
Tecniche di Specifica e di 

Verifica 

CTL*, CTL and LTL 



CTL* language I 

Syntax Let  AP a finite set of atomic 

propositions. We define by mutual 

induction the following set of formulae: 

(state formulae) 

0 If p  AP, then p is a state formula. 

1 If y and y’ are state formulae, then so are y  

and y  y’, y  y’. 

2 If y and y’ are path formulae, then Ey and 

Ay are state formulae . 



CTL* language I 

Syntax ... 

(path formulae) 

3 if y is a state formula, then y is a path 

formula. 

4 if y and y’ are path formulae, then so are y  

and y  y’, y  y’. 

5 if y and y’ are path formulae, then so are Xy 

and y U y’. 



CTL* semantics I 

Semantics Given the standard definitions 

 K = (S, S0, R, AP, L),   s  S,  L: S  2AP and 

path of K:  = s0 s1 s2.… where (si si+1) R: 

0  K, s   p   iff     p  L(s). 

1  for propositional formulae 

– K, s  y   iff   K, s  y 

– K, s  y1  y2 iff   K, s  y1 or  K, s  y2. 

– K, s  y1  y2 iff   K, s  y1 and K, s  y2. 

2  K,s  Ey  [K,s  Ay] iff for some [for all] path    

      = s s1 s2.…, it holds K,  y 



CTL* semantics II 

Semantics ... 

3 K,    p   iff  K, s0  p . 

4 for propositional formulare 

– K,   y   iff  K,   y 

– K,   y1  y2 iff   K,   y1 or  K,   y2. 

– K,   y1  y2 iff   K,   y1 and K,   y2. 

5 temporal operators 

– K,  Xy iff K,1  y 

– K,  yUy’ iff for some j 0,  K,j  y’, and for all 

0 k<j, K,k  y 



CTL language definition 

CTL can be defined as the sub-labguage of CTL* 

by replacing items 3-5 of the previous definition, 

by the following: 

3’ if y and y’ are state formulae, then Xy and    

y U y’ are path formulae. 

0 If p  AP, then p is a state formula. 

1 If y and y’ are state formulae, then so are y  

and y  y’, y  y’. 

2 If y and y’ are path formulae, then Ey and Ay 

are state formulae. 



LTL, CTL and CTL* 

LTL (state):  ::= A y 

         (path): y ::= p  y  y1  y2 X y  y1 U y2 

CTL (state):  ::= p    1   2 E y 

         (path): y ::= X   1 U 2 

CTL* (state):  ::= p    1   2 E y 

           (path): y ::=   y  y1  y2 X y  y1 U y2 

 



LTL and CTL* 

Theorem:[Clarke] For every CTL* formula 

y, an equivalent LTL (if it exists) must be 

of the form A f(y), where f(y) is equal to 

y  with all the path quantifiers eliminated. 



LTL vs CTL 

In LTL, we could write: 

A FG p , which means “on all 

paths, there is some state 

from which p will forever 

hold” (i.e.  p holds finitely 

often).  

 

There is no equivalent of this 

LTL formula in CTL. 

 

For example, in the following 

model, A FG p holds, but the 

formula AF AG p does not. 
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LTL vs CTL 

Similarly the LTL formula  

AF(p  X p) has no 

equivalent in CTL. 

 

Two attempts are: 

AF(p  AX p) 

But in the model on the 

right, the LTL formula is 

true while the CTL formula 

is false 
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LTL vs CTL 

Similarly the LTL formula  

AF(p  X p) has no 

equivalent in CTL. 

 

Two attempts are: 

AF(p  AX p) 

and  

AF(p  EX p) 

But in the model on the 

right, the LTL formula is 

false while the second CTL 

formula is true. 
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LTL vs CTL: AF(p  X p)  
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Let us build two sequences 

of Kripke structures, M1, 

M2, … and N1, N2, … 

defined inductively as 

follows.   



LTL vs CTL: AF(p  X p)  
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For all i  1 it holds that: 

Mi , si  AF(p  X p) 

Ni, si   AF(p  X p) 



LTL vs CTL: AF(p  X p)  
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For all i  1 and all CTL 

formula y with |y|  i it 

holds that: 

Mi , si  y    iff   Ni, si  y 



LTL vs CTL: AF(p  X p)  
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For all i  1 and for all CTL 

formula y with |y|  i it holds 

that: 

Mi , si  y    iff   Ni, si  y 

si 
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Note 1: For any given i  1, it 

the above holds then for all 

CTL formula  with ||  i: 

Mi+1,si     iff  Ni+1,si   

Note 2: Which, in turn, implies 

that if ||  i then it holds that: 

Mi+1,ti+1    iff  Ni+1,ti+1   



LTL vs CTL: AF(p  X p)  
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For all i  1 and all CTL 

formula y with |y|  i it holds 

that: 

Mi , si  y    iff   Ni, si  y 
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Can be proved by induction on i. 

The base case is immediate as 

for i=1 it must be that the CTL 

formila y is an atomic 

proposition M1 and N1 clearly 

satisfy the same atoms in s1. 



LTL vs CTL: AF(p  X p)  
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For all i  1 and all CTL 

formula y with |y|  i it holds 

that: 

Mi , si  y    iff   Ni, si  y 
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Can be proved by induction on i. 

For i>1, y must be of one of the 

following forms: 

• y1 y2 

• y 

• EX y1 

• EU(y1, y2) 

• AU(y1, y2) 



LTL vs CTL: AF(p  X p)  
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For all i  1 and all CTL 

formula y with |y|  i it holds 

that: 

Mi , si  y    iff   Ni, si  y 

si 
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• y = y1 y2 of length  i+1 

In this case, y1 and y2 have 

length   i. By the inductive 

hypothesis, then Mi , si  y’    iff   

Ni, si  y’ for all y’ of length  i. 

Since Mi+1 and Ni+1 only differ 

on the leftmost subtree which 

cannot distinguish between 

formulas of length  i, we 

conclude that  Mi+1, si+1  yk    

iff   Ni+1, si+1  yk (with k=1,2), 

and the conclusion follows. 



LTL vs CTL: AF(p  X p)  
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• y = EX y1 of length  i+1 

with y1 of length   i. Then,    

Mi+1 , si+1  y    iff   

• Mi+1 , ti+1  y1 or  Mi , si  y 1 

or   

• Ni , si  y 1 .  

Consider the first case. By the 

inductive hypothesis, we have Mi 

, si  y1    iff   Ni, si  y1, which 

implies (see Note 2)  Mi+1, ti+1  

y1    iff  Ni+1, ti  y1, and the 

conclusion follows. The other 

cases are even easer. 



LTL vs CTL: AF(p  X p)  
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• y = EU(y1,y2) of length  i+1 

with y1,y2 of length   i. Then,  we have 

that Mi+1, si+1  y    iff   

• Mi+1, si+1  y2 

• or Mi+1, si+1  y 1 and Mi+1, ti+1  y 2 

• or Mi+1, si+1  y 1 and Mi, si  

EU(y1,y2) 

• or Mi+1, si+1  y 1 and Ni, si  

EU(y1,y2).  

The latter two cases immediately imply 

the conclusion.  

The first case follows immediately from 

the inductive hypothesis, while the 

second case follows by using the 

inductive hypothesis together with Note 

1 and Note 2. 



LTL vs CTL: AF(p  X p)  
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• y = AU(y1,y2) of length  i+1 

with y1,y2 of length   i. Then,  we 

have that Mi+1, si+1  y    iff   

• Mi+1, si+1  y2    

• or Mi+1,si+1  y1 and Mi+1,ti+1  y1 

and Mi,si  AU(y1,y2) and Ni, si  

AU(y1,y2) 

• or Mi+1,si+1  y1 and Mi+1,ti+1  y2 

and Mi,si  AU(y1,y2) and Ni, si  

AU(y1,y2).  

The reasoning is similar to the previous 

case and the conclusion follows. 



• Assume now that there exists a CTL formula y which is 

equivalent to the LTL formula AF (p  X p) and let i = |y |.  

 

• Then, by the above property, Mi , si  y    iff   Ni, si  y 

 

• However, Mi , si  AF(p  X p) but Ni, si  AF(p  X p). 

 

• This contradicts the equivalence between y and AF(p  X p). 

LTL vs CTL: AF(p  X p)  



LTL vs CTL 
The LTL formula A GF p means “on all paths and 

for all states, a state is reachable where p holds” 

(i.e. p holds infinitely often). 

There is an equivalent CTL formula for this LTL 

formula. 

The equivalent CTL formula is AGAF p which 

holds in all and only the models where A GF p 

holds. 

Proof: It suffices to show that for any kripke 

structure K, it holds K  AGAF p iff K  A GF p. 



LTL vs CTL 

The LTL formula  = A(GFp Fq) (meaning that 

Fq holds on all fair paths satisfying p infinitely 

often) cannot be expressed in CTL. 

Proof: It suffices to show that for any candidate 

CTL formula y, there is at least a kripke structure K, 

with either  

     K   and K  y  

or  

    K   and  K  y. 



 = A(GFp Fq) 
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Let us consider the CTL formula AGEF . 

Clearly: 

K  AG(EF ) 

Suppose b is a LTL formula which is 

equivalent to AGEF . If this were true, 

then:  

K  b 

But K  b  if and only if for every path  

of K  

K,  b 

Since any path  in K’ is also in K, this 

would imply that for every path  of K’  

K’,  b 

But K’  AG(EF ), therefore the LTL 

formula b cannot be equivalent to AGEF 

. 

CTL vs LTL 
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LTL vs CTL vs CTL* 

CTL* 

CTL LTL 

AF(p  X p) 

… 

AG(EF q) 

… 

AF(p  X p)  AG(EF q) 

… 

AU(p,q) 

… 

AGF q 



LTL vs CTL vs CTL* 

• A GF  is a LTL formula which can be expressed 

in CTL by the equivalent formula AG AF .  

• For any  and y the LTL formula A(GF   y) 
is not expressible in CTL, in particular it is not 

equivalent to ((AG AF )  y). 

• In other words, fairness constraints cannot be 

expressed directly in CTL. 


