Tecniche di Specifica e di Verifica

Model Checking under Fairness

- $K = (S, S_0, R, AP, L)$
- K may *not* be able to capture *exactly* the desired executions.
 - Too generous.
- Use *fairness constraints* to rule out undesired executions.

a computation in which s1 or s2 or s3 is visited infinitely often but g1 and g2 are visited only finitely often is unfair.

 $K, s0 \not\vdash AG (req2 \rightarrow AF grt2)$

A computation in which (c,n) or (c,w) is visited infinitely often but (n,n) and (n,w) are visited only finitely often.

 $K, s0 \models EF EG c1!$

- The *first kind of unfairness* has to do with a *bad scheduling policy*.
 - Find a better allocation scheme.
 - **≻**Turn-based.
- The *second kind of unfairness* is unavoidable.
- Solution:
 - Consider only *fair computations*.

- Fair Kripke Structures.
- First Attempt:
 - $-K = (S, S_0, R, AP, L, \mathcal{F})$
 - $-\mathcal{F} \subseteq S$ (fairness constraint)
- π is a *fair computation iff*:
 - It is a computation.
 - $-\inf(\pi)\cap\mathcal{F}\neq\emptyset$
 - $-\inf(\pi) = \{s : s \text{ appears infinitely often in } \pi\}$

- Fair Kripke Structures.
- $K = (S, S_0, R, AP, L, \mathcal{F}_1, \mathcal{F}_2,...,\mathcal{F}_n)$
 - $-\mathcal{F}_{i} \subseteq S$ (fairness constraints)
- π is a *fair computation iff*:
 - It is a computation.
 - $-\inf(\pi) \cap \mathcal{F}_i \neq \emptyset$ for each i = 1, 2,...,n
 - $-\inf(\pi) = \{s : s \text{ appears infinitely often in } \pi\}$

K, s0 \models AG(req2 \rightarrow AF grt2) with above fairness constraint!

K, $s0 \models AG(req2 \rightarrow AF grt2)$

 $F ---- \neg req2 \lor grt2$

(notice that s1,s2,s3 satisfy req2 and g1,g2 satisfy grt2)

K, s0 ≠ **EF**(**EGc1** ∨ **EGc2**) with the above fairness constraint!

K, s0 ≠ **EF** (**EG** c1 ∨ **EG** c2) with the above *fairness* constraint!

$$\mathbf{F} - - - \mathbf{c} \mathbf{1} \wedge - \mathbf{c} \mathbf{2}$$

NuSMV Fairness

- Can't always use sets of states to specify fairness.
 - State space is often defined implicitly.
- Use formulas!
- ϕ ---- Property ϕ is true *infinitely often*.
- Model check along only fair computation paths.

NuSMV Fairness

- $C = \{P_1, P_2, ..., P_n\}$
 - Fairness constraints.
- $K = (S, S_0, R, AP, L, C)$
- s0 s1 s2 is a fair computation iff:
 - It is a computation.
 - For each i, there are infinitely many j such that

$$K, s_j \models P_i$$

Model Checking with Fairness.

- $C = \{P_1, P_2, ..., P_n\}$
 - Fairness constraints.
- $K = (S, S_0, R, AP, L, C)$
- $K, s \models_{\mathcal{C}} \psi$?
- $K, s \models_{\mathcal{C}} p$ iff there exists a fair path from s and $K, s \models p$ (i.e. $p \in L(s)$)
- $\mathbf{K}, \mathbf{s} \models_{\mathcal{C}} \neg \psi$ iff $\mathbf{K}, \mathbf{s} \nvDash_{\mathcal{C}} \psi$
- $\mathbf{K}, \mathbf{s} \models_{\mathcal{C}} \psi_1 \land \psi_2$ iff $\mathbf{K}, \mathbf{s} \models_{\mathcal{C}} \psi_1$ and $\mathbf{K}, \mathbf{s} \models_{\mathcal{C}} \psi_2$

Model Checking with Fairness.

- $K,s \models_{\mathcal{C}} EX\psi$ iff there exists a fair path from s and there exists s' along that path with R(s, s') and $K, s' \models_{\mathcal{C}} \psi$.
- $\mathbf{K}, \mathbf{s} \models_{\mathcal{C}} \mathbf{EU}(\psi_1, \psi_2)$ iff there exists a fair path from \mathbf{s} which satisfies ψ_2 at some state and ψ_1 at all previous states.
- $K,s \models_{\mathcal{C}} EG\psi$ iff there exists a fair path from s which satisfies ψ at every state along this fair path.

Model Checking with Fairness.

- $C = \{P_1, P_2, ..., P_n\}$
 - Fairness constraints.
- $K = (S, S_0, R, AP, L, C)$
- It is possible to adapt the NuSMV model checking procedure for the problem
 - $-K,s \models \psi$ to the problem
 - $-\mathbf{K},\mathbf{s} \models_{\mathcal{C}} \mathbf{\psi}.$

Fair Strongly Connected Comp.

A non-trivial strongly connected component C of K is fair with respect to the fair set $C = \{P_1, P_2, ..., P_n\}$ iff for each $P_i \in C$ there is a state $s \in C$ such that

$$K, s \models P_i$$

M. C. with Fairness: $EG(\beta)$

Let $\mathbf{K'} = (\mathbf{S'}, \mathbf{R'}, \mathbf{L'}, C)$ be the sub-graph of \mathbf{K} where

- $-\mathbf{S'} = \{ \mathbf{s} \mid \mathbf{K}, \mathbf{s} \models_{\mathcal{C}} \mathbf{\beta} \}$
- $-\mathbf{R'} = \mathbf{R}|_{\mathbf{S'} \times \mathbf{S'}}$ (the restriction of **R** to **S'**)
- $-L' = L|_{S'}$ (the restriction of L to S')

Lemma: $K, s \models_{\mathcal{C}} EG(\beta)$ iff

- 1. $s \in S'$ and
- 2. there exists a path in K' leading from s to a non-trivial fair strongly connected component C of the graph (S',R') w.r.t. C.

Computing the labeling for $EG(\beta)$

```
Algorithm Check_Fair_EG(\beta)
                                                         Complexity: O(|K|/C|)
    S' := \{ s \mid \beta \in Labels_{\mathcal{C}}(s) \};
    SCC := \{X \mid X \text{ is a } fair \text{ non trivial SCC of } S'\};
    T := \bigcup_{x \in SCC} \{ s \mid s \in X \};
    for each s \in T do Labels<sub>c</sub>(s) := Labels<sub>c</sub>(s) \cup \{EG(\beta)\};
    while T \neq \emptyset do
             chose s \in T;
             T := T \setminus \{s\};
             for each t \in S' with t \to s do
                  if EG(\beta) \notin Lables_{\mathcal{C}}(t) then
                          Labels<sub>C</sub>(\mathbf{t}) := Labels<sub>C</sub>(\mathbf{t}) \cup {EG(\beta)};
                          T := T \cup \{t\};
```

The Labels function

Let fair be a new atomic proposition and let us use the algorithm Check_Fair_EG(true) to label K with this new proposition (i.e. fair = EG true where $true \in Labels_c(s)$, for all s)

Then

- $-\mathbf{K}, \mathbf{s} \models_{\mathcal{C}} \mathbf{p} \text{ iff } \mathbf{K}, \mathbf{s} \models (\mathbf{p} \land fair)$
- $-\mathbf{K}, \mathbf{s} \models_{\mathcal{C}} \neg \phi \text{ iff } \mathbf{K}, \mathbf{s} \not\models_{\mathcal{C}} \phi$
- $-\mathbf{K}, \mathbf{s} \models_{\mathcal{C}} \mathbf{E} \mathbf{X} \phi \text{ iff } \mathbf{K}, \mathbf{s} \models \mathbf{E} \mathbf{X} (\phi \land fair)$
- K, $s \models_{\mathcal{C}} EU(\psi, \phi)$ iff K, $s \models EU(\psi, \phi \land fair)$

Symbolic MC for EG_f ϕ

Let us start by noting that

$$\mathbf{EG} \ \phi \equiv \phi \land \mathbf{EX} \ \mathbf{EG} \ \phi \equiv \phi \land \mathbf{EX} \ \mathbf{EU} \ (\phi, \mathbf{EG} \ \phi)$$

Therefore

EG
$$\phi = vZ. \phi \wedge EX EU(\phi, Z)$$

The fixpoint **Z** is then the *largest set* of states with the following two properties:

- 1. all the states in \mathbb{Z} satisfy ϕ , and
- 2. for all states $s \in \mathbb{Z}$
 - there is a *non-empty* sequence of states (a *path*) from **s** *leading* to a state in **Z**, and
 - \triangleright all states in this sequence *satisfy* the formula ϕ .

Symbolic MC for EG_f ϕ

Let us generalize the previous result, and consider **Z** the *largest set* of states with the following two properties:

- 1. all the states in \mathbb{Z} satisfy ϕ , and
- 2. for all $P_k \in C$ and all states $s \in Z$
 - \triangleright there is a *non-empty* sequence of states (a *path*) from **s** leading to a state in **Z** satisfying P_k , and
 - \triangleright all states in this sequence *satisfy* the formula ϕ .

It can be shown that:

- each state in Z is the beginning of a path allong which φ is always true, and
- every formula in C holds *infinitely often* along this path.

Symbolic MC for EG_f ϕ

It follows that $\mathbf{EG_f} \phi$ can be expressed as a greatest fixed point of the following function:

$$\mathbf{EG_f} \phi = \mathbf{vZ.} \phi \wedge \mathbf{\wedge}_{k=1...n} \mathbf{EX} \mathbf{EU}(\phi, \mathbf{Z} \wedge \mathbf{P_k})$$

This equation can be used to compute the set of states that satisfy $\mathbf{EG_f} \phi$ according to the *fair* semantics.

Symbolic MC for $EX_f \phi$ and $EU_f(\phi, \psi)$

All other temporal operators can be computed by combining $\mathbf{EG_f}$ and the standard semantics of *non-fair* operators.

Let us define the *set of all states* which are the start of some *fair computation* is the set of states satisfying:

$$fair = EG_f true$$

Hence,

$$\mathbf{EX_f} \, \phi = \mathbf{EX}(\phi \wedge fair);$$

$$\mathbf{EU_f}(\phi, \, \psi) = \mathbf{EU}(\phi, \, \psi \wedge fair)$$

Counter-example/Witness Generation

- A formula with a *universal path quantifier* has a counter-example consisting of one trace (path)
- A formula with an *existential path quantifier* has a witness consisting of one trace
- Due to the dualities in **CTL**, we only have to consider witnesses for existential formulae. That is:
 - a two states trace witnessing $\mathbf{EX} \phi$ (this is trivial)
 - a finite trace π witnessing $EU(\phi,\psi)$
 - an infinite trace π witnessing EG ϕ
 - for finite systems, the latter must be a *lasso*, that is π is a path consisting of a (finite) prefix σ and a (finite) loop ρ , such that $\pi = \sigma \rho^{\omega}$
- For *fair counter examples* we need that the loop which contains a state *from each fairness constraint*.

Witness for $EU(\phi, \psi)$

Recall that:

$$\mathbf{E}\mathbf{U}(\phi,\psi) = \mu\mathbf{Q}.\ \psi \vee (\phi \wedge \mathbf{E}\mathbf{X}\ \mathbf{Q})$$

Unfolding the recursion, we get:

$$\mathbf{Q_0} = False$$

$$\mathbf{Q_1} = \mathbf{\Psi} \lor (\mathbf{\phi} \land \mathbf{EX} \ False) = \mathbf{\Psi}$$

$$\mathbf{Q_2} = \mathbf{\Psi} \lor (\mathbf{\phi} \land \mathbf{EX} \ \mathbf{\Psi})$$

$$\mathbf{Q_3} = \mathbf{\Psi} \lor (\mathbf{\phi} \land \mathbf{EX} \ (\mathbf{\Psi} \lor (\mathbf{\phi} \land \mathbf{EX} \ \mathbf{\Psi})))$$

- The fixed point computation follows a process of backward reachability.
- Each Q_i contains the states that can reach ψ in at most i-1 steps (transitions), while ϕ holds in between.
- We can generate a witness (path) by performing a forward reachability within the sequence of **Q**_i's.

Witness for $EU(\phi, \psi)$

- Assume the initial state $s_0 \models EU(\phi, \psi)$
- To find a minimal witness from state s_0 , we start in the smallest n such that $s_0 \in \mathbb{Q}_n$.
- The desired witness is a path of the form

$$\pi = s_0 \rightarrow s_1 \rightarrow \cdots \rightarrow s_n$$

such that $s_i \in \mathbb{Q}_{n-i} \cap R(s_{i-1})$ and $s_n \in \mathbb{Q}_1 = \psi$ (where $R(s_{i-1})$ denotes the set $\{s \mid R(s_{i-1},s)\}$)

- Notice that this path is guaranteed to exist since $s_0 \in \mathbb{Q}_n$, \mathbb{Q}_{n-i} contains states reachable in one step from some state in \mathbb{Q}_{n-i+1} , and each such state satisfies ϕ .
- Then π is a path (i.e. $(s_i, s_{i+1}) \in \mathbb{R}$ for $0 \le i \le n-1$) such that $s_n \models \psi$ and $s_i \models \phi$, for each $0 \le i < n$.

Witness for $EU(\phi, \psi)$

This can easily be implemented symbolically using BDDs as follows:

- Given s_0 the BDD representation of state s_0 .
- For $i \in \{1,...,n\}$, we can *pick* any state s_i as any assignment which makes true the following function:

$$\mathbf{Q}_{n-i}(\mathbf{v}') \wedge \mathbf{R}(\mathbf{s}_{i-1},\mathbf{v}')$$

(v'denotes the vector of primed vars and s_{i-1} the assignment to the current vars for state s_{i-1})

- Any s_i is the BDD representation of a state s_i that:
 - can reach ψ (with ϕ true in between) in at most n-i steps and
 - is a successor of a state s_{i-1} that can reach ψ (with ϕ true in between) in at most n-i+1 steps ..., and so on.

• We want an path from an intial state s_0 to a cycle on which each fairness constraint P_1 , P_2 , ..., P_n occurs.

$$\mathbf{EG_f} \phi = \mathbf{VZ.} \phi \wedge \mathbf{\Lambda}_{k=1...n} \mathbf{EX} \mathbf{EU}(\phi, \mathbf{Z} \wedge \mathbf{P_k})$$

• Unfolding the recursion we obtain:

$$Z_0 = True$$

$$Z_1 = \phi \wedge \bigwedge_{k=1...n} \mathbf{EX} \mathbf{EU}(\phi, True \wedge \mathbf{P_k})$$
...

$$Z_{m} = \phi \wedge \bigwedge_{k=1...n} EX EU(\phi, Z_{m-1} \wedge P_{k})$$

• Let $\check{\mathbf{Z}} = \mathbf{Z}_{\mathbf{m}} = \mathbf{Z}_{\mathbf{m}-1} = \mathbf{EG_f} \phi$ be the fixpoint.

- Let $\check{\mathbf{Z}} = \mathbf{Z}_{m} = \mathbf{Z}_{m-1} = \mathbf{EG_f} \phi$ be the fixpoint.
- While computing $\check{\mathbf{Z}}$ in the last iteration, it was also computed, for each $k \in \{1,...,n\}$, the set of states satisfying $\mathbf{EU}(\phi, \check{\mathbf{Z}} \wedge \mathbf{P}_k)$.
- This amounts to computing, for each $k \in \{1,...,n\}$, the following sequence of sets, using backward reachability:

$$\mathbf{Q}^{\mathbf{k}}_{0} \subseteq \mathbf{Q}^{\mathbf{k}}_{1} \subseteq \mathbf{Q}^{\mathbf{k}}_{2} \subseteq \dots \subseteq \mathbf{Q}^{\mathbf{k}}_{\mathbf{j}_{\mathbf{k}}}$$

- where each Q_i^k is an (under) approximation of the set of states satisfying $EU(\phi, \check{Z} \wedge P_k)$
- and each state in Q_i^k can reach $\mathbf{Z} \wedge \mathbf{P}_k$ with no more than i steps (transitions).

Let the sequences of approximantions

$$Q_0^k \subseteq Q_1^k \subseteq Q_2^k \subseteq \dots \subseteq Q_{j_k}^k$$

be given for each $k \in \{1,...,n\}$ (we can save them during the last iteration of the outer fixpoint of $EG_f \phi$)

- Assume now that the initial state $s_0 \models EG_f \phi$
- We can first construct a path

$$s_0 \rightarrow^* s_1 \rightarrow^* \cdots \rightarrow^* s_n$$

(where \rightarrow^* is the transitive closure of R), such that:

- the formula ϕ holds invariantly, and
- for each $k \in \{1,...,n\}$, $s_k \in \mathbf{Z} \wedge \mathbf{P_k}$
- The path above is then guaraneed to exist and to pass through each fairness constraint, while holding \$\phi\$ true. 33

To build the path we start setting k=1 and then:

- 1. determine the minimal z such that s_{k-1} has a successor $t_0^k \in Q_z^k$
- 2. using the witness procedure for **EU**, construct a witness for $\mathbf{EU}(\phi, \mathbf{\check{Z}} \wedge \mathbf{P_k})$, namely a path of the form:

$$s_{k-1} \rightarrow t^k_0 \rightarrow t^k_1 \cdots \rightarrow t^k_{m_k} \in \mathbf{Z} \wedge \mathbf{P_k}$$

- 3. finally set $s_k = t_{m_k}^k$ and proceed to build the path for P_{k+1} going back to step 1 (until k = n).
- Notice that, each t_j^k (with $j \ge 1$) will be found in Q_{z-j}^k , and will satisfy ϕ .

Building a fair path from s₀

Once we have generated the path

$$s_0 \rightarrow^* s_1 \rightarrow^* \rightarrow^* s_n$$

we need to check if s_n can reach (non trivially) s_1 while holding ϕ true, i.e. check whether

$$s_n \in \mathbf{EX} \, \mathbf{EU}(\phi, \{s_1\})$$

- If this is the case, then we have found a (non trivial) cycle from s_1 back to s_1 passing through all the fairness constraints and which invariantly satisfies ϕ .
- This means that $s_1, s_2 ..., s_n$ all belong to the same SCC satisfying ϕ and reachable from s_0 .
- Therefore, the prefix going from s_0 to s_1 (σ) in $s_0 \rightarrow^* s_1$ concatenated with the cycle from s_1 to s_1 (ρ^{ω}) forms the desired witness $\pi = \sigma \rho^{\omega}$.

Witness contained in the first SCC

If, in the other hand,

$$s_n \notin EX EU(\phi, \{s_1\})$$

then s_1 and s_n do not belong to the same SCC and the cycle cannot be closed.

This means that $s_1, s_2, ..., s_n$ belong to the prefix σ of the desired witness π .

In this case, we can restart the process starting from s_n as we have already done from s_0 , building another seugence

$$s_n \rightarrow^* s'_1 \rightarrow^* \cdots \rightarrow^* s'_n$$

passing through all the fairness constraints and then check if $s'_n \in EX EU(\phi, \{s'_1\})$, i.e. another SCC.

Witness over multiple SCCs

The process above must terminate since:

- 1. the Kripke structure is finite, therefore so is also the number of SCCs.
- 2. the algorithm, while looking for the fair cycle, essentially moves from one SCC to another within the graph of th SCCs, following non trivial paths.
- 3. the *graph of the* SCCs is always acyclic.

Therefore, if the witness $\pi = \sigma \rho^{\omega}$ is not found earlier, then ρ^{ω} must be contained in some *terminal* SCC, i.e. one which has no outgoing arc to some other SCC.

The graph of the SCCs

