
Tecniche di Specifica e di Verifica

Automata-based
LTL Model-Checking

2

Finite state automata

A finite state automaton is a tuple A = (Σ,S,S0,R,F)
• Σ: set of input symbols
• S: set of states -- S0 : set of initial states (S0 ⊆ S)
• R:S × Σ → 2S : the transition relation.
• F: set of accepting states (F ⊆ S)
• A run r on w=a1,…,an is a sequence s0,…,sn such that

s0 ∈S0 and si+1∈R(si,ai) for 0≤i≤n.
• A run r is accepting if sn∈F, while a word w is

accepted by A if there is an accepting run of A on w.
• The language L(A) accepted by A is the set of finite

words accepted by A.

3

Finite state automata: union

Given automata A1 and A2, there is an automaton A
accepting L(A) = L(A1) ∪ L(A2)

A = (Σ,S,S0,R,F) is an automaton which just runs non-
deterministically either A1 or A2 on the input word.

S = S1 ∪ S2

F = F1 ∪ F2

S0 = S01 ∪ S02

R(s,a) =
R1(s,a) if s ∈ S1

R2(s,a) if s ∈ S2
{

4

Finite state automata: union

0 1

2 3

a

a

a

b

b

b

0 1

a

b

b

L(A1)=b*(ab)*a

A1

2 3

a

ab

L(A2)=a(a*ba)*

A2

A1 ∪ A2 L(A)=L(A1) ∪ L(A2)

5

Finite state automata: intersection

Given automata A1 and A2, there is an automaton A
accepting L(A) = L(A1) ∩ L(A2)

A = (Σ,S,S0,R,F) runs simultaneously both automata A1
and A2 on the input word.

S = S1 × S2

F = F1 × F2

S0 = S01 × S02

R((s,t),a) = R1(s,a) × R2(t,a)

6

Finite state automata: intersection

0,2 0,3

1,2 1,3

a

b

b

0 1

a

b

b

L(A1)=b*(ab)*a

A1

2 3

a

ab

L(A2)=a(a*ba)*

A2

A1 ∩ A2 L(A)=L(A1) ∩ L(A2)a

7

Finite state automata: complementation

• If the automaton is deterministic, then it just
suffices to set Fc = S-F.

• This doesn’t work, though, for non-deterministic
automata.

• Solution:
1. Determinize the automaton using the subset construction.
2. Complement the resulting deterministic automaton

• The complexity of this process is exponential in the
size of the original automaton.

• The number of states of the final automaton is 2|S|,
in the worst case.

8

Finite state automata: complementation

L(A)=(a+b)*a

s t

a

b

a

A

L(AD)= (a+b)*a

{s} {s,t}

a

b

AD

Ø {t}

b

a,b

a

b
a

{s} {s,t}

a

b

Ø {t}

b

a,b

a

b
a

Ac L(Ac)=L(A)

1

2

9

Büchi automata (BA)
A Büchi automaton is a tuple A = (Σ,S,S0,R,F)
• Σ: set of input symbols
• S: set of states -- S0 : set of initial states (S0 ⊆ S)
• R:S ×Σ → 2S : the transition relation.
• F: set of accepting states (F ⊆ S)
• A run r on w=a1,a2,… is an infinite sequence s0,s1,…

such that s0 ∈S0 and si+1 ∈R(si,ai) for i≥0.
• A run r is accepting if some accepting state in F occurs

in r infinitely often.
• A word w is accepted by A if there is an accepting run

of A on w, and the language Lω(A) accepted by A is
the set of (infinite) ω-words accepted by A.

10

Büchi automata (BA)

A Büchi automaton is a tuple A = (Σ,S,S0,R,F)
• A run r on w=a1,a2,… is an infinite sequence s0,s1,…

such that s0 ∈S0 and si+1 ∈R(si,ai) for i≥0.
• Let Lim(r) = { s | s = si for infinitely many i }
• A run r is accepting if

Lim(r) ∩ F ≠ ∅
• A word w is accepted by A if there is an accepting

run of A on w.
• The language Lω(A) accepted by A is the set of

(infinite) ω-words accepted by A.

11

Büchi automata: union

Given Büchi automata A1 and A2, there is an Büchi
automaton A accepting Lω(A) = Lω(A1) ∪ Lω(A2).

The construction is the same as for ordinary automata.

A = (Σ,S,S0,R,F) is an automaton which just runs non-
deterministically either A1 or A2 on the input word.

S = S1 ∪ S2

F = F1 ∪ F2

S0 = S01 ∪ S02

R(s,a) =
R1(s,a) if s ∈ S1

R2(s,a) if s ∈ S2
{

12

Büchi automata: intersection

• The intersection construction for automata does not work
for Büchi automata.

• Instead, the intersection for Büchi automata can be
defined as follows:

A=(Σ,S,S0,R,F) intuitively runs simultaneously both
automata A1=(Σ,S1,S01,R1,F1) and A2=(Σ,S2,S02,R2,F2) on
the input word.

S = S1 × S2 × {1,2}
F = F1 × S2 × {1}
S0 = S01 × S02 × {1}

(s’,t’,2) if s’∈R1(s,a), t’∈R2(t,a), s ∈ F1 and i=1

(s’,t’,1) if s’∈R1(s,a), t’∈R2(s,a), t ∈ F2 and i=2

(s’,t’,i) if s’∈R1(s,a), t’∈R1(t,a)
{R((s,t,i),a) =

13

Büchi automata: intersection

A = (Σ,S,S0,R,F) runs simultaneously both automata A1 and
A2 on the input word.

S = S1 × S2 × {1,2}
F = F1 × S2 × {1}
S0 = S01 × S02 × {1}

The automaton remembers 2 tracks, one for each automaton,
and points to one of the tracks. As soon as it goes through
an accepting state on the current track, it changes track.

The accepting condition and the transition relation ensure
that this change of track must happens infinitely often.

(s’,t’,2) if s’∈R1(s,a), t’∈R2(t,a), s∈F1 and i=1

(s’,t’,1) if s’∈R1(s,a), t’∈R2(t,a), t∈F2 and i=2

(s’,t’,i) if s’∈R1(s,a), t’∈R1(t,a)
{R((s,t,i),a) =

14

Büchi automata: intersection

A = (Σ,S,S0,R,F) runs simultaneously both automata A1 and
A2 on the input word.

S = S1 × S2 × {1,2}
F = F1 × S2 × {1}
S0 = S01 × S02 × {1}

As soon as it visits an accepting state in track 1, it switches to
track 2 and then to track 1 again but only after visiting an
accepting state in the track 2.

Therefore, to visit infinitely often a state in F (F1), the
automaton must also visit infinitely often some state of F2.

(s’,t’,2) if s’∈R1(s,a), t’∈R2(t,a), s∈F1 and i=1

(s’,t’,1) if s’∈R1(s,a), t’∈R2(t,a), t∈F2 and i=2

(s’,t’,i) if s’∈R1(s,a), t’∈R1(t,a)
{R((s,t,i),a) =

15

Büchi automata: complementation

It’s a complicated construction -- the standard subset
construction for determinizing automata doesn’t work
as non-deterministic automata are more powerful than
deterministic ones (e.g. Lω=(0+1)*1ω)

Solution (resorts to another kind of automaton):
• Transform the (non-deterministic) Büchi automaton into a

(non-deterministic) Rabin automaton (a more general kind
of ω-automaton).

• Determinize and then complement the Rabin automaton.
• Transform the Rabin automaton into a Büchi automaton.

• Therefore, also Büchi automata are closed under
complementation.

1
1

1,0

16

Rabin automata

• A Rabin automaton is like a Büchi automaton,
except that the accepting condition is defined
differently.

• A = (Σ,S,S0,R,F), where F=((G1 ,B1),…,(Gm ,Bm)).
• and the acceptance condition for a run r = s0,s1,… is

as follows: for some i
• Lim(r) ∩ Gi ≠ ∅ and
• Lim(r) ∩ Bi = ∅

in other words, there is a pair (Gi ,Bi) such that the
“good” set (Gi) is visited infinitely often, while the
“bad” set (Bi) is visited only finitely often.

17

Rabin versus Büchi automata

The Rabin automaton has F=(({t},{s}))
Note that the Rabin automaton is deterministic.

1

1

1,0

s t

The Büchi automaton
fot Lω = (0+1)*1ω

s t
1

0

0
1 The Rabin automaton

fot Lω = (0+1)*1ω

18

Language emptiness for Büchi automata

The emptiness problem for Büchi automata is the problem
of deciding whether the language accepted by a Büchi
automaton A is empty, i.e. if L(A) = ∅.

Theorem: The emptiness problem for Büchi automata is
decidable in linear time, i.e. in time O(|A|).

Fact: L(A) = ∅ iff in the Büchi automaton there is no
reachable cycle A containing a state in F.

19

Language emptiness for Büchi automata

In other words, L(A) ≠ ∅ iff there is a cycle containing
an accepting state, which is also reachable from some
initial state of the automaton.

We need to find whether there is such a reachable cycle

We could simply compute the SCCs of A using the
standard DFS algorithm, and check if there exists a
reachable (nontrivial) SCC containing a state in F.

But this is usually too inefficient in practice. We will
therefore use a more efficient nested DFS (more
efficient in the average-case).

20

Efficient language emptiness for BA
Input: A
Initialize: Stack1:=∅, Stack2:= ∅

Table1:= ∅, Table2:= ∅
Algorithm Main()

foreach s ∈ Init
if s ∉ Table1 then

DFS1(s);
output(“empty”);
return;

Algorithm DFS1(s)
push(s,Stack1);
hash(s,Table1);
foreach t ∈ Succ(s)

if t ∉ Table1 then
DFS1(t);

if s ∈ F then
DFS2(s);

pop(Stack1);

Algorithm DFS2(s)
push(s,Stack2);
hash(s,Table2) ;
foreach t ∈ Succ (s) do

if t ∉ Table2 then
DFS2(t)

else if t is on Stack1

output(“not empty”);
output(Stack1,Stack2,t);
return;

pop(Stack2);

Note: upon finding a bad cycle,
Stack1+Stack2+t, determines
a counterexample: a bad cycle
reached from an init state.

21

Generalized Büchi automata (GBA)
Generalized Büchi automaton: A = (Σ ,S,S0 ,R,(F1 ,...,Fm))
• A run r on w=a1,a2,… is an infinite sequence s0,s1,…

such that s0 ∈S0 and si+1 ∈R(si,ai) for i≥0.
• Let Lim(r) = { s | s = si for infinitely many i }
• A run r is accepting if for each 1 ≤ i ≤ m

Lim(r) ∩ Fi ≠ ∅
Any Generalized Büchi automaton can be easily

transformed into a Büchi automaton as follows:

L(Σ ,S,S0 ,R,(F1 ,...,Fm)) = ∩ L(Σ ,S,S0 ,R,Fi)
i∈{1,…,m}

This transformation is not very efficient, though.

22

From GBA to BA efficiently
Generalized Büchi automaton: A = (Σ ,S,S0 ,R,(F1 ,...,Fm))

A Generalized Büchi automaton can be efficiently
transformed into a Büchi automaton as follows:

S’ = S × {1,…,m}
F’ = F × {i} for some 1 ≤ i ≤ m
S’0 = S0 × {i} for some 1 ≤ i ≤ m

Notice that the transformation above expands the
automaton size by a factor of m (compare with Büchi
Intersection).

(s’, (i mod m)+1) if s’∈R(s,a) and s∈Fi

(s’,i) if s’∈R (s,a) and s∉Fi
{R((s,i),a) =

23

LTL-semantics and Büchi automata
• We can interpret a formula ψ as expressing a property

of ω-words, i.e., an ω-language L(ψ) ⊆ ΣAP
ω.

• For ω-word σ = σ0 , σ1 , σ2 ,…..∈ΣAP
ω, let σ i = σi , σi+1 ,

σi+2…. be the suffix of σ starting at position i. We
defined the “satisfies” relation, £ , inductively:
• σ £ pj iff pj ∈ σ0 (for any pj ∈ P).
• σ £ ¬ψ iff not σ £ψ.
• σ £ ψ1 ∨ ψ2 iff σ £ ψ1 or σ £ψ2.
• σ £ Xψ iff σ1 £ ψ.
• σ £ ψ1 U ψ2 iff ∃ i ≥ 0 such that σ i £ψ2 ,

and ∀j, 0≤ j< i, σ j £ψ1.
• We can then define the language L(ψ) = { σ | σ £ ψ }.

24

Relation with Kripke structures

We extend our definition of “satisfies” to transition
systems, or Kripke structures, as follows:

• KAP £ ψ iff for all computations (runs) π of KAP ,
L(π) £ ψ , or in other words, iff

L(KAP) ⊆ L(ψ).

25

Relation with Kripke structures

We could transform any Kripke structure into a
Büchi automaton as follows:

{p,q}
s0

{p}
s1

{q}
s2

KAP

s0 s1

s2

AK

{p,q}

init
{p}

{p,q}

{p}

{q}

{p,q}

where every state is accepting!

26

LTL Model Checking

System Model

K

LTL
property

ψ

Model Checker
Yes!

No! +
“counterexample”

Convert ¬ψ to a
Büchi automaton

A¬ψ , so that
L(¬ψ) = L(A¬ψ)

Check that K £ ψ
by checking that

L(K)∩L(A¬ψ) = ∅

27

LTL Model Checking: explanation

M £ψ ⇔ L(KAP) ⊆ L(ψ)
⇔ L(KAP) ∩ (ΣAP

ω \ L(ψ)) = ∅
⇔ L(KAP) ∩ L(¬ψ) = ∅
⇔ L(KAP) ∩ L(A¬ψ) = ∅
⇔ L(KAP ∩ A¬ψ) = ∅

28

The algorithmic tasks to perform

We have reduced LTL model checking to two tasks:

1 Convert an LTL formula ϕ (i.e. ¬ψ) into a Büchi
automaton Aϕ , such that L(ϕ) = L(Aϕ).

• Can we do this in general? …. Yes!!!……

2 Check whether KAP £ ψ, by checking whether the
intersection of languages L(KAP) ∩ L(A¬ψ) is empty.

• It is actually unwise to first construct all of KAP, because
KAP can be far too big (state explosion).

• Instead, it is possible perform the check by constructing
states of KAP only as needed.

29

LTL to BA translation
• First, let’s put LTL formulas ϕ in normal form where:

• ¬ ‘s have been “pushed in”, applying only to propositions.
• the only propositional operators are ¬, ∧,∨.
• the only temporal operators are X, U and its dual R.

• In order to do that we use the following rules:
• p → q ≡ ¬ p ∨ q ; p ↔ q ≡ (¬ p ∨ q) ∧ (¬ q ∨ p)
• ¬(p ∨ q) ≡ ¬ p ∧ ¬ q ; ¬(p ∧ q) ≡ ¬ p ∨ ¬ q ; ¬ ¬ p ≡ p
• ¬(p U q) ≡ (¬ p) R (¬ q) ; ¬ (p R q) ≡ (¬ p) U (¬ q)
• F p ≡ T U p ; G p ≡ ⊥ R p ; ¬ X p ≡ X ¬ p

30

LTL to BA translation
• First, let’s put LTL formulas ϕ in normal form

• ¬ ‘s have been “pushed in”, applying only to propositions.
• We use the following rules:

• p → q ≡ ¬ p ∨ q ; p ↔ q ≡ (¬ p ∨ q) ∧ (¬ q ∨ p)
• ¬(p ∨ q) ≡ ¬ p ∧ ¬ q ; ¬(p ∧ q) ≡ ¬ p ∨ ¬ q ; ¬ ¬ p ≡ p
• ¬ (p U q) ≡ (¬ p) R (¬ q) ; ¬ (p R q) ≡ (¬ p) U (¬ q)
• F p ≡ T U p ; G p ≡ ⊥ R p ; ¬ X p ≡ X ¬ p

Examples:
((p U q) → F r) ≡ ¬(p U q) ∨ F r ≡ ¬(p U q) ∨ (T U r) ≡

≡ (¬ p R ¬ q) ∨ (T U r)

GF p → F r ≡ (⊥ R (Fp)) → (T U p) ≡ (⊥ R (T U p)) → (T U r) ≡
≡ ¬ (⊥ R (T U p)) ∨ (T U r) ≡ (T U ¬ (T U p)) ∨ (T U r) ≡
≡ (T U (⊥ R ¬ p)) ∨ (T U r)

31

LTL to BA translation

• States of Aϕ will be sets of subformulas of ϕ, thus if we
have ϕ= p1U¬p2, a state is given by Γ⊆{p1,¬p2,p1U¬p2}.

• Consider a word σ = σ0 , σ1 , σ2 ,…∈ΣAP
ω such that σ £ ϕ,

where, e.g., ϕ = ψ1Uψ2 .
• Mark each position i with the set of subformulas Γi of ϕ

that hold true there:
Γ0 Γ1 Γ2 …………
σ0 σ1 σ2 …………

• Clearly, ϕ ∈ Γ0 . But then, by consistency, either:
• ψ1 ∈ Γ0 and ϕ ∈ Γ1, or
• ψ2 ∈ Γ0 .

• The consistency rules dictate our states and transitions.

32

LTL to BA translation

Let sub(ϕ) denote the set of subformulas of ϕ.

We define Aϕ = (Q, Σ , R, L, Init, F) as follows.

First, the set of states of Aϕ is defined as follows:

• Q = {Γ ⊆ sub(ϕ) | s.t. Γ is locally consistent }.
• For Γ to be locally consistent we should, e.g., have:

• ⊥∉ Γ
• if ψ ∨ γ ∈ Γ, then ψ ∈ Γ or γ ∈ Γ.
• if ψ ∧ γ ∈ Γ, then ψ ∈ Γ and γ ∈ Γ.
• if pi ∈ Γ then ¬ pi∉ Γ, and if ¬ pi ∈ Γ then pi∉ Γ.
• if ψ U γ ∈ Γ, then (ψ ∈ Γ or γ ∈ Γ).

• if ψ R γ ∈ Γ, then γ ∈ Γ.

33

LTL to BA translation

Now, labeling of the states of Aϕ is defined as:

• The labeling L:QaΣ is L(Γ)={ l | l ∈ Γ ∩ Σ }.

• We want a word σ = σ0 σ1 … ∈ (ΣAP)ω to be in
L(Aϕ) iff there is a run π = Γ0 → Γ1 → Γ2 →… of
Aϕ s.t. ∀i∈Õ, we have that σi “satisfies” L(Γi), i.e.,
σi is a “satisfying assignment” for L(Γi) .

• This constitutes a slight redefinition of Büchi
automata, where labeling is on the states instead
of on the edges. This facilitates a much more
compact Aϕ.

34

LTL to BA translation

Then the transition relation of Aϕ.

It is based on the following LTL rules:

• (ψ U γ) ≡ γ ∨ (ψ ∧ X (ψ U γ))

• (ψ R γ) ≡ γ ∧ (ψ ∨ X (ψ R γ)) ≡ (γ ∧ ψ) ∨ (γ ∧ X(ψ R γ))

and on the semantics of the operator X.

• R ⊆ Q × Q , where (Γ,Γ’) ∈ R iff:

• if (ψ U γ) ∈ Γ then γ ∈ Γ, or (ψ ∈ Γ and (ψ U γ) ∈ Γ’).

• if (ψ R γ) ∈ Γ then γ ∈ Γ, and (ψ ∈ Γ or (ψ R γ) ∈ Γ’).

• if X ψ ∈ Γ, then ψ ∈ Γ’.

35

LTL to BA translation

• The initial states of Aϕ are Init = {Γ ∈ Q | ϕ ∈ Γ}.

• The accepting states of Aϕ are defined as follows:

for each (ψUγ) ∈ sub(ϕ), there is a set Fi∈ F, such that:

• Fi = {Γ ∈ Q | (ψ U γ) ∉ Γ or γ ∈ Γ}
or equivalently Fi = {Γ ∈ Q | if (ψ U γ) ∈ Γ, then γ ∈ Γ}

• Notice that if there is no (ψ U γ) ∈ sub(ϕ), then the
acceptance condition is the trivial acceptance condition: i.e.,
all states are accepting

Lemma: L(ϕ) = L(Aϕ) .

But Aϕ is now a generalized Büchi automaton …

36

LTL to BA translation: example

T U p p
T U p

p

Consider the following formula: F p ≡ T U p
sub(T U p) ={T U p , p}

Init = {Γ ∈ sub(T U p) | T U p ∈ Γ}

37

LTL to BA translation: example

T U p p
T U p

p

Consider the following formula: T U p
(T U p) ≡ p ∨ X (T U p)

38

LTL to BA translation: example

T U p p
T U p

p

Consider the following formula: T U p
(T U p) ≡ p ∨ X (T U p)

39

LTL to BA translation: example

T U p p
T U p

p

Consider the following formula: T U p
(T U p) ≡ p ∨ X (T U p)

40

LTL to BA translation: example

T U p p
T U p

p

Consider the following formula: T U p
(T U p) ≡ p ∨ X (T U p)

41

LTL to BA translation: example

T U p p
T U p

p

Consider the following formula: T U p
sub(T U p) ={T U p , p}

F = {FTUp } = {Γ ∈ sub(T U p) | (T U p) ∉ Γ or p ∈ Γ}

42

LTL to BA translation: example

Consider the following formula: G p ≡ ⊥ R p
sub(⊥ R p) ={⊥ R p , p}

Init = {Γ ∈ sub(⊥ R p) | ⊥ R p ∈ Γ}

⊥ R p

p

p
⊥ R p

43

LTL to BA translation: example

Consider the following formula: G p ≡ ⊥ R p
sub(⊥ R p) ={⊥ R p , p}
(⊥ R p) ≡ p ∧ X (⊥ R p)

⊥ R p

p

p
⊥ R p

44

LTL to BA translation: example

Consider the following formula: G p ≡ ⊥ R p
sub(⊥ R p) ={⊥ R p , p}

There are no eventualities, hence F = { Q }

⊥ R p

p

p
⊥ R p

The trivial
acceptance condition

45

LTL to BA translation: example

Consider the following formula: p U q
sub(p U q) ={p U q , p , q}

Init = {Γ ∈ sub(p U p) | p U q ∈ Γ}

p U q
p

p U q

p,q q

p U q
p,q

p U q
q

p

46

LTL to BA translation: example

p U q
p

p U q

p,q

Consider the following formula: p U q
sub(p U q) ={p U q , p , q}

Init = {Γ ∈ sub(p U p) | p U q ∈ Γ}

q

p U q
p,q

p U q
q

p

47

LTL to BA translation: example

p U q
p

p U q

p,q

Consider the following formula: p U q
sub(p U q) ={p U q , p , q}

(p U q) ≡ q ∨ (p ∧ X (p U q))

q

p U q
p,q

p U q
q

p

48

LTL to BA translation: example

p U q
p

p U q

p,q

Consider the following formula: p U q
sub(p U q) = {p U q , p , q}

F = { F p Uq } = {Γ ∈ sub(p U q) | (p U q) ∉ Γ or q ∈ Γ}

q

p U q
p,q

p U q
q

p

