Tecniche di Specifica e di Verifica

CTL*, CTL and LTL

CTL* language I

- **Syntax** Let **AP** a finite set of *atomic propositions*. We define by mutual induction the following set of formulae:
 - (state formulae)
 - **0** If $\mathbf{p} \in \mathbf{AP}$, then \mathbf{p} is a *state* formula.
 - 1 If ψ and ψ' are *state* formulae, then so are $\neg \psi$ and $\psi \lor \psi'$, $\psi \land \psi'$.
 - 2 If ψ and ψ ' are *path* formulae, then $E\psi$ and $A\psi$ are *state* formulae.

CTL* language I

Syntax ...

- (path formulae)
- $3 \text{ if } \psi \text{ is a } state \text{ formula, then } \psi \text{ is a } path formula.}$
- 4 if ψ and ψ' are *path* formulae, then so are $\neg \psi$ and $\psi \lor \psi'$, $\psi \land \psi'$.
- 5 if ψ and ψ ' are *path* formulae, then so are $X\psi$ and $\psi U\psi$ '.

CTL* semantics I

Semantics Given the standard definitions

- K = (S, S₀, R, AP, L), S ∈ S, L: S → 2^{AP} and *path* of K: $\pi = s_0 s_1 s_2 \dots$ where $(s_i s_{i+1}) \in R$:
- 0 K, s |= p iff $p \in L(s)$.
- 1 for *propositional formulae*
 - $-\mathbf{K}, \mathbf{s} \models \neg \psi$ iff $\mathbf{K}, \mathbf{s} \not\models \psi$
 - $-\mathbf{K}, \mathbf{s} \models \psi_1 \lor \psi_2 \text{ iff } \mathbf{K}, \mathbf{s} \models \psi_1 \text{ or } \mathbf{K}, \mathbf{s} \models \psi_2.$
 - $-\mathbf{K}, \mathbf{s} \models \psi_1 \land \psi_2 \text{ iff } \mathbf{K}, \mathbf{s} \models \psi_1 \text{ and } \mathbf{K}, \mathbf{s} \models \psi_2.$
- 2 K,s $\models E\psi$ [K,s $\models A\psi$] iff for some [for all] path $\pi = s s_1 s_2...$, it holds K, $\pi \models \psi$

CTL* semantics II

Semantics ...

3 K, $\pi \models p$ iff K, $s_0 \models p$.

4 for propositional formulare

- $-\mathbf{K}, \pi \models \neg \psi$ iff $\mathbf{K}, \pi \not\models \psi$
- **K**, $\pi \models \psi_1 \lor \psi_2$ iff **K**, $\pi \models \psi_1$ or **K**, $\pi \models \psi_2$.
- **K**, $\pi \models \psi_1 \land \psi_2$ iff **K**, $\pi \models \psi_1$ and **K**, $\pi \models \psi_2$.
- 5 temporal operators
 - $-\mathbf{K},\pi \models \mathbf{X}\psi$ iff $\mathbf{K},\pi^1 \models \psi$
 - $\mathbf{K}, \pi \models \psi \mathbf{U} \psi$ ' iff for some $\mathbf{j} \ge \mathbf{0}$, $\mathbf{K}, \pi^{\mathbf{j}} \models \psi$ ', and for all $\mathbf{0} \le \mathbf{k} < \mathbf{j}$, $\mathbf{K}, \pi^{\mathbf{k}} \models \psi$

CTL language definition

- **CTL** can be defined as the *sub-labguage* of **CTL**^{*} by replacing items 3-5 of the previous definition, by the following:
- 3' if ψ and ψ ' are *state* formulae, then $X\psi$ and $\psi U\psi$ ' are *path* formulae.

0 If $\mathbf{p} \in \mathbf{AP}$, then \mathbf{p} is a *state* formula.

- 1 If ψ and ψ' are *state* formulae, then so are $\neg \psi$ and $\psi \lor \psi'$, $\psi \land \psi'$.
- 2 If ψ and ψ ' are *path* formulae, then $\mathbf{E}\psi$ and $\mathbf{A}\psi$ are *state* formulae.

LTL, CTL and CTL*

LTL (state): $\phi ::= A \psi$ (path): $\psi ::= p | \neg \psi | \psi_1 \lor \psi_2 | \mathbf{X} \psi | \psi_1 \mathbf{U} \psi_2$ **CTL** (state): $\varphi ::= p | \neg \varphi | \varphi_1 \lor \varphi_2 | E \psi$ (path): $\psi ::= \mathbf{X} \phi | \phi_1 \mathbf{U} \phi_2$ **CTL**^{*} (state): $\varphi ::= p | \neg \varphi | \varphi_1 \lor \varphi_2 | E \psi$

(path): $\psi ::= \phi | \neg \psi | \psi_1 \lor \psi_2 | X \psi | \psi_1 U \psi_2$

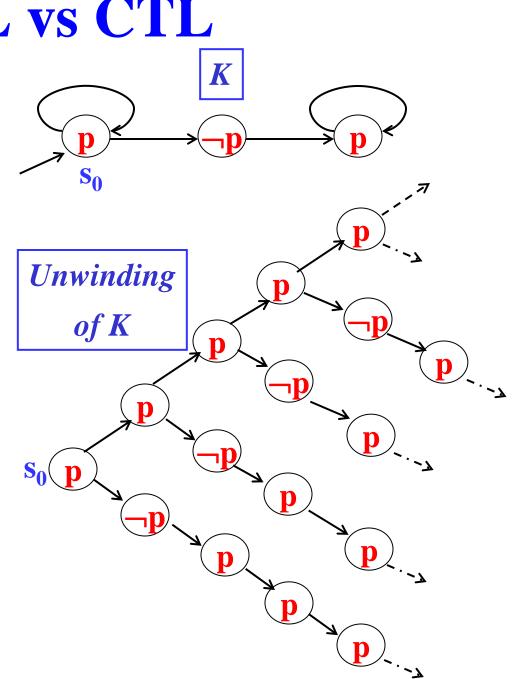
LTL and CTL*

Theorem:[Clarke] For every **CTL**^{*} formula ψ , an equivalent **LTL** (if it exists) must be of the form **A** $f(\psi)$, where $f(\psi)$ is equal to ψ with all the path quantifiers eliminated.

In LTL, we could write: **A FG** *p*, which means "on all paths, there is some state from which *p* will forever hold" (i.e. $\neg p$ holds finitely often).

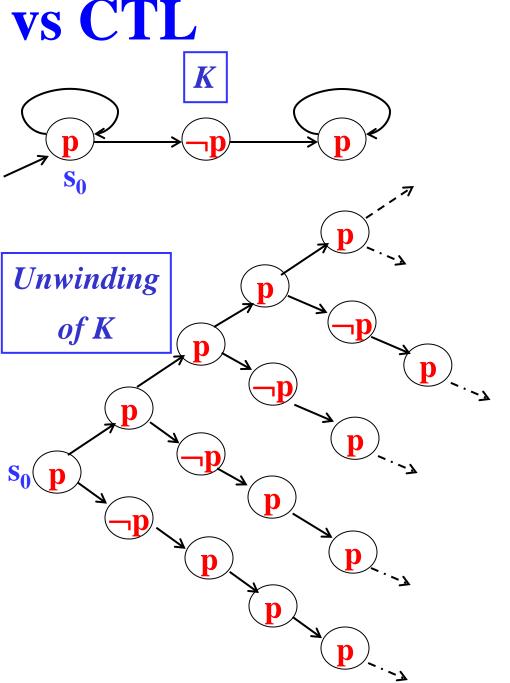
There is no equivalent of this LTL formula in CTL.

For example, in the following model, **A FG** *p* holds, but the formula **AF AG** *p* does not.



Similarly the LTL formula $AF(p \land X p)$ has no equivalent in CTL.

Two attempts are: $AF(p \land AX p)$ But in the model on the right, the LTL formula is true while the CTL formula is false

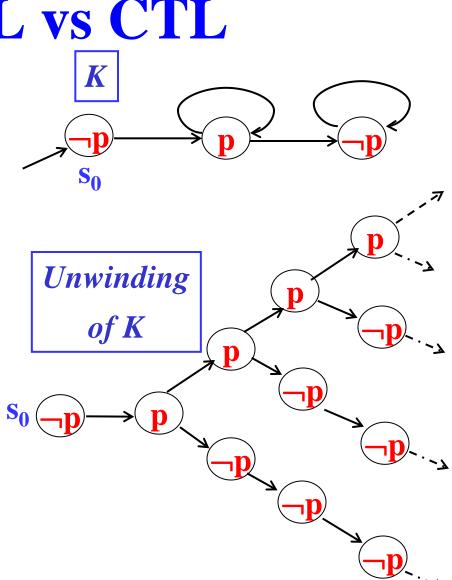


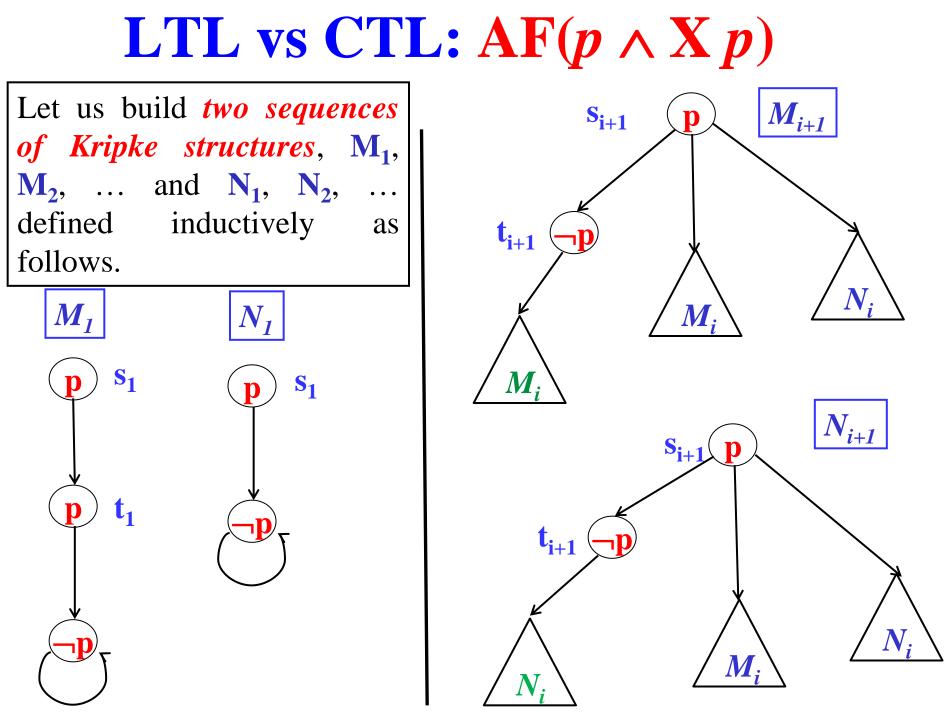
Similarly the LTL formula $AF(p \land X p)$ has no equivalent in CTL.

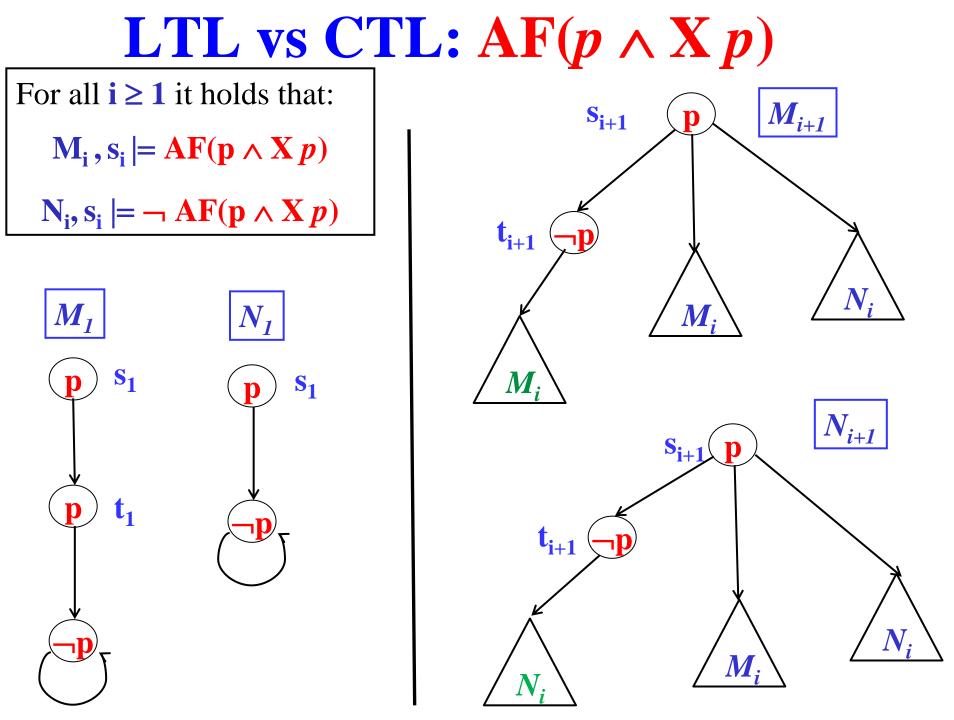
Two attempts are: $AF(p \land AX p)$ and

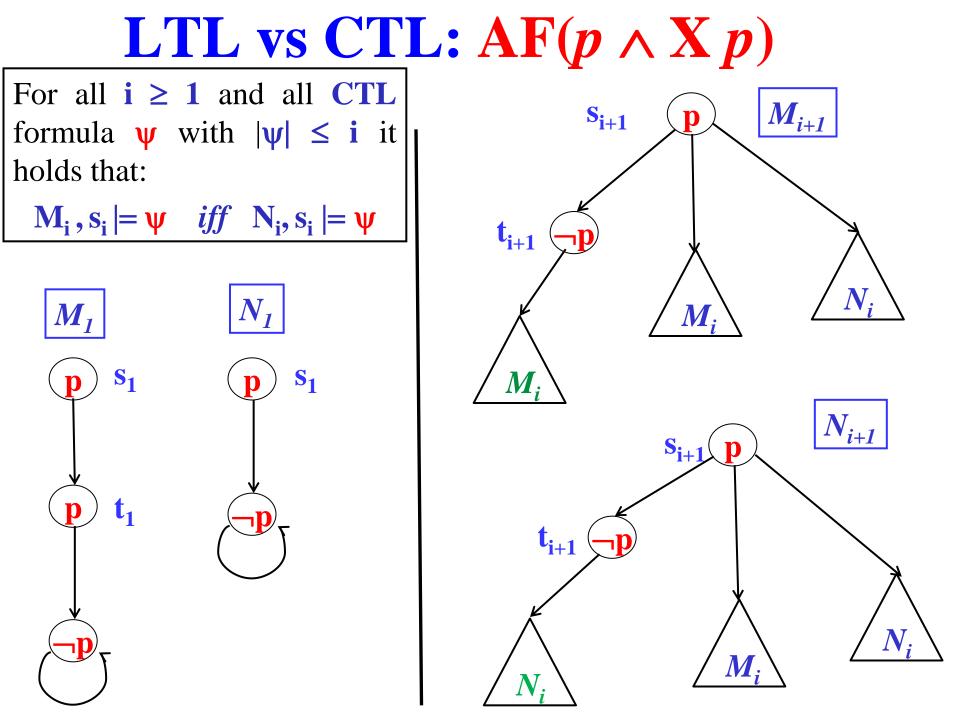
$AF(p \wedge EX p)$

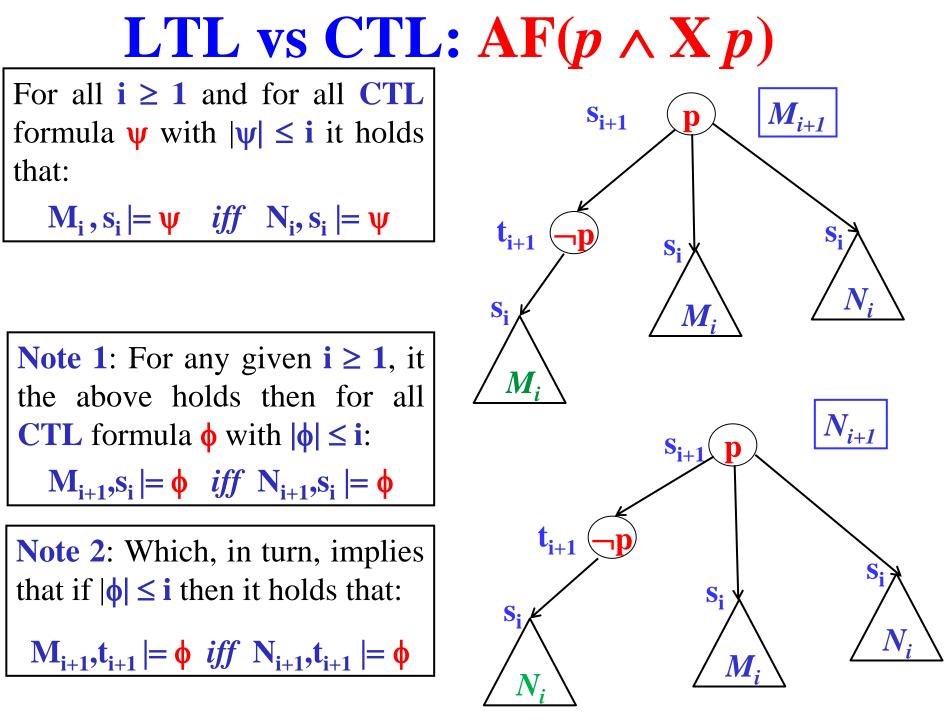
But in the model on the right, the LTL formula is false while the second CTL formula is true.

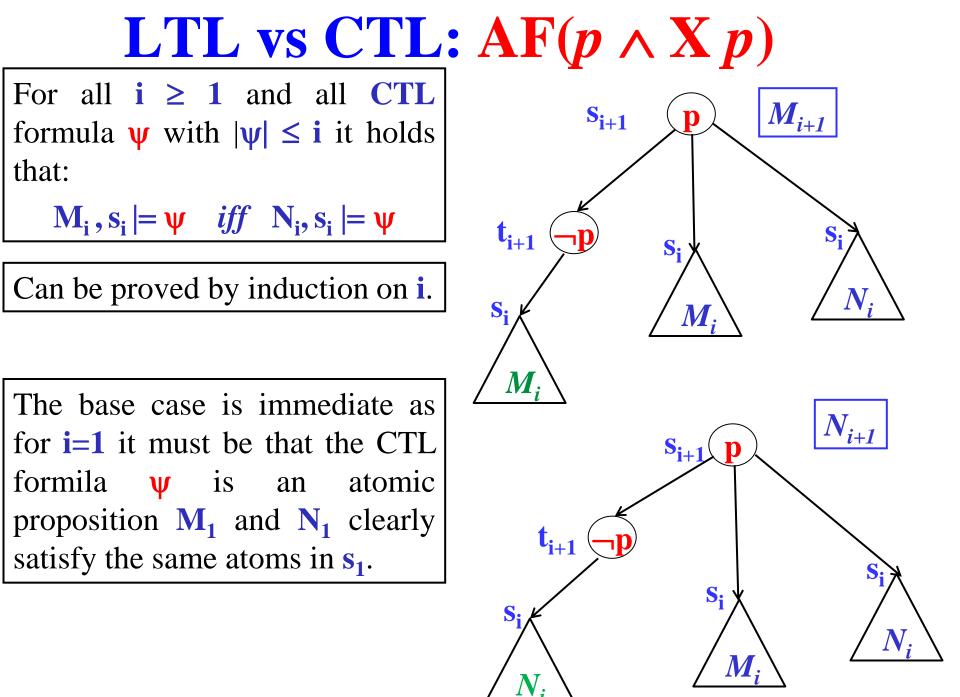


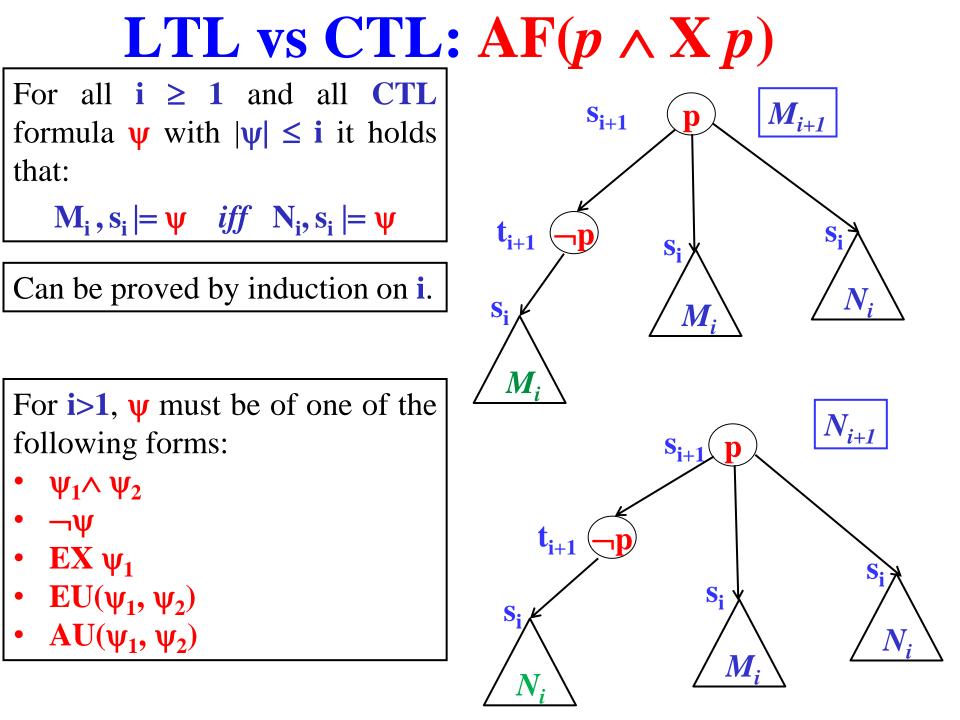












<u>LTL vs CTL</u>: $AF(p \land Xp)$ For all $i \ge 1$ and all CTL M_{i+1} \mathbf{S}_{i+1} p formula ψ with $|\psi| \leq i$ it holds that: $\mathbf{M}_{i}, \mathbf{s}_{i} \models \psi$ iff $\mathbf{N}_{i}, \mathbf{s}_{i} \models \psi$ **t**_{i+1} S • $\psi = \psi_1 \land \psi_2$ of length $\leq i+1$ N In this case, ψ_1 and ψ_2 have S. length \leq i. By the inductive hypothesis, then $M_i, s_i \models \psi^*$ iff $M_{:}$ $N_i, s_i \models \psi$ for all ψ of length $\leq i$. Since M_{i+1} and N_{i+1} only differ on the leftmost subtree which cannot distinguish between t_{i+1} formulas of length \leq i, we Si conclude that $\mathbf{M}_{i+1}, \mathbf{s}_{i+1} \models \mathbf{\psi}_{\mathbf{k}}$ *iff* $N_{i+1}, s_{i+1} \models \psi_k$ (with k=1,2), and the conclusion follows.

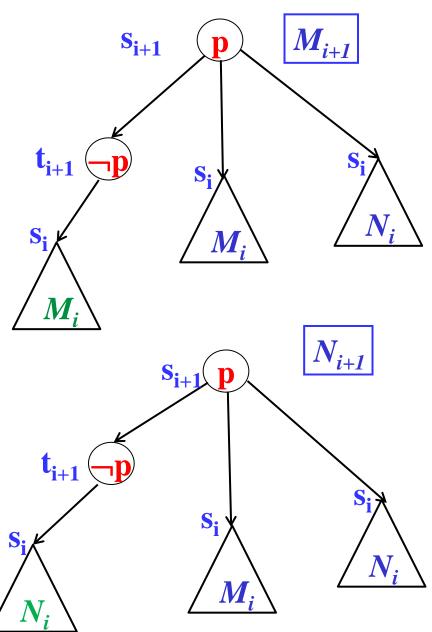
LTL vs CTL: $AF(p \land X p)$ M_{i+1} \mathbf{S}_{i+1} • $\psi = \mathbf{E} \mathbf{X} \psi_1$ of length $\leq \mathbf{i} + \mathbf{1}$ with ψ_1 of length $\leq i$. Then, **t**_{i+1} $\mathbf{M}_{i+1}, \mathbf{s}_{i+1} \models \mathbf{\psi} \quad iff$ • $M_{i+1}, t_{i+1} \models \psi_1$ or $M_i, s_i \models \psi_1$ S. M or • $N_i, s_i = \psi_1$. M: Consider the first case. By the inductive hypothesis, we have \mathbf{M}_{i} $s_i \models \psi_1$ iff $N_i, s_i \models \psi_1$, which implies (see Note 2) $M_{i+1}, t_{i+1} \models$ **t**_{i+1} ψ_1 iff N_{i+1} , $t_i \models \psi_1$, and the conclusion follows. The other Si cases are even easer.

LTL vs CTL: $AF(p \land Xp)$

- $\psi = EU(\psi_1, \psi_2)$ of length $\leq i+1$ with ψ_1, ψ_2 of length $\leq i$. Then, we have that $M_{i+1}, s_{i+1} \models \psi$ *iff*
- $M_{i+1}, s_{i+1} \models \psi_2$
- or $\mathbf{M}_{i+1}, \mathbf{s}_{i+1} \models \psi_1$ and $\mathbf{M}_{i+1}, \mathbf{t}_{i+1} \models \psi_2$
- or M_{i+1} , $s_{i+1} \models \psi_1$ and M_i , $s_i \models U(\psi_1, \psi_2)$
- or M_{i+1} , $s_{i+1} \models \psi_1$ and N_i , $s_i \models U(\psi_1, \psi_2)$.

The *latter two cases* immediately imply the conclusion.

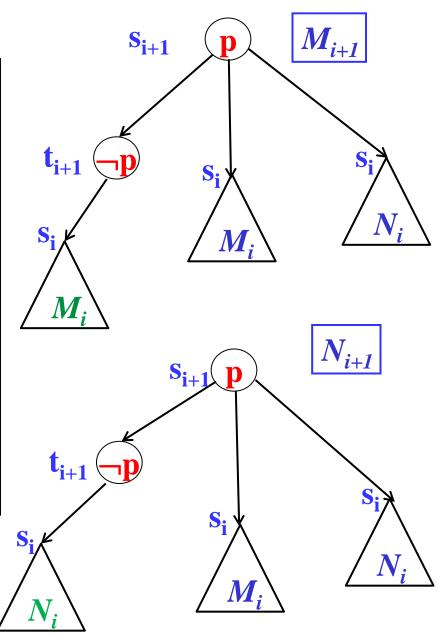
The *first case* follows immediately from the inductive hypothesis, while the *second case* follows by using the inductive hypothesis together with **Note** 1 and **Note 2**.



LTL vs CTL: $AF(p \land Xp)$

- $\psi = AU(\psi_1, \psi_2)$ of length $\leq i+1$ with ψ_1, ψ_2 of length $\leq i$. Then, we have that $M_{i+1}, s_{i+1} \models \psi$ *iff*
- $M_{i+1}, s_{i+1} \models \psi_2$
- or $\mathbf{M}_{i+1}, \mathbf{s}_{i+1} \models \psi_1$ and $\mathbf{M}_{i+1}, \mathbf{t}_{i+1} \models \psi_1$ and $\mathbf{M}_i, \mathbf{s}_i \models \mathbf{AU}(\psi_1, \psi_2)$ and $\mathbf{N}_i, \mathbf{s}_i \models \mathbf{AU}(\psi_1, \psi_2)$
- or $\mathbf{M}_{i+1}, \mathbf{s}_{i+1} \models \psi_1$ and $\mathbf{M}_{i+1}, \mathbf{t}_{i+1} \models \psi_2$ and $\mathbf{M}_i, \mathbf{s}_i \models \mathbf{AU}(\psi_1, \psi_2)$ and $\mathbf{N}_i, \mathbf{s}_i \models \mathbf{AU}(\psi_1, \psi_2)$.

The reasoning is similar to the previous case and the conclusion follows.



LTL vs CTL: $AF(p \land Xp)$

- Assume now that there exists a CTL formula ψ which is equivalent to the LTL formula AF $(p \land X p)$ and let $\mathbf{i} = |\psi|$.
- Then, by the above property, $\mathbf{M}_i, \mathbf{s}_i \models \psi$ iff $\mathbf{N}_i, \mathbf{s}_i \models \psi$
- However, \mathbf{M}_i , $\mathbf{s}_i \models \mathbf{AF}(p \land \mathbf{X} p)$ but \mathbf{N}_i , $\mathbf{s}_i \not\models \mathbf{AF}(p \land \mathbf{X} p)$.
- This contradicts the equivalence between ψ and $AF(p \land X p)$.

The LTL formula **A GF** p means "on all paths and for all states, a state is reachable where p holds" (i.e. p holds infinitely often).

There is an equivalent CTL formula for this LTL formula.

The equivalent CTL formula is AGAF p which holds in all and only the models where A GF p holds.

Proof: It suffices to show that for any kripke structure K, it holds $K \models AGAF p$ iff $K \models A GF p$.

The LTL formula $\varphi = A(GFp \rightarrow Fq)$ (meaning that Fq holds on all fair paths satisfying p infinitely often) cannot be expressed in CTL.

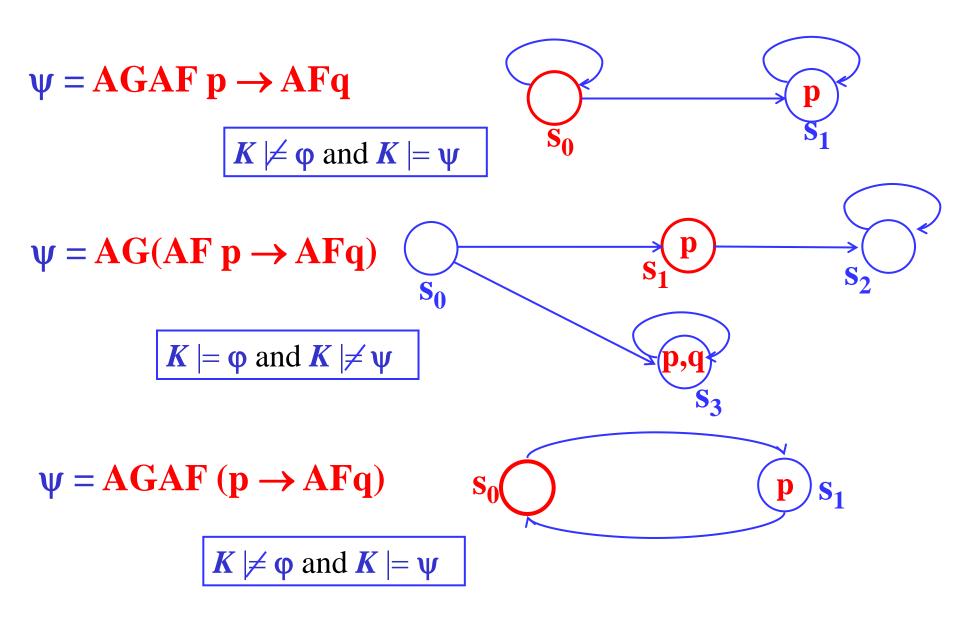
Proof: It suffices to show that for any candidate CTL formula ψ , there is at least a kripke structure *K*, with either

 $K \models \varphi$ and $K \not\models \psi$

or

 $K \not\models \phi$ and $K \mid= \psi$.

 $\mathbf{\phi} = \mathbf{A}(\mathbf{GF}p \rightarrow Fq)$



CTL vs LTL

Let us consider the CTL formula AGEF α . Clearly:

 $K \models AG(EF \alpha)$

Suppose β is a LTL formula which is *equivalent* to AGEF α . If this were true, then:

 $K \models \beta$ But $K \models \beta$ if and only if for every path π of K

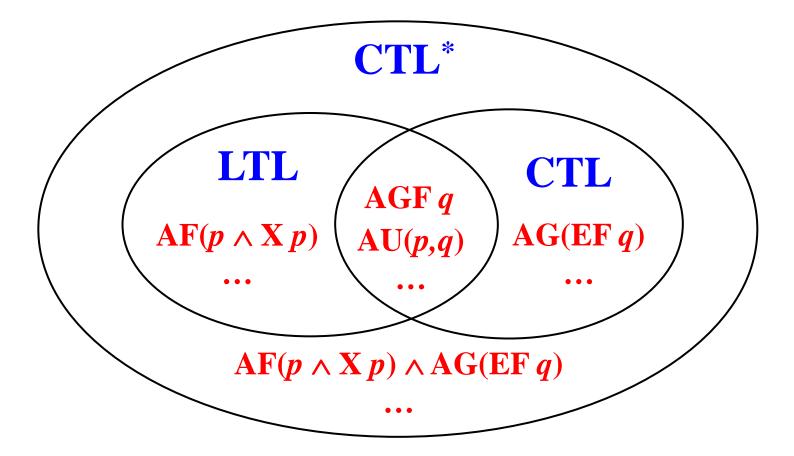
 $K,\pi \models \beta$

Since any path π in K' is also in K, this would imply that for every path π of K' $K',\pi \models \beta$

But $K' \not\models AG(EF \alpha)$, therefore the LTL formula β cannot be equivalent to AGEF

S, K \mathbf{S}_1 S₀ S₃ S S₀

LTL vs CTL vs CTL*



LTL vs CTL vs CTL*

- A GF φ is a LTL formula which *can be expressed* in CTL by the *equivalent* formula AG AF φ.
- For any φ and ψ the LTL formula A(GF $\varphi \rightarrow \psi$) is *not expressible* in CTL, in particular it is *not equivalent to* ((AG AF φ) $\rightarrow \psi$).
- In other words, *fairness constraints cannot be expressed* directly in CTL.