Tecniche di Specifica e di Verifica

Boolean Decision Diagrams I (BDDs)

Outline

- NuSMV
- The state explosion problem.
- Techniques for overcoming this problem:
- Compact representation of the state space.
- BDDs.
- Abstractions (bisimulations)
- Symmetries.
- Partial Order Reductions.

NuSMV

- New Symbolic Model Verifier.
- Developed at CMU-IRST (Ed Clarke, Ken McMillan, Cimatti et al.) as extension/reimplementation of SMV.
- NuSMV has its own input language (also called SMV!).

NuSMV

- You must prepare your verification problem in this language.
- An NuSMV program is a convenient way to describe a Kripke structure.
- You can insert the properties you want to verify in the program.
- Read the tutorial and on a need-to-know basis, the manual.

Parallel Composition

- $\mathrm{TS}_{1}=\left(\mathbf{S}_{1}, \mathbf{S}_{1}{ }^{0}, \Sigma_{1}, \mathbf{R}_{1}\right) \quad \mathbf{R}_{1} \subseteq \mathbf{S}_{1} \times \Sigma_{1} \times \mathbf{S}_{1}$
- $\mathrm{TS}_{2}=\left(\mathbf{S}_{2}, \mathbf{S}_{2}{ }^{0}, \Sigma_{2}, \mathbf{R}_{2}\right) \quad \mathbf{R}_{2} \subseteq \mathbf{S}_{2} \times \Sigma_{2} \times \mathbf{S}_{2}$
- $\mathbf{a} \in \Sigma_{1}$ and $\mathbf{a} \notin \Sigma_{2}$
- An "internal" action of TS_{1}.
- $\mathbf{a} \in \Sigma_{1} \cap \Sigma_{2}$
- A common (synchronizing) action of TS_{1} and TS_{2}.

Parallel Composition

- $\mathrm{TS}_{1}=\left(\mathbf{S}_{1}, \mathrm{~S}_{1}{ }^{0}, \Sigma_{1}, \mathrm{R}_{1}\right) \quad \mathrm{R}_{1} \subseteq \mathrm{~S}_{1} \times \Sigma_{1} \times \mathbf{S}_{1}$
- $\mathrm{TS}_{2}=\left(\mathbf{S}_{2}, \mathbf{S}_{2}{ }^{0}, \Sigma_{2}, \mathbf{R}_{2}\right) \quad \mathbf{R}_{2} \subseteq \mathbf{S}_{2} \times \Sigma_{2} \times \mathbf{S}_{2}$
- $T S=\left(\mathrm{TS}_{1} \| \mathrm{TS}_{2}\right)=\left(\mathbf{S}, \mathbf{S}^{0}, \Sigma, \mathrm{R}\right)$.
$-\mathrm{S}=\mathrm{S}_{1} \times \mathrm{S}_{2}$
$-S^{0}=S_{1}{ }^{0} \times S_{2}{ }^{0}$
$-\Sigma=\Sigma_{1} \cup \Sigma_{2}$

Parallel Composition

- $\mathrm{TS}_{1}=\left(\mathbf{S}_{1}, \mathbf{S}_{1}{ }^{0}, \Sigma_{1}, \mathbf{R}_{1}\right) \quad \mathbf{R}_{1} \subseteq \mathbf{S}_{1} \times \Sigma_{1} \times \mathbf{S}_{1}$
- $\mathrm{TS}_{2}=\left(\mathbf{S}_{2}, \mathbf{S}_{\mathbf{2}}{ }^{0}, \Sigma_{2}, \mathbf{R}_{2}\right) \quad \mathbf{R}_{2} \subseteq \mathbf{S}_{\mathbf{2}} \times \Sigma_{\mathbf{2}} \times \mathbf{S}_{\mathbf{2}}$
- $\mathbf{T S}=\left(\mathrm{TS}_{1} \| \mathrm{TS}_{2}\right)=\left(\mathbf{S}, \mathbf{S}^{0}, \Sigma, \mathbf{R}\right)$.

$$
\begin{aligned}
& -\mathbf{R} \subseteq S \times \Sigma \times S \\
& \quad \cdot \mathbf{S}=\mathrm{S}_{1} \times \mathbf{S}_{2} . \\
& -\mathbf{R}((\mathbf{s} 1, \mathbf{s} 2), \mathbf{a},(\mathbf{t} 1, \mathbf{t} 2)) ? \\
& - \text { if } \mathbf{a} \in \Sigma_{1} \text { and } \mathbf{a} \notin \Sigma_{2} \\
& \text { - then } \mathbf{R}_{1}(\mathbf{s} 1, \mathbf{a}, \mathbf{t} \mathbf{1}) \text { and } \mathbf{s} \mathbf{2}=\mathbf{t} \mathbf{2} .
\end{aligned}
$$

Parallel Composition

- $\mathrm{TS}_{1}=\left(\mathbf{S}_{1}, \mathbf{S}_{1}{ }^{0}, \Sigma_{1}, \mathbf{R}_{1}\right) \quad \mathbf{R}_{1} \subseteq \mathbf{S}_{1} \times \Sigma_{1} \times \mathbf{S}_{1}$
- $\mathrm{TS}_{2}=\left(\mathbf{S}_{2}, \mathbf{S}_{\mathbf{2}}{ }^{0}, \Sigma_{2}, \mathbf{R}_{2}\right) \quad \mathbf{R}_{2} \subseteq \mathbf{S}_{\mathbf{2}} \times \Sigma_{\mathbf{2}} \times \mathbf{S}_{\mathbf{2}}$
- $\mathbf{T S}=\left(\mathrm{TS}_{1} \| \mathrm{TS}_{2}\right)=\left(\mathbf{S}, \mathbf{S}^{0}, \Sigma, \mathbf{R}\right)$.

$$
\begin{aligned}
& -\mathbf{R} \subseteq S \times \Sigma \times S \\
& \quad \quad \mathbf{S}=\mathrm{S}_{1} \times \mathbf{S}_{2} . \\
& -\mathbf{R}((\mathbf{s} 1, \mathbf{s} 2), \mathbf{a},(\mathbf{t} 1, \mathbf{t} 2)) ? \\
& - \text { if } \mathbf{a} \in \Sigma_{2} \text { and } \mathbf{a} \notin \Sigma_{1} \\
& \text { - then } \mathbf{R}_{2}(\mathbf{s} 2, \mathbf{a}, \mathbf{t} \mathbf{2}) \text { and } \mathbf{s} 1=\mathbf{t} 1 .
\end{aligned}
$$

Parallel Composition

- $\mathrm{TS}_{1}=\left(\mathbf{S}_{1}, \mathbf{S}_{1}{ }^{0}, \Sigma_{1}, \mathbf{R}_{1}\right) \quad \mathbf{R}_{1} \subseteq \mathbf{S}_{1} \times \Sigma_{1} \times \mathbf{S}_{1}$
- $\mathrm{TS}_{2}=\left(\mathbf{S}_{2}, \mathbf{S}_{\mathbf{2}}{ }^{0}, \Sigma_{2}, \mathbf{R}_{2}\right) \quad \mathbf{R}_{2} \subseteq \mathbf{S}_{2} \times \Sigma_{2} \times \mathbf{S}_{2}$
- $\mathbf{T S}=\left(\mathrm{TS}_{1} \| \mathrm{TS}_{2}\right)=\left(\mathbf{S}, \mathbf{S}^{0}, \Sigma, \mathbf{R}\right)$.

$$
\begin{aligned}
& -\mathbf{R} \subseteq S \times \Sigma \times S \\
& \quad \quad \mathbf{S}=\mathbf{S}_{1} \times \mathbf{S}_{2} . \\
& -\mathbf{R}((\mathbf{s} 1, \mathbf{s} 2), \mathbf{a},(\mathbf{t} 1, \mathbf{t} 2)) ? \\
& - \text { if } \mathbf{a} \in \Sigma_{1} \text { and } \mathbf{a} \in \Sigma_{2} \\
& \text { - then } \mathbf{R}_{1}(\mathbf{s} 1, \text { a, } \mathbf{t} \mathbf{1}) \text { and } \mathbf{R}_{2}(\mathbf{s} 2, \mathrm{a}, \mathbf{t} 2)
\end{aligned}
$$

Parallel Composition

- $\mathrm{TS}=\left(\mathrm{TS}_{1} \| \mathrm{TS}_{2}\right) \| \mathrm{TS}_{3}$
- $\mathrm{TS}=\mathrm{TS}_{1} \|\left(\mathrm{TS}_{2} \| \mathrm{TS}_{3}\right)$
- $\mathrm{TS}=\mathrm{TS}_{1}\left\|\mathrm{TS}_{2}\right\| \mathrm{TS}_{3}$

Parallel Composition

- $\mathbf{T S}=\mathbf{T S}_{1}\left\|\mathbf{T S}_{2} \ldots\right\| \mathbf{T S}_{\mathrm{n}}$
- $\operatorname{Size}\left(\mathbf{T S}_{\mathbf{i}}\right) \approx\left|\mathbf{S}_{\mathbf{i}}\right|=\mathbf{k}_{\mathbf{i}} \geqslant 2$
- Description of $T S \approx \mathbf{k}_{1}+\mathbf{k}_{2} \ldots+\mathbf{k}_{\mathbf{n}}$
- $\operatorname{Size}(T S)=\mathbf{k}_{1} \times \mathbf{k}_{2} \ldots \times \mathbf{k}_{\mathrm{n}}$

$$
\geqslant 2^{n}!
$$

- Size of TS is exponential in \mathbf{n} (the number of components).
- State space explosion problem.

How to circumvent state space explosion?

- Use succinct representations of the state space. - Boolean Decision Diagrams.
- Reduce TS to TS' such that:
- TS has the required property iff TS' has the required property.
- Symmetries
- Abstractions (bisimulations)
- Partial order reductions.

Symbolic Model checking

- $K=\left(\mathbf{S}, \mathbf{S}_{0}, \mathbf{R}, \mathbf{A P}, \mathbf{V}\right)$
- ψ a CTL formula
- To check whether:
$-\mathbf{K}, \mathbf{s} \vDash \psi$
- We need to
- compute $|[\psi]|=\operatorname{states}(\psi)=\{\mathbf{s} \mid \mathbf{K}, \mathbf{s}=\psi\}$.
- then check whether $s \in|[\psi]|$.

Symbolic Model checking

- $\mathbf{K}=\left(\mathbf{S}, \mathbf{S}_{\mathbf{0}}, \mathbf{R}, \mathbf{A P}, \mathbf{V}\right)$
- ψ a CTL formula
- $\mathbf{S}^{\prime} \subseteq \mathrm{S}$ can be represented as a boolean function.
- \mathbf{R} can be represented as a boolean function.
- $|[\psi]|$ can then be represented as a boolean function.
- Boolean functions represent the characteristic functions of the given sets of states.

BDDs

- Boolean functions can be (often) succinctly represented as boolean decision diagrams.
- BDDs are easy to manipulate.
- Not all boolean functions have a succinct representation.
- Use BDDs to represent and manipulate the boolean functions associated with the model checking process.

Boolean Functions

- f: Domain \rightarrow Range
- Boolean function:
- Domain $=\{0,1\}^{\mathrm{n}}=\{0,1\} \times \ldots \times\{0,1\}$.
- Range $=\{0,1\}$
$-\mathbf{f}$ is a function of \mathbf{n} boolean variables.
- How many boolean functions of 3 variables are there?

Boolean Functions

- f: Domain \rightarrow Range
- Boolean function:
- Domain $=\{0,1\}^{\mathrm{n}}=\{0,1\} \times \ldots \times\{0,1\}$.
- Range $=\{0,1\}$
$-\mathbf{f}$ is a function of \mathbf{n} boolean variables.
- How many boolean functions of 3 variables are there?
- Answer : $2^{2^{3}}=2^{8}$!

Truth Tables

\mathbf{x}	\mathbf{y}	z	g
$\mathbf{0}$	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$
g:\{0,1\} \times\{0,1\} \times\{0,1\} \rightarrow\{0,1\}
$$

Boolean Expressions

- Given a set of Boolean variables $\boldsymbol{x}, \boldsymbol{y}, \ldots$ and the constants 1 (true) and $\mathbf{0}$ (false):

$$
t::=x|0| 1|\neg t| t \wedge t|t \vee t| t \Rightarrow t \mid t \Leftrightarrow t
$$

- The semantics of Boolean Expressions is defined by means of truth tables as usual.
- Given an ordering of Boolean variables, Boolean expressions can be used to express Boolean functions.

Boolean expressions

- Boolean functions can also be represented as boolean (propositional) expressions.
- $\mathbf{x} \wedge \mathbf{y}$ represents the function:
$-\mathbf{f}:\{\mathbf{0}, \mathbf{1}\} \times\{\mathbf{0}, \mathbf{1}\} \rightarrow\{\mathbf{0}, \mathbf{1}\}$
- $\mathbf{f}(\mathbf{0}, \mathbf{0})=$
- $\mathbf{f}(\mathbf{0}, \mathbf{1})=$
- $\mathbf{f}(\mathbf{1}, \mathbf{0})=$
- $\mathbf{f}(\mathbf{1}, \mathbf{1})=$

Boolean expressions

- Boolean functions can also be represented as boolean (propositional) expressions.
- $\mathbf{x} \wedge \mathbf{y}$ represents the function:
$-\mathbf{f}:\{0,1\} \times\{0,1\} \rightarrow\{0,1\}$
- $\mathbf{f}(0,0)=0$
- $\mathbf{f}(0,1)=0$
- $f(\mathbf{1 , 0})=0$
- $f(\mathbf{1}, \mathbf{1})=1$

Boolean functions and expressions

	y	z	
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1		

$$
g:\{0,1\} \times\{0,1\} \times\{0,1\} \rightarrow\{0,1\}
$$

$$
\begin{equation*}
\mathbf{g}=((\mathbf{x} \Leftrightarrow \mathbf{y}) \wedge \mathbf{z}) \vee((\mathbf{x} \Leftrightarrow \neg \mathbf{y}) \wedge \neg \mathbf{z}) \tag{22}
\end{equation*}
$$

Boolean expressions and functions

x	y	z	Ig
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

$$
\mathbf{g}=(\mathbf{x} \wedge \mathbf{y} \wedge \neg \mathbf{z}) \vee(\mathbf{x} \wedge \neg \mathbf{y} \wedge \mathbf{z}) \vee(\neg \mathbf{x} \wedge \mathbf{y})
$$

Boolean expressions and functions

\mathbf{x}	y	z	Ig	
0	0	0	0	
0	0	1	0	$\mathbf{g}=(\mathbf{x} \wedge \mathbf{y} \wedge \neg \mathbf{z}) \vee(\mathbf{x} \wedge \neg \mathbf{y} \wedge \mathbf{z}) \vee(\neg \mathbf{x} \wedge \mathbf{y})$
0	1	0	1	
0	1	1	1	$\mathrm{g}:\{0,1\} \times\{0,1\} \times\{0,1\} \rightarrow\{0,1\}$
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	0	

Three Representations

- Boolean functions
- Truth tables
- Propositional formulas.
- Three equivalent representations.
- Here is a fourth one!

Boolean Decision Tree

- A boolean function is represented as a (binary) tree.
- Each internal node is labeled with a (boolean) variable.
- Each internal node has a positive (full line) and a negative (dotted line) successor.
- The terminal nodes are labeled with 0 or 1.

Boolean Decision Diagrams

- A compact way of representing boolean functions.
- Can be used in CTL model checking.
- Represent a subset of states as a boolean function.
- Represent the transition relation as a boolean function.
- Reduce $\operatorname{EX}(\psi), \mathbf{E U}\left(\psi_{1}, \psi_{2}\right)$ and $\mathbf{E G}(\psi)$ to manipulating boolean functions and checking for boolean function equality.
- Go from NuSMV (program) representation directly to its BDD representation!

If-Then-Else operator

$\left(\mathbf{x} \rightarrow \mathbf{S}_{1}, \mathbf{S}_{\mathbf{0}}\right) \equiv\left(\mathrm{x} \wedge \mathrm{S}_{1}\right) \vee\left(\neg \mathbf{x} \wedge \mathrm{S}_{0}\right)$						$\mathbf{x} \rightarrow \mathbf{y}, 0$	$\mathbf{x} \wedge \mathrm{y}$
				\mathbf{x}	y		
x	y	z	$\mathbf{x} \rightarrow \mathbf{y}, \mathrm{z}$	0	0	0	0
0	0	0	0	0	1	0	0
0	0	1	1	1	0	0	0
0	1	0	0	1	1	1	1
0	1	1	1	X	y	$\mathrm{x} \rightarrow 1, \mathrm{y}$	$\mathbf{x} \vee \mathrm{y}$
1	0	0	0	0	0	0	0
1	0	1	0	0	1	1	1
1	1	0	1	1	0	1	1
1	1	1	1	1	1	1	1^{28}

If-Then-Else representation

Let $\mathrm{x} \in \mathrm{AP}$, then

- $\mathrm{x} \equiv \mathrm{x} \rightarrow \mathbf{1 , 0}$
- $\neg \varphi \equiv \varphi \rightarrow \mathbf{0}, \mathbf{1}$
- $\varphi_{1} \wedge \varphi_{2} \equiv \varphi_{1} \rightarrow \varphi_{2}, 0$
- $\varphi_{1} \vee \varphi_{2} \equiv \varphi_{1} \rightarrow \mathbf{1}, \varphi_{2}$

Theorem: Every boolean formula can be written in If-Then-Else representaton.

Assume $\varphi_{1} \equiv \mathbf{x} \rightarrow \psi_{1}, \psi_{2}$ then

$$
\begin{aligned}
& \varphi_{1} \rightarrow \varphi_{2}, \varphi_{3} \equiv\left(\mathbf{x} \rightarrow \psi_{1}, \psi_{2}\right) \rightarrow \varphi_{2}, \varphi_{3} \equiv \\
& \quad \equiv \mathbf{x} \rightarrow\left(\psi_{1} \rightarrow \varphi_{2}, \varphi_{3}\right),\left(\psi_{2} \rightarrow \varphi_{2}, \varphi_{3}\right)
\end{aligned}
$$

If-Then-Else normal form

ITE normal form: a boolean expression is written in ITE normal form if it only contains constants 0 and 1, If-Then-Else is the only operator occurring in the expression and tests are only performed on variables.

Boolean decision trees.

If-Then-Else normal form

$$
x \wedge y=x \rightarrow y, 0
$$

Shannon Expansion:

$$
\mathbf{f}=\left(\mathbf{x} \wedge \mathbf{f}_{[1 / \mathbf{x}]}\right) \vee\left(\neg \mathbf{x} \wedge \mathbf{f}_{[0 / \mathbf{x}]}\right)
$$

$$
\mathbf{f}=\mathbf{x} \rightarrow \mathbf{f}_{[1 / \mathrm{x}]}, \mathbf{f}_{[0 / \mathrm{x}]}
$$

where

$$
\mathbf{f}_{[a / x]}(\ldots, x, \ldots)=f(\ldots, a, \ldots)
$$

for $\mathbf{a}=\mathbf{0 , 1}$.

If-Then-Else normal form

ITE normal form: a boolean expression is written in ITE normal form if it only contains constants 0 and 1 , If-Then-Else is the only operator occurring in the expression and tests are only performed on variables.

Theorem: Every boolean formula can be written in ITE normal form.

Proof: by trivial induction on the structure of boolean formulae.

Boolean Decision Tree

- A boolean function is represented as a (binary) tree.
- Each node is labeled with a (boolean) variable.
- Each node has a positive (full line) and a negative (dotted line) successor.
- The terminal nodes are labeled with $\mathbf{0}$ or $\mathbf{1}$.

BDDs

A BDD is finite rooted directed acyclic graph in which:

- There is a unique initial node (the root)
- Each terminal node is labeled with a $\mathbf{0}$ or $\mathbf{1}$.
- Each non-terminal (internal) node v has three attribute:
- var(v), and
- exactly two successors low(v) and high(v): one labeled 0 (dotted edge, low(v)) and the other labeled 1 (solid edge, high(v)).

$$
\mathbf{g}=(\mathbf{y} \wedge(\mathbf{x} \Leftrightarrow \mathbf{z})) \vee(\neg \mathbf{y} \wedge(\mathbf{x} \Leftrightarrow \neg \mathbf{z}))
$$

Reduction Rules

- Three reduction rules:
- Share identical terminal nodes. (R1)
- Remove redundant tests (R2)
- Share identical non-terminal nodes. (R3)

Reduction Rules

- Three reduction rules:
- Share identical terminal nodes. (R1)
- If a BDD contains two terminal nodes m and \mathbf{n} both labeled 0 then, remove n and direct all incoming edges at n to m .
- Similarly for two terminal nodes labeled 1.

non
identical terminal

Share identical terminal nodes. (R1)

$$
\mathrm{g}=(\mathrm{y} \wedge(\mathrm{x} \Leftrightarrow \mathrm{z})) \vee(\neg \mathrm{y} \wedge(\mathrm{x} \Leftrightarrow \neg \mathrm{z}))
$$

Share identical terminal nodes. (R1)

$$
\begin{equation*}
\mathbf{g}=(\mathbf{y} \wedge(\mathbf{x} \Leftrightarrow \mathbf{z})) \vee(\neg \mathbf{y} \wedge(\mathbf{x} \Leftrightarrow \neg \mathbf{z})) \tag{40}
\end{equation*}
$$

Share identical terminal nodes. (R1)

$$
\mathbf{g}=(\mathbf{y} \wedge(\mathbf{x} \Leftrightarrow \mathbf{z})) \vee(\neg \mathbf{y} \wedge(\mathbf{x} \Leftrightarrow \neg \mathbf{z}))
$$

Reduction Rules

- Three reduction rules:
- Share identical terminal nodes. (R1)
- Remove redundant tests (R2)
- If both successors of node m lead to the same node n then remove m and direct all incoming edges of \mathbf{m} to \mathbf{n}.

Remove redundant tests ($\mathbf{R} 2$)

Reduction Rules

- Three reduction rules:
- Share identical terminal nodes. (R1)
- Remove redundant tests (R2)
- Share identical non-terminal nodes. (R3)
- If the sub-BDDs rooted at the nodes m and n are "identical" then remove \mathbf{m} and direct all its incoming edges to \mathbf{n}.

Share identical non-terminal nodes. (R3)

$$
\mathbf{g}=(\mathbf{y} \wedge(\mathbf{x} \Leftrightarrow \mathbf{z})) \vee(\neg \mathbf{y} \wedge(\mathbf{x} \Leftrightarrow \neg \mathbf{z}))
$$

Share identical non-terminal nodes. (R3)

$$
\mathrm{g}=(\mathrm{y} \wedge(\mathrm{x} \Leftrightarrow \mathrm{z})) \vee(\neg \mathrm{y} \wedge(\mathrm{x} \Leftrightarrow \neg \mathrm{z}))
$$

Reduced BDDs

- A BDD is reduced iff none of the three reduction rules can be applied to it.
- Start from the bottom layer (terminal nodes).
- Apply the rules repeatedly to level i. And then move to level i-1 (in this way checking for applicability of R3 only needs testing whether $\operatorname{var}(\mathbf{m})=\operatorname{var}(\mathbf{n})$, $\operatorname{low}(m)=\operatorname{low}(n)$ and high(m)=high(n)).
- Stop when the root node has been treated.
- This can be done efficiently.

Binary Decision Tree

Reduced BDD

Ordered BDDs

- $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}\right\}$
- An indexed (ordered) set of boolean variables.
$-\mathrm{x}_{1}<\mathrm{x}_{2} \ldots \ldots<\mathrm{x}_{\mathrm{n}}$
- G is an ordered BDD w.r.t. the above variable ordering iff:
- Each variable that appears in \mathbf{G} is in the above set. (but the converse may not be true).
- If $\mathbf{i}<\mathbf{j}$ and $\mathbf{x}_{\mathbf{i}}$ and $\mathbf{x}_{\mathbf{j}}$ appear on a path then $\mathbf{x}_{\mathbf{i}}$ appears before $\mathbf{x}_{\mathbf{j}}$.

Ordered BDDS

- Fundamental Fact:
- For a fixed variable ordering, each boolean function has exactly one reduced Ordered BDD!
- Reduced OBDDs are canonical objects.
- To test if f and g are equal, we just have to check if their reduced OBDDs are identical.
- This will be crucial for model checking!

$$
y<z<x
$$

Reduced OBDD

- An OBDD is reduced (i.e. it is a ROBDD) if there are only two terminal vertices $\mathbf{0}$ and 1, and for all non terminal vertices v, u :

$$
\begin{aligned}
& -\operatorname{low}(v) \neq \operatorname{high}(v)(\text { non-redundant tests }) \\
& -\operatorname{low}(v)=\operatorname{low}(u), \operatorname{high}(v)=\operatorname{high}(u) \text { and } \operatorname{var}(v)=\operatorname{var}(u) \\
& \quad \text { implies } v=u(u n i q u e n e s s)
\end{aligned}
$$

Canonicity of ROBDD

Let us denote a ROBDD with its root node and the function represented by subgraph a rooted in node u with f^{u}. Then:

Theorem: For any function $\mathbf{f :}\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ there exists a unique ROBDD u with variable ordering $x_{1}, x_{2}, \ldots, x_{\mathrm{n}}$ such that

$$
\mathbf{f}^{\mathrm{u}}=\mathrm{f}\left(x_{1}, \ldots, x_{\mathrm{n}}\right)
$$

Consequences of canonicity

Theorem: For any function $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ there exists a unique ROBDD u with variable ordering $x_{1}, x_{2}, \ldots, x_{n}$ such that

$$
\mathbf{f}^{\mathrm{u}}=\mathbf{f}\left(x_{1}, \ldots, x_{\mathrm{n}}\right)
$$

Therefore we can say that:

- A function f^{u} is a tautology if its ROBDD \boldsymbol{u} is equal to 1.
- A function f^{u} is a satisfiable if its ROBDD u is not equal to 0 .

Reduced OBDDs

- The ordering is crucial!
- $\left\{\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}}, \mathbf{y}_{1}, \mathbf{y}_{2}\right\} \quad \mathbf{x}_{\mathbf{1}} \mathbf{x}_{\mathbf{2}}$

$$
\begin{array}{lll}
-\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}_{1}, \mathbf{y}_{2}\right) \quad \mathbf{y}_{1} & \mathbf{y}_{2} \\
-\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}_{1}, \mathbf{y}_{2}\right)=\mathbf{1} & \text { iff } & \left(\mathbf{x}_{1}=\mathbf{y}_{1} \wedge \mathbf{x}_{2}=\mathbf{y}_{2}\right)
\end{array}
$$

- If $\mathbf{x}_{1}<\mathbf{y}_{1}<\mathbf{x}_{2}<\mathbf{y}_{2}$, then the OBDD is of size

$$
3 \cdot 2+2=8
$$

- If $\mathbf{x}_{1}<\mathbf{x}_{2}<\mathbf{y}_{1}<\mathbf{y}_{2}$, then the OBDD is of size $3 \cdot 2^{2}-1=11$!

Reduced OBDDs

$$
\mathbf{x}_{1}<\mathbf{y}_{1}<\mathbf{x}_{2}<\mathbf{y}_{2} \quad \mathbf{x}_{1}<\mathbf{x}_{2}<\mathbf{y}_{1}<\mathbf{y}_{2}
$$

Reduced OBDDs

- The ordering is crucial!
- $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}, \mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{\mathbf{n}}\right\}$
$\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}$ $f\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}\right) \quad y_{1} y_{2} \ldots y_{n}$
$-f\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}\right)=1$ iff $\bigwedge_{i=1}^{n}\left(x_{i}=y_{i}\right)$
- If $\mathbf{x}_{1}<\mathbf{y}_{1}<\mathbf{x}_{2}<\mathrm{y}_{2} \ldots<\mathrm{x}_{\mathrm{n}}<\mathrm{y}_{\mathrm{n}}$, then the OBDD is of size $3 \mathrm{n}+2$.
- If $\mathbf{x}_{1}<\mathbf{x}_{2}<\ldots<x_{n}<y_{1}<\ldots<y_{n}$, then the OBDD is of size $3.2^{\mathrm{n}}-\mathbf{1}$!

ROBDDs

- Finding the optimal variable ordering is computationally expensive (NP-complete).
- There are heuristics for finding "good orderings".
- There exist boolean functions whose sizes are exponential (in the number of variables) for any ordering.
- Functions encountered in practice are rarely of this kind.

Implementation of ROBDDs

Array-based implementation

$T[]=$

	Var	Low	High
$\mathbf{0}$	$\boldsymbol{?}$	$\boldsymbol{?}$	$\boldsymbol{?}$
$\mathbf{1}$	$\boldsymbol{?}$	$\boldsymbol{?}$	$\boldsymbol{?}$
$\mathbf{u}_{\mathbf{1}}$	$\mathbf{y}_{\mathbf{2}}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{u}_{\mathbf{2}}$	$\mathbf{y}_{\mathbf{2}}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{u}_{\mathbf{3}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{u}_{\mathbf{2}}$	$\mathbf{u}_{\mathbf{1}}$
$\mathbf{u}_{\mathbf{4}}$	$\mathbf{y}_{\mathbf{2}}$	$\mathbf{0}$	$\mathbf{u}_{\mathbf{3}}$
$\mathbf{u}_{\mathbf{5}}$	$\mathbf{y}_{\mathbf{1}}$	$\mathbf{0}$	$\mathbf{u}_{\mathbf{3}}$
$\mathbf{u}_{\mathbf{6}}$	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{u}_{\mathbf{5}}$	$\mathbf{u}_{\mathbf{4}}$

The function MK

- The function MK searches for a node u with $\operatorname{var}(u)=x_{i}, \operatorname{low}(u)=l$ and $\operatorname{high}(u)=h$. If the node does not exists, then creates the new node after inserting it. The running time is $\boldsymbol{O}(\mathbf{1})$.
$H(i, l, h)$ is a hash
function mapping a triple $\langle i, l, h\rangle$ into a node index in T .

Algorithm mk(i,l,h)
if $\mathrm{l}=\mathrm{h}$ then
return 1
else if $\mathrm{T}[\mathrm{H}(\mathrm{i}, \mathrm{l}, \mathrm{h})] \neq$ empty then return $\mathbf{T}[\mathbf{H}(\mathbf{i}, 1, \mathrm{~h})$]
else $\mathbf{u}=\operatorname{add}(\mathbf{T}, \mathbf{H}(\mathbf{i}, l, h), \mathbf{i}, 1, h)$
return u

Operations on ROBDDs.

- During model checking, boolean operations will have to be performed on ROBDDs.
- These operations can be implemented efficiently.
- $\mathbf{f} \vee \mathrm{g}$-------- $G_{f} \mathbf{o p}_{\vee} \mathbf{G}_{\mathrm{g}}=\mathbf{G}_{\mathrm{f} \vee \mathrm{g}}$
- There is a procedure called APPLY to do this.

Operations on ROBDDs

- When performing an operation on \mathbf{G} and \mathbf{G}^{\prime} we assume their variable orderings are compatible.
- $\mathbf{X}=\mathbf{X}_{\mathbf{G}} \cup \mathbf{X}_{\mathbf{G}}$,
- There is an ordering < on \mathbf{X} such that:
$-<$ restricted to \mathbf{X}_{G} is $<_{G}$
- < restricted to \mathbf{X}_{G}, is < $_{G}$.

Operations on OBDDs

- The basic idea (Shannon Expansion):
- $\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathbf{n}}\right)$

$$
\begin{gathered}
-\left.\mathbf{f}\right|_{x_{1}=0}=f\left(0, x_{2}, \ldots, x_{n}\right) \\
\quad \mathbf{f}=x_{1} \vee\left(x_{2} \wedge x_{3}\right) \\
\quad-f_{x_{1}=0}=x_{2} \wedge x_{3}
\end{gathered}
$$

- Similarly, $\left.\mathbf{f}\right|_{\mathbf{x} 1=1}=\mathbf{f}\left(\mathbf{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}\right)$

$$
\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}\right)=\left(\left.\neg \mathbf{x}_{1} \wedge \mathbf{f}\right|_{\mathbf{x}_{1}=0}\right) \vee\left(\left.\mathbf{x}_{1} \wedge \mathbf{f}\right|_{\mathbf{x}_{1}=1}\right)
$$

- This is true even if \mathbf{x}_{1} does not appear in \mathbf{f} !

Operations on OBDDs: Negation

- The basic idea (Shannon Expansion):

$$
\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}\right)=\left(\left.\neg \mathbf{x}_{1} \wedge \mathbf{f}\right|_{\mathbf{x}_{1}=0}\right) \vee\left(\left.\mathbf{x}_{1} \wedge \mathbf{f}\right|_{\mathbf{x}_{1}=1}\right)
$$

- Therefore, assuming $\mathbf{x}_{1}<\mathbf{x}_{2}<\ldots<\mathbf{x}_{\mathrm{n}}$,

$$
\begin{aligned}
& \neg \mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}\right)=\neg\left(\left(\left.\neg \mathbf{x}_{1} \wedge \mathbf{f}\right|_{\mathbf{x}_{1}=0}\right) \vee\left(\left.\mathbf{x}_{1} \wedge \mathbf{f}\right|_{\mathrm{x}_{1}=1}\right)\right) \\
& =\left(\neg\left(\left.\neg \mathbf{x}_{1} \wedge \mathbf{f}\right|_{\mathbf{x}_{1}=\mathbf{0}}\right) \wedge \neg\left(\left.\mathbf{x}_{1} \wedge \mathbf{f}\right|_{\mathbf{x}_{1}=1}\right)\right) \\
& =\left(\left(\left.\mathbf{x}_{1} \vee \neg \mathbf{f}\right|_{\mathbf{x}_{1}=0}\right) \wedge\left(\left.\neg \mathbf{x}_{1} \vee \neg \mathbf{f}\right|_{\mathbf{x}_{1}=1}\right)\right. \\
& =\left(\mathbf{x}_{1} \wedge \neg \mathbf{x}_{1}\right) \vee\left(\left.\neg \mathbf{x}_{1} \wedge \neg \mathbf{f}\right|_{\mathbf{x}_{1}=\mathbf{0}}\right) \vee \\
& \vee\left(\left.\mathbf{x}_{1} \wedge \neg \mathbf{f}\right|_{\mathbf{x}_{1}=1}\right) \vee\left(\left.\left.\neg \mathbf{f}\right|_{\mathbf{x}_{1}=0} \wedge \neg \mathbf{f}\right|_{\mathrm{x}_{1}=1}\right) \\
& =\left(\left.\neg \mathbf{x}_{1} \wedge \neg \mathbf{f}\right|_{\mathbf{x}_{1}=\mathbf{0}}\right) \vee\left(\left.\mathbf{x}_{1} \wedge \neg \mathbf{f}\right|_{\mathrm{x}_{1}=1}\right)
\end{aligned}
$$

Operations on ROBDDs.

- Let \mathbf{x} be the top variable of $\mathbf{G}_{\mathbf{f}}$ and \mathbf{y} the top variable of \mathbf{G}_{g}.
- To compute $G_{f o p g}$ we consider:

CASE1: $x=y$

- fopg $=\left(\neg x \wedge\left(\left.f\right|_{x=0}\right.\right.$ op $\left.\left.g\right|_{x=0}\right) \vee$

$$
\left(x \wedge\left(\left.f\right|_{x=1} \text { op }\left.g\right|_{x=1}\right)\right.
$$

- We have to solve now two smaller problems!

Operations on ROBDDs.

- Let \mathbf{x} be the top variable of \mathbf{G}_{f} and \mathbf{y} the top variable of \mathbf{G}_{g}.
- To compute $\mathbf{G}_{\mathrm{f} \text { op } \mathrm{g}}$ we consider: CASE2: $\mathrm{x}<\mathrm{y}$.
- Then \mathbf{x} does not appear in \mathbf{G}_{g} (why?).
$-\left.\mathrm{g}\right|_{\mathrm{x}=0}=\mathrm{g}=\left.\mathrm{g}\right|_{\mathrm{x}=1}$
- f opg $\mathrm{g}=\left(\neg \mathrm{x} \wedge\left(\left.\mathrm{f}\right|_{\mathrm{x}=0}\right.\right.$ opg) $) \vee\left(\mathrm{x} \wedge\left(\left.\mathbf{f}\right|_{\mathrm{x}=1} \mathbf{o p g}\right)\right.$
- We have to solve now two smaller problems!

CASE2: $\mathrm{x}>\mathrm{y}$ is symmetric.

Operations on ROBDDs.

- To compute $G_{f \text { op } g}$ we consider:

Base (terminal) cases depend upon op
Eg.: if $\mathbf{o p}=v$ then $\{0,0 \rightarrow \mathbf{0 ;} \mathbf{1}\}$ if $\mathbf{o p}=\wedge$ then $\{1,1 \rightarrow \mathbf{1 ; 0 \}}$

Notice that $\neg \mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathbf{n}}\right)=\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathbf{n}}\right) \oplus \mathbf{1}$, therefore negation can be implemented with Apply.

Algorithm for Apply

Algorithm Apply(op,u,v)

Function $\operatorname{App}(\mathbf{u}, \mathbf{v})$
if terminal_case(op,u,v) then return op(u,v)
else if $\operatorname{var}(\mathbf{u})=\operatorname{var}(\mathbf{v})$ then $\mathbf{u}=\mathbf{m k}(\operatorname{var}(\mathbf{u}), \operatorname{App}(0, \operatorname{low}(\mathbf{u}), \operatorname{low}(\mathbf{v}))$, App(op,high(u),high(v))) else if $\operatorname{var}(\mathbf{u})$ < $\operatorname{var}(\mathbf{v})$ then
$\mathbf{u}=\mathbf{m k}(\operatorname{var}(\mathbf{u}), \operatorname{App}(\mathbf{o p}, \operatorname{low}(\mathbf{u}), \mathbf{v}), \operatorname{App}(\mathrm{op}, \mathrm{high}(\mathbf{u}), \mathbf{v}))$ else /* var(u) > var(v) */

$$
\mathbf{u}=\mathbf{m k}(\operatorname{var}(\mathbf{u}), \operatorname{App}(o p, \mathbf{u}, \operatorname{low}(\mathbf{v})), \operatorname{App}(\mathbf{o p}, \mathbf{u}, \mathrm{high}(\mathbf{v})))
$$ return u

return $\operatorname{App}(\mathbf{u}, \mathbf{v})$
If $n=$ number of variables, then running time $=\mathbf{O}\left(2^{\mathrm{n}}\right)$. Why?

Efficient algorithm for Apply

Algorithm Apply(op,u,v)
$\operatorname{init}\left(G_{\text {op }}\right)$
Function $\operatorname{App}(\mathbf{u}, \mathbf{v})$
if $G_{\text {op }}(\mathbf{u}, \mathbf{v}) \neq$ empty then return $G_{\text {op }}(\mathbf{u}, \mathbf{v})$
else if terminal_case(op,u,v) then return op(u,v)
else if $\operatorname{var}(\mathbf{u})=\operatorname{var}(\mathbf{v})$ then

$$
\begin{array}{r}
\mathbf{r}=\operatorname{mk}(\operatorname{var}(\mathbf{u}), \operatorname{App}(0, \operatorname{low}(\mathbf{u}), \operatorname{low}(\mathbf{v})), \\
\underset{\operatorname{App}(o p, \operatorname{high}(\mathbf{u}), \operatorname{high}(\mathbf{v})))}{ }
\end{array}
$$

else if $\operatorname{var}(\mathbf{u})<\operatorname{var}(\mathbf{v})$ then
$\mathbf{r}=\mathbf{m k}(\operatorname{var}(\mathbf{u}), \operatorname{App}(\mathbf{o p}, \operatorname{low}(\mathbf{u}), \mathbf{v}), \operatorname{App}(0 p, h i g h(\mathbf{u}), \mathbf{v}))$ else /* $\operatorname{var}(\mathbf{u})>\operatorname{var}(\mathbf{v}) ~ * /$

$$
\mathbf{r}=\mathbf{m k}(\operatorname{var}(\mathbf{u}), \operatorname{App}(o p, \mathbf{u}, \operatorname{low}(\mathbf{v})), \operatorname{App}(\mathrm{op}, \mathbf{u}, \mathrm{high}(\mathbf{v})))
$$

$G_{\text {op }}(\mathbf{u}, \mathbf{v})=\mathbf{r}$
return r
return $\operatorname{App}(\mathbf{u}, \mathbf{v})$
running time $=\mathbf{O}\left(\left|\mathrm{G}_{\mathrm{u}}\right| \mathrm{G}_{\mathrm{v}}\right)$. Why?

Exemple of Apply \wedge

The Restrict operation

- Problem: Given a (partial) truth assignment $x_{1}=b_{1}, \ldots, x_{k}=b_{k}\left(\right.$ where $b_{j}=0$ or $\left.b_{j}=1\right)$, and a ROBDD t^{u}, compute the restriction of t^{u} under that assignment.
- E.G.: if $f\left(x_{1}, x_{2}, x_{3}\right)=\left(\left(x_{1} \Leftrightarrow x_{2}\right) \vee x_{3}\right)$ we want to compute $f\left(x_{1}, x_{2}, x_{3}\right)\left[0 / x_{2}\right]=f\left(x_{1}, 0, x_{3}\right)$

$$
\text { i.e.: } f\left(x_{1}, 0, x_{3}\right)=-x_{1} \vee x_{3}
$$

Restrict Operation: example

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(\left(x_{1} \Leftrightarrow x_{2}\right) \vee x_{3}\right) \quad f\left(x_{1}, x_{2}, x_{3}\right)\left[0 / x_{2}\right]=\neg x_{1} \vee x_{3}
$$

Restrict Operation

- Let \mathbf{x} be the root of $\mathbf{G}_{\mathbf{f}}$
- To compute $\left.\mathrm{G}_{\mathrm{f}}\right|_{\mathrm{y}=\mathrm{b}}$ we consider: CASE1: $x=y$
- $\mathrm{f}_{\mathrm{y}=\mathrm{b}}=\operatorname{low}\left(\mathrm{G}_{\mathrm{f}}\right) \quad$ if $\mathrm{b}=\mathbf{0}$
- $\left.f\right|_{y=b}=\operatorname{high}\left(G_{f}\right) \quad$ if $b=1$

Restrict Operation

- Let \mathbf{x} be the root of $\mathbf{G}_{\mathbf{f}}$
- To compute $\left.\mathrm{G}_{\mathrm{f}}\right|_{\mathrm{y}=\mathrm{b}}$ we consider: CASE2: $x>y$
- $\left.\mathbf{f}\right|_{y=b}=\mathbf{f}$

Restrict Operation

- Let \mathbf{x} be the root of \mathbf{G}_{f}
- To compute $\left.\mathrm{G}_{\mathrm{f}}\right|_{\mathrm{y}=\mathrm{b}}$ we consider: CASE2: $\mathrm{x}<\mathrm{y}$

$$
\left.\cdot \mathbf{f}\right|_{y=b}=\left(\left.\neg \mathbf{x} \wedge\left(\left.\mathbf{f}\right|_{x=0}\right)\right|_{y=b}\right) \vee\left(\left.x \wedge\left(\left.\mathbf{f}\right|_{x=1}\right)\right|_{y=b}\right)
$$

- We have to solve now two smaller problems!

Algorithm for Restrict

Algorithm Restrict(u,i,b)
Function Res(u)
if $\operatorname{var}(\mathbf{u})>$ i then return u
else if $\operatorname{var}(\mathbf{u})$ < i then
return $\mathbf{m k}(\operatorname{var}(\mathbf{u}), \operatorname{Res}(\operatorname{low}(\mathbf{u})), \operatorname{Res}(\operatorname{high}(\mathbf{u})))$
else /* $\operatorname{var}(\mathbf{u})=\mathbf{i}$ */
if $b=0$ then
return $\operatorname{Res}(\operatorname{low}(\mathbf{u}))$
else $/ * \operatorname{var}(\mathbf{u})=\mathbf{i}$ and $\mathrm{b}=1$ */
return $\operatorname{Res}($ high(u))
return $\operatorname{Res}(\mathbf{u})$

$$
\text { running time }=\mathbf{O}\left(2^{\mathrm{n}}\right) \text {. Why? }
$$

Efficient algorithm for Restrict

Algorithm Restrict(u,i,b)

$\operatorname{init}\left(G_{\text {res }}\right)$

Function Res(u)
if $\mathbf{G}_{\text {res }}(\mathbf{u}) \neq$ empty then return $G_{\text {res }}(\mathbf{u})$
if $\operatorname{var}(\mathbf{u})>$ i then return u
else if $\operatorname{var}(\mathbf{u})$ < i then

$$
\mathbf{r}=\mathbf{m k}(\operatorname{var}(\mathbf{u}), \operatorname{Res}(\operatorname{low}(\mathbf{u})), \operatorname{Res}(\operatorname{high}(\mathbf{u})))
$$

else /* $\operatorname{var}(\mathbf{u})=\operatorname{var}(\mathbf{v}) ~ * /$

$$
\text { if } b=0 \text { then }
$$

$$
\mathbf{r}=\operatorname{Res}(\operatorname{low}(\mathbf{u}))
$$

else $/ * \operatorname{var}(\mathbf{u})=\operatorname{var}(\mathbf{v})$ and $\mathrm{b}=1$ */

$$
\mathbf{r}=\operatorname{Res}(\operatorname{high}(\mathbf{u}))
$$

$\mathbf{G}_{\text {res }}(\mathbf{u})=\mathbf{r}$
return \mathbf{r}
return $\operatorname{Res}(\mathbf{u})$
running time $=\mathbf{O}\left(\left|\mathrm{G}_{\mathrm{u}}\right|\right)$. Why?

Quantification

- Extend the boolean language with

$$
\exists \text { x.t } \mid \forall \mathbf{x . t}
$$

- They can be defined in terms of ROBDD operations:

$$
\begin{aligned}
& \exists \mathrm{x} . \mathrm{t}=\mathrm{t}[0 / \mathrm{x}] \vee \mathrm{t}[1 / \mathrm{x}] \\
& \forall \mathrm{x} . \mathrm{t}=\mathrm{t}[0 / \mathbf{x}] \wedge \mathrm{t}[1 / \mathrm{x}]
\end{aligned}
$$

We can use an appropriate combination of Restrict and Apply

Symbolic CTL Model Checking

- Represent the required subsets of states as boolean functions and hence as ROBDDs.
- Represent the transition relation as a boolean function and hence as a ROBDD.
- Reduce the iterative fixed point computations of the model checking process to operations on OBDDs.
- Check for the termination of the fixpoint computation by checking ROBDD equivalence.

Symbolic Model Checking

- $K=\left(\mathbf{S}, \mathbf{S}_{\mathbf{0}}, \mathbf{R}, \mathbf{A P}, \mathbf{L}\right)$
- Assume that if $\mathbf{L}(\mathbf{s})=\mathbf{L}\left(\mathbf{s}^{\prime}\right)$ then $\mathbf{s}=\mathbf{s}^{\prime}$.
- If not, add a few new atomic propositions if necessary, so as to distinguish states only based on the labeling.
- $\mathbf{A P}=\{\mathbf{p}, \mathbf{q}, \mathbf{r}\}$
- $\mathbf{L}(\mathbf{s})=\{p\}$
$-\mathbf{f}_{\mathrm{s}}=\mathbf{p} \wedge \neg \mathbf{q} \wedge \neg \mathbf{r}$
- $\mathbf{f}_{\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{5}\right\}}=\mathbf{f}_{\mathrm{s}_{1}} \vee \mathrm{f}_{\mathrm{s}_{2}} \vee \mathbf{f}_{\mathrm{s}_{5}}$

Symbolic Model Checking

- $K=\left(\mathbf{S}, \mathbf{S}_{\mathbf{0}}, \mathbf{R}, \mathbf{A P}, \mathbf{L}\right)$
- $\mathbf{A P}=\{\mathbf{p}, \mathbf{q}, \mathbf{r}\}$
- Add the next-state boolean variables $\left\{p^{\prime}, q^{\prime}, r^{\prime}\right\}$
- Suppose ($\mathbf{s}_{\mathbf{1}}, \mathbf{s}_{\mathbf{2}}$) in \mathbf{R} (i.e. $\mathbf{R}\left(\mathbf{s}_{\mathbf{1}}, \mathbf{s}_{\mathbf{2}}\right)$) with $L\left(s_{1}\right)=\{p, q\}$ and $L\left(s_{2}\right)=\{r\}$.
Then $f_{R\left(s_{1}, s_{2}\right)}=f_{s_{1}} \wedge f_{s_{2}}$.
- where $f_{s_{1}}=p \wedge q \wedge \neg \mathbf{r}$ and $\mathbf{f}_{s_{2}}=\neg \mathbf{p}^{\prime} \wedge \neg \mathbf{q}^{\prime} \wedge \mathbf{r}^{\prime}$
- $\mathbf{f}_{\mathrm{R}}=\mathrm{V}_{\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right) \in \mathrm{R}}\left(\mathrm{f}_{\mathrm{R}\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right)}\right)$
- Choose the ordering $p<p^{\prime}<q<q^{\prime}<r<r^{\prime}$!

CTL symbolic Model Checking

- $\left|\left[x_{i}\right]\right|=f_{x_{i}}\left(\mathbf{x}_{1}, \ldots, x_{n}\right)=\mathbf{x}_{\mathrm{i}}$
(the OBDD for the boolean variable \mathbf{x}_{i})
- $|[\neg \phi]|=\neg \mathbf{f}_{\phi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}\right)$
(apply negation to the OBDD for ϕ)
- $|[\phi \vee \psi]|=\mathbf{f}_{\phi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \vee \mathbf{f}_{\psi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$
(apply \vee operation to the OBDDs for ϕ and ψ)
- $|[\phi \wedge \psi]|=f_{\phi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \wedge f_{\psi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$
(apply \wedge operation to the OBDDs for ϕ and ψ)

CTL Symbolic Model Checking

- $|[\mathbf{E X} \phi]|=$
$\exists \mathbf{x}^{\prime}{ }_{1}, \ldots, \mathbf{x}^{\prime}{ }_{\mathbf{n}}\left(\mathrm{f}_{\phi}\left(\mathbf{x}^{\prime}{ }_{1}, \ldots, \mathrm{x}^{\prime}{ }_{\mathrm{n}}\right) \wedge\right.$
$\left.f_{R}\left(x_{1}, \ldots, x_{n}, x^{\prime}{ }_{1}, \ldots, x^{\prime}{ }_{n}\right)\right)$
This is also called the relational product, or the pre-image of $|[\phi]|$ by \boldsymbol{R} (see Section 6.6 in Clarke's book for a more efficient algorithm).
- $|[E \mathbf{U}(\phi, \psi)]|=\mu \mathbf{Z} .\left(\mathbf{f}_{\psi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}\right) \vee\right.$

$$
\left.\left(\mathbf{f}_{\phi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}\right) \wedge \mathbf{E X Z}\right)\right)
$$

- $|[E G \phi]|=v Z .\left(f_{\phi}\left(x_{1}, \ldots, \mathbf{x}_{n}\right) \wedge E X Z\right)$

Symbolic model checking: example

Let $\mathbf{V}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}\right\}$, then $|[\mathbf{E G} \psi]|$ can be computed as follows:

1. Assume the $\operatorname{ROBDD} \mathbf{f}_{\psi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}\right)$ has been computed.
2. Set $\mathbf{X}_{\mathbf{0}}=\mathbf{f}_{\psi}\left(\mathbf{x}^{\prime}{ }_{1}, \ldots, \mathbf{x}^{\prime}{ }_{\mathbf{n}}\right)$ [computed from $\mathbf{f}_{\psi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}\right)$ by variable substitution]
3. We need to compute $\mathbf{X}_{\mathbf{i + 1}}=\mathbf{X}_{\mathbf{i}} \cap \mathbf{Y}_{\mathbf{i}}$ where:

$$
\begin{aligned}
& \mathbf{Y}_{\mathbf{i}}=\exists \mathbf{x}^{9}{ }_{1}, \ldots, \mathbf{x}^{\prime}{ }_{\mathbf{n}}\left(\mathbf{f}_{\psi}\left(\mathbf{x}^{\prime}{ }_{1}, \ldots, \mathbf{x}^{\prime}{ }_{\mathrm{n}}\right) \wedge \mathbf{f}_{\mathbf{R}}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}, \mathbf{x}^{\prime}{ }_{1}, \ldots, \mathbf{x}_{\mathrm{n}}\right)\right) \\
& \mathbf{X}_{\mathbf{i}+1} \text { can easily be computed as } \mathbf{X}_{\mathbf{i}} \wedge \mathbf{Y}_{\mathbf{i}}
\end{aligned}
$$

4. Check whether $\mathbf{X}_{i+1}=\mathbf{X}_{\mathbf{i}}$ by checking whether the corresponding ROBDDs are identical.
5. If not, substitute the next-state variables for the statevariables in \mathbf{X}_{i+1}, and repeat from step 3 .

Algorithm Compute_EG(β)
$\mathbf{f}_{1}(x):=f_{\beta}(x) ;$
$\mathrm{j}=1$;
repeat

$$
\begin{aligned}
& \mathbf{j}:=\mathbf{j}+1 \\
& \mathbf{f}_{\mathbf{j}}:=\mathbf{f}_{\beta}(x) \wedge \exists x^{\prime} \cdot\left(\mathbf{f}_{\mathrm{R}}\left(x, x^{\prime}\right) \wedge \mathbf{f}_{\mathbf{j}-1}\left(x^{\prime}\right)\right) \\
& \text { until } \mathbf{f}_{\mathbf{j}}(x)=\mathbf{f}_{\mathrm{j}-1}(x)
\end{aligned}
$$

Algorithm Compute_EU(β_{1}, β_{2})
$\mathrm{f}_{1}(x):=\mathbf{f}_{\beta_{2}}(x) ;$
$\mathrm{j}=1$;
repeat

$$
\begin{aligned}
& \mathbf{j}:=\mathrm{j}+1 ; \\
& \mathbf{f}_{\mathrm{j}}:=\mathbf{f}_{\beta_{2}}(x) \vee\left(\mathbf{f}_{\beta_{1}}(x) \wedge \exists x^{\prime} \cdot\left(\mathbf{f}_{\mathrm{R}}\left(x, x^{\prime}\right) \wedge \mathbf{f}_{\mathrm{j}-1}\left(x^{\prime}\right)\right)\right) ;
\end{aligned}
$$

$$
\text { until } \mathbf{f}_{\mathbf{j}}(x)=\mathbf{f}_{\mathrm{j}-1}(x) ;
$$

CTL Symbolic model checking

Finally, assuming boolean variables $\mathbf{V}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}\right\}$, and the ROBDD for $|[\phi]|$ already computed.

- Checking whether

$$
\mathbf{K} \vDash \phi
$$

amounts to checking whether the ROBDD for $\mathbf{f}_{\text {Init }} \wedge \mathbf{f}_{-\phi}$ is identical to the ROBDD for 0 , where $\mathbf{f}_{\text {Init }}$ is the ROBDD for the set $\mid[$ Init $] \mid$ of initial states of \mathbf{K}.
(recall that $\mathbf{K} \vDash \phi$ iff $\mid[$ Init $]|\subseteq|[\phi] \mid$ iff $\mid[$ Init $]|\cap|[\neg \phi] \mid=\varnothing$)

Pre-image computation with BDD

Let us consider the Pre-image operation

$$
\exists x^{\prime}{ }_{1}, \ldots, x^{\prime}{ }_{n}\left(f_{\psi}\left(x^{\prime}{ }_{1}, \ldots, x^{\prime}{ }_{n}\right) \wedge f_{R}\left(x_{1}, \ldots, x_{n}, x^{\prime}{ }_{1}, \ldots, x^{\prime}{ }_{n}\right)\right)
$$

Pre-image is a special case of the Relational Product

$$
\exists \mathbf{x}^{\prime}\left(\mathbf{R}_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \wedge \mathbf{R}_{2}\left(\mathbf{x}^{\prime}, \mathbf{z}\right)\right)
$$

where \mathbf{R}_{1} is $\mathbf{R}, \mathbf{R}_{\mathbf{2}}$ is ψ and \mathbf{z} is empty.
Pre-image can easily be computed by applying \wedge to the BDD's for ψ and \mathbf{R}, and then existential elimination of the primed variables.
However, the intermediate BDD for

$$
\mathbf{f}_{\psi}\left(\mathbf{x}^{\prime}{ }_{1}, \ldots, \mathbf{x}^{\prime}{ }_{\mathrm{n}}\right) \wedge \mathbf{f}_{\mathrm{R}}\left(\mathrm{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}, \mathbf{x}^{\prime}{ }_{1}, \ldots, \mathbf{x}^{\prime}{ }_{\mathrm{n}}\right)
$$

is usually far bigger than the final result.
This be avoided by exploiting early quantification, whenever possible.

Pre-image computation with BDD

Early quantification is based on the fact that:

- If $\mathbf{x}_{1}<\mathbf{x}_{2}$ and the top variable of \mathbf{f} is \mathbf{x}_{1} then

$$
\exists \mathbf{x}_{2}\left(\left.\mathbf{x}_{1} \rightarrow \mathbf{f}\right|_{\mathbf{x}_{1}=1},\left.f\right|_{x_{1}=0}\right) \equiv\left(\left.\mathbf{x}_{1} \rightarrow \exists \mathrm{x}_{2} \mathbf{f}\right|_{\mathrm{x}_{1}=1},\left.\exists \mathrm{x}_{2} \mathbf{f}\right|_{\mathrm{x}_{1}=0}\right)
$$

(recall that $\exists \mathbf{x}(\mathbf{f} \mathbf{o p} \mathbf{g}) \equiv \mathbf{f} \mathbf{o p} \exists \mathbf{x} \mathbf{g}$, whenever \mathbf{f} does not depend on \mathbf{x})

- If the top variable of \mathbf{g} is $\mathbf{x}_{\mathbf{2}}$ then

$$
\exists \mathrm{x}_{2}\left(\left.\mathrm{x}_{2} \rightarrow \mathrm{f}\right|_{\mathrm{x}_{2}=1},\left.f\right|_{\mathrm{x}_{2}=0}\right) \equiv\left(\left.\left.\mathrm{f}\right|_{\mathrm{x}_{2}=1} \vee \mathrm{f}\right|_{\mathrm{x}_{2}=0}\right)
$$

This means that we can devise an algorithm that computes the pre-image by applying quantification as soon as it is possible.
This avoids computing the conjunction (which is usually bigger than the final result) during the computation of the pre-image.

Pre-image computation with BDD

Algorithm RelationalProduct(u,v, $\mathcal{I}) / * \exists I\left(f^{u} \wedge f^{v}\right) * /$

init(G)

Function $\operatorname{RelPrd}(\mathbf{u}, \mathrm{v}, \mathcal{I})$
if $u=0$ or $v=0$ then return 0
if $u=1$ and $v=1$ then return 1
if $G(u, v) \neq$ NIL then return $G(u, v)$
$\mathrm{z}=\min (\operatorname{var}(\mathbf{u}), \operatorname{var}(\mathbf{v}))$
if $\operatorname{var}(v)=\operatorname{var}(u)$ then
$\mathbf{r}_{1}=\operatorname{RelPrd}(\operatorname{high}(\mathbf{u}), \operatorname{high}(\mathbf{v}), \mathcal{I}) ; \mathrm{r}_{2}=\operatorname{RelPrd}(\operatorname{low}(\mathbf{u}), \operatorname{low}(\mathbf{v}), \mathcal{I})$
else if $\mathrm{z}=\operatorname{var}(\mathrm{u})$ then

$$
\left.\mathbf{r}_{1}=\operatorname{RelPrd}(\operatorname{high}(\mathbf{u}), \mathbf{v}, \mathcal{I}) ; \mathbf{r}_{2}=\operatorname{RelPrd}(\operatorname{low}(\mathbf{u}), \mathbf{v}, \mathcal{I})\right)
$$

else $/ * \mathrm{z}=\operatorname{var}(\mathrm{v}) * /$
$\left.\mathbf{r}_{1}=\operatorname{RelPrd}(\mathbf{u}, \operatorname{high}(\mathrm{v}), \mathcal{I}) ; \mathbf{r}_{2}=\operatorname{RelPrd}(\mathbf{u}, \operatorname{low}(\mathrm{v}), \mathcal{I})\right)$
if $\mathrm{z} \notin \mathcal{I}$ then $/ * \mathrm{z}$ is not a quantified variable */

$$
\mathbf{r}=\mathbf{m k}\left(\mathbf{z}, \mathbf{r}_{1}, \mathbf{r}_{2}\right)
$$

else /* $\mathbf{z} \in I: z$ is a quantified variable */

$$
\mathbf{r}=\operatorname{Apply}\left(\vee, \mathbf{r}_{1}, \mathbf{r}_{2}\right)
$$

$\mathbf{G}(\mathbf{u}, \mathbf{v})=\mathbf{r}$
return r
return $\operatorname{RelPrd}(\mathbf{u}, \mathbf{v}, \mathcal{I})$

Symbolic Model Checking

- The actual Kripke structure will be, in general, too large.
- State explosion.
- So one must try to compute the ROBDDs directly from the system model (NuSMV program) and run the model checking procedure with the help of this implicit representation.
- Symbolic model checking.
- This may not be sufficient, though! Additional techniques may be needed (e.g., abstraction).

