
Tecniche di Specifica e di

Verifica

Boolean Decision Diagrams I

(BDDs)

2

Outline

• NuSMV

• The state explosion problem.

• Techniques for overcoming this problem:

– Compact representation of the state space.

▪ BDDs.

– Abstractions (bisimulations)

– Symmetries.

– Partial Order Reductions.

3

NuSMV

• New Symbolic Model Verifier.

• Developed at CMU-IRST (Ed Clarke,

Ken McMillan, Cimatti et al.) as

extension/reimplementation of SMV.

• NuSMV has its own input language (also

called SMV!).

4

NuSMV

• You must prepare your verification problem
in this language.

• An NuSMV program is a convenient way to
describe a Kripke structure.

• You can insert the properties you want to
verify in the program.

• Read the tutorial and on a need-to-know
basis, the manual.

5

Parallel Composition

• TS1 = (S1, S1
0, S1, R1) R1 µ S1 £ S1 £ S1

• TS2 = (S2, S2
0, S2, R2) R2 µ S2 £ S2 £ S2

• a 2 S1 and a S2

– An “internal” action of TS1.

• a 2 S1 Å S2

– A common (synchronizing) action of TS1 and

TS2.

6

Parallel Composition

• TS1 = (S1, S1
0, S1, R1) R1 µ S1 £ S1 £ S1

• TS2 = (S2, S2
0, S2, R2) R2 µ S2 £ S2 £ S2

• TS = (TS1 k TS2) = (S, S0, S, R).

– S = S1 £ S2

– S0 = S1
0 £ S2

0

– S = S1 [S2

7

Parallel Composition

• TS1 = (S1, S1
0, S1, R1) R1 µ S1 £ S1 £ S1

• TS2 = (S2, S2
0, S2, R2) R2 µ S2 £ S2 £ S2

• TS = (TS1 k TS2) = (S, S0, S, R).

– R µ S £ S £ S

▪ S = S1 £ S2.

– R((s1, s2), a, (t1, t2)) ?

– if a 2 S1 and a S2

– then R1(s1, a, t1) and s2 = t2.

8

Parallel Composition

• TS1 = (S1, S1
0, S1, R1) R1 µ S1 £ S1 £ S1

• TS2 = (S2, S2
0, S2, R2) R2 µ S2 £ S2 £ S2

• TS = (TS1 k TS2) = (S, S0, S, R).

– R µ S £ S £ S

▪ S = S1 £ S2.

– R((s1, s2), a, (t1, t2)) ?

– if a 2 S2 and a S1

– then R2(s2, a, t2) and s1 = t1.

9

Parallel Composition

• TS1 = (S1, S1
0, S1, R1) R1 µ S1 £ S1 £ S1

• TS2 = (S2, S2
0, S2, R2) R2 µ S2 £ S2 £ S2

• TS = (TS1 k TS2) = (S, S0, S, R).

– R µ S £ S £ S

▪ S = S1 £ S2.

– R((s1, s2), a, (t1, t2)) ?

– if a 2 S1 and a 2 S2

– then R1(s1, a, t1) and R2(s2, a, t2)

10

Parallel Composition

• TS = (TS1 k TS2) k TS3

• TS = TS1 k (TS2 k TS3)

• TS = TS1 k TS2 k TS3

11

Parallel Composition

• TS = TS1 k TS2 …k TSn

• Size(TSi) ¼ jSij = ki > 2

• Description of TS ¼ k1 + k2 …+ kn

• Size(TS) = k1 £ k2…£ kn

> 2n !

• Size of TS is exponential in n (the number
of components).

• State space explosion problem.

12

How to circumvent state space

explosion?

• Use succinct representations of the state space.

– Boolean Decision Diagrams.

• Reduce TS to TS’ such that:

– TS has the required property iff

TS’ has the required property.

▪ Symmetries

▪ Abstractions (bisimulations)

▪ Partial order reductions.

13

Symbolic Model checking

• K = (S, S0, R, AP, V)

• y a CTL formula

• To check whether:

– K, s ² y

• We need to

– compute |[y]| = states(y) = {s j K, s y}.

– then check whether s 2 |[y]|.

14

Symbolic Model checking

• K = (S, S0, R, AP, V)

• y a CTL formula

• S’ µ S can be represented as a boolean function.

• R can be represented as a boolean function.

• |[y]| can then be represented as a boolean
function.

• Boolean functions represent the characteristic
functions of the given sets of states.

15

BDDs

• Boolean functions can be (often) succinctly
represented as boolean decision diagrams.

• BDDs are easy to manipulate.

• Not all boolean functions have a succinct
representation.

• Use BDDs to represent and manipulate the
boolean functions associated with the
model checking process.

16

Boolean Functions

• f : Domain ! Range

• Boolean function:

– Domain = {0, 1}n = {0,1} £ ….£ {0,1}.

– Range = {0, 1}

– f is a function of n boolean variables.

• How many boolean functions of 3 variables

are there?

17

Boolean Functions

• f : Domain ! Range

• Boolean function:

– Domain = {0, 1}n = {0,1} £ ….£ {0,1}.

– Range = {0, 1}

– f is a function of n boolean variables.

• How many boolean functions of 3 variables

are there?

– Answer : 22
3
= 28 !

18

Truth Tables

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

g : {0, 1} £ {0, 1} £ {0, 1} ! {0, 1}

x y z g

19

Boolean Expressions

• Given a set of Boolean variables x,y,… and the

constants 1 (true) and 0 (false):

t ::= x | 0 | 1 | t | t t | t t | t t | t t

• The semantics of Boolean Expressions is

defined by means of truth tables as usual.

• Given an ordering of Boolean variables,

Boolean expressions can be used to express

Boolean functions.

20

Boolean expressions

• Boolean functions can also be represented
as boolean (propositional) expressions.

• x y represents the function:

– f : {0, 1} £ {0, 1} ! {0, 1}

▪ f(0, 0) =

▪ f(0, 1) =

▪ f(1, 0) =

▪ f(1, 1) =

21

Boolean expressions

• Boolean functions can also be represented

as boolean (propositional) expressions.

• x y represents the function:

– f : {0, 1} £ {0, 1} ! {0, 1}

▪ f(0, 0) = 0

▪ f(0, 1) = 0

▪ f(1, 0) = 0

▪ f(1, 1) = 1

22

Boolean functions and expressions

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

g : {0, 1} £ {0, 1} £ {0, 1} ! {0, 1}

x y z g

g = ((x y) z) ((x y) z)

23

Boolean expressions and functions

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

g = (x y z) (x y z) (x y)

x y z g

24

Boolean expressions and functions

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

x y z g

g = (x y z) (x y z) (x y)

g : {0, 1} £ {0, 1} £ {0, 1} ! {0, 1}

25

Three Representations

• Boolean functions

• Truth tables

• Propositional formulas.

• Three equivalent representations.

• Here is a fourth one!

26

Boolean Decision Tree

• A boolean function is represented as a

(binary) tree.

• Each internal node is labeled with a

(boolean) variable.

• Each internal node has a positive (full line)

and a negative (dotted line) successor.

• The terminal nodes are labeled with 0 or 1.

27

Boolean Decision Diagrams

• A compact way of representing boolean functions.

• Can be used in CTL model checking.

– Represent a subset of states as a boolean function.

– Represent the transition relation as a boolean function.

– Reduce EX(y), EU(y1, y2) and EG(y) to manipulating

boolean functions and checking for boolean function

equality.

• Go from NuSMV (program) representation directly to

its BDD representation!

28

If-Then-Else operator

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

x y z x → y , z 0 0 0 0

0 1 0 0

1 0 0 0

1 1 1 1

x y x → y , 0 x y

0 0 0 0

0 1 1 1

1 0 1 1

1 1 1 1

x y x → 1 , y x y

(x → s1 , s0) (x s1) (x s0)

29

If-Then-Else representation
Let x AP, then

• x x → 1 , 0

• → 0 , 1

• 1 2 1 → 2 , 0

• 1 2 1 → 1 , 2

Theorem: Every boolean formula can be written

in If-Then-Else representaton.

Assume 1 x → y1 , y2 then

1 → 2 , 3 (x → y1 , y2) → 2 , 3

 x → (y1 → 2 , 3) , (y2 → 2 , 3)

30

If-Then-Else normal form
ITE normal form: a boolean expression is

written in ITE normal form if it only contains

constants 0 and 1, If-Then-Else is the only

operator occurring in the expression and tests

are only performed on variables.

31

Boolean decision trees.

x y

x

yy

00 0 1

If-Then-Else normal form

x y = x → y , 0

Shannon Expansion:

f = (xf[1/x]) (xf[0/x])

f = x → f[1/x] , f[0/x]

where

f[a/x](…,x,…) = f(…,a,…)

for a = 0,1.

32

If-Then-Else normal form
ITE normal form: a boolean expression is

written in ITE normal form if it only contains

constants 0 and 1, If-Then-Else is the only

operator occurring in the expression and tests

are only performed on variables.

Theorem: Every boolean formula can be written

in ITE normal form.

Proof: by trivial induction on the structure of

boolean formulae.

33

Boolean Decision Tree

• A boolean function is represented as a

(binary) tree.

• Each node is labeled with a (boolean)

variable.

• Each node has a positive (full line) and a

negative (dotted line) successor.

• The terminal nodes are labeled with 0 or 1.

34

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

x y z g
y

z

x x

z

x x

0 1 1 0 1 0 0 1

g = (y (x z)) (y (x z))

35

BDDs

A BDD is finite rooted directed acyclic graph in
which:

• There is a unique initial node (the root)

• Each terminal node is labeled with a 0 or 1.

• Each non-terminal (internal) node v has three
attribute:

– var(v), and

– exactly two successors low(v) and high(v): one
labeled 0 (dotted edge, low(v)) and the other labeled
1 (solid edge, high(v)).

36

y

z z

x

1

x

0

g = (y (x z)) (y (x z))

37

Reduction Rules

• Three reduction rules:

– Share identical terminal nodes. (R1)

– Remove redundant tests (R2)

– Share identical non-terminal nodes. (R3)

38

Reduction Rules

• Three reduction rules:

– Share identical terminal nodes. (R1)

• If a BDD contains two terminal nodes m

and n both labeled 0 then, remove n and

direct all incoming edges at n to m.

• Similarly for two terminal nodes labeled 1.

x identical

terminal

z

00

y

x non

identical

terminal

z

0

y

0

39

y

z

x x

z

x x

0 1 1 0 1 0 0 1

g = (y (x z)) (y (x z))

Share identical terminal nodes. (R1)

40

y

z

x x

z

x x

0 1 1 1 0 0 1

g = (y (x z)) (y (x z))

Share identical terminal nodes. (R1)

41

y

z

x x

z

x x

0 1 0 1 0 1

g = (y (x z)) (y (x z))

Share identical terminal nodes. (R1)

42

Reduction Rules

• Three reduction rules:
– Share identical terminal nodes. (R1)

– Remove redundant tests (R2)

• If both successors of node m lead to the

same node n then remove m and direct all

incoming edges of m to n.

x

y

redundant test

z

x

y

non
redundant test

z

43

y y

10 1

x x

y y

10

x

y

10

Remove redundant tests (R2)

R2

R1

44

Reduction Rules

• Three reduction rules:
– Share identical terminal nodes. (R1)

– Remove redundant tests (R2)

– Share identical non-terminal nodes. (R3)

• If the sub-BDDs rooted at the nodes m and n

are “identical” then remove m and direct all

its incoming edges to n.

x x
unique

node

z

y

x x
non-unique

node

z

y

45

y

z

x x

z

x x

0 1 0 1 0 1

g = (y (x z)) (y (x z))

Share identical non-terminal nodes. (R3)

46

y

z

x x

z

x

0 1 0 1 0 1

g = (y (x z)) (y (x z))

Share identical non-terminal nodes. (R3)

47

Reduced BDDs

• A BDD is reduced iff none of the three reduction

rules can be applied to it.

• Start from the bottom layer (terminal nodes).

• Apply the rules repeatedly to level i. And then move

to level i-1 (in this way checking for applicability of

R3 only needs testing whether var(m)=var(n),

low(m)=low(n) and high(m)=high(n)).

• Stop when the root node has been treated.

• This can be done efficiently.

48

y

z z

x

1

x

0

Reduced BDD

y

z

x x

z

x x

0 1 1 0 1 0 0 1

Binary Decision Tree

for

g = (y (x z)) (y (x z))

49

Ordered BDDs

• {x1, x2,…, xn}

– An indexed (ordered) set of boolean variables.

– x1 < x2 …..< xn

• G is an ordered BDD w.r.t. the above variable

ordering iff:

– Each variable that appears in G is in the above set.

(but the converse may not be true).

– If i < j and xi and xj appear on a path then xi

appears before xj.

50

Ordered BDDS

• Fundamental Fact:

– For a fixed variable ordering, each boolean

function has exactly one reduced Ordered

BDD!

– Reduced OBDDs are canonical objects.

– To test if f and g are equal, we just have to

check if their reduced OBDDs are identical.

– This will be crucial for model checking!

51

y

z

x x

z

x

0 1 1 0 1 0

y < z < x

x

0 1

52

y

z

x x

z

x

0 1 1 1 0

x

0 1

53

y

z

x x

z

x x

0 1 0 1 0 1

54

y

z

x x

z

x

0 1

x

55

y

z

x

z

0 1

x x

56

y

z

x

z

x

0 1

57

Reduced OBDD

• An OBDD is reduced (i.e. it is a ROBDD) if

there are only two terminal vertices 0 and 1, and

for all non terminal vertices v,u:

– low(v) high(v) (non-redundant tests)

– low(v) = low(u), high(v) = high(u) and var(v) = var(u)

implies v = u (uniqueness)

58

Canonicity of ROBDD

Let us denote a ROBDD with its root node

and the function represented by subgraph a

rooted in node u with fu. Then:

Theorem: For any function f:{0,1}n → {0,1}

there exists a unique ROBDD u with

variable ordering x1, x2,…,xn such that

fu = f(x1,…,xn)

59

Consequences of canonicity

Theorem: For any function f:{0,1}n → {0,1}

there exists a unique ROBDD u with

variable ordering x1, x2,…,xn such that

fu = f(x1,…,xn)

Therefore we can say that:

• A function fu is a tautology if its ROBDD u

is equal to 1.

• A function fu is a satisfiable if its ROBDD

u is not equal to 0.

60

Reduced OBDDs

• The ordering is crucial!

• {x1, x2, y1, y2} x1 x2

– f(x1, x2, y1, y2) y1 y2

– f(x1, x2, y1, y2) = 1 iff (x1 = y1 x2 = y2)

• If x1 < y1 < x2 < y2, then the OBDD is of size

3·2 + 2 = 8.

• If x1 < x2 < y1 < y2, then the OBDD is of size

3·22 – 1 = 11 !

61

Reduced OBDDs

x1

y1

x2

y2
y2

1 0

y1

x1 < y1 < x2 < y2 x1 < x2 < y1 < y2

x1

x2 x2

y1 y1 y1
y1

y2y2

1 0

(x1 = y1 x2 = y2)

62

Reduced OBDDs

• The ordering is crucial!

• {x1, x2,…,xn,y1,y2,…,yn} x1 x2 … xn

f(x1, x2,…,xn,y1,y2,…,yn) y1 y2 … yn

n

– f(x1, x2,…,xn,y1,y2,…,yn) = 1 iff (xi = yi)
i= 1

• If x1 < y1 < x2 < y2…<xn < yn, then the OBDD is of

size 3n + 2.

• If x1 < x2 <…<xn < y1 <…< yn, then the OBDD is of

size 3 . 2n – 1 !

63

ROBDDs

• Finding the optimal variable ordering is

computationally expensive (NP-complete).

• There are heuristics for finding “good orderings”.

• There exist boolean functions whose sizes are

exponential (in the number of variables) for any

ordering.

• Functions encountered in practice are rarely of

this kind.

64

Implementation of ROBDDs

Array-based implementation

Var Low High

0 ? ? ?

1 ? ? ?

u1 y2 0 1

u2 y2 1 0

u3 x2 u2 u1

u4 y2 0 u3

u5 y1 0 u3

u6 x1 u5 u4

x1

y1

x2

y2
y2

1 0

y1

u1 u2

u3

u4 u5

u6

root = u6

T[]=

65

The function MK

• The function MK searches for a node u with

var(u)=xi, low(u)=l and high(u)=h. If the node

does not exists, then creates the new node after

inserting it. The running time is O(1).

Algorithm mk(i,l,h)

if l=h then

return l

else if T[H(i,l,h)] empty then

return T[H(i,l,h)]

else u = add(T,H(i,l,h),i,l,h)

return u

H(i,l,h) is a hash

function mapping

a triple <i,l,h> into

a node index in T.

66

Operations on ROBDDs.

• During model checking, boolean operations
will have to be performed on ROBDDs.

• These operations can be implemented
efficiently.

• f g --------- Gf op Gg = Gf g

• There is a procedure called APPLY to do
this.

67

Operations on ROBDDs

• When performing an operation on G and G’

we assume their variable orderings are

compatible.

• X = XG XG’

• There is an ordering < on X such that:

– < restricted to XG is <G

– < restricted to XG’ is <G’.

68

Operations on OBDDs

• The basic idea (Shannon Expansion):

• f(x1, x2, …, xn)

– fjx
1

= 0 = f(0, x2,…,xn)

▪ f = x1 (x2 x3)

▪ fx
1

= 0 = x2 x3

– Similarly, fjx1 = 1 = f(1, x2,…,xn)

f(x1, x2,...,xn) = (x1 fx
1

= 0) (x1 fx
1

=1)

• This is true even if x1 does not appear in f !

69

Operations on OBDDs: Negation

• The basic idea (Shannon Expansion):

f(x1, x2,...,xn) = (x1 fx
1

= 0) (x1 fx
1

=1)

• Therefore, assuming x1 < x2 <…<xn,

 f(x1, x2,...,xn) = ((x1 fx
1

= 0) (x1 fx
1

=1))

= ((x1 fx
1

= 0) (x1 fx
1

=1))

= ((x1 fx
1

= 0) (x1 fx
1

=1)

= (x1 x1) (x1 fx
1

= 0)

 (x1 fx
1

= 1) (fx
1

= 0 fx
1

= 1)

= (x1 fx
1

= 0) (x1 fx
1

= 1)

70

Operations on ROBDDs.

• Let x be the top variable of Gf and y the top

variable of Gg.

• To compute Gf op g we consider:

CASE1: x = y

▪ f op g = (x (fx = 0 op gx= 0)

(x (fx = 1 op gx= 1)

– We have to solve now two smaller problems!

71

Operations on ROBDDs.

• Let x be the top variable of Gf and y the top
variable of Gg.

• To compute Gf op g we consider:

CASE2: x < y.

– Then x does not appear in Gg (why?).

– gx=0 = g = gx=1

▪ f op g = (x (fx=0 op g) (x (fx=1 op g)

– We have to solve now two smaller problems!

CASE2: x > y is symmetric.

72

Operations on ROBDDs.

• To compute Gf op g we consider:

Base (terminal) cases depend upon op

Eg.: if op = then {0,0 → 0; 1}

if op = then {1,1 → 1; 0}

….

Notice that f(x1,x2,...,xn) = f(x1,x2,...,xn) 1, therefore

negation can be implemented with Apply.

73

Algorithm for Apply

Algorithm Apply(op,u,v)

Function App(u,v)

if terminal_case(op,u,v) then return op(u,v)

else if var(u) = var(v) then

u = mk(var(u), App(op,low(u),low(v)),

App(op,high(u),high(v)))

else if var(u) < var(v) then

u = mk(var(u),App(op,low(u), v), App(op,high(u),v))

else /* var(u) > var(v) */

u = mk(var(u),App(op,u,low(v)), App(op,u,high(v)))

return u

return App(u,v)
If n = number of variables, then

running time = O(2n). Why?

74

Efficient algorithm for Apply
Algorithm Apply(op,u,v)

init(Gop)

Function App(u,v)

if Gop(u,v) empty then return Gop(u,v)

else if terminal_case(op,u,v) then return op(u,v)

else if var(u)=var(v) then

r = mk(var(u), App(op,low(u),low(v)),

App(op,high(u),high(v)))

else if var(u) < var(v) then

r = mk(var(u),App(op,low(u), v), App(op,high(u),v))

else /* var(u) > var(v) */

r = mk(var(u),App(op,u,low(v)), App(op,u,high(v)))

Gop(u,v) = r

return r

return App(u,v)
running time = O(|Gu||Gv|). Why?

75

Exemple of Apply Æ

9’’

8’’7’’

1 0

2

6’’5’’

43

((x1x2x3x4)

 (x1x2x3x4)) x5

6

5

43

1 0

7

8 x1

x2

x3

x4

x52

5’

4’3’

1 0

2

(x1 x2) (x3 x4) x5 (x1 x3) x5 =

76

The Restrict operation

• Problem: Given a (partial) truth assignment

x1=b1,…,xk=bk (where bj=0 or bj=1), and a

ROBDD tu, compute the restriction of tu under

that assignment.

• E.G.: if f(x1,x2,x3) = ((x1 x2) x3) we want

to compute f(x1,x2,x3)[0/x2] = f(x1,0,x3)

i.e.: f(x1,0,x3)= x1 x3

77

Restrict Operation: example

x1

x2

x3

0 1

x2

x1

x3

0 1

f(x1,x2,x3) = ((x1 x2) x3) f(x1,x2,x3)[0/x2] = x1 x3

78

Restrict Operation

• Let x be the root of Gf

• To compute Gfy=b we consider:

CASE1: x = y

▪ fy=b = low(Gf) if b=0

▪ fy=b = high(Gf) if b=1

79

Restrict Operation

• Let x be the root of Gf

• To compute Gfy=b we consider:

CASE2: x > y

▪ fy=b = f

80

Restrict Operation

• Let x be the root of Gf

• To compute Gfy=b we consider:

CASE2: x < y

▪ fy=b = (x (fx=0)y=b) (x (fx=1)y=b)

• We have to solve now two smaller problems!

81

Algorithm for Restrict
Algorithm Restrict(u,i,b)

Function Res(u)

if var(u) > i then return u

else if var(u) < i then

return mk(var(u),Res(low(u)),Res(high(u)))

else /* var(u) = i */

if b = 0 then

return Res(low(u))

else /* var(u) = i and b = 1 */

return Res(high(u))

return Res(u)

running time = O(2n). Why?

82

Efficient algorithm for Restrict
Algorithm Restrict(u,i,b)

init(Gres)

Function Res(u)

if Gres(u) empty then return Gres(u)

if var(u) > i then return u

else if var(u) < i then

r = mk(var(u),Res(low(u)),Res(high(u)))

else /* var(u) = var(v) */

if b = 0 then

r = Res(low(u))

else /* var(u) = var(v) and b = 1 */

r = Res(high(u))

Gres(u) = r

return r

return Res(u)
running time = O(|Gu|). Why?

83

Quantification

• Extend the boolean language with

x.t | x.t

• They can be defined in terms of ROBDD

operations:

x.t = t[0/x] t[1/x]

x.t = t[0/x] t[1/x]

We can use an appropriate combination of Restrict

and Apply

84

Symbolic CTL Model Checking

• Represent the required subsets of states as

boolean functions and hence as ROBDDs.

• Represent the transition relation as a boolean

function and hence as a ROBDD.

• Reduce the iterative fixed point computations of

the model checking process to operations on

OBDDs.

• Check for the termination of the fixpoint

computation by checking ROBDD equivalence.

85

Symbolic Model Checking

• K = (S, S0, R, AP, L)

• Assume that if L(s) = L(s’) then s = s’.

– If not, add a few new atomic propositions if

necessary, so as to distinguish states only based on

the labeling.

• AP = {p, q, r}

• L(s) = {p}

– fs = p q r

• f{s1, s2, s5} = fs1
 fs2

 fs5

86

Symbolic Model Checking

• K = (S, S0, R, AP, L)

• AP = {p, q, r}

• Add the next-state boolean variables {p’, q’, r’}

• Suppose (s1, s2) in R (i.e. R(s1, s2))

with L(s1) = {p, q} and L(s2) = {r}.

Then fR(s1,s2) = fs1
 f’s2

.

– where fs1
= p q r and f’s2

= p’ q’ r’

• fR = (s1, s2) 2 R (fR(s1,s2))

• Choose the ordering p < p’ < q < q’ < r < r’ !

87

CTL symbolic Model Checking

• |[xi]| = fxi
(x1,…,xn) = xi

(the OBDD for the boolean variable xi)

• |[f]| = ff(x1,…,xn)

(apply negation to the OBDD for f)

• |[f y]| = ff(x1,…,xn) fy(x1,…,xn)

(apply operation to the OBDDs for f and y)

• |[f y]| = ff(x1,…,xn) fy(x1,…,xn)

(apply operation to the OBDDs for f and y)

88

CTL Symbolic Model Checking

• |[EX f]| =

x’1,…,x’n(ff(x’1,…,x’n)

fR(x1,…,xn,x’1,…,x’n))

This is also called the relational product, or the

pre-image of |[f]| by R (see Section 6.6 in

Clarke’s book for a more efficient algorithm).

• |[EU(f,y)]| = mZ.(fy(x1,…,xn)

(ff(x1,…,xn) EX Z))

• |[EG f]| = nZ.(ff(x1,…,xn) EX Z)

89

Symbolic model checking: example
Let V={x1,…,xn}, then |[EG y]| can be computed as

follows:

1. Assume the ROBDD fy(x1,…,xn) has been computed.

2. Set X0 = fy (x’1,…,x’n) [computed from fy(x1,…,xn)
by variable substitution]

3. We need to compute Xi+1 = Xi Yi where:

Yi = x’1,…,x’n(fy(x’1,…,x’n) fR(x1,…,xn,x’1,…,x’n))

Xi+1 can easily be computed as Xi Yi

4. Check whether Xi+1 = Xi by checking whether the
corresponding ROBDDs are identical.

5. If not, substitute the next-state variables for the state-

variables in Xi+1, and repeat from step 3.

90

Algorithm Compute_EG(b)

f1(x) := fb (x);

j=1;

repeat

j := j+1;

fj := fb(x) x’.(fR(x, x’) fj-1(x’));

until fj(x) = fj-1(x);

Algorithm Compute_EU(b1,b2)

f1(x) := fb2
(x);

j=1;

repeat

j := j+1;

fj := fb2
(x) (fb1

(x) x’.(fR(x, x’) fj-1(x’)));

until fj(x) = fj-1(x);

91

CTL Symbolic model checking

Finally, assuming boolean variables V={x1,…,xn}, and the
ROBDD for |[f]| already computed.

• Checking whether

K f

amounts to checking whether the ROBDD for fInit ff is
identical to the ROBDD for 0, where fInit is the ROBDD
for the set |[Init]| of initial states of K.

(recall that K f iff |[Init]| |[f]| iff |[Init]| |[f]| =)

92

Pre-image computation with BDD
Let us consider the Pre-image operation

x’1,…,x’n(fy(x’1,…,x’n) fR(x1,…,xn,x’1,…,x’n))

Pre-image is a special case of the Relational Product

x’ (R1(x,x’) R2(x’,z))

where R1 is R, R2 is y and z is empty.

Pre-image can easily be computed by applying to the
BDD’s for y and R, and then existential elimination of
the primed variables.

However, the intermediate BDD for

fy(x’1,…,x’n) fR(x1,…,xn,x’1,…,x’n)

is usually far bigger than the final result.

This be avoided by exploiting early quantification, whenever
possible.

93

Pre-image computation with BDD
Early quantification is based on the fact that:

• If x1 < x2 and the top variable of f is x1 then

x2 (x1 → f|x1=1, f|x1=0) (x1 → x2 f|x1=1, x2 f|x1=0)

(recall that x (f op g) f op x g, whenever f does not
depend on x)

• If the top variable of g is x2 then

x2 (x2 → f|x2=1, f|x2=0) (f|x2=1 f|x2=0)

This means that we can devise an algorithm that computes the
pre-image by applying quantification as soon as it is
possible.

This avoids computing the conjunction (which is usually
bigger than the final result) during the computation of the
pre-image.

94

Pre-image computation with BDD
Algorithm RelationalProduct(u,v,) /* (fu fv) */

init(G)
Function RelPrd(u,v,)

if u = 0 or v = 0 then return 0

if u = 1 and v = 1 then return 1
if G(u,v) NIL then return G(u,v)
z = min(var(u), var(v))
if var(v) = var(u) then

r1 = RelPrd(high(u), high(v),) ; r2 = RelPrd(low(u), low(v),)
else if z = var(u) then

r1 = RelPrd(high(u), v,) ; r2 = RelPrd(low(u), v,))
else /* z = var(v) */

r1 = RelPrd(u, high(v),) ; r2 = RelPrd(u, low(v),))
if z then /* z is not a quantified variable */

r = mk(z, r1, r2)
else /* z : z is a quantified variable */

r = Apply(, r1, r2)
G(u,v) = r
return r

return RelPrd(u,v,)

95

Symbolic Model Checking

• The actual Kripke structure will be, in general,
too large.

– State explosion.

• So one must try to compute the ROBDDs
directly from the system model (NuSMV
program) and run the model checking
procedure with the help of this implicit
representation.

– Symbolic model checking.

• This may not be sufficient, though! Additional
techniques may be needed (e.g., abstraction).

