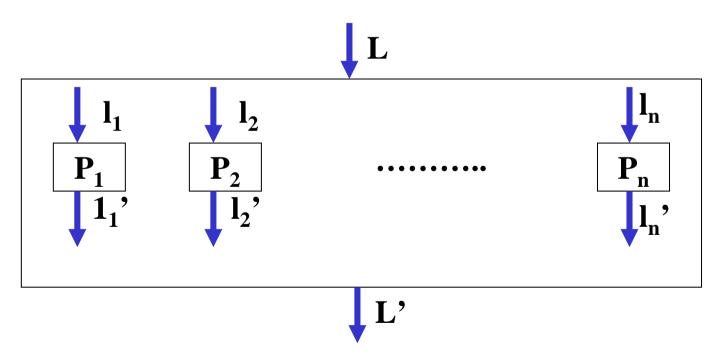


IF b THEN P ELSE Q FI

While statement



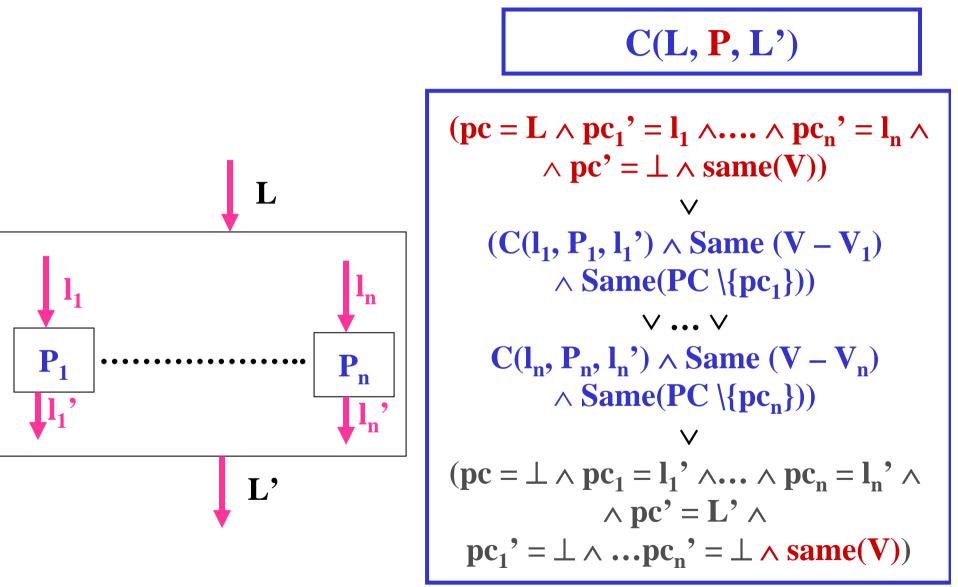
- $P = cobegin (P_1 || P_2 || ... || P_n) coend$
- P₁, P₂,..P_n --- Sequential Programs.

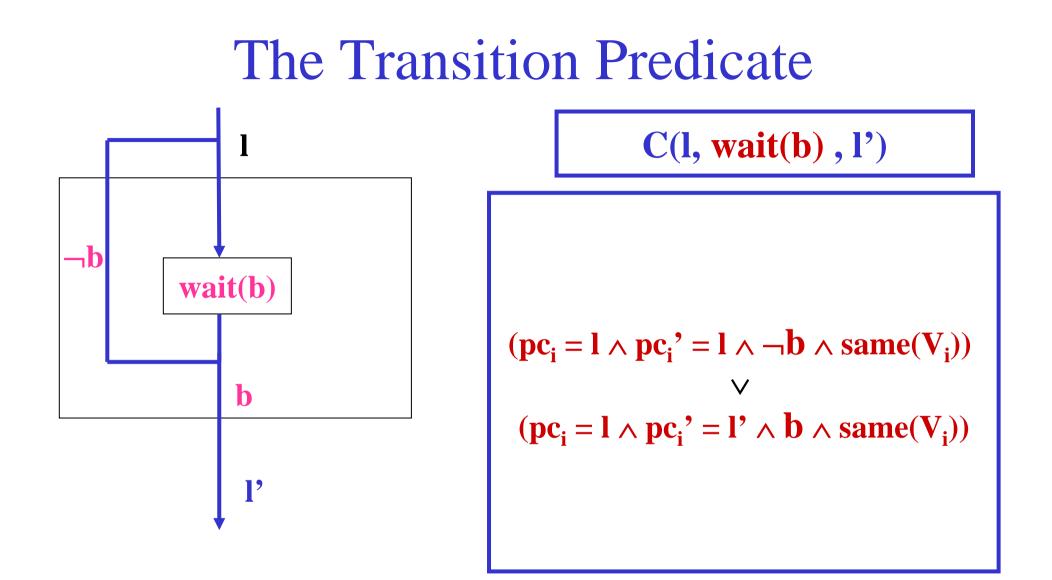


- $P = cobegin (P_1 || P_2 || ... || P_n) coend$
- P₁, P₂,..P_n --- Sequential Programs.
- C(l₁, P₁, l₁') --- The transitions of program P₁ (defined *inductively* on the structure of P₁!).
- V_i ---- The set of variables of program P_i .
- Programs may *share* variables!
- $\mathbf{pc_i}$ The program counter of program $\mathbf{P_i}$.

- pc ---- the program counter of the *concurrent program*; it could be part of a larger program!
- \perp denotes an *undefined* program counter value.
- $S_0(V, PC) = \operatorname{pre}(V) \land (\operatorname{pc}=L) \land$ $(\operatorname{pc}_1=\bot) \land \dots \land (\operatorname{pc}_n=\bot)$

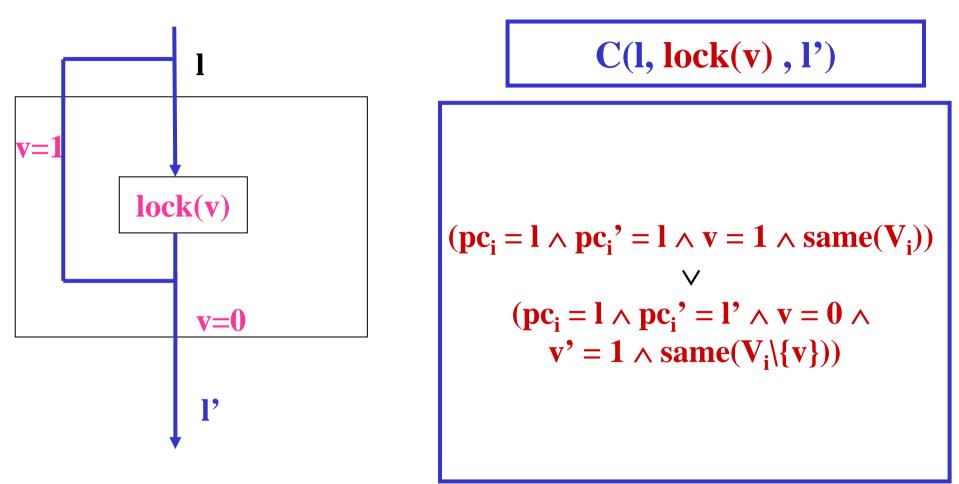
The Transition Predicate



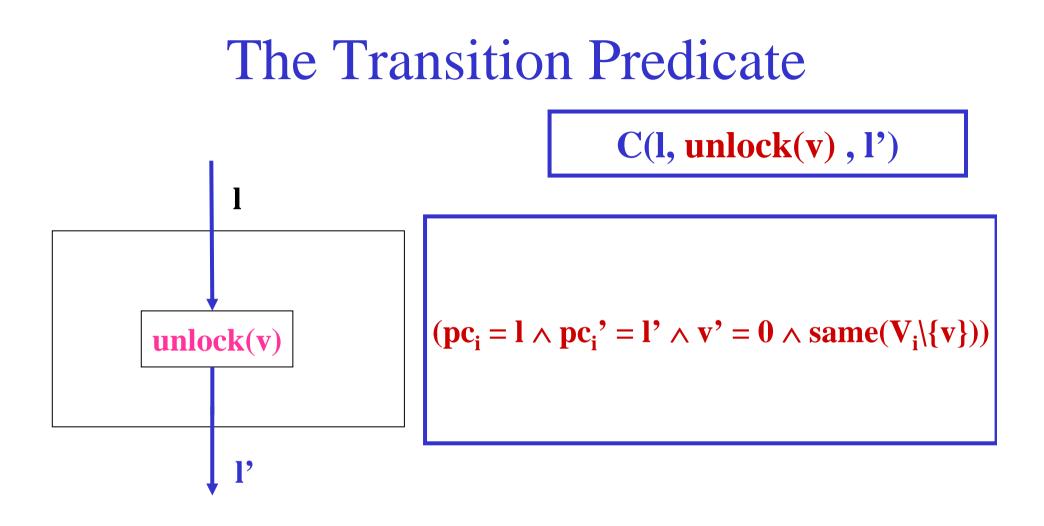


Repeatedly tests the boolean expression **b** until it is true. When **b** becomes **true** proceeds to the next step.

The Transition Predicate



Similar to **wait** with boolean expression v=0, but when the condition becomes **true**, **v** is updated to **1** and it proceeds to next step.



Simply sets variable v to 0, thus, possibly, enabling other processes to trigger their lock (or wait) transition to enter critical regions.

Summary

- System variables
- Domain of values
- States
- Initial state predicate
- Transition predicate
- pc values (for programs)
- Synchronization mechanisms