Tecniche di Specifica e di Verifica

Model Checking under Fairness

Fairness

- $K=\left(\mathbf{S}, \mathbf{S}_{0}, \mathbf{R}, \mathbf{A P}, \mathbf{L}\right)$
- K may not be able to capture exactly the desired executions.
- Too generous.
- Use fairness constraints to rule out undesired executions.

a computation in which s1 or $\mathbf{s} \mathbf{2}$ or $\mathbf{s} \mathbf{3}$ is visited infinitely often but g1 and g2 are visited only finitely often is unfair.

$\mathrm{K}, \mathrm{s0} \not \mathscr{L}^{\mathrm{AG}}($ req2 $\rightarrow \mathrm{AF}$ grt2 $)$

A computation in which (c,n) or (c,w) is visited infinitely often but (\mathbf{n}, \mathbf{n}) and (\mathbf{n}, \mathbf{w}) are visited only finitely often.

K, $\mathbf{s 0}$ に EF EG c1 !

Fairness

- The first kind of unfairness has to do with a bad scheduling policy.
- Find a better allocation scheme.
$>$ Turn-based.
- The second kind of unfairness is unavoidable.
- Solution:
- Consider only fair computations.

Fairness

- Fair Kripke Structures.
- First Attempt:
$-\mathbf{K}=\left(\mathbf{S}, \mathbf{S}_{0}, \mathbf{R}, \mathbf{A P}, \mathbf{L}, \mathcal{F}\right)$
- $\mathcal{F} \subseteq \mathbf{S}$ (fairness constraint)
- π is a fair computation iff:
- It is a computation.
$-\inf (\pi) \cap \mathcal{F} \neq \varnothing$
$-\inf (\pi)=\{\mathbf{s}: \mathbf{s}$ appears infinitely often in $\pi\}$

Fairness

- Fair Kripke Structures.
- $\mathbf{K}=\left(\mathbf{S}, \mathbf{S}_{0}, \mathbf{R}, \mathbf{A P}, \mathbf{L}, \mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{\mathbf{n}}\right)$
$-\mathcal{F}_{\mathbf{i}} \subseteq \mathbf{S}$ (fairness constraints)
- π is a fair computation iff:
- It is a computation.
$-\inf (\pi) \cap \mathcal{F}_{\mathbf{i}} \neq \varnothing$ for each $\mathbf{i}=1,2, . ., n$
$-\inf (\pi)=\{\mathbf{s}: \mathbf{s}$ appears infinitely often in $\pi\}$

$\mathrm{K}, \mathrm{s} \mathbf{0}$ F $\mathrm{AG}($ req2 $\rightarrow \mathrm{AF}$ grt2) with above fairness constraint!

$\mathrm{K}, \mathrm{s} 0 \vDash \mathrm{AG}(\mathrm{req} 2 \rightarrow \mathrm{AF}$ grt2)
F ---- \neg req2 \vee grt2 (notice that $\mathbf{s} 1, \mathbf{s} 2, \mathbf{s} 3$ satisfy req2 and g1,g2 satisfy grt2)

K, s0 $\not \not \neq \mathrm{EF}(\mathbf{E G c} 1 \vee \mathrm{EGc} 2)$ with the above
fairness constraint !

K, s0 $\neq \mathrm{EF}(\mathbf{E G c} 1 \vee \mathrm{EGc} 2)$ with the above fairness constraint !

F ---- $\neg \mathrm{c} 1 \wedge \neg \mathrm{c} 2$

NuSMV Fairness

- Can't always use sets of states to specify fairness.
- State space is often defined implicitly.
- Use formulas!
- ϕ---- Property ϕ is true infinitely often.
- Model check along only fair computation paths.

NuSMV Fairness

- $\mathcal{C}=\left\{\mathbf{P}_{1}, \mathbf{P}_{2}, \ldots, \mathbf{P}_{\mathrm{n}}\right\}$
- Fairness constraints.
- $\mathbf{K}=\left(\mathbf{S}, \mathbf{S}_{0}, \mathbf{R}, \mathbf{A P}, \mathbf{L}, \mathcal{C}\right)$
- s0 s1 s2 is a fair computation iff:
- It is a computation.
- For each i, there are infinitely many j such that

$$
K, s_{j} \in P_{i}
$$

Model Checking with Fairness.

- $\mathcal{C}=\left\{\mathbf{P}_{1}, \mathbf{P}_{2}, \ldots, \mathbf{P}_{\mathrm{n}}\right\}$
- Fairness constraints.
- $\mathbf{K}=\left(\mathbf{S}, \mathbf{S}_{0}, \mathbf{R}, \mathbf{A P}, \mathbf{L}, \mathcal{C}\right)$
- K, $\mathbf{s} \mathrm{F}_{\mathcal{C}} \psi$?
- $\mathbf{K}, \mathbf{s} \mathbf{F}_{\mathcal{C}} \mathbf{p}$ iff there exists a fair path from \mathbf{s} and $\mathbf{K}, \mathbf{s} \boldsymbol{f} \mathbf{p}$ (i.e. $\mathbf{p} \in \mathbf{L}(\mathbf{s})$)
- K, $s \boldsymbol{F}_{\mathcal{C}} \neg \psi$ iff $\quad \mathbf{K}, \mathbf{s} \boldsymbol{\not}_{\mathcal{C}} \psi$
- $\mathbf{K}, \mathbf{s} \mathfrak{F}_{\mathcal{C}} \psi_{1} \wedge \psi_{2}$ iff $\mathbf{K}, \mathbf{s} \boldsymbol{k}_{\mathcal{C}} \psi_{1}$ and $\mathbf{K}, \mathbf{s} \boldsymbol{k}_{\mathcal{C}} \psi_{2}$

Model Checking with Fairness.

- $\mathbf{K}, \mathbf{s} \boldsymbol{F}_{\mathcal{C}} \mathbf{E X} \psi$ iff there exists a fair path from \mathbf{s} and there exists \mathbf{s}^{\prime} along that path with $\mathbf{R}\left(\mathbf{s}, \mathbf{s}^{\prime}\right)$ and $\mathbf{K}, \mathbf{s}^{\prime} \boldsymbol{F}_{\mathcal{C}} \psi$.
- $\mathbf{K}, \mathbf{s} \boldsymbol{F}_{\mathcal{C}} \mathbf{E U}\left(\psi_{1}, \psi_{2}\right)$ iff there exists a fair path from s which satisfies ψ_{2} at some state and ψ_{1} at all previous states.
- $\mathbf{K}, \mathbf{s} \vDash_{\mathcal{C}} \mathbf{E G} \psi$ iff there exists a fair path from \mathbf{s} which satisfies ψ at every state along this fair path.

Model Checking with Fairness.

- $\mathcal{C}=\left\{\mathbf{P}_{1}, \mathbf{P}_{2}, \ldots, \mathbf{P}_{\mathrm{n}}\right\}$
- Fairness constraints.
- $\mathbf{K}=\left(\mathbf{S}, \mathbf{S}_{0}, \mathbf{R}, \mathbf{A P}, \mathbf{L}, \mathcal{C}\right)$
- It is possible to adapt the NuSMV model checking procedure for the problem
- K,s $\boldsymbol{F}^{\boldsymbol{*}} \boldsymbol{\psi}$
to the problem
$-\mathbf{K}, \mathbf{s} \mathbf{F}_{\mathcal{C}} \psi$.

Fair Strongly Connected Comp.

A non-trivial strongly connected component C of K is fair with respect to the fair set \mathcal{C} $=\left\{\mathbf{P}_{1}, \mathbf{P}_{2}, \ldots, \mathbf{P}_{\mathbf{n}}\right\}$ iff for each $\mathbf{P}_{\mathbf{i}} \in \mathcal{C}$ there is a state $s \in C$ such that

$$
K, s \neq \mathbf{P}_{i}
$$

M. C. with Fairness: $\operatorname{EG}(\beta)$

Let $\mathbf{K}^{\prime}=\left(\mathbf{S}^{\prime}, \mathbf{R}^{\prime}, \mathbf{L}, \mathcal{C}\right)$ be the sub-graph of \mathbf{K} where

$$
\begin{array}{ll}
-\mathbf{S}^{\prime}=\left\{\mathbf{s} \mid \mathbf{K}, \mathbf{s} \mathfrak{F}_{\mathcal{C}} \beta\right\} \\
-\mathbf{R}^{\prime}=\left.\mathbf{R}\right|_{\mathbf{S}^{\prime} \times \mathbf{S}^{\prime}} & \text { (the restriction of } \left.\mathbf{R} \text { to } \mathbf{S}^{\prime}\right) \\
-\mathbf{L}^{\prime}=\left.\mathbf{L}\right|_{S^{\prime}}, \quad\left(\text { the restriction of } \mathbf{L} \text { to } \mathbf{S}^{\prime}\right)
\end{array}
$$

Lemma: $\mathbf{K}, \mathrm{s} \mathfrak{F}_{\mathcal{C}} \mathbf{E G}(\beta)$ iff

1. $s \in S^{\prime}$ and
2. there exists a path in K^{\prime} leading from s to a non-trivial fair strongly connected component \mathbf{C} of the graph $\left(\mathbf{S}^{\prime}, \mathbf{R}^{\prime}\right)$ w.r.t. \mathcal{C}.

Computing the labeling for $\mathrm{EG}(\beta)$

Algorithm Check_Fair_EG(β)
for each $\mathbf{t} \in \mathbf{S}^{\prime}$ with $\mathbf{t} \rightarrow \mathbf{S}$ do if $\mathbf{E G}(\beta) \notin \operatorname{Lables}_{\mathcal{C}}(\mathbf{t})$ then

$$
\begin{aligned}
& \operatorname{Labels}_{\mathcal{C}}(\mathbf{t}):=\operatorname{Labels}_{\mathcal{C}}(\mathbf{t}) \cup\{\mathbf{E G}(\beta)\} ; \\
& \mathbf{T}:=\mathbf{T} \cup\{\mathbf{t}\}
\end{aligned}
$$

The Labels function

Let fair be a new atomic proposition and let us use the algorithm Check_Fair_EG(true) to label K with this new proposition (i.e. fair $=$ EG true where true $\in \operatorname{Labels}_{\mathcal{C}}(\mathbf{s})$, for all s)

Then

$-K, s F_{\mathcal{C}} \mathbf{p}$ iff $K, s \vDash(p \wedge$ fair $)$
$-\mathbf{K}, \mathrm{s} \mathfrak{F}_{\mathcal{C}} \neg \phi$ iff $\mathbf{K}, \mathbf{s} \boldsymbol{z}_{\mathcal{C}} \phi$
$-K, s F_{\mathcal{C}} \mathbf{E X} \phi$ iff $K, s \vDash E X(\phi \wedge$ fair $)$
$-K, s F_{\mathcal{C}} \mathbf{E U}(\psi, \phi)$ iff $K, s \vDash \operatorname{EU}(\psi, \phi \wedge$ fair $)$

Symbolic MC for $\mathrm{EG}_{\mathrm{f}} \phi$

Let us start by noting that

$$
\mathbf{E G} \phi \equiv \phi \wedge \mathbf{E X} \mathbf{E G} \phi \equiv \phi \wedge \mathbf{E X} \mathbf{E U}(\phi, \mathbf{E G} \phi)
$$

Therefore

$$
\mathbf{E G} \phi=v \mathbf{Z} \cdot \phi \wedge \mathbf{E X} \mathbf{E U}(\phi, \mathbf{Z})
$$

The fixpoint \mathbf{Z} is then the largest set of states with the following two properties:

1. all the states in \mathbb{Z} satisfy ϕ, and
2. for all states $\mathbf{s} \in \mathbf{Z}$
$>$ there is a non-empty sequence of states (a path) from \mathbf{s} leading to a state in \mathbf{Z}, and
$>$ all states in this sequence satisfy the formula ϕ.

Symbolic MC for $\mathrm{EG}_{\mathrm{f}} \phi$

Let us generalize the previous result, and consider \mathbf{Z} the largest set of states with the following two properties:

1. all the states in \mathbb{Z} satisfy ϕ, and
2. for all $\mathbf{P}_{\mathbf{k}} \in \mathcal{C}$ and all states $\mathbf{s} \in \mathbf{Z}$
$>$ there is a non-empty sequence of states (a path) from \mathbf{s} leading to a state in \mathbf{Z} satisfying $\mathbf{P}_{\mathbf{k}}$, and
$>$ all states in this sequence satisfy the formula ϕ.
It can be shown that:

- each state in \mathbf{Z} is the beginning of a path allong which ϕ is always true, and
- every formula in \mathcal{C} holds infinitely often along this path.

Symbolic MC for $\mathrm{EG}_{\mathrm{f}} \phi$

It follows that $\mathbf{E G}_{\mathbf{f}} \phi$ can be expressed as a greatest fixed point of the following function:

$$
\mathbf{E G}_{\mathrm{f}} \phi=\mathrm{V} \mathbf{Z} . \phi \wedge \wedge_{\mathrm{k}=1 . . . \mathrm{n}} \mathbf{E X} \mathbf{E U}\left(\phi, \mathbf{Z} \wedge \mathbf{P}_{\mathrm{k}}\right)
$$

This equation can be used to compute the set of states that satisfy $\mathbf{E G}_{\mathrm{f}} \phi$ according to the fair semantics.

Symbolic MC for $\mathrm{EX}_{\mathbf{f}} \phi$ and $\mathrm{EU}_{\mathbf{f}}(\phi, \psi)$

All other temporal operators can be computed by combining $\mathbf{E G}_{\mathrm{f}}$ and the standard semantics of non-fair operators.
Let us define the set of all states which are the start of some fair computation is the set of states satisfying:

$$
\text { fair }=\mathbf{E G}_{\mathbf{f}} \text { true }
$$

Hence,

$$
\begin{gathered}
\mathbf{E X}_{\mathbf{f}} \phi=\mathbf{E X}(\phi \wedge \text { fair }) ; \\
\mathbf{E U}_{\mathbf{f}}(\phi, \psi)=\mathbf{E U}(\phi, \psi \wedge \text { fair })
\end{gathered}
$$

Counter-example/Witness Generation

- A formula with a universal path quantifier has a counter-example consisting of one trace (path)
- A formula with an existential path quantifier has a witness consisting of one trace
- Due to the dualities in CTL, we only have to consider witnesses for existential formulae. That is:
- a two states trace witnessing EX ϕ (this is trivial)
- a finite trace π witnessing $\mathbf{E U}(\phi, \psi)$
- an infinite trace π witnessing EG ϕ
- for finite systems, the latter must be a lasso, that is π is a path consisting of a (finite) prefix σ and a (finite) loop ρ, such that $\pi=\sigma \rho^{\omega}$
- For fair counter examples we need that the loop which contains a state from each fairness constraint.

Witness for $\operatorname{EU}(\phi, \psi)$

Recall that:

$$
\mathbf{E U}(\phi, \psi)=\mu \mathbf{Q} \cdot \psi \vee(\phi \wedge \mathbf{E X} \mathbf{Q})
$$

Unfolding the recursion, we get:

$$
\begin{gathered}
\mathbf{Q}_{0}=\text { False } \\
\mathbf{Q}_{1}=\psi \vee(\phi \wedge \mathbf{E X} \text { False })=\psi \\
\mathbf{Q}_{2}=\psi \vee(\phi \wedge \mathbf{E X} \psi) \\
\mathbf{Q}_{3}=\psi \vee(\phi \wedge \mathbf{E X}(\psi \vee(\phi \wedge \mathbf{E X} \psi)))
\end{gathered}
$$

- The fixed point computation follows a process of backward reachability.
- Each $\mathbf{Q}_{\mathbf{i}}$ contains the states that can reach ψ in at most $i-1$ steps (transitions), while ϕ holds in between.
- We can generate a witness (path) by performing a forward reachability within the sequence of \mathbf{Q}_{i} 's.

Witness for $\operatorname{EU}(\phi, \psi)$

- Assume the initial state $\mathrm{s}_{0} \vDash \mathbf{E U}(\phi, \psi)$
- To find a minimal witness from state s_{0}, we start in the smallest \boldsymbol{n} such that $\mathrm{s}_{0} \in \mathbf{Q}_{\boldsymbol{n}}$.
- The desired witness is a path of the form

$$
\pi=\mathrm{s}_{0} \rightarrow \mathrm{~s}_{1} \rightarrow \cdots \rightarrow \mathrm{~s}_{\mathrm{n}}
$$

such that $\mathrm{s}_{\mathrm{i}} \in \mathbf{Q}_{n-i} \cap \mathrm{R}\left(\mathrm{s}_{\mathrm{i}-1}\right)$ and $\mathrm{s}_{\mathrm{n}} \in \mathbf{Q}_{1}=\psi$ (where $\mathrm{R}\left(\mathrm{s}_{\mathrm{i}-1}\right)$ denotes the set $\left.\left\{\mathrm{s} \mid \mathrm{R}\left(\mathrm{s}_{\mathrm{i}-1}, \mathrm{~s}\right)\right\}\right)$

- Notice that this path is guaranteed to exist since $\mathrm{s}_{0} \in$ $\mathbf{Q}_{n}, \mathbf{Q}_{n-i}$ contains states reachable in one step from some state in \mathbf{Q}_{n-i+1}, and each such state satisfies ϕ.
- Then π is a path (i.e. $\left(\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{i}+1}\right) \in \mathrm{R}$ for $0 \leq \mathrm{i} \leq n-1$) such that $\mathrm{s}_{\mathrm{n}} \vDash \psi$ and $\mathrm{s}_{\mathrm{i}} \vDash \phi$, for each $0 \leq \mathrm{i}<\boldsymbol{n}$.

Witness for $\operatorname{EU}(\phi, \psi)$

This can easily be implemented symbolically using BDDs as follows:

- Given s_{0} the BDD representation of state s_{0}.
- For $i \in\{1, \ldots, n\}$, we can pick any state s_{i} as any assignment which makes true the following function:

$$
\mathbf{Q}_{n-i}\left(v^{\prime}\right) \wedge \mathrm{R}\left(\mathrm{~s}_{i-1}, v^{\prime}\right)
$$

(v 'denotes the vector of primed vars and s_{i-1} the assignment to the current vars for state s_{i-1})

- Any s_{i} is the BDD representation of a state s_{i} that:
- can reach ψ (with ϕ true in between) in at most $n-i$ steps and
- is a successor of a state s_{i-1} that can reach ψ (with ϕ true in between) in at most $n-i+1$ steps ..., and so on.

Witness for $\mathrm{EG}_{\mathrm{f}} \phi$

- We want an path from an intial state s_{0} to a cycle on which each fairness constraint $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}}$ occurs.

$$
\mathbf{E G}_{\mathrm{f}} \phi=v \mathbb{Z} . \phi \wedge \wedge_{\mathrm{k}=1 . . . \mathrm{n}} \mathbf{E X} \mathbf{E U}\left(\phi, \mathbf{Z} \wedge \mathbf{P}_{\mathrm{k}}\right)
$$

- Unfolding the recursion we obtain:

$$
\begin{gathered}
\mathrm{Z}_{0}=\text { True } \\
\mathrm{Z}_{1}=\phi \wedge \wedge_{\mathrm{k}=1 \ldots \mathrm{n}} \mathbf{E X E U}\left(\phi, \operatorname{True} \wedge \mathbf{P}_{\mathrm{k}}\right) \\
\ldots \\
\mathrm{Z}_{\mathrm{m}}=\phi \wedge \wedge_{\mathrm{k}=1 . . \mathrm{n}} \operatorname{EXEU}\left(\phi, \mathrm{Z}_{m-1} \wedge \mathbf{P}_{\mathrm{k}}\right)
\end{gathered}
$$

- Let $\check{Z}=Z_{m}=Z_{m-1}=E G_{f} \phi$ be the fixpoint.

Witness for $\mathrm{EG}_{\mathrm{f}} \phi$

- Let $\check{Z}=Z_{m}=Z_{m-1}=E G_{f} \phi$ be the fixpoint.
- While computing $\check{\mathbf{Z}}$ in the last iteration, it was also computed, for each $k \in\{1, \ldots, n\}$, the set of states satisfying $\mathbf{E U}\left(\phi, \check{Z} \wedge \mathbf{P}_{\mathrm{k}}\right)$.
- This amounts to computing, for each $\mathrm{k} \in\{1, \ldots, n\}$, the following sequence of sets, using backward reachability:

$$
\mathrm{Q}^{\mathrm{k}}{ }_{0} \subseteq \mathrm{Q}^{\mathrm{k}}{ }_{1} \subseteq \mathrm{Q}^{\mathrm{k}}{ }_{2} \subseteq \ldots \subseteq \mathrm{Q}_{\mathrm{j}_{\mathrm{k}}}^{\mathrm{k}}
$$

- where each Q^{k} is an (under) approximation of the set of states satisfying $\mathbf{E U}\left(\phi, \check{Z} \wedge \mathbf{P}_{\mathbf{k}}\right)$
- and each state in $\mathrm{Q}^{\mathrm{k}}{ }_{i}$ can reach $\check{\mathbf{Z}} \wedge \mathrm{P}_{\mathrm{k}}$ with no more than i steps (transitions).

Witness for $\mathrm{EG}_{\mathrm{f}} \phi$

Let the sequences of approximantions

$$
\mathrm{Q}^{\mathrm{k}}{ }_{0} \subseteq \mathrm{Q}^{\mathrm{k}}{ }_{1} \subseteq \mathrm{Q}^{\mathrm{k}}{ }_{2} \subseteq \ldots \subseteq \mathrm{Q}_{\mathrm{j}_{\mathrm{k}}}
$$

be given for each $\mathrm{k} \in\{1, \ldots, n\}$ (we can save them during
the last iteration of the outer fixpoint of $\mathrm{EG}_{\mathrm{f}} \phi$)

- Assume now that the initial state $\mathrm{s}_{\mathbf{0}} \vDash \mathrm{EG}_{\mathrm{f}} \phi$
- We can first construct a path

$$
\mathrm{s}_{0} \rightarrow{ }^{*} \mathrm{~s}_{1} \rightarrow{ }^{*} \cdots \rightarrow{ }^{*} \mathrm{~s}_{\mathrm{n}}
$$

(where \rightarrow * is the transitive closure of R), such that:

- the formula ϕ holds invariantly, and
- for each $\mathrm{k} \in\{1, \ldots, n\}, \mathrm{s}_{\mathrm{k}} \in \check{\mathrm{Z}} \wedge \mathbf{P}_{\mathrm{k}}$
- The path above is then guaraneed to exist and to pass through each fairness constraint, while holding ϕ true. ${ }_{33}$

Witness for $\mathrm{EG}_{\mathrm{f}} \phi$

To build the path we start setting $\mathrm{k}=1$ and then:

1. determine the minimal z such that $\mathrm{s}_{\mathrm{k}-1}$ has a successor $\mathrm{t}^{\mathrm{k}}{ }_{0} \in \mathrm{Q}^{\mathrm{k}}{ }_{\mathrm{z}}$
2. using the witness procedure for $\mathbf{E U}$, construct a witness for $\mathbf{E U}\left(\phi, \check{\mathbf{Z}} \wedge \mathbf{P}_{\mathbf{k}}\right)$, namely a path of the form:

$$
\mathrm{s}_{\mathrm{k}-1} \rightarrow \mathrm{t}^{\mathrm{k}}{ }_{0} \rightarrow \mathrm{t}^{\mathrm{k}}{ }_{1} \rightarrow \rightarrow \mathrm{t}_{\mathrm{m}_{\mathrm{k}}} \in \check{\mathbf{Z}} \wedge \mathbf{P}_{\mathbf{k}}
$$

3. finally set $\mathrm{s}_{\mathrm{k}}=\mathrm{t}_{\mathrm{m}_{\mathrm{k}}}^{\mathrm{k}}$ and proceed to build the path for $\mathbf{P}_{\mathbf{k}+1}$ going back to step 1 (until $\mathrm{k}=\mathrm{n}$).
Notice that, each $\mathrm{t}_{\mathrm{j}}{ }_{j}$ (with $\mathrm{j} \geq 1$) will be found in $\mathrm{Q}^{\mathrm{k}-\mathrm{j}}$, and will satisfy ϕ.

Building a fair path from s_{0}

Witness for $\mathrm{EG}_{\mathrm{f}} \phi$

Once we have generated the path

$$
\mathrm{s}_{0} \rightarrow^{*} \mathrm{~s}_{1} \rightarrow^{*} \cdots \rightarrow^{*} \mathrm{~s}_{\mathrm{n}}
$$

we need to check if s_{n} can reach (non trivially) s_{1} while holding ϕ true, i.e. check whether

$$
\mathrm{s}_{\mathrm{n}} \in \mathbf{E X E U}\left(\phi,\left\{\mathrm{~s}_{1}\right\}\right)
$$

If this is the case, then we have found a (non trivial) cycle from s_{1} back to s_{1} passing through all the fairness constraints and which invariantly satisfies ϕ.
This means that $\mathrm{s}_{1}, \mathrm{~s}_{2} \ldots, \mathrm{~s}_{\mathrm{n}}$ all belong to the same SCC satisfying ϕ and reachable from s_{0}.
Therefore, the prefix going from s_{0} to $\mathrm{s}_{1}(\sigma)$ in $\mathrm{s}_{0} \rightarrow{ }^{*} \mathrm{~s}_{1}$ concatenated with the cycle from s_{1} to $\mathrm{s}_{1}\left(\rho^{\omega}\right)$ forms the desired witness $\pi=\sigma \rho^{\omega}$.

Witness contained in the first SCC

Witness for $\mathrm{EG}_{\mathrm{f}} \phi$

If, in the other hand,

$$
\mathrm{s}_{\mathrm{n}} \notin \mathbf{E X E U}\left(\phi,\left\{\mathrm{~s}_{1}\right\}\right)
$$

then s_{1} and s_{n} do not belong to the same SCC and the cycle cannot be closed.
This means that $\mathrm{s}_{1}, \mathrm{~s}_{2} \ldots, \mathrm{~s}_{\mathrm{n}}$ belong to the prefix σ of the desired witness π.

In this case, we can restart the process starting from s_{n} as we have already done from s_{0}, building another seuqence

$$
\mathrm{s}_{\mathrm{n}} \rightarrow{ }^{*} \mathrm{~s}^{\prime}{ }_{1} \rightarrow{ }^{*} \cdots \rightarrow{ }^{*} \mathrm{~s}^{\prime}{ }_{\mathrm{n}}
$$

passing through all the fairness constraints and then check if $s_{n} \in \operatorname{EXEU}\left(\phi,\left\{s_{1}{ }_{1}\right\}\right)$, i.e. another SCC.

Witness over multiple SCCs

Witness for $\mathrm{EG}_{\mathrm{f}} \phi$

The process above must terminate since:

1. the Kripke structure is finite, therefore so is also the number of SCCs.
2. the algorithm, while looking for the fair cycle, essentially moves from one SCC to another within the graph of th SCCs, following non trivial paths.
3. the graph of the SCCs is always acyclic.

Therefore, if the witness $\pi=\sigma \rho^{\omega}$ is not found earlier, then ρ^{ω} must be contained in some terminal SCC, i.e. one which has no outgoing arc to some other SCC.

The graph of the SCCs

