Tecniche di Specifica e di
Verifica

Boolean Decision Diagrams |
(BDDs)

Outline

« NuSMV
 The state explosion problem.

 Techniques for overcoming this problem:
— Compact representation of the state space.
= BDD:s.
— Abstractions (bisimulations)
— Symmetries.
— Partial Order Reductions.

NuSMV

« New Symbolic Model Verifier.

e Developed at CMU-IRST (Ed Clarke,
Ken McMillan, Cimatti et al.) as
extension/reimplementation of SMV.

« NuSMV has Iits own input language (also
called SMV!).

NuSMV

You must prepare your verification problem
In this language.

An NuUSMV program is a convenient way to
describe a Kripke structure.

You can iInsert the properties you want to
verify in the program.

Read the tutorial and on a need-to-know
basis, the manual.

Parallel Composition

T5,=(5,5% %2, R) R,CS xZ, xS

ac€X andag 2,
— An “Internal” action of TS;.
ae 2, N,

— A common (synchronizing) action of TS, and
TS,.

Parallel Composition

¢« TS, =(5, 5% Z,R) R, CS, xZ; xS,
¢« TS5,=(5,,S,%,2,,R,) R,CS,xZ%,x%xS,
« TS=(TS, | TS,) = (S, SY Z, R).

~ S=5,x8S,

— SP=59%xS,0
-~ ¥=3,UZ,

Parallel Composition

« TS, =(5,S%Z,R,) R, CS, xX, xS,
« TS=(TS, | TS,) = (S, SY Z, R).

~—RCSxX2xS
=S =95, XS,
— R((s1, s2), a, (t1, t2)) ?
—ifaeX;anda ¢ X,
— then Ry(s1, a, t1) and s2 = t2.

Parallel Composition

« TS, =(5,S%Z,R,) R, CS, xX, xS,
« TS=(TS, | TS,) = (S, SY Z, R).

~—RCSxX2xS
=S =95, XS,
— R((s1, s2), a, (t1, t2)) ?
—IfaeX,anda ¢ X,
— then R,(s2, a, t2) and s1 = t1.

Parallel Composition

¢ TS — (Sl’ Slo, 21, 1) Rl g Sl X Zl X Sl
¢ TSZ (Sz, 82 y 22, 2) R2 g 82 X 22 X SZ
¢« TS=(TS, || TS,) = (S, S, 3, R).

~—RCSxX2xS
B S =5, XS,
— R((s1, s2), a, (t1, t2)) ?
—IfaeXZ;andaeZ,
— then R,(s1, a, t1) and R,(s2, a, t2)

Parallel Composition

» TS=(TS || TSy || TS,
« TS=TS, || (TS, || TS5)
« TS=TS, || TS, || TS

10

Parallel Composition

TS=TS, || TS,...|| TS,
Size(TS) =~ |Si| =k > 2
Descriptionof TS~ k, + k, ...+ k

n

Size(TS) = K, x K,...x K_
> 20|

Size of TS iIs exponential in n (the number
of components).

State space explosion problem.

11

How to circumvent state space
explosion?

 Use succinct representations of the state space.
— Boolean Decision Diagrams.

« Reduce TS to TS’ such that:

— TS has the required property Iff
TS’ has the required property.

= Symmetries
= Abstractions (bisimulations)
= Partial order reductions.

12

Symbolic Model checking

K=(S, S, R, AP, V)
v a CTL formula

To check whether:
-K,skFvy

We need to

— compute |[y]| = states(y) = {s | K, s £ y}.
—then check whether s € |[w]|.

13

Symbolic Model checking

K=(, S, R, AP, V)
v a CTL formula

S’ C S can be represented as a boolean function.

R can be represented as a boolean function.

I[w]| can then be represented as a boolean
function.

Boolean functions represent the characteristic
functions of the given sets of states.

14

BDDs

Boolean functions can be (often) succinctly
represented as boolean decision diagrams.

BDDs are easy to manipulate.

Not all boolean functions have a succinct
representation.

Use BDDs to represent and manipulate the
boolean functions associated with the
model checking process.

15

Boolean Functions

« f: Domain — Range

* Boolean function:
— Domain={0, 1}"={0,1} xx {0,1}.
— Range = {0, 1}
— f1s a function of n boolean variables.

« How many boolean functions of 3 variables
are there?

16

Boolean Functions

« f: Domain — Range

* Boolean function:
— Domain={0, 1}"={0,1} xx {0,1}.
— Range = {0, 1}
— f1s a function of n boolean variables.
« How many boolean functions of 3 variables
are there?
_ Answer : 22° = 281

17

Truth Tables

g:{0,1}x{0,1} x{0,1} — {0, 1}

0,0 0|0

0,0 1)1

011011
0,1 1]0
1101 0|1

1101110

1111010
1111 1])1

X1y |z |9

18

Boolean Expressions

Given a set of Boolean variables x,y,... and the
constants 1 (true) and O (false):

ti=x|0|1l]|=t | tAat | tvt]|t=t |ttt
The semantics of Boolean Expressions Is
defined by means of truth tables as usual.

Given an ordering of Boolean variables,
Boolean expressions can be used to express
Boolean functions.

19

Boolean expressions

» Boolean functions can also be represented
as boolean (propositional) expressions.

* X AV represents the function:
—f: {0, 1} x {0, 1} — {0, 1}
= f(0, 0) =
*f(0, 1) =
*f(1,0) =
" f(1,1) =

20

Boolean expressions

» Boolean functions can also be represented
as boolean (propositional) expressions.

* X A'Y represents the function:
—f:{0, 1} x {0, 1} — {0, 1}
= f(0, 0) = 0
= (0, 1) = 0
= f(1,0) =0
= f(1, 1) =1

21

Boolean functions and expressions

Xy |z

g:{0,1}x{0,1} x{0,1} — {0, 1}

 +~ +~ = O O O O
- OO —r O B O +—» O
_ O O - O - Bk O |«

- —~ O O + +— O O

g=(X=Yy)AZ) V(X aY) A=a2Z) 22

Boolean expressions and functions

X

y

Z

g

- +~ = - O O O O

- —~ O O + +— O O

- OO —r O B O +—» O

J=(XAYA=Z)VIXAYAZ)V(=XAY)

23

Boolean expressions and functions
X1y 1z |9

J=(XAYA=Z)VIXAYAZV(=XAY)

g:{0,1}x{0,1} x{0,1} — {0, 1}

- +~ = - O O O O
- OO —r O B O +—» O
o P O B » O O

- —~ O O + +— O O

24

Three Representations

Boolean functions

Truth tables

Propositional formulas.

Three equivalent representations.
Here Is a fourth one!

25

Boolean Decision Tree

A Dboolean function 1Is represented as a
(binary) tree.

« Each Internal node 1s labeled with a
(boolean) variable.

« Each internal node has a positive (full line)
and a negative (dotted line) successor.

 The terminal nodes are labeled with O or 1.

26

Boolean Decision Diagrams

« A compact way of representing boolean functions.
» Can be used in CTL model checking.

— Represent a subset of states as a boolean function.
— Represent the transition relation as a boolean function.

— Reduce EX(v), EU(y,, v,) and EG(y) to manipulating
boolean functions and checking for boolean function
equality.

« Go from NuSMV (program) representation directly to
Its BDD representation!

27

If-Then-Else operator

(X—>5S;,S) = (X AS) V(=X ASp)

X1yl Xx->Vy,0 | XAy
XY |Z X>VY,Z 00 0 0
0000 0 0|1 0 0
001 1 110 0 0
010 0 111 1 1
011 1 X |Yy] X=>1,y | Xvy
1100 0 0lo0 0 0
11011 0 0l1 1 1
11110 1 110 1 1
11111 1 111 1 1 28

If-Then-Else representation

Let x € AP, then

e X=X—1,0

° —I(PE(P—)O,].

* QAP =EQ; >, 0
OV, =0, 1,0,

Theorem: Every boolean formula can be written
In If-Then-Else representaton.

Assume ¢, =X =y, , Y, then
P> Py, P3=(X>> Yy, Y)) > @y, P3=
EX—)(\']]__)(P21(P3)1(\|,2_)(P2’(P3) 29

If-Then-Else normal form

ITE normal form: a boolean expression Is
written In ITE normal form if it only contains
constants 0 and 1, If-Then-Else Is the only
operator occurring In the expression and tests
are only performed on variables.

30

Boolean decision trees.

If-Then-Else normal form

XAYy=Xx->VY,0

Shannon Expansion: @\
f= (XAf[llx]) Vv (_'XAf[O/x])
f=x—> f[l/X] , f[O/X] R QK

where
1:[a/x]("'aXa"-) = f(---,a,...)
fora=0,1.

31

If-Then-Else normal form

ITE normal form: a boolean expression Is
written In ITE normal form if it only contains
constants 0 and 1, If-Then-Else Is the only
operator occurring In the expression and tests
are only performed on variables.

Theorem: Every boolean formula can be written
In ITE normal form.

Proof: by trivial induction on the structure of
boolean formulae.

32

Boolean Decision Tree

A Dboolean function 1Is represented as a
(binary) tree.

 Each node Is labeled with a (boolean)
variable.

« Each node has a positive (full line) and a
negative (dotted line) successor.

 The terminal nodes are labeled with O or 1.

33

*
*
*
*
*
00
*

0

X1y |z |9

0,0 0|0

0,0 1)1

011011
0,1 1]0

1101110
1111010
1111 1])1

YVAXS2)V(RYA XS a2))

g:

34

BDDs

A BDD is finite rooted directed acyclic graph In
which:

* There is a unique initial node (the root)
e Each terminal node i1s labeled with a O or 1.

« Each non-terminal (internal) node v has three
attribute:

—var(v), and

—exactly two successors low(v) and high(v): one

labeled O (dotted edge, low(v)) and the other labeled
1 (solid edge, high(v)).

35

J=(WAX2) V(YA XS 2))

36

Reduction Rules

 Three reduction rules:
— Share identical terminal nodes. (R1)
— Remove redundant tests (R2)
— Share identical non-terminal nodes. (R3)

37

Reduction Rules

e Three reduction rules:
— Share identical terminal nodes. (R1)

e |f a BDD contains two terminal nodes m
and n both labeled 0 then, remove n and
direct all Incoming edges at n to m.

« Similarly for two terminal nodes labeled 1.

" 2\

non

Identical

terminal
38

/ terminal

0 0 K T0]

Share identical terminal nodes. (R1)

I=YAXS))VEYAXSZ) 4

Share identical terminal nodes. (R1)

I=YAXS))VEYAXSZ)

Share identical terminal nodes. (R1)

I=YAXS)Y)VEYAXe—Z)

Reduction Rules

 Three reduction rules:
— Share identical terminal nodes. (R1)

— Remove redundant tests (R2)

e |f both successors of node m lead to the
same node n then remove m and direct all
Incoming edges of m to n.

non
redundant test

redundant test

42

Remove redundant tests (R2)

/X X

N ™ K

43

Reduction Rules

e Three reduction rules:

— Share identical terminal nodes. (R1)
— Remove redundant tests (R2)

— Share identical non-terminal nodes. (R3)

e |f the sub-BDDs rooted at the nodes m and n
are “identical” then remove m and direct all
Its Incoming edges to n.

@ non-unique
\ \ node

unique
node
44

Share identical non-terminal nodes. (R3)

I=YAXS))VEYAXSZ) 4,

Share identical non-terminal nodes. (R3)

O |,
H

I=YAXS))VEYAXSZ)

Reduced BDDs

A BDD is reduced iff none of the three reduction
rules can be applied to It.

Start from the bottom layer (terminal nodes).

Apply the rules repeatedly to level i. And then move
to level 1-1 (in this way checking for applicability of
R3 only needs testing whether var(m)=var(n),
low(m)=low(n) and high(m)=high(n)).

Stop when the root node has been treated.
This can be done efficiently.

47

Reduced BDD

Binary Decision Tree
for

*
.
*
*
*
*
*
*
*
*
*
*
*
“
\d

[EN
.,
o

I=(YAXS2Z) V(YA XS —2) 48

Ordered BDDs

o {X1, X5yeee, X}
— An Indexed (ordered) set of boolean variables.

« G Is an ordered BDD w.rt. the above variable
ordering Iff:
— Each variable that appears in G Is In the above set.
(but the converse may not be true).

—If 1 <] and X; and x; appear on a path then Xx;
appears before X;.

49

Ordered BDDS

 Fundamental Fact:

— For a fixed variable ordering, each boolean
function has exactly one reduced Ordered
BDD!

— Reduced OBDDs are canonical objects.

— To test If f and g are equal, we just have to
check If their reduced OBDDs are identical.

— This will be crucial for model checking!

50

y<Z<X

o1

52

53

*
.
.
.
.
.
.
.
o*
.
*
*
*
*
-
....
“y
.
Ty
Yy
....
.

54

huo®

55

56

Reduced OBDD

« An OBDD is reduced (i.e. it isa ROBDD) if
there are only two terminal vertices 0 and 1, and
for all non terminal vertices v,u:

— low(v) # high(v) (non-redundant tests)

— low(v) = low(u), high(v) = high(u) and var(v) = var(u)
Implies v = u (uniqueness)

S7

Canonicity of ROBDD

Let us denote a ROBDD with I1ts root node
and the function represented by subgraph a
rooted In node u with fY. Then:

Theorem: For any function f:{0,1}" —» {0,1}
there exists a unique ROBDD u with
variable ordering x,, X,,...,X, such that

fU=1(X15e005X)

58

Consequences of canonicity

Theorem: For any function f:{0,1}" —» {0,1}
there exists a unigue ROBDD u with
variable ordering x,, X,,...,X, such that

fU=T(X1pee0sXp)

Therefore we can say that:

A function fY Is a tautology if its ROBDD u
Is equal to 1.

e A function fUY Is a satisfiable iIf its ROBDD
u is not equal to O.

99

Reduced OBDDs

The ordering is crucial!

{X1) X9, Y1, Yo} X1 X5
— T(Xy, Xo1 Y1, Y2) Y1 Yo
— (X, X0, Yy, ¥o) =1 1ff (X =y, AX =Y))

If X, <y, <X, <Yy, then the OBDD Iis of size
3:2+2=28.

If X, <X, <y, <Yy, then the OBDD Iis of size
3:22-1=11"

60

Reduced OBDDs

X1 <Y1 <X3<Y,

(X1 = Y1 A X =Y))

X1 <X, <Y<Y,

Reduced OBDDs

The ordering is crucial!

{X1, Xy s X, Y1, Y0100 0,Y i} X7 X5 eee X,

f(X1, X000 X0 Y1.Y20000¥n) Y1 Yoeer Vi

N
— Xy, Xauewe XY 1 YoreenYp) =1 i /\1 (% =)
If X, <y, <X, <VY,...<X, <V, then the OBDD is of
Size 3n + 2.

If X, <X, <...<x, <Yy, <...<Yy,, then the OBDD s of
Size3.2"-1!

62

ROBDDs

Finding the optimal variable ordering Is
computationally expensive (NP-complete).

There are heuristics for finding “good orderings”.

There exist boolean functions whose sizes are
exponential (in the number of variables) for any
ordering.

Functions encountered in practice are rarely of
this kind.

63

Implementation of ROBDDs

Array-based implementation

T[=

root = Ug

Var | Low | High
0 ? ? ?
1 ? ? ?
up | vy, | 0 1
U, | VY, 1 0
Us| X U, U,
Uy Yo 0 Us
Us | Yy 0 Us
Ug| X, | Us u,

The function MK

 The function MK searches for a node u with
var(u)=x;, low(u)=I and high(u)=h. If the node
does not exists, then creates the new node after
Inserting It. The running time is O(1).

Algorithm mk(i,l,h)

If I=h then
return |
else iIf T[H(i,l,nh)] # empty then
return T[H(i,l,h)]
else u = add(T,H(i,1,h),1,1,h)

H(i,l,h) iIs a hash
function mapping
a triple <i,l,h> into
a node index in T.

return u

Operations on ROBDDs.

During model checking, boolean operations
will have to be performed on ROBDDs.

These operations can be Implemented
efficiently.

fvg --memes Gt op, Gy =Gy, g

There 1s a procedure called APPLY to do
this.

66

Operations on ROBDDs

* \When performing an operation on G and G’
we assume their variable orderings are
compatible.

e X=XgU X¢

« There is an ordering < on X such that:

— < restricted to X IS <g
— < restricted to X, IS <.

67

Operations on OBDDs

* The basic idea (Shannon Expansion):
o T(X{, Xo ey X))
—fly =0 =F(0, X5...5x))
" f=X; v (X, A Xg)
"Tly -0 = Xa A X3
— Similarly, f|,, -, = f(1, X5,...,X,,)

f(Xg, Xg,-00Xp) = (=X A f|x1 -0) V(X A f|x1 -1)

 This is true even If x, does not appear in f !

68

Operations on OBDDs: Negation

« The basic idea (Shannon Expansion):

f(xl’ X2 """ Xn) - (_'Xl N ﬂx1 =0) \4 (Xl A flxl :1)

- Therefore, assuming x; < X, <...<x,
— T(Xg, X %) = = (=X ATl 20) vV (X ATl o))
= (=X ATl 20) A (X AT <))
= (X vty =0) A (=X vt o)
= (X A=X) V(=X ATl o)V
VAT 2) vi(aTl soAa— Tl =1)

:(_'Xl/_'flxle)V(Xl/_'flxlzl) >

Operations on ROBDDs.

» Let x be the top variable of G; and y the top
variable of G,

» To compute G¢,, , we consider:
CASEl: x=y
"Topg=(=XA(fl=00pP Glx=0) V

(XA (Fly=1 0P Glx=1)
— We have to solve now two smaller problems!

70

Operations on ROBDDs.

 Let x be the top variable of G; and y the top
variable of G,
» To compute Gs ,, , we consider:
CASE2: x <.
— Then x does not appear in G, (why?).

_glx =0 — =0 = glx 1
"Topg=(=XA(fo0pg)V (XA (il 0p9)
— We have to solve now two smaller problems!

CASEZ2: x >y IS symmetric.

71

Operations on ROBDDs.

* To compute Gs ,, , we consider:
Base (terminal) cases depend upon Op
Eg.. iIf Op = v then {0,0 - 0; 1}

If Op = Athen {1,1 - 1; 0}

Notice that —f(x,,x,,...,.x,) = f(X{,X,,...,.x,) @ 1, therefore
negation can be implemented with Apply.

72

Algorithm for Apply

Algorithm Apply(op,u,v)

Function App(u,v)
If terminal_case(op,u,Vv) then return op(u,v)
else if var(u) = var(v) then
u = mk(var(u), App(op,low(u),low(v)),
App(op,high(u),high(v)))
else if var(u) < var(v) then
u = mk(var(u),App(op,low(u), v), App(op,high(u),v))
else /* var(u) > var(v) */
u = mk(var(u),App(op,u,low(v)), App(op,u,high(v)))
return u

If n = number of variables, then
return App(u,v) running time = O(2"). Why?

Efficient algorithm for Apply

Algorithm Apply(op,u,Vv)
INit(G,,)
Function App(u,v)
It Gy,(u,v) # empty then return G,,(u,v)
else If terminal_case(op,u,Vv) then return op(u,v)
else If var(u)=var(v) then
r = mk(var(u), App(op,low(u),low(V)),
App(op,high(u),high(v)))
else if var(u) < var(v) then
r = mk(var(u),App(op,low(u), v), App(op,high(u),v))
else /* var(u) > var(v) */
r = mk(var(u),App(op,u,low(v)), App(op,u,high(v)))
Gop(U,v) =7

returnr

running time = O(|G||G,|). Why?

return App(u,v)

Exemple of Apply A

(X1 = X) AlXg=X4) A —Xs

AN

(X1 = X3) A —Xg

(X, AX,AX3AX,) V
\V4 (—|X1A—|X2/\—|X3/\—|X4)) NA—Xg

The Restrict operation

* Problem: Given a (partial) truth assignment
X,=0y,.... X =0y (where b;=0 or b=1), and a
ROBDD tY, compute the restriction of tY under
that assignment.

o E.G.01f T(X,%,,X35) = ((X; © X,) Vv X3) we want
to compute f(x,,X,,%3)[0/%,] = f(x{,0,X5)

l.e.: f(X(,0,X5)= =X, V X3

76

Restrict Operation: example

f(X1,X2,X3) = (X © X5) V X3)

f(X1,X5,X3)[0/X,] = =X Vv Xq

(D\
\
\
\
\
\

77

Restrict Operation

» Let x be the root of G;

* To compute G4, we consider:
CASEl: x=y
= flp = low(Gy) ifb=0
= fl,_, = high(Gy ifb=1

78

Restrict Operation

» Let x be the root of G;

* To compute G4, we consider:
CASE2: x >y
"flyp= T

79

Restrict Operation

» Let x be the root of G;

* To compute G4, we consider:
CASE2: x <y

. fly:b = (_' XA (flx:O)ly:b) A4 (X N (flle)ly:b)

* \We have to solve now two smaller problems!

80

Algorithm for Restrict

Algorithm Restrict(u,i,b)

Function Res(u)
If var(u) > 1then return u
else if var(u) <1 then
return mk(var(u),Res(low(u)),Res(high(u)))
else /* var(u) =1*/
If b =0 then
return Res(low(u))
else /*var(u)=1and b =1%*/
return Res(high(u))
return Res(u)

running time = O(2"). Why?

ol

Efficient algorithm for Restrict

Algorithm Restrict(u,i,b)
Init(G,.,)
Function Res(u)
If G, (u)=empty then return G, (u)
If var(u) > 1then return u
else if var(u) <1 then
r = mk(var(u),Res(low(u)),Res(high(u)))
else /* var(u) = var(v) */
If b =0 then
r = Res(low(u))
else /* var(u) =var(v)and b =1 */
r = Res(high(u))
Gres(u) =TI

returnr S
running time = O(|G|). Why?

return Res(u)

Quantification

« Extend the boolean language with
Ix.t| Vx.t

* They can be defined in terms of ROBDD
operations:

Ax.t = t[0/x] v t[1/X]
Vx.t =t[0/x] A t[1/X]

We can use an appropriate combination of Restrict
and Apply

83

Symbolic CTL Model Checking

Represent the required subsets of states as
poolean functions and hence as ROBDDs.

Represent the transition relation as a boolean
function and hence as a ROBDD.

Reduce the iterative fixed point computations of
the model checking process to operations on
OBDDs.

Check for the termination of the fixpoint
computation by checking ROBDD equivalence.

84

Symbolic Model Checking

K=(, S, R, AP, L)
Assume that If L(s) = L(s’) thens =s’.

—If not, add a few new atomic propositions If
necessary, so as to distinguish states only based on
the labeling.

AP={p,q, r}
L(s) = {p}

—f,=pA—QqA-r

e f —f51vf52vf55

{s1,s2,s5}

85

Symbolic Model Checking

K=(, S, R,AP, L)
AP ={p,q, I}
 Add the next-state boolean variables {p’, q’, r’}
Suppose (s;,S,) INR (i.e. R(sy, S5))
with L(s;) = {p, g} and L(s,) = {r}.
Then Ty, o, =T, AT,
—wheref, =paga—=randf’, =—p’A—=q’ A1’

° fR = V(Sl, s2) € R (fR(Sl,Sz))
 Choose the ordering p<p’<q<q <r<r’!

86

CTL symbolic Model Checking

’ |[XI]| = fxi(xla---axn) = X
(the OBDD for the boolean variable x;)

* [=0]] = Afy(Xg5e-05X0)
(apply negation to the OBDD for ¢)

* |[¢ Vv \V]l - f¢(X19°"9Xn) Vv fq;(X19°°°9Xn)
(apply v operation to the OBDDs for ¢ and y)

* |[¢ N\ W]l - f¢(X19°°°9Xn) N\ f\l,(Xl,...,Xn)
(apply A operation to the OBDDs for ¢ and)

87

CTL Symbolic Model Checking
* [[EX 9]l =

X e e o oX (Fp(X7 1504 05X) A
Fa(XqseeesX 10X 1500esX 1)
This is also called the relational product, or the

pre-image of |[¢]| by R (see Section 6.6 In
Clarke’s book for a more efficient algorithm).

* [[EU(.W)]| = BZ.(T,(Xgs..00%p) Vv
(fo(Xg50+5Xp) A EX Z))

* [[EG ¢]| = vZ.(fy(Xp5-.5X,) A EX Z)

88

Symbolic model checking: example

Let V={X,,...,X.}, then |[EG]| can be computed as
follows:

1. Assume the ROBDD T, (x,...,X,) has been computed.

2. Set Xy=1,(x’p,....x°) [computed from f (X;,...,X;)
by variable substitution]

3. We need to compute X;,, = X; N'Y; where:
Y; = Elx’l,...,X’n(f\l,(x’l,...,x’n) A Ta(XqgeeesX X 190005X 1))
Xi;q can easily be computed as X; A'Y;

4. Check whether Xi,, = X, by checking whether the
corresponding ROBDDs are identical.

5. If not, substitute the next-state variables for the state-
variables in X.,,, and repeat from step 3. 89

Algorithm Compute EG(]3)
100 = T (0
=1
repeat
ji=J+L
fi == fa() A IX((X, X)) AT 1(x"));
until f;(x) = f; 1(X);

Algorithm Compute_EU(j3,,53,)
(%) = fp ();
=1
repeat
) =]+
T =1 () v (T3, (X) A IX.(T(X, X*) ATi4(x7)));
until £;(x) = f;_;(x);

90

CTL Symbolic model checking

Finally, assuming boolean variables V={x,...,x,.}, and the
ROBDD for |[¢]| already computed.

« Checking whether
KF ¢

amounts to checking whether the ROBDD for f,;; A T_, IS
identical to the ROBDD for 0, where f,,;. I1s the ROBDD
for the set |[Init]| of initial states of K.

(recall that K = ¢ iff |[Init]] < |[6]| iff |[Init]| A [[=¢]| = D)

91

Pre-image computation with BDD

Let us consider the Pre-image operation
X e s X (T (X 500 09X°) A TR(X 50 09X sX 0 1500007)
Pre-image Is a special case of the Relational Product
1x’ (R(X%,X’) A Ry(X’,Z))
where R, 1S R, R, Isyand z Is empty.
Pre-image can easily be computed by applying A to the
BDD’s for y and R, and then existential elimination of

the primed variables.
However, the intermediate BDD for
Ty (X7 1500 X)) A TR(X 500 sX 15X 1500 05X)
IS usually far bigger than the final result.

This be avoided by exploiting early guantification, whenever
possible. ”

Pre-image computation with BDD

Early quantification is based on the fact that:
« |If x; <X, and the top variable of f Is x, then
EIX2 (Xl — 1:|x1:1’ flxle) = (Xl — EIX2 1:|x1:1! sz 1:|x1:O)
(recall that Ix (f op g) =T op Ix g, whenever f does not
depend on x)
« If the top variable of g is x, then

HXZ (XZ —> f|X2:l’ leZZO) = (f|X2:l \4 f|X2:O)

This means that we can devise an algorithm that computes the
pre-image by applying quantification as soon as It Is
possible.

This avoids computing the conjunction (which is usually

bigger than the final result) during the computation of the
pre-image. 93

Pre-image computation with BDD

Algorithm RelationalProduct(u,v,7) /* 371 (f* AfY) */
Init(G)
Function RelPrd(u,v,7)
Ifu=0orv=0then return 0
ifu=1andv=1thenreturnl
If G(u,v) # NIL then return G(u,v)
Z = min(var(u), var(v))
If var(v) = var(u) then

= RelPrd(high(u), high(v), Z) ; r, = RelPrd(low(u), low(v), 7)

else if z = var(u) then
= RelPrd(high(u), v, 1) ; r, = RelPrd(low(u), v, 7))
else /* z =var(v) */
= RelPrd(u, high(v), Z) ; r, = RelPrd(u, low(v), 7))
Ifz ¢ Ithen [*z1snot a quantlfled variable */
r=mk(z, ry, r,)
else /*z € 1 : z is a quantified variable */
r=Apply(v, ry, 1,)
G(uv)=r
return r

return RelPrd(u,v,7)

Symbolic Model Checking

* The actual Kripke structure will be, in general,
too large.

— State explosion.

SO one must try to compute the ROBDDs
directly from the system model (NuSMV
program) and run the model checking
procedure with the help of this implicit
representation.

— Symbolic model checking.

« This may not be sufficient, though! Additional
techniques may be needed (e.g., abstraction).

