Tecniche di Specifica e di
Verifica

Model Checking under Fairness

Fairness

e K=(S, S, R, AP, L)

« K may not be able to capturexactly the
desired executions.
— T00 generous.

e Use fairness constraints to rule out
undesired executions

a computation in whichslor s2or s3is visitedinfinitely
often butgl and g2 are visited onlyfinitely often Is
unfair .

K, SOF AG (reqg2 —» AF grt2)

A computation in whichic,n) or (c,w) Is visited infinitely
often but(n,n) and(n,w) are visited only finitely often.

K,sOEEF EGcl!

Fairness

 Thefirst kind of unfairness has to do with a
bad scheduling policy.

— Find a better allocation scheme.
> Turn-based

e Thesecond kind of unfairnessis unavoidable.

o Solution:
— Consider onlyair computations.

Fairness

o Fair Kripke Structures.

e First Attempt:
-K=(S, § R, AP, L, F)
— JF C S(fairness constraint)
e T1IS afair computation iff:
— It Is a computation.
—Inf(m) n F#£ [
—inf(1) = {s: sappears infinitely often im}

Fairness

e Fair Kripke Structures.
e K=(S, §, R, AP, L, 7, F,,.. F,)
— JF, C S(fairnessconstraints)
e TrIS afair computation iff:
— It Is a computation.
—inf() n F # [foreach =1, 2,..,n
—Inf(m) = {s : sappears infinitely often img}

K, sOE AG(req2 — AF grt2) with above
fairness constraint !

10

K, sSOE AG(req2 - AF grt2)

F ----areq2 Ligrt2
(notice thats1,s2s3satisfyreq2 and gl,g2 satisfy grt2) ,;

Ret
Grt

@ Ret

€

€

Sy

Req A rtl
L

K, sSOKF EF(EGcl

fairness constraint !

.

Ret2
eql Grt2

Ret2 @
,Aeq 1
5

€

EGc2) with the above

12

‘SO

Sy

eql Grt2
@ Ret Ret2 @
Reg Artl ,Aeql e
Ly &5
€, e,
K, sO¥ EF (EGcl L1EGc2) with the abovédairness
constraint !

F----=cll-c2

Ret Ret2

Grt

€

13

NuSMV Fairness

Can’t always use sets of states to specify
fairness.

— State space Is often defined implicitly.
Use formulas!
¢ ---- Property@is trueinfinitely often.

Model check along onlyfair computation
paths.

14

NuSMV Fairness

e C={P,P,,...., P}
— Fairness constraints.
e K=(S, §, R, AP, L,0)
e sO sl s2 ...Is afair computation iff:

— |t Isa computation.

— For each I, there areinfinitely many | such
that

K,SEP

15

Model Checking with Fairness.
e C={P,P,...,P}

— Fairness constraints.
e K=(S, §, R, AP, L,0)
* K,SE, §?
 K,sEk,p Iff there exists &air path from
sandK, sk p (l.e.p [L(s))
e K,Sk,-p Iff K,skg.y
e K, sk, W, 0w, Iff K, sk,Y, and K, sk, U,

16

Model Checking with Fairness.

o K,se.EXY Iff there exists &air path from s
and there exists’ along that path
with R(s, s’)andK, s'k. .

* K,se.EU(U,,,) Iff there exists &air path from
swhich satisfies], at some

state and), at all previous
States.

* K,SkE.EGU Iiff there exists &air path from s

which satisfies] at every state
along this fair path.

17

Model Checking with Fairness.

e C={P,P,...,P}
— Fairness constraints.
« K=(S, §, R, AP, L,0)
e It Is possible to adapt théNuSMV model
checking procedure for the problem
—K,SEY
to the problem
- K,SE; Y.

18

Fair Strongly Connected Comp.

A non-trivial strongly connected component
C of K Is fair with respect to the fair set C

= {Py, P,,..., P} iff for each P

a state s

C such that
K, SE P,

C thereis

19

M. C. with FairnesseG(3)

LetK’' = (S',R’,L’, C) be the sub-graph &f where

-S'={s|K,sk.p}
— R’ = R|s4 s (the restriction oR to S’)

—L" =1 (the restriction of. t0 S’)
Lemma: K, se, EG([3) iff
1.s0S and

2.there exists a path in K’ leading froms to a
non-trivial fair strongly connected component C

of the graph(S’,R’) w.r.t. C.

20

Computing the labeling fdEG(3)

Algorithm Check Fair EQY)

S’ :={s |B 0 Labels(s)}; Complexity: O(|K]|C])
SCC:={X| X is afair non trivial SCC of S'};
T :=Llygsedd s [sO X}
for eachs T doLabels(s) := Labelsg(s) U { EG(B)};
while T # [1 do
choses U T;
T:=T\{s};
foreacht 1 S'withT - Sdo
If EG() LI Lables(t) then
Labels(t) := Labels(t) O {EG(B)};
T:=T0O{t};

The Labels function

Let fair be a newatomic proposition and let us
use the algorithm Check Fair EG(true) to
label K with this new proposition (l.e. fair =
EG truewheretrue LI Labels(s), for all s)

Then

- K, sk, p Iff K, sk (pOfair)

- K, SE,~Q Iff K,sk,Q

— K, sk, EX@ iff K, sk EX (@Ufair)

- K, sk, EUW, @) iff K, sEEU(, @ Ofair)

22

Symbolic MC forEG @

Let us start by noting that
EG@=@UEXEG @=@UOEX EU (Q,EG @)
Therefore
EG @=vZ. @ OEX EU(@, Z)

The fixpoint Z is then thelargest set of states with the
following two properties:

1. all the states 12 satisfyq, and

2. for all states[1Z

» there Is anon-empty sequence of states (@th) from s
leading to a state iz, and

» all states in this sequensa&isfy the formulag.

23

Symbolic MC forEG; @

Let us generalize the previous result, and consiiéhe
largest set of states with the following two properties:

1. all the states 12 satisfyg, and

2. forallP, Ul C and all states[1 Z

» there Is anon-empty sequence of states (@th) from s
leading to a state id satisfyingP,, and

» all states in this sequensatisfy the formulag.

It can be shown that:
each state 12 Is the beginning of a path allong whigh

IS always true, anc
every formula inC

noldsinfinitely often along this path

24

Symbolic MC foreG; @

It follows thatEG; (@ can be expressed as a greatest
fixed point of the following function:

EG; p=vZ. QL[

=1...n EX EU((p’ Z L] Pk)

This equation can be used to compute the set of
states that satisffeG; @ according to thefair

semantics.

25

Symbolic MC forEX; @ andEU; (¢@,))

All other temporal operators can be computed by
combining EG; and the standard semantics of
non-fair operators.

Let us define theset of all states which are the
start of somefair computation Is the set of
states satisfying:

fairr = EG; true
Hence,
EX; @= EX(@ Ufair);
EU(@) = EU(@, Y Ofair)

26

Counter-example/Witness Generation

A formula with a universal path quantifier has a
counter-example consisting of one trace (path)

* A formula with anexistential path quantifier has a
witness consisting of one trace

* Due to the dualities I€TL, we only have to consider
witnesses for existential formulae. That is:

— a two states trace witnessiggf @ (this is trivial)
— a finite tracatwitnessingeU(q,)
— an infinite tracatwitnessingeG @

— for finite systems, the latter must béaaso, that isttis a path
consisting of a (finite) prefix and a (finite) loo, such that
= opv

 Forfair counter examples we need that the loop which
contains a staterom each fairness constraint.

27

Witness forEU(¢,)

Recall that:
~ EU(ew) =pQ. w O(9TEX Q)

Unfolding the recursion, we get:

Q,=False

Q, =V lU(pUEX False) =
Q,= Y O(pOEX y)
Qs =W O{@OEX (Y O(@UEX y)))
 The fixed point computation follows a process of
backward reachabillity.

« EachQ, contains the states that can regcim at most
I-1 steps (transitions), while holds in between.

« We can generate a withess (path) by performing a
forward reachability within the sequence(@fs.

28

Witness foreEU(q,)
e Assume the Initial statg, = EU(@,U)
e To find a minimal witness from statg we start in the
smallestn such that, [] Q,..
 The desired witness Is a path of the form
=35 ="
such thats [J Q. n R(s,) ands,] Q,= W (where
R(s.,) denotes the s¢$ | R(s,,S)})
* Notice that this path Is guaranteed to exist smce

Q,, Q,; contains states reachable In one step from
some state 1Q),,.,,, and each such state satisfres

 Thentis a path (i.e(s,s,,) J Rfor 0<1 < n-1) such
thats,F W ands F ¢, for each G| <n.

29

Witnes: for EU(¢,)

This can easily be implemented symbolically using
BDDs as follows:

* Givens, the BDD representation of stage

 For i [{1,...,n}, we can pick any states as any
assignment which makes true the following function:

Qn-i(v)] R(ﬁ-w)
(v’denotes the vector of primed vars apgdthe
assignment to the current vars for statg

* Any s Is the BDD representation of a statéhat:
— can reachy (with @ true in between) in at mosti steps and

— IS a successor of a stage that can reackp (with @ true In

between) in at most-i+1 steps ..., and so on. "

Witness foreG; ¢

« We want an path from an intial stateto a cycle

on which each fairness constraiat P,, ... , P,
OCCuUrs.

EG; @=VvZ. @ L EXEU(Q Z OP)

« Unfolding the recursion we obtain:
Zy=True

Z, =@ . EXEU(Q TrueP,)

Zm = (p] =1...n EX EU((p1 Zm-l Pk)
e Letz=7_=7_,=EG @be the fixpoint.

31

Witness foreG; ¢
e Letz=7_=7_.=EG @be the fixpoint.

« While computingZ in the last iteration, it was also
computed, for eaclk[}{1,...,n}, the set of states

satisfyingEU(@, Z OP,).
e This amounts to computing, for eakhi{ 1,...,n},

the following sequence of sets, using backward
reachability:

Q,0Q,O0Q,0... 0QK,
— where eacl®)® is an (under) approximation of the set of
states satisfyingeU(¢p, Z OP,)

— and each state i@k can reachZ [P, with no more
thani steps (transitions).

32

Witness foreG; ¢

Let the sequences of approximantions

Q,0Q,OQ,0... 0QK,

be given for eack(1{ 1,...,n} (we can save them during

the last iteration of the outer fixpoint BI5; @)
« Assume now that the Initial state= EG; @

 We can first construct a path
S S S,

(where—" is the transitive closure &f), such that:

— the formulap holds invariantly, and
—for eachk{1,...,n}, s O0Z OP,

 The path above is then guaraneed to exist an@dse p

through each fairness constraint, while holc

rteue.

Witness foreG; ¢

To build the path we start settikgl and then:

1. determine the minimak such thats_, has a
successor, [Qk,

2. using the witness procedure falJ, construct a

witness forEU(g,Z O P,), namely a path of the
form:

S.— K>t — tkmk Oz OP,
3. finally sets, = tkmk and proceed to build the path
for P,,, going back to step 1 (untl=n).

Notice that, eactt, (with j = 1) will be found inQ*
and will satisfyq.

Z-)1

34

Building a fair path from,

o

Jv

Let us assume that the or
fairness constraint arél and
P2

Witness foreG; ¢

Once we have generated the path

S S S,
we need to check g can reach (non trivially}, while
holdingptrue, I.e. check whether

s, HEX EU(Q, {s})

If this Is the case, then we have found a (nonaiv
cycle from s, back tos, passing through all the
fairness constraints and which invariantly satssfie

This means that,, s, ..., s, all belong to the sam8CC
satisfyingp and reachable frorm,.

Therefore, the prefix going from,tos, (0) in 5—" S
concatenated with the cycle fromtos, (p®) forms
the desired withesg = ap®.

36

Withes: contained in the first SC

ﬁ Let us assume that the
S \AO only fairness constraint
arePlandP2

SCC,

5, F EXEU(@1s})

37

Witness foreG; ¢

If, In the other hand,

s, UEX EU(@, {s}})

thens, ands, do not belong to the san&CC and the
cycle cannot be closed.

This means th&t, s, ..., s, belong to the prefixo of the
desired withesst

In this case, we can restart the process stamomg 4 as
we have already done fromg, building another
seugence

S— Sy 'S,
passing through all the fairness constraints aea th
check ifs’, L1 EX EU(@, {S’;}), I.e. anothe6ECC.

Witness over multiple SC(

only fairness constraint
arePlandP2

Let us assume that t$e

S, F EX EU(@{sy})

SCC,

s’, E EX EU(@{S';})

39

Witness forEG; @

The process above must terminate since:

1. the Kripke structure Is finite, therefore salso
the number o65CCs.

2. the algorithm, while looking for the fair cycle,
essentially moves from on&CC to another
within the graph of thSCCs, following non
trivial paths.

3. thegraph of the SCCs Is always acyclic.

Therefore, If the witness = op® Is not found eatrlier,
then p® must be contained In som@erminal
SCC, I.e. one which has no outgoing arc to some
otherSCC.

40

The graph of the SC¢

terminal SCCs

