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Tecniche di Specifica e di 
Verifica

Introduction to Propositional Logic
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Logic

A formal logic is defined by its syntax and semantics.

Syntax
• An alphabet is a set of symbols.
• A finite sequence of these symbols is called an expression.
• A set of rules defines the well-formed expressions (well-

formed femulae or wff’s).

Semantics
• Gives meaning to well-formed expressions
• Formal notions of induction and recursion are required to 

provide a rigorous semantics.
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Propositional (Boolean) Logic

Propositional logic is simple but extremely important in 
Computer Science

1. It is the basis for day-to-day reasoning (e.g., in 
programming)

2. It is the theory behind digital circuits.

3. Many problems can be translated into propositional 
logic.

4. It is an important part of more complex logics, such as:
First-Order Logic (also called Predicate Logic), Modal 
and Temporal logic, which we will discuss later.
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Propositional Logic: Syntax
Alphabet

( Left parenthesis Begin group
) Right parenthesis End group
¬ Negation symbol English: not
∧ Conjunction symbol English: and
∨ Disjunction symbol English: or (inclusive)
→ Conditional symbol English: if, then
↔ Bi-conditional symbol English: if and only if
A1 First propositional symbol
A2 Second propositional symbol
…
AN N-th propositional symbol
…
We are assuming a countable alphabet, but most of our conclusions 

hold equally well for an uncountable alphabet.



5

Propositional Logic: Syntax
Alphabet

Propositional connective symbols: ¬ , ∧ , ∨ , → , ↔

Logical symbols: ¬ , ∧ , ∨ , → , ↔ , (, ).

Parameters or nonlogical symbols: A1, A2 , A3 , . . . 

The meaning of logical symbols is always the same. 

The meaning of nonlogical symbols depends on the context.

From now on, let AP be the set {A1, A2 , A3 , . . .}, called the 
set of atomic propositions.
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Propositional Logic: Syntax
A propositional expression is a sequence of symbols. A sequence 

is denoted explicitly by a comma separated list enclosed in 
angle brackets:

Examples

( , A1 , ∧ , A3 , ) (A1 ∧ A3)
( , ( , ¬ , A1, ) , → , A2 , )                  ((¬A1) → A2)
) , ) , ↔ , A1, ¬ , A5                                       )) ↔ A1¬ A5

We will write these sequences as simple strings of symbols, with
the understanding that the formal structure represented is a 
sequence containing exactly the symbols in the string.

The formal meaning becomes important when trying to prove 
things about expressions.

We want to restrict the kinds of expressions that will be allowed.
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Propositional Logic: Syntax
Let us define the set W of well-formed formulas (wff’s).

(a) Every expression consisting of a single propositional 
symbol is in W (AP ⊆ W);

(b) If α and β are in W, then so are (¬ α) , (α ∨ β) , (α ∧ β) , 
(α → β) and (α ↔ β);

(c) No other expression is in W. 

This definition is inductive: the set being defined is used as 
part of the definition.

How would you use this definition to prove that the 
expression ))↔A1¬A5 is not a wff?
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Propositional Logic: Semantics
Intuitively, given a wff α and the truth value (either true or 

false ) for each propositional symbol in α (the atomic 
propositions), we should be able to determine the truth 
value of α.

How do we make this precise?

Let υ be a function from AP to {0,1}, where 0 represents false 
and 1 represents true . Recall that in the inductive 
definition of wff ’s, AP contains the propositional symbols.

Any function υ defined as above is called truth assignment,
and represent a possible propositional model.

Now, we define the satisfaction relation between υ and 
elements of W.
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Propositional Logic: Semantics
Let υ be a function from AP to {0,1}, where 0 represents false 

and 1 represents true . 

The satisfaction relation    between υ and elements of W is 
defined inductively as follows:

• υ Ai if and only if υ(Ai) = 1

• υ (¬ α) if and only if υ α

• υ (α ∧ β) if and only if υ α and υ β

• υ (α ∨ β) if and only if υ α or  υ β

• υ (α → β) if and only if υ α or υ β

• υ (α ↔ β) if and only if  υ α if and only if υ β
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Truth Tables
There are other ways to present the semantics which are less 

formal but perhaps more intuitive.
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Truth Tables: Examples
Truth tables can be used to calculate all possible truth values for a 

given wff with respect to any possible assignment υ
There is a row for each possible truth assignment υ to the

propositional atoms and connectives.
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Satisfiability and Validity
A wff α is satisfiable if there exists some truth assignment υ

which satisfies α.

Suppose Σ is a set of wff’s. Then Σ tautologically implies α, 
or Σ α, if every truth assignment which satisfies each
formula in Σ also satisfies α.

Particular cases:

• If ∅ α, then we say is a tautology or is valid and we 
write α

• If Σ is unsatisfiable, then Σ α for every wff α
• If α β (shorthand for {α} β) and β α, then α and β are

tautologically equivalent.

• Σ α if and only if the wff ∧ Σ → α is valid (   ∧Σ → α ).



13

Some Tautologies
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More Tautologies
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Examples

Suppose you have an algorithm SAT which would take a 
wff α as input and return true if α is satisfiable and 
false otherwise. 

How would you use this algorithm to verify each of the 
claims made above?
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Examples

Now suppose you had an algorithm CHECKVALID which 
returns true when α is valid and false otherwise. 

How would you verify the claims given this algorithm?

Satisfiability and validity are dual notions: α is
unsatisfiable if and only if ¬α is valid.
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Satisfiability with Truth Tables
An Algorithm for Satisfiability
To check whether α is satisfiable, form the truth table for α. 

If there is a row in which 1 appears as the value for α, 
then α is satisfiable. Otherwise, α is unsatisfiable.

Notice that this algorithm has exponential complexity, 
since the number of different rows in a truth table is 
exponential (2n) in the number n of atomic propositions 
occurring in α.

An Algorithm for Tautological Implication

To check whether {α1,…,αk} β, check the satisfiability of the
wff (α1 ∧ … ∧ αk) ∧ (¬ β). If it is unsatisfiable, then 
{α1,…,αk} β, otherwise {α1,…,αk} β.

Notice also that the computational complexity of the 
propositional satisfiability is NP-Complete!
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Boolean Functions

• f : Domain → Range
• Boolean function:

– Domain = {0, 1}n = {0,1} × …. × {0,1}.
– Range = {0, 1}
– f is a function of n boolean variables.

• How many boolean functions of 3
variables are there?
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Boolean Functions

• f : Domain → Range
• Boolean function:

– Domain = {0, 1}n = {0,1} × …. × {0,1}.
– Range = {0, 1}
– f is a function of n boolean variables.

• How many boolean functions of 3 variables are 
there?
– Answer : 223 = 28 !

There are 23 different input points and 2 possible 
output values for each input point. 223 is also the 
number of different n-ary propositional connectives
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Boolean Functions & Truth Tables

0   0    0   0

0   0    1   1

0   1    0   1

0   1    1   0

1   0    0   1

1   0    1   0

1   1    0   0

1   1    1   1

g : {0, 1} × {0, 1} × {0, 1} → {0, 1}

x   y    z    g
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Boolean Expressions

• Given a set of Boolean variables x,y,… and 
the constants 1 (true) and 0 (false):
t ::= x | 0 | 1 | ¬t | t ∧ t | t ∨ t | t → t | t ↔ t

• The semantics of Boolean Expressions is 
defined by means of truth tables as usual.

• Given an ordering of Boolean variables, 
Boolean expressions can be used to express 
Boolean functions.
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Boolean expressions

• Boolean functions can also be represented as 
boolean (propositional) expressions.

• x ∧ y represents the function:
– f : {0, 1} × {0, 1} → {0, 1}

• f(0, 0) = 
• f(0, 1) =
• f(1, 0) =
• f(1, 1) =
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Boolean expressions

• Boolean functions can also be represented as 
boolean (propositional) expressions.

• x ∧ y represents the function:
– f : {0, 1} × {0, 1} → {0, 1}

• f(0, 0) = 0
• f(0, 1) = 0
• f(1, 0) = 0
• f(1, 1) = 1



24

Boolean functions and expressions 

0   0    0   0

0   0    1   1

0   1    0   1

0   1    1   0

1   0    0   1

1   0    1   0

1   1    0   0

1   1    1   1

g : {0, 1} × {0, 1} × {0, 1} → {0, 1}

x   y    z    g

g = ((x ⇔ y) ∧ z) ∨ ((x ⇔ ¬y) ∧ ¬z)
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Boolean expressions and functions

0   0    0   

0   0    1   

0   1    0   

0   1    1   

1   0    0   

1   0    1   

1   1    0   

1   1    1   

g = (x ∧ y ∧ ¬z) ∨ (x ∧ ¬y ∧ z) ∨ (¬x ∧ y)

x   y    z    g
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Boolean expressions and functions

0   0    0   0

0   0    1   0

0   1    0   1

0   1    1   1

1   0    0   0

1   0    1   1

1   1    0   1

1   1    1   0

x   y    z    g

g = (x ∧ y ∧ ¬z) ∨ (x ∧ ¬y ∧ z) ∨ (¬x ∧ y)

g : {0, 1} × {0, 1} × {0, 1} → {0, 1}
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Three Representations

• Boolean functions
• Truth tables
• Propositional formulas.
• Three equivalent representations.
• We will look at a a fourth one later in 

the course.
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Boolean Functions and Connectives
For each n, there are 22n different n-place boolean functions.
There are 2n different input points and 2 possible output values for 

each input point. 22n is also the number of different n-ary
propositional connectives.

0-ary connectives
There are two 0-place Boolean functions: the constants 0 and 1. We 

can construct corresponding 0-ary connectives ⊥ and T with the 
meaning that υ ⊥ and υ T regardless of the truth assignment\

Unary connectives
There are four 1-place functions, but these include the two constant 

functions mentioned above and the identity function. Thus the 
only additional connective of interest is negation: ¬.

Binary connectives
There are sixteen 2-place Boolean functions. They are cataloged in 

the following table. Note that the first six correspond to 0-ary and 
unary connectives.
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Binary Connectives
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Example: Curcuits and PL
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Normal Forms: DNF
Normal forms in mathematics are canonical representations

(i.e. all equivalent objects result in the same representation).

Definition: A formula α with A1,A2,…,An propositional variables 
is in Disjunctive Normal Form (DNF) if it is has the 
structure:

(x1
1 ∧ x1

2 ∧ … ∧ x1
n) ∨ … ∨ (xm

1 ∧ xm
2 ∧ … ∧ xm

n)

where m ≤ 2n and for i = 1,…,n and j = 1,…,m, xj
i is either Ai or 

¬Ai (both Ai and ¬Ai are called literals).

E.g. (¬A1 ∧ ¬A2 ∧ A3) ∨ (A1 ∧ ¬A2 ∧ ¬A3) is in DNF

(¬(A1 ∨ A2) ∧ A3) is not. 

Each of the series of conjunctions picks out a row of the truth 
table where formula is true. DNF ORs together the ANDs for
the true rows.
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DNF

for p ∧ q ∧ ¬ r only row 6 is true.

Consider the truth tables for the formulas ¬p ∧ ¬q ∧ r and ¬p
∧ q ∧ ¬r

for ¬p ∧ ¬q ∧ r only row 1 is true; for ¬p ∧ q ∧ ¬r only row 3 
is true;
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DNF
Consider the truth tables for the formulas ¬p ∧ ¬q ∧ r and ¬p

∧ q ∧ ¬r

(¬p ∧ ¬q ∧ r) ∨ (¬p ∧ q ∧ ¬r) ∨ (p ∧ q ∧ ¬ r) is true on rows 
1, 3 and 6
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DNF

Theorem: Every propositional formula that is not a 
contradiction is a logically equivalent to a DNF
formula.

Corollary: For α, β not contradictions, α ↔ β if and 
only if α and β have the same DNF representation.

Proof: Two formulas are logically equivalent if and 
only if they have the same truth table (i.e. same 
true rows) and, thus, the same DNF.
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DNF and Satisfiability

Theorem: Satisfiability of propositional formula in DNF can 
be checked on Polynomial Time.

Proof: Every formula in DNF is a disjunction of clauses. 
Therefore, the only possibility for the formula to be 
unsatisfiable is if every clause in isolation is unsatisfiable.

Since every clause is a conjunction of literals, for a clause
of a DNF formula to be unsatisfiable, it must contain both 
some literal (p) and its complement (¬p).

Therefore, every DFN formula is satisfiable unless every 
clause contains a pair of complementary literals.

And this can easily be checked in Polynomial Time.
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CNF
Definition: A formula α with A1,A2,…,An propositional variables 

is in Conjunctive Normal Form (CNF) if it is has the 
structure:

(x1
1 ∨ x1

2 ∨ … ∨ x1
n) ∧ … ∧ (xm

1 ∨ xm
2 ∨ … ∨ xm

n)

where m ≤ 2n, for i = 1,…,n and j = 1,…,m, xj
i is either Ai or ¬Ai.

E.g. (¬A1 ∨ ¬A2 ∨ A3) ∧ (A1 ∨ ¬A2 ∨ ¬A3) is in CNF

(¬(A1 ∨ A2) ∧ A3) is not. 

Each of the series of disjunctions represents the negation of a 
row of the truth table where formula is false. CNF ANDs 
together the ORs corresponding to the negation of the flase
rows.

One way to obtain the CNF form of a formula α is to write down
the DNF for ¬α, then negate it and apply De Morgan’s lows 
as much as possilbe.
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CNF and Validity
Using CNF to Check α (trivial)

(x1
1 ∨ x1

2 ∨ … ∨ x1
n) ∧ … ∧ (xm

1 ∨ xm
2 ∨ … ∨ xm

n)

if and only if

(x1
1 ∨ x1

2 ∨ … ∨ x1
n)

(x2
1 ∨ x2

2 ∨ … ∨ x2
n)

…
(xm

1 ∨ xm
2 ∨ … ∨ xm

n)

If each xj
i is a literal (e.g., p) or its negation (e.g., ¬p) then

(xj
1 ∨ xj

2 ∨ … ∨ xj
n) iff there exists k and l s.t. xj

k = p and 
xj

l = ¬p.

And this can easily be checked in Polynomial Time.
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SAT complexity revisited
Question: So why are not validity and satisfiability polynomial 

problems?

Answer: Since converting a formula into an equivalent DNF or 
CNF can be exponential in size of the original formula.

Example: 

CNF: (A1 ∨ B1) ∧ (A2 ∨ B2) ∧ … ∧ (An ∨ Bn)

DNF: (A1 ∧ A2 ∧ … ∧ An) ∨ (A1 ∧ A2 ∧ … ∧ Bn) ∨

∨ (A1 ∧ A2 ∧ … Bn-1 ∧ An) ∨ (A1 ∧ A2 ∧ … Bn-1 ∧ Bn) ∨ … ∨

∨ (B1 ∧ B2 ∧ … ∧ Bn)

In worlds, while the CNF formula contains n clauses, the DNF
equivalent formula contains 2n clauses, where each clause 
contains, for each i, either Ai or Bi. 


