Tecniche di Specifica e di Verifica

Modeling with Transition Systems

An example

The Dining Philosophers

- Possible problems:
- Deadlock: system state where no action can be taken (no meaningful transition possible)
- Livelock: When a system component is prevented to take any action, or a particular one (individual starvation)
- Starvation: obvious.

Fairness

The Dining Philosophers

- A possible solution to deadlock:
- pick up right fork only if both are present

Useful assumptions on the system:

- weak fairness: any phil. trans. continuously enabled will eventually fire (e.g. eating philosophers will finish)
- strong fairness: any phil. trans. enabled infinitely often will eventually occur (e.g. if 2 fork available infinitely often, phil. will eventually eat).

Livelock

The Dining Philosophers

- Possible solution:
- pick up fork only if both are present

Assumptions:

- strong fairness: any phil. trans. enabled infinitely often, will eventually occur (if 2 fork available infinitely often, philosopher will eventually eat).
strong fairness is not enough to prevent livelock Why? Think of the case with 4 philosophers!
Sol.(?): Try preventing consecutive eating.
Still suffers from livelock with 5 phils! Why?

Outline

- The model - Transition systems
- Some features
- Paths
- Computations
- Branching
- First order representation

Transition systems

- A transition system (Kripke structure) is a structure

$$
\mathbf{T S}=\left(\mathbf{S}, \mathbf{S}_{0}, \mathbf{R}\right)
$$

where:
$-\mathbf{S}$ is a finite set of states.
$-\mathbf{S}_{\mathbf{0}} \subseteq \mathbf{S}$ is the set of initial states.
$-\mathbf{R} \subseteq \mathbf{S} \times \mathbf{S}$ is a transition relation

- \mathbf{R} must be total, that is
$-\forall \mathbf{s} \in \mathbf{S} \exists \mathbf{s}^{\prime} \in \mathbf{S} .\left(\mathbf{s}, \mathbf{s}^{\prime}\right) \in \mathbf{R}$ or, equivalently,
- for every state \mathbf{s} in \mathbf{S}, there exists \mathbf{s} ' in \mathbf{S} such that ($\mathbf{s}, \mathbf{s}^{\prime}$) is in \mathbf{R}.

Notions and Notations

- $\mathbf{T S}=\left(\mathbf{S}, \mathbf{S}_{\mathbf{0}}, \mathbf{R}\right)$
- ($\left.\mathbf{s}, \mathbf{s}^{\prime}\right) \in \mathbf{R} \quad \mathbf{R}\left(\mathbf{s}, \mathbf{s}^{\prime}\right) \quad \mathbf{s} \rightarrow \mathbf{s}^{\prime}$
- A (finite) path from \mathbf{s} is a sequence

$$
s_{1}, s_{2}, \ldots, s_{n}
$$

such that
$-\mathrm{S}=\mathrm{S}_{1}$
$-\mathbf{S}_{\mathbf{i}} \rightarrow \mathbf{S}_{\mathrm{i}+1}$ for $0<\mathrm{i}<\mathrm{n}$.

- It is from s to s^{\prime} if $s_{n}=s^{\prime}$.
- An infinite path from s is an infinite sequence

Labeled transition systems

- Sometimes we may use a finite set of actions:
$-\mathbf{A c t}=\{\mathbf{a}, \mathrm{b}, .$.
- The actions will be used to label the transitions.
- $\mathbf{T S}=\left(\mathbf{S}, \mathrm{S}_{0}, \mathrm{Act}, \mathrm{R}\right)$
$-\mathbf{R} \subseteq \mathbf{S} \times \mathbf{A c t} \times \mathbf{S}$, labeled transitions.
$-\left(\mathbf{s}, \mathbf{a}, \mathbf{s}^{\prime}\right) \in \mathbf{R}-\mathbf{R}\left(\mathbf{s}, \mathrm{a}, \mathrm{s}^{\prime}\right)-\mathbf{s} \xrightarrow{\mathbf{a}} \mathbf{s}^{\prime}$

A vending machine

A path

A non-path

A non-total transition relation

State space

- The state space of a system (e.g. program) is the set of all its possible states.
- For example, if $\mathbf{V}=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ and the variables range over the naturals, then the state space includes:

$$
\begin{aligned}
& <a=0, b=0, c=0>,<a=1, b=0, c=0> \\
& <a=1, b=1, c=0>,<a=932, b=5609, c=6658>
\end{aligned}
$$

Atomic transition

- Each atomic transition represents a small peace of code (or execution step), such that no smaller peace of code (or step) is observable.
- Is $\mathrm{a}:=\mathrm{a}+1$ atomic?
- In some systems it is, e.g., when a is a register and the transition is executed using an inc command.

(Non)Atomicity (race conditions)

- Execute the following when $\mathbf{x}=\mathbf{0}$ in two concurrent
- Consider the actual translation: processes: $\mathrm{P} 1: \mathrm{a}=\mathrm{a}+1$

- Result: $\mathbf{a}=\mathbf{2}$.
- Is this always the case?

P

P1:load R1, a
P2:load R2,a inc R1 inc R2 store R1,a store R2,a

- a may also be 1

The common framework

- Many systems need to be modeled.
- Digital circuits
- Synchronous
- Asynchronous
- Programs
- Strategy : Capture the main features using a logical framework (nothing to do with temporal logics!) : First order representation

The inefficient way

The efficient way

A mod-8 counter

The mod- 8 counter

- System variables: $\mathrm{V}=\left\{\mathrm{v}_{2} \mathrm{v}_{1} \mathrm{v}_{0}\right\}$
- Domain of v_{2} is $\{0,1\}$

Same domain for v_{1} and v_{0} as well.

- Special case : These variables are boolean
- Each state s can also be seen as a function assigning to each variable a value in its domain.
$-\mathrm{s}: \mathbf{V} \rightarrow$ B
$-\mathrm{s}\left(\mathrm{v}_{0}\right)=0 \mathrm{~s}\left(\mathrm{v}_{1}\right)=1 \mathrm{~s}\left(\mathrm{v}_{2}\right)=1$
- This specifies the state $\mathrm{s}=\left(\begin{array}{ll}1 & 1\end{array}\right)$!

State Predicates

A set of states can be picked out by a propositional formula:
$\mathbf{X}=\mathbf{v}_{\mathbf{2}} \vee \mathbf{v}_{\mathbf{0}}$ is the $\operatorname{set}\{\ldots\}$

State Predicates

A set of states can be picked out by a propositional formula:
$\mathbf{X}=\mathbf{v}_{\mathbf{2}} \vee \mathbf{v}_{\mathbf{0}}$ is the set $\{100,101,110,111,001,011\}$

Initial States Predicate

A set of states can be picked out by a formula;

$$
\mathbf{X}^{\prime}=\neg \mathbf{v}_{2} \wedge \neg \mathbf{v}_{1} \wedge \neg \mathbf{v}_{0}
$$

Initial States Predicate

A set of states can be picked out by a formula;

$$
\mathbf{X}_{\mathbf{1}}=\neg \mathbf{v}_{\mathbf{2}} \wedge \neg \mathbf{v}_{\mathbf{1}} \wedge \neg \mathbf{v}_{\mathbf{0}} \quad \text { therefore } \mathbf{X}_{\mathbf{1}}=\left\{\mathbf{S}_{\mathbf{0}}\right\}=\{000\}
$$

Transition relation predicate

A set of transitions can also be picked out by a formula.

$$
\mathbf{R}_{2}=\mathbf{v}_{\mathbf{2}}{ }^{\prime} \Leftrightarrow\left(\mathbf{v}_{0} \wedge \mathbf{v}_{1}\right) \oplus \mathbf{v}_{2} \quad \mathbf{v}_{2}-\text { current value } \quad \mathbf{v}_{2}{ }^{\prime}-\text { next value }
$$

Transition relation predicate

A set of transitions can also be picked out by a formula.
$\mathbf{R}_{\mathbf{2}}=\mathbf{v}_{\mathbf{2}}{ }^{\prime} \Leftrightarrow\left(\mathbf{v}_{\mathbf{0}} \wedge \mathbf{v}_{\mathbf{1}}\right) \oplus \mathbf{v}_{\mathbf{2}} \quad \mathbf{v}_{\mathbf{2}}-$ current value $\quad \mathbf{v}_{\mathbf{2}}{ }^{\prime}-$ next value $\left\{\mathrm{t}_{0}, \mathrm{t}_{1}\right\} \subseteq \mathbf{R}_{2}$

Transition relation predicate

Not all formulae will define subsets of transitions.
You must pick the right formula .

Transition relation predicate

But this is not a transition!

Transition relation predicate

$$
\begin{aligned}
& \mathbf{R}_{0}=\mathbf{v}_{0}^{\prime} \neq \mathbf{v}_{0} \quad \mathbf{v}_{\mathrm{i}}-\text { current value } \mathbf{v}_{\mathrm{i}}^{\prime}-\text { next value } \\
& \mathbf{R}_{1}=\mathbf{v}_{1}^{\prime}=\left(\mathbf{v}_{0} \oplus \mathbf{v}_{1}\right) \\
& \mathbf{R}_{2}=\mathbf{v}_{2}^{\prime}=\left(\mathbf{v}_{0} \wedge \mathbf{v}_{1}\right) \oplus \mathbf{v}_{2} \\
& \mathbf{R}=\mathbf{R}_{0} \wedge \mathbf{R}_{1} \wedge \mathbf{R}_{2}
\end{aligned}
$$

Summary of Predicates

- System variables $\mathbf{v}_{\mathbf{0}}, \mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots \ldots, \mathbf{v}_{\mathbf{n}}$.
- Each $\mathbf{v}_{\mathbf{i}}$ has a domain of values
- Boolean , \{a,b,c,..\}, \{5,8,0,7\}...
- We require that each domain be finite.
- A state is a function \mathbf{s} which assigns to each system variable a value in its domain.
- The set of states is finite.

Summary

- Predicates can be used to pick out -succinctlysets of states (useful for identifying initial states).
- $\mathbf{X}=\operatorname{Formula}\left(\mathbf{v}_{\mathbf{0}}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathrm{n}}\right)$
- But this works well only when all domains are boolean.
- In general, we can use first order formulae.

Summary

- A set of transitions can also be picked out using predicates.
- $T=\operatorname{Formula}\left(\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{n}}, \mathbf{v}_{\mathbf{0}}{ }^{\prime}, \mathbf{v}_{1}{ }^{\prime}, \ldots, \mathbf{v}_{\mathrm{n}}{ }^{\prime}\right)$
- T is the set of all transitions
$\left(\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right) \longrightarrow\left(\mathrm{v}_{0}, \mathrm{v}_{\mathbf{1}}, \ldots, \mathrm{v}_{\mathrm{n}}{ }^{\prime}\right)$
such that Formula (above!) is satisfied.
- Not all (state or transition) formulas will be legitimate.

Why use formulae?

- Formulae allow us to compactly describe a system and its dynamics
- It's easy to go from a "logical" description to Kripke structures.
- Once we have a Kripke structure, we are in business.
- We can use
- Temporal Logics to specify properties
- Model checking to verify these properties.

First Order Logic

- The general structure :
- Syntax
- Formulae
- Semantics
- When is a formula true?
- Models
- Interpretations
- Valuations

Syntax

- Terms
- Variables
- Functions symbols, constant symbols
- Atomic formulas
- Relation symbols, equality, terms
- Formulas
- Atomic formulas
- Propositional connectives
- Existential and universal quantifiers

Syntax

- (individual) variables --- $\mathbf{x}, \mathbf{y}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}^{\prime}, \ldots$
- System variables in our context
- Function symbols : $\mathbf{f}^{(\mathbf{n})}$
$-\mathbf{n}$ is the arity of \mathbf{f}.
$-\operatorname{Add}{ }^{(2)}$
- Next ${ }^{(1)}$
- Function symbols will capture the functions used in the programs, circuits, ...

Constant symbols

- Apart from variables, it will also be convenient to have constant symbols.
- zero, five,
- Variables can be assigned different values but a constant symbol is assigned a fixed value.

Terms

- Terms are used to point at values.
- Any variable \mathbf{v} is a term.
- x, v, v"
- Any constant symbol c is a term.
- Suppose f is a function symbol of arity n and $\mathbf{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}$ are terms, then $f\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}\right)$ is a also term.

Terms

- Let Plus be a function symbol of arity 2 .
- $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \operatorname{Plus}\left(\mathbf{v}_{\mathbf{2}}, \operatorname{Plus}\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{1}}\right)\right)$ are terms.
- the semantics of the last term is intuitively

$$
v_{2}+2 v_{1}
$$

- Let weird_op be a function symbol of arity 3
- Then

$$
\operatorname{Plus}\left(\text { weird_op }\left(\mathbf{v}, \operatorname{Plus}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right), \text { five }\right), \operatorname{Plus}\left(\mathbf{v}, \mathbf{v}^{\prime \prime}\right)\right)
$$

is a term.

Predicates

- Relation (predicate) symbols :
- P which also has an arity
- Greater-Than has arity 2
- Prime has arity 1
- Middle has arity 3 -- $\operatorname{Middle}\left(\mathbf{t}_{1}, \mathbf{x}, \mathbf{t}_{2}\right)$
- intuitively, \mathbf{x} lies between t_{1} and t_{2}
- Equal has arity 2
- will be denoted as $=$
- It is a "constant" relation symbol.

Atomic formulas.

- If \mathbf{t}_{1} and \mathbf{t}_{2} are terms then $=\left(\mathbf{t}_{1}, \mathbf{t}_{2}\right)$ is an atomic formula.
- also written $\mathbf{t}_{1}=\mathbf{t}_{2}$
- Suppose \boldsymbol{P} has arity \mathbf{n} and $\mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}$ are terms.
- Then $\boldsymbol{P}\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}\right)$ is an atomic formula.

Atomic formulas

- Greater-Than(five, zero)
- Greater-Than(two, four)
- Prime (Plus($\mathbf{v}_{1}, \mathbf{v}^{\text {" }}$))
- Plus(v,Zero) = weird_op(v,v,four)
- $\mathbf{v}=\operatorname{Greater} _\operatorname{Than}\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{2}\right)$ is not an atomic formula!

Terms and Predicates

- A term is meant to denote a domain value.
- It makes no sense to talk about a term being true or false.
- An atomic formula may be true or false (depends on the interpretation).
- It does not make sense to associate a domain value with an atomic formula.

Formulas

- Every atomic formula is a formula.
- If φ is a formula then $\neg \varphi$ is a formula.
- If φ and φ^{\prime} are formulas then $\varphi \vee \varphi^{\prime}$ is a formula.
- $\varphi \wedge \varphi^{\prime}$ abbreviates: $\neg\left(\neg \varphi \vee \neg \varphi^{\prime}\right)$
- $\varphi \supset \varphi^{\prime}$ abbreviates $: ~ \neg \varphi \vee \varphi^{\prime}$
- $\varphi \equiv \varphi^{\prime}$ abbreviates : $\left(\varphi \supset \varphi^{\prime}\right) \wedge\left(\varphi^{\prime} \supset \varphi\right)$

Formulas

- If φ is a formula and \mathbf{x} is a variable then $\exists \mathbf{x} . \varphi$ is a formula.
- $\forall \mathbf{x} . \varphi$ abbreviates $: ~ \neg \exists \mathbf{x} . \neg \varphi$
- These are existential and universal quantifiers.
- The power of first order logic comes from these operators!

Semantics

- Models :
- Domain of interpretation
- Interpretation
- For the function, constant and relation symbols.
- Fixed for all formulas.
- For the individual variables, on a "per formula" basis.
- Valuations.

Semantics

- Domain
- Each variable will have its domain of values.
- We pretend all these domains are the same.
- Or rather, a big enough "universe" that will contain all these domains.
- Fix ID the universe of values.

Semantics

Interpretation function I

- Assign a concrete function to each function symbol (of the same arity!)
- Assign a concrete member of \mathbf{D} to each constant symbol.
- Assign a concrete relation to each relation symbol (of the same arity!).

Semantics

- Assume we have fixed an interpretation for all function symbols, constant symbols and relational symbols.
- Let φ be a formula. Fix a valuation (or assignment) \mathbf{V} which assigns a member of D to each variable.
- V : Var \longrightarrow D

Lift V to All Terms

- We have :
- An interpretation for the function symbols and constant symbols.
- An assignment V : Var $\longrightarrow \mathbf{D}$
- Using these, we can construct (uniquely!) V_T : Terms $\longrightarrow \mathbf{D}$ the interpretation of terms!

Constructing V_T

Constructing V_T

Constructing V_T

Constructing V_T

Semantics

- Let φ be a formula. Fix a valuation \mathbf{V} which assigns a member of \mathbf{D} to each variable.
- So we now have V_T that assigns a member of \mathbf{D} to each term.
- φ is satisfied under \mathbf{V} (and the interpretation we have fixed, for all formulae) if :

Semantics

- Suppose $P\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is an atomic formula and $\mathbf{V}_{-} \mathbf{T}\left(\boldsymbol{t}_{\boldsymbol{l}}\right)=\mathrm{d}_{1}, \ldots . \mathbf{V}_{-} \mathbf{T}\left(\boldsymbol{t}_{n}\right)=\mathrm{d}_{\mathrm{n}}$ and PCON is the relation assigned to symbol \boldsymbol{P} by our interpretation \mathbf{I}.
- Then $P\left(t_{1}, t_{2}, . ., t_{n}\right)$ is satisfied under \mathbf{V} iff $\operatorname{PCON}\left(\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{\mathrm{n}}\right)$ holds in \mathbf{D}, that is:

$$
\left(\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots ., \mathrm{d}_{\mathrm{n}}\right) \in \mathrm{PCON} \subseteq \mathbf{D} \times \mathbf{D} \times \ldots \times \mathbf{D}
$$

Semantics

- Suppose φ is of the form $\neg \varphi^{\prime}$. Then φ is satisfied under \mathbf{V} iff φ^{\prime} is not satisfied under \mathbf{V}.
- Suppose φ is of the form $\varphi_{1} \vee \varphi_{2}$

Then φ is satisfied under \mathbf{V} iff φ_{1} is satisfied under \mathbf{V} or φ_{2} is satisfied under \mathbf{V}.

Semantics

- Greater-Than $(\operatorname{Plus}(v, 3), \operatorname{Multi}(x, 2))$
$\begin{array}{ll}\mathrm{t}_{1} & \mathrm{t}_{2}\end{array}$
- $\mathrm{V}(\mathrm{v})=2 \mathrm{~V}(\mathrm{x})=1$
$\mathrm{V} _\mathrm{T}\left(\mathrm{t}_{1}\right)=5 \quad \mathrm{~V} _\mathrm{T}\left(\mathrm{t}_{2}\right)=2$
$(5,2) \in>\subseteq$ Integers \times Integers
- $\mathrm{V}^{\prime}(\mathrm{v})=1 \mathrm{~V}^{\prime}(\mathrm{x})=6$ and $\mathrm{V}^{\prime}{ }_{-} \mathrm{T}\left(\mathrm{t}_{1}\right)=3 \quad \mathrm{~V}^{\prime} _\mathrm{T}\left(\mathrm{t}_{2}\right)=12$
$(3,12) \notin>\subseteq$ Integers \times Integers
- Under \mathbf{V} the atomic formula is true, but under \mathbf{V}, the atomic formula is not.

Semantics

- The only case left is when φ is of the form $\exists \mathbf{x} . \varphi^{\prime}$
- φ is satisfied under \mathbf{V} iff there is a valuation \mathbf{V}^{\prime} such that φ^{\prime} is satisfied under \mathbf{V}^{\prime} and \mathbf{V}^{\prime} is required to meet the condition:
$-\mathbf{V}^{\prime}$ is exactly \mathbf{V} for all variables except \mathbf{x}.
- To \mathbf{x}, V^{\prime} can assign any value of its choosing.

Semantics

- Whether $\exists \mathbf{x} . \varphi$ is true or not under \mathbf{V}
- does not depend on what \mathbf{V} does on \mathbf{x} !
- $\exists \mathbf{x} \cdot 2 \mathrm{x}=\mathbf{y}$ is true under $\mathrm{V}(\mathbf{y})=4, \mathrm{~V}(\mathbf{x})=1$!
- Because, we can find \mathbf{V}^{\prime}, with $\mathbf{V}^{\prime}(\mathbf{y})=4$ but $V^{\prime}(x)=2$.
- One says \mathbf{x} is bound in the formula and \mathbf{y} is free.

The efficient way

First Order Representation to Transition Systems

- $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$--- System variables.
- $\mathbf{D}_{1}, \mathbf{D}_{2}, \ldots, \mathbf{D}_{\mathrm{n}}$--- The corresponding domains.
- $\mathbf{D}=\mathrm{D}_{\mathrm{i}}$
- $\mathrm{s}:\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathrm{n}}\right\} \longrightarrow \mathbf{D}$ such that $\mathbf{s}\left(\mathbf{v}_{1}\right) \in \mathrm{D}_{1} \ldots \ldots$
- \mathbf{S}--- The set of states.

Initial States

- $S_{0}\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is a FO formula describing the set of initial states.
- Atomic formula
$-v=d$ where v is is a system variable and d is a constant symbol interpreted as a member of the domain of v.
Example:
- " S_{0} is the set of all states where the $\mathbf{p c}=\mathbf{0}$ and input is a power of 2 "
- $\exists \mathrm{n} .($ input $=\boldsymbol{\operatorname { E X P }}(\mathrm{n})) \wedge(p c=0)$

Transition relation

- $R\left(v_{1}, v_{2}, \ldots v_{n}, v_{1}{ }^{\prime}, v_{2}, \ldots, v_{n}{ }^{\prime}\right)$ is a FO formula involving the current variables $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ (the system variables) and the next variables (v_{1}, $\mathrm{v}_{2}{ }^{\prime}, \ldots, \mathrm{v}_{\mathrm{n}}{ }^{\prime}$).
- $\left(d_{1}, d_{2}, \ldots, d_{n}\right) \longrightarrow\left(d_{1}{ }^{\prime}, d_{2}{ }^{\prime}, \ldots, d_{n}{ }^{\prime}\right)$ iff $\boldsymbol{R}\left(v_{1}, v_{2}, \ldots v_{n}, v_{1}, v_{2}, \ldots, v_{n}{ }^{\prime}\right)$ is true under the valuation $\mathbf{v}_{1}=d_{1}, \ldots, v_{n}=d_{n}, v_{1}{ }^{\prime}=d_{1}{ }^{\prime}, . . v_{n}{ }^{\prime}=d_{n}{ }^{\prime}$.

Transition Relation

- $\mathrm{V}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$
- Program : $\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{pc}\}$
1_{0} : begin
$1_{1}:$ statement $_{1}$
1_{2} : statement $_{2}$
1_{5} : if even(x) then $x=x / 2$ else $x=x-1$
$1_{6}: \ldots$

Transition Relation

- $V=\{\mathbf{x}, \mathbf{y}, \mathrm{z}\}$
- Program : $\{\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{p c}\}$
1_{5} : if $\operatorname{even}(x)$ then $x=x / 2$ else $x=x-1$
$1_{6}: \ldots$
- $\varphi\left(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{p c}, \mathbf{x}^{\prime}, \mathbf{y}^{\prime}, \mathbf{z}^{\prime}, \mathbf{p} \mathbf{c}^{\prime}\right)$
- $p c=l_{5} \wedge p c^{\prime}=l_{6} \wedge\left(\exists \mathrm{n} .(\mathrm{x}=2 \mathrm{n}) \supset \mathrm{x}^{\prime}=\mathrm{x} / 2\right) \wedge$

$$
\left(\neg \exists \mathrm{n} \cdot(\mathrm{x}=2 \mathrm{n}) \supset \mathrm{x}^{\prime}=\mathrm{x}-1\right) \wedge \operatorname{same}(\mathrm{y}, \mathrm{z})
$$

Notice that the formula above is equivalent to:

- $\mathrm{pc}=\mathrm{l}_{5} \wedge \mathrm{pc}^{\prime}=\mathrm{l}_{6} \wedge$

$$
\begin{aligned}
& \left(\left(\exists \mathbf{n} .(\mathbf{x}=\mathbf{2 n}) \wedge \mathbf{x}^{\prime}=\mathbf{x} / 2\right) \vee\left(\neg \exists \mathrm{n} \cdot(\mathbf{x}=\mathbf{2 n}) \wedge \mathbf{x}^{\prime}=\mathbf{x}-\mathbf{1}\right)\right) \wedge \\
& \quad \text { same }(\mathbf{y}, \mathrm{z})
\end{aligned}
$$

- where $\operatorname{same}(\mathbf{y}, \mathrm{z})$ stands for $\mathbf{y}^{\prime}=\mathrm{y} \wedge \mathrm{z}^{\prime}=\mathrm{z}$

Transition Relation

- In a similar fashion, we can specify the transition relation formulae for :
- Assignment statement
- While statements
- etc.etc.
- See the text book!

Kripke Structures

- AP is a finite set of atomic propositions.
- "value of x is 5 "
- "x = 5"
- $\mathbf{M}=\left(\mathbf{S}, \mathbf{S}_{0}, \mathbf{R}, \mathbf{L}\right)$, a Kripke Structure.
$-\left(\mathbf{S}, \mathbf{S}_{\mathbf{0}}, \mathbf{R}\right)$ is a transition system.
$-L: S \longrightarrow 2^{\text {AP }}$
$-\mathbf{2}^{\text {AP }} \quad$---- The set of subsets of AP
$\left(\mathrm{L}(\mathrm{s}) \in 2^{\mathrm{AP}}\right.$ identifies a state
$2^{\text {AP }}$ identifies the state space)

Kripke Structures

- The atomic propositions and \mathbf{L} together convert a transitions system into a model.
- We can start interpreting formulas over the Kripke structure.
- The atomic propositions make basic (easy) assertions about system states.

Automata and Kripke Structures

- AP - set of elementary property
- <S,A,R, $\mathbf{s}_{0}, \mathrm{~L}>$
- S - set of states
- A - set of transition labels
- $\mathbf{R} \subseteq \mathbf{S} \times \mathbf{A} \times \mathbf{S}$ - (labeled) transition relation
- L - interpretation mapping $\mathrm{L}: \mathrm{S} \longrightarrow 2^{\mathrm{AP}}$
- In FO representation we would need two sets of variables: V and Act (for actions or input).

Example: a print manager

- $S=\{\mathbf{0 , 1 , 2 , 3 , 4 , 5 , 6 , 7}\}$
- $A=\left\{\right.$ end $_{A}$, end $_{B}$, req $_{A}$, req $_{B}$, start $_{A}$, start $\left._{B}\right\}$
- $R=\left\{\left(0\right.\right.$, req $\left._{A}, 1\right),\left(0\right.$, req $\left._{B}, 2\right),\left(1\right.$, req $\left._{B}, 3\right),\left(1\right.$, start $\left._{A}, 6\right),\left(2\right.$, req $\left._{A}, 3\right)$,
$\left(2, \operatorname{start}_{\mathrm{B}}, 7\right),\left(3, \operatorname{start}_{\mathrm{A}}, 5\right),\left(3, \operatorname{start}_{\mathrm{B}}, 4\right),\left(4, \mathrm{end}_{\mathrm{B}}, 1\right),\left(5, \mathrm{end}_{\mathrm{A}}, 2\right)$, (6,end $\left.{ }_{\mathrm{A}}, 0\right),\left(6, \mathrm{req}_{\mathrm{B}}, 5\right),\left(7\right.$, end $\left._{\mathrm{B}}, 0\right),\left(7\right.$, req $\left.\left._{\mathrm{A}}, 4\right),\right\}$
- $\mathbf{L}=\left\{\mathbf{0} \rightarrow\left\{\mathbf{R}_{\mathbf{A}}, \mathbf{R}_{\mathbf{B}}\right\}, \mathbf{1} \rightarrow\left\{\mathbf{W}_{\mathrm{A}}, \mathbf{R}_{\mathbf{B}}\right\}, \mathbf{2} \rightarrow\left\{\mathbf{R}_{\mathrm{A}}, \mathbf{W}_{\mathbf{B}}\right\}, \mathbf{3} \rightarrow\left\{\mathbf{W}_{\mathrm{A}}, \mathbf{W}_{\mathbf{B}}\right\}\right.$, $\left.\mathbf{4} \rightarrow\left\{\mathbf{W}_{\mathrm{A}}, \mathbf{P}_{\mathbf{B}}\right\}, \mathbf{5} \rightarrow\left\{\mathbf{P}_{\mathrm{A}} \mathbf{W}_{\mathbf{B}}\right\}, \mathbf{6} \rightarrow\left\{\mathbf{P}_{\mathrm{A}}, \mathbf{R}_{\mathbf{B}}\right\}, 7 \rightarrow\left\{\mathbf{R}_{\mathrm{A}} \mathbf{P}_{\mathbf{B}}\right\}\right\}_{72}$

Properties of the printing systems

1. Every state in which \mathbf{P}_{A} holds, is preceded by a state in which \mathbf{W}_{A} holds
2. Any state in which $\mathbf{W}_{\mathbf{A}}$ holds is followed (possibly not immediately) by a state in which \mathbf{P}_{A} holds.

- The first can easily be checked to be true
- The second is false (e.g. 0134134134...) in other words the system is not fair.

Synchronization

- Usually complex systems are composed of a number of smaller subsystems (modules)
- It is natural to model the whole system starting from the models of the subsystems.
- And then define how they cooperate.
- There are many ways to define cooperation (synchronization).

Synchronization: no interaction

The system model is just the cartesian product of the simpler modules.
Let $T S_{1}, \ldots, T S_{n}$ be n automata (or TSs), where $T S_{i}=\left\langle S_{i} A_{i v} R_{i j} s_{i 0}\right\rangle$
The system is then defined as $T S=\left\langle S, A, R, s_{0}\right\rangle$ where

$$
\left\lvert\, \begin{aligned}
& S=S_{1} \times S_{2} \times \ldots \times S_{n} \\
& A=A_{1} \cup\{-\} \times A_{2} \cup\{-\} \times \ldots \times A_{n} \cup\{-\} \\
& R=\left\{\left(\left\langles_{1}, \ldots, s_{n}>,\left\langle a_{1}, \ldots, a_{n}>,\left\langle s^{\prime}{ }_{1}, \ldots, s_{n}{ }_{n}>\right)\right| \text { forall } i, a_{i} \neq-\right.\right.\right. \\
& \left.\quad \quad \text { and }\left(s_{i v} a_{i}, s_{i}^{\prime}\right) \in R_{i} \text { or } a_{i}=- \text { and } s_{i}^{\prime}=s_{i}\right\} \\
& s_{0}=\left\langle s_{10,}, s_{20} \ldots, s_{n 0}\right\rangle
\end{aligned}\right.
$$

Synchronization: interaction

To allow for interaction, or synchronization on specific actions we can introduce a Synchronization Set (to inhibit undesired transitions) :

- Synchronization set is just a subset of the composite actions:

$$
\text { Sync } \subseteq A_{1} \cup\{-\} \times A_{2} \cup\{-\} \times \ldots \times A_{n} \cup\{-\}
$$

- Then we will have to define the possible transitions as:

$$
\begin{aligned}
& R=\left\{\left(\left\langle s_{1}, \ldots, s_{n}\right\rangle,\left\langle a_{1}, \ldots, a_{n}\right\rangle,\left\langle s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right\rangle\right) \mid\right. \\
& \quad\left(a_{1}, \ldots, a_{n}\right) \in \text { Sync and forall } i, a_{i} \neq- \\
& \left.\quad \text { and }\left(s_{i v} a_{i}, s_{i}^{\prime}\right) \in R_{i} \text {, or } a_{i}=- \text { and } s_{i}^{\prime}=s_{i}\right\}
\end{aligned}
$$

Free synchronization (Asynchronous systems):

 Sync $=\{$ inc, -$\} \times\{-$, inc $\}=\{(-,-),($ inc, -$),(-$, inc $)$, (inc,inc) $\}$

Free synchronization

Asynchronous systems:

$$
\text { Sync }=\{\text { inc },-\} \times\{-, \text { inc }\} \quad \backslash\{(-,-)\}
$$

$$
R\left(V, V^{\prime}\right)=\widehat{\wedge_{i \in I}}\left(R_{i}\left(v_{i}, v_{i}^{\prime}\right) \vee \operatorname{same}\left(v_{i}\right)\right) \wedge \neg \widehat{\wedge} \operatorname{same}\left(v_{i}\right)
$$

if one wants to discard the situation where no component acts

Synchronization on all actions (Synchronous systems):
Sync $=\{($ inc, inc $)\}$

Synchronous systems

Synchronous systems:
Sync $=\{($ inc, inc $)\}$

$$
R\left(V, V^{\prime}\right)=\widehat{i}^{\prime} R_{i}\left(v_{i}, v_{i}^{\prime}\right)
$$

Asynchronous systems with interleaving (only one

 component acts at any time):Sync $=\{(-$, inc $),($ inc,--) $\}$

Asynchronous systems: Interleaving

Asynchronous systems: only one component acts at any time.

$$
\text { Sync }=\{(-, i n c),(i n c,-)\}
$$

$$
R\left(V, V^{\prime}\right)=\bigvee_{i \in I}\left(R_{i}\left(v_{i}, v_{i}^{\prime}\right) \wedge \bigwedge_{j \neq i}^{\left.\wedge \operatorname{same}\left(v_{j}\right)\right)}\right.
$$

Concurrent programs

- Many systems to be verified can be viewed as concurrent programs
- operating system routines
- cache protocols
- communication protocols
- $\mathbf{P}=$ cobegin $\left(P_{1}\left\|P_{2}\right\| \ldots \| P_{n}\right)$ coend
- $\mathbf{P}_{\mathbf{1}}, \mathbf{P}_{2}, . . \mathbf{P}_{\mathbf{n}}$--- Sequential Programs.
- Program variables set $\mathbf{V}=\mathbf{V}_{1} \cup \ldots \cup \mathbf{V}_{\mathbf{n}}$ (set \mathbf{V}_{i} for program i)
- Program counters set PC (one for each program)
- Usually interleaving semantics is assumed

Sequential Programs: the transition predicate C

General Structure

C is essentially a translation function taking a label, a program statement and a label and giving the FOL formula specifying the transition relation for the statement.

Assignments

Skip

C(l, skip, l’)

$\mathrm{pc}=\mathrm{l} \wedge \mathrm{pc}^{\prime}=\mathrm{l}^{\prime} \wedge$ same (V) \wedge same (PC - $\{\mathrm{pc}\}$)

Sequential composition

$$
\mathbf{C}\left(\mathbf{l}, \mathbf{P}, \mathbf{l}^{\prime}\right)
$$

$\mathbf{C}\left(1\right.$, Statement , $\left.l^{\prime \prime}\right) \vee$
$\mathbf{C}\left(\mathbf{l}^{\prime}, \mathbf{P}^{\prime}, \mathbf{l}^{\prime}\right)$

Conditional statement

C(l, IF-THEN-ELSE $\left.\left(b, l_{1}, l_{2}\right), l^{\prime}\right)$

$$
\begin{aligned}
& \left(\mathrm{pc}=\mathrm{l} \wedge \mathrm{pc}^{\prime}=\mathrm{l}_{1} \wedge \mathrm{~b} \wedge \operatorname{same}(\mathrm{~V}) \wedge\right. \\
& \text { same (} \mathbf{P C}-\{\mathbf{p c}\}) \vee \\
& \left(\mathrm{pc}=\mathrm{l} \wedge \mathrm{pc}^{\prime}=\mathrm{l}_{2} \wedge \neg \mathrm{~b} \wedge \operatorname{same}(\mathrm{~V}) \wedge\right. \\
& \text { same (} \mathbf{P C}-\{p c\}) \vee \\
& \mathbf{C}\left(\mathbf{l}_{1}, \mathbf{P}, \mathbf{l}^{\prime}\right) \vee \\
& \mathbf{C}\left(\mathbf{l}_{2}, \mathbf{Q}, \mathbf{l}^{\prime}\right)
\end{aligned}
$$

IIF b THEN P ELSE Q FI

While statement

Concurrent programs

- $\mathbf{P}=$ cobegin $\left(\mathbf{P}_{1}\left\|\mathbf{P}_{2}\right\| \ldots \| \mathbf{P}_{\mathrm{n}}\right)$ coend
- $\mathbf{P}_{\mathbf{1}}, \mathbf{P}_{\mathbf{2}}, . . \mathbf{P}_{\mathbf{n}}$--- Sequential Programs.

Concurrent programs

- $\mathbf{P}=$ cobegin $\left(\mathbf{P}_{1}\left\|\mathbf{P}_{2}\right\| \ldots \| \mathbf{P}_{\mathrm{n}}\right)$ coend
- $\mathbf{P}_{1}, \mathrm{P}_{2}, . . \mathrm{P}_{\mathrm{n}}$--- Sequential Programs.
- $\mathbf{C}\left(\mathbf{l}_{1}, \mathbf{P}_{1}, \mathbf{l}_{1}{ }^{\prime}\right)$--- The transitions of program \mathbf{P}_{1} (defined inductively on the structure of \mathbf{P}_{1} !).
- $\mathbf{V}_{\mathbf{i}}$---- The set of variables of program \mathbf{P}_{i}.
- Programs may share variables!
- $\mathbf{p c}_{\mathbf{i}}$ - The program counter of program $\mathbf{P}_{\mathbf{i}}$.

Concurrent programs

- pc ---- the program counter of the concurrent program; it could be part of a larger program!
- \perp denotes an undefined program counter value.
- $S_{0}(V, P C)=\operatorname{pre}(V) \wedge(p c=L) \wedge$ $\left(\mathrm{pc}_{1}=\perp\right) \wedge \ldots \ldots \wedge\left(\mathrm{pc}_{\mathrm{n}}=\perp\right)$
\wedge same(V)

The Transition Predicate

$\mathbf{C}(\mathbf{L}, \mathbf{P}, \mathbf{L}$)

L

L

$$
\left.\mathrm{pc}_{1}^{\prime}=\perp \wedge \ldots \mathrm{pc}_{\mathrm{n}}^{\prime}=\perp \wedge \operatorname{same}(\mathrm{V})\right)
$$

Summary

- System variables
- Domain of values
- States
- Initial state predicate
- Transition predicate
- pc values (for programs)
- Synchronization mechanisms

