Tecniche di Specifica e di Verifica

Automata-based
LTL Model-Checking

Finite state automata

A finite state automaton is a tuple $\mathrm{A}=\left(\Sigma, S, S_{0}, R, F\right)$

- Σ : set of input symbols
- S: set of states -- S_{0} : set of initial states ($\mathrm{S}_{0} \subseteq S$)
- $R: S \times \Sigma \rightarrow 2^{S}$: the transition relation.
- F: set of accepting states ($\mathrm{F} \subseteq S$)
- A run r on $w=a_{1}, \ldots, a_{n}$ is a sequence s_{0}, \ldots, s_{n} such that $s_{0} \in S_{0}$ and $s_{i+1} \in \mathbf{R}\left(s_{i} a_{i}\right)$ for $0 \leq i \leq n$.
- A run r is accepting if $s_{n} \in F$, while a word w is accepted by A if there is an accepting run of A on w.
- The language $\mathcal{L}(A)$ accepted by A is the set of finite words accepted by A.

Finite state automata: union

Given automata A_{1} and A_{2}, there is an automaton A accepting $\mathcal{L}(\mathbf{A})=\mathcal{L}\left(\mathbf{A}_{1}\right) \cup \mathcal{L}\left(\mathbf{A}_{2}\right)$
$\mathrm{A}=\left(\Sigma, S, S_{0}, R, F\right)$ is an automaton which just runs nondeterministically either A_{1} or A_{2} on the input word.

$$
\begin{aligned}
& S=S_{1} \cup S_{2} \\
& F=F_{1} \cup F_{2} \\
& S_{0}=S_{01} \cup S_{02} \\
& R(s, a)=\left\{\begin{array}{l}
R_{1}(s, a) \text { if } \mathrm{s} \in S_{1} \\
R_{2}(s, a) \text { if } \mathrm{s} \in S_{2}
\end{array}\right.
\end{aligned}
$$

Finite state automata: union

Finite state automata: intersection

Given automata A_{1} and A_{2}, there is an automaton A accepting $\mathcal{L}(\mathbf{A})=\mathcal{L}\left(\mathbf{A}_{1}\right) \cap \mathcal{L}\left(\mathbf{A}_{2}\right)$
$\mathrm{A}=\left(\Sigma, S, S_{0}, R, F\right)$ runs simultaneously both automata A_{1} and A_{2} on the input word.

$$
\begin{aligned}
& S=S_{1} \times S_{2} \\
& F=F_{1} \times F_{2} \\
& S_{0}=S_{01} \times S_{02}
\end{aligned}
$$

$$
R((s, t), a)=R_{I}(s, a) \times R_{2}(t, a)
$$

Finite state automata: intersection

Finite state automata: complementation

- If the automaton is deterministic, then it just suffices to set $F^{c}=S-F$.
- This doesn't work, though, for non-deterministic automata.
- Solution:

1. Determinize the automaton using the subset construction.
2. Complement the resulting deterministic automaton

- The complexity of this process is exponential in the size of the original automaton.
- The number of states of the final automaton is $2^{|S|}$, in the worst case.

Finite state automata: complementation

Büchi automata (BA)

A Büchi automaton is a tuple $\mathrm{A}=\left(\Sigma, S, S_{0}, R, F\right)$

- Σ : set of input symbols
- S: set of states -- S_{0} : set of initial states ($\mathrm{S}_{0} \subseteq S$)
- $R: S \times \Sigma \rightarrow 2^{S}$: the transition relation.
- F: set of accepting states ($\mathrm{F} \subseteq S$)
- A run r on $w=a_{1}, a_{2}, \ldots$ is an infinite sequence s_{0}, s_{1}, \ldots such that $s_{0} \in S_{0}$ and $s_{i+1} \in \mathbf{R}\left(\mathrm{~s}_{i}, a_{i}\right)$ for $\mathrm{i} \geq \mathbf{0}$.
- A run r is accepting if some accepting state in F occurs in r infinitely often.
- A word w is accepted by A if there is an accepting run of A on w, and the language $\mathcal{L}_{\omega}(A)$ accepted by A is the set of (infinite) ω-words accepted by A .

Büchi automata (BA)

A Büchi automaton is a tuple $\mathbf{A}=\left(\Sigma, S, S_{0}, R, F\right)$

- A run r on $w=a_{1}, a_{2}, \ldots$ is an infinite sequence s_{0}, s_{1}, \ldots such that $s_{0} \in S_{0}$ and $s_{i+1} \in \mathbf{R}\left(s_{\dot{v}} a_{i}\right)$ for $\mathbf{i} \geq \mathbf{0}$.
- Let $\operatorname{Lim}(r)=\left\{s \mid s=s_{i}\right.$ for infinitely many $\left.i\right\}$
- A run r is accepting if

$$
\operatorname{Lim}(r) \cap F \neq \varnothing
$$

- A word w is accepted by A if there is an accepting run of A on w.
- The language $\mathcal{L}_{\omega}(A)$ accepted by A is the set of (infinite) ω-words accepted by A.

Büchi automata: union

Given Büchi automata A_{1} and A_{2}, there is an Büchi automaton A accepting $\mathcal{L}_{\omega}(\mathbf{A})=\mathcal{L}_{\omega}\left(\mathbf{A}_{1}\right) \cup \mathcal{L}_{\omega}\left(\mathbf{A}_{2}\right)$.
The construction is the same as for ordinary automata.
$\mathbf{A}=\left(\Sigma, S, S_{0}, R, F\right)$ is an automaton which just runs nondeterministically either A_{1} or A_{2} on the input word.

$$
\begin{aligned}
& S=S_{1} \cup S_{2} \\
& F=F_{1} \cup F_{2} \\
& S_{0}=S_{01} \cup S_{02} \\
& R(s, a)=\left\{\begin{array}{l}
R_{1}(s, a) \text { if } \mathrm{s} \in S_{1} \\
R_{2}(s, a) \text { if } \mathrm{s} \in S_{2}
\end{array}\right.
\end{aligned}
$$

Büchi automata: intersection

- The intersection construction for automata does not work for Büchi automata.
- Instead, the intersection for Büchi automata can be defined as follows:
$\mathrm{A}=\left(\Sigma_{,}, S, S_{0}, R, F\right)$ intuitively runs simultaneously both automata $A_{1}=\left(\Sigma, S_{1}, S_{01}, R_{1}, F_{1}\right)$ and $A_{2}=\left(\Sigma, S_{2}, S_{02}, R_{2}, F_{2}\right)$ on the input word.

$$
\begin{gathered}
S=S_{1} \times S_{2} \times\{1,2\} \\
F=F_{1} \times S_{2} \times\{\mathbf{1}\} \\
S_{0}=S_{01} \times S_{02} \times\{\mathbf{1}\} \\
\boldsymbol{R}((s, t, i), a)= \begin{cases}\left(s^{\prime}, t^{\prime}, 2\right) & \text { if } \mathbf{s}^{\prime} \in \boldsymbol{R}_{I}(\mathbf{s}, \mathbf{a}), \mathbf{t}^{\prime} \in \boldsymbol{R}_{2}(\mathbf{t}, \mathrm{a}), \mathrm{s} \in F_{1} \text { and } \mathrm{i}=\mathbf{1} \\
\left(s^{\prime}, t^{\prime}, \mathbf{1}\right) & \text { if } \mathrm{s}^{\prime} \in \boldsymbol{R}_{1}(\mathbf{s}, \mathbf{a}), \mathbf{t}^{\prime} \in \boldsymbol{R}_{2}(\mathrm{~s}, \mathbf{a}), \mathrm{t} \in F_{2} \text { and } \mathrm{i}=\mathbf{2} \\
\left(s^{\prime}, t^{\prime}, i\right) & \text { if } \mathrm{s}^{\prime} \in \boldsymbol{R}_{I}(\mathrm{~s}, \mathbf{a}), \mathbf{t}^{\prime} \in \boldsymbol{R}_{I}(\mathbf{t}, \mathbf{a})\end{cases}
\end{gathered}
$$

Büchi automata: intersection

$\mathrm{A}=\left(\Sigma, S, S_{0}, R, F\right)$ runs simultaneously both automata A_{1} and A_{2} on the input word.

$$
\begin{gathered}
S=S_{1} \times S_{2} \times\{\mathbf{1}, 2\} \\
F=F_{1} \times S_{2} \times\{\mathbf{1}\} \\
S_{0}=S_{01} \times S_{02} \times\{\mathbf{1}\} \\
\boldsymbol{R}((s, t, i), a)= \begin{cases}\left(s^{\prime}, t^{\prime}, 2\right) & \text { if } \mathbf{s}^{\prime} \in \boldsymbol{R}_{I}(\mathbf{s}, \mathbf{a}), \mathbf{t}^{\prime} \in \boldsymbol{R}_{2}(\mathbf{t}, \mathbf{a}), \mathbf{s} \in \boldsymbol{F}_{1} \text { and } \mathbf{i}=\mathbf{1} \\
\left(s^{\prime}, t^{\prime}, 1\right) & \text { if } \mathbf{s}^{\prime} \in \boldsymbol{R}_{I}(\mathbf{s}, \mathbf{a}), \mathbf{t}^{\prime} \in \boldsymbol{R}_{2}(\mathbf{t}, \mathbf{a}), \mathbf{t} \in \boldsymbol{F}_{2} \text { and } \mathbf{i}=\mathbf{2} \\
\left(s^{\prime}, t^{\prime}, i\right) & \text { if } \mathbf{s}^{\prime} \in \boldsymbol{R}_{I}(\mathbf{s}, \mathbf{a}), \mathbf{t}^{\prime} \in \boldsymbol{R}_{I}(\mathbf{t}, \mathbf{a})\end{cases}
\end{gathered}
$$

The automaton remembers 2 tracks, one for each automaton, and points to one of the tracks. As soon as it goes through an accepting state on the current track, it changes track.
The accepting condition and the transition relation ensure that this change of track must happens infinitely often

Büchi automata: intersection

$\mathrm{A}=\left(\Sigma, S, S_{0}, R, F\right)$ runs simultaneously both automata A_{1} and A_{2} on the input word.

$$
\begin{gathered}
S=S_{1} \times S_{2} \times\{\mathbf{1}, 2\} \\
F=F_{1} \times S_{2} \times\{\mathbf{1}\} \\
S_{0}=S_{01} \times S_{02} \times\{\mathbf{1}\} \\
R((s, t, i), a)= \begin{cases}\left(s^{\prime}, t^{\prime}, 2\right) & \text { if } \mathbf{s}^{\prime} \in R_{I}(\mathbf{s}, \mathbf{a}), \mathbf{t}^{\prime} \in R_{2}(\mathbf{t}, \mathbf{a}), \mathbf{s} \in \boldsymbol{F}_{1} \text { and } \mathbf{i}=\mathbf{1} \\
\left(s^{\prime}, t^{\prime}, 1\right) & \text { if } \mathbf{s}^{\prime} \in \boldsymbol{R}_{I}(\mathbf{s}, \mathbf{a}), \mathbf{t}^{\prime} \in \boldsymbol{R}_{2}(\mathbf{t}, \mathbf{a}), \mathbf{t} \in \boldsymbol{F}_{2} \text { and } \mathbf{i}=\mathbf{2} \\
\left(s^{\prime}, t^{\prime}, i\right) & \text { if } \mathbf{s}^{\prime} \in \boldsymbol{R}_{I}(\mathbf{s}, \mathbf{a}), \mathbf{t}^{\prime} \in \boldsymbol{R}_{I}(\mathbf{t}, \mathbf{a})\end{cases}
\end{gathered}
$$

As soon as it visits an accepting state in track 1, it switches to track 2 and then to track 1 again but only after visiting an accepting state in the track 2.
Therefore, to visit infinitely often a state in $F\left(F_{1}\right)$, the automaton must also visit infinitely often some state of $\boldsymbol{F}_{2 \text {. }}{ }^{14}$

Büchi automata: complementation

It's a complicated construction -- the standard subset construction for determinizing automata doesn't work as non-deterministic automata are more powerful than

Solution (resorts to another kind of automaton):

- Transform the (non-deterministic) Büchi automaton into a (non-deterministic) Rabin automaton (a more general kind of ω-automaton).
- Determinize and then complement the Rabin automaton.
- Transform the Rabin automaton into a Büchi automaton.
- Therefore, also Büchi automata are closed under complementation.

Rabin automata

- A Rabin automaton is like a Büchi automaton, except that the accepting condition is defined differently.
- $A=\left(\Sigma, S, S_{0}, R, F\right)$, where $F=\left(\left(G_{1}, \boldsymbol{B}_{1}\right), \ldots,\left(G_{m}, B_{m}\right)\right)$.
- and the acceptance condition for a run $r=s_{0,}, s_{1}, \ldots$ is as follows: for some i
- $\operatorname{Lim}(r) \cap G_{i} \neq \varnothing$ and
- $\operatorname{Lim}(r) \cap B_{i}=\varnothing$
in other words, there is a pair $\left(G_{i}, B_{i}\right)$ such that the "good" set (G_{i}) is visited infinitely often, while the "bad" set $\left(B_{i}\right)$ is visited only finitely often.

Rabin versus Büchi automata

The Büchi automaton fot $\mathcal{L}_{\omega}=(0+1)^{*} 1^{\omega}$

The Rabin automaton fot $\mathcal{L}_{\omega}=(0+1)^{*} 1^{\omega}$

The Rabin automaton has $F=((\{t\},\{s\}))$
Note that the Rabin automaton is deterministic.

Language emptiness for Büchi automata

The emptiness problem for Büchi automata is the problem of deciding whether the language accepted by a Büchi automaton \mathbf{A} is empty, i.e. if $\mathcal{L}(\mathbf{A})=\varnothing$.

Theorem: The emptiness problem for Büchi automata is decidable in linear time, i.e. in time $\mathbf{O}(|\mathrm{A}|)$.

Fact: $\mathcal{L}(\mathbf{A})=\varnothing$ iff in the Büchi automaton there is no reachable cycle A containing a state in F.

Language emptiness for Büchi automata

In other words, $\mathcal{L}(\mathbf{A}) \neq \varnothing$ iff there is a cycle containing an accepting state, which is also reachable from some initial state of the automaton.

We need to find whether there is such a reachable cycle
We could simply compute the SCCs of \mathbf{A} using the standard DFS algorithm, and check if there exists a reachable (nontrivial) $S C C$ containing a state in F.

But this is usually too inefficient in practice. We will therefore use a more efficient nested DFS (more efficient in the average-case).

Efficient language emptiness for BA

```
Input: A
Initialize: Stack
    Table }:=\varnothing,\mp@subsup{\mathrm{ Table }}{2}{}:=
Algorithm Main()
    foreach s\in Init
        if s}\not\in\mp@subsup{\mathrm{ Table }}{1}{}\mathrm{ then
        DFS1(s);
    output("empty");
    return;
Algorithm DFS1(s)
    push(s,Stack 
    hash(s,Table );
    foreach t\inSucc(s)
    if t & Table }\mp@subsup{}{1}{}\mathrm{ then
        DFS1(t);
    if }\textrm{s}\in\textrm{F}\mathrm{ F then
        DFS2(s);
    pop(Stack}\mp@subsup{)}{1}{\prime}\mathrm{ ;
```

```
Algorithm DFS2(s)
    push(s,Stack 2);
    hash(s,Table 2);
    foreach t }\in\operatorname{Succ}(\mathbf{s})\mathbf{do
        if t& Table e}\mathrm{ then
        DFS2(t)
        else if t is on Stack
        output("not empty");
        output(Stack}\mp@subsup{}{1}{},\mp@subsup{\mathrm{ Stack }}{2}{},\textrm{t})
        return;
    pop(Stack}\mp@subsup{)}{2}{\prime}\mathrm{ ;
```

Note: upon finding a bad cycle, Stack $_{1}+$ Stack $_{2}+\mathrm{t}$, determines a counterexample: a bad cycle reached from an init state.

Generalized Büchi automata (GBA)

Generalized Büchi automaton: $\mathrm{A}=\left(\Sigma, S, S_{0}, R,\left(F_{1}, \ldots, F_{m}\right)\right)$

- A run r on $w=a_{1}, a_{2}, \ldots$ is an infinite sequence s_{0}, s_{1}, \ldots such that $s_{0} \in S_{0}$ and $s_{i+1} \in \mathbf{R}\left(s_{i} a_{i}\right)$ for $i \geq \mathbf{0}$.
- Let $\operatorname{Lim}(r)=\left\{s \mid s=s_{i}\right.$ for infinitely many $\left.i\right\}$
- A run r is accepting if for each $1 \leq i \leq m$

$$
\operatorname{Lim}(r) \cap F_{i} \neq \varnothing
$$

Any Generalized Büchi automaton can be easily transformed into a Büchi automaton as follows:

$$
\mathcal{L}\left(\Sigma, S, S_{0}, \boldsymbol{R},\left(\boldsymbol{F}_{1}, \ldots, \boldsymbol{F}_{m}\right)\right)=\underset{i \in\{I, \ldots, m\}}{\cap} \mathcal{L}\left(\Sigma, S, S_{0}, \boldsymbol{R}, \boldsymbol{F}_{i}\right)
$$

This transformation is not very efficient, though.

From GBA to BA efficiently

Generalized Büchi automaton: $\mathrm{A}=\left(\Sigma, S, S_{0}, R,\left(F_{1}, \ldots, F_{m}\right)\right)$
A Generalized Büchi automaton can be efficiently transformed into a Büchi automaton as follows:

$$
\left.\begin{array}{c}
S^{\prime}=S \times\{1, \ldots, m\} \\
F^{\prime}=F \times\{i\} \text { for some } 1 \leq i \leq m \\
S_{0}^{\prime}=S_{0} \times\{i\} \text { for some } 1 \leq i \leq m
\end{array}\right\} \begin{array}{ll}
((s, i), a)= \begin{cases}\left(s^{\prime},(i \bmod m)+1\right) & \text { if } \mathrm{s}^{\prime} \in R(\mathrm{~s}, \mathrm{a}) \text { and } \mathrm{s} \in F_{i} \\
\left(s^{\prime}, i\right) & \text { f } \mathrm{s}^{\prime} \in R(\mathrm{~s}, \mathrm{a}) \text { and } \mathrm{s} \notin F_{i}\end{cases}
\end{array}
$$

Notice that the transformation above expands the automaton size by a factor of m (compare with Büchi Intersection).

LTL-semantics and Büchi automata

- We can interpret a formula ψ as expressing a property of ω-words, i.e., an ω-language $L(\psi) \subseteq \Sigma_{A P}{ }^{\omega}$.
- For ω-word $\sigma=\sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots \ldots \in \Sigma_{A P}{ }^{\omega}$, let $\sigma^{i}=\sigma_{i}, \sigma_{i+1}$, $\sigma_{i+2} \ldots$ be the suffix of σ starting at position i. We defined the "satisfies" relation, \vDash, inductively:
- $\sigma \vDash p_{j} \quad$ iff $p_{j} \in \sigma_{0} \quad\left(f o r ~ a n y ~ p_{j} \in \mathbf{P}\right)$.
- $\sigma \vDash \neg \psi$ iff \quad not $\sigma \vDash \psi$.
- $\sigma \vDash \psi_{1} \vee \psi_{2}$ iff $\sigma \vDash \psi_{1}$ or $\sigma \vDash \psi_{2}$.
- $\sigma \vDash \mathbf{X} \psi$ iff $\sigma^{l} \vDash \psi$.
- $\sigma \vDash \psi_{1} \mathbf{U} \psi_{2}$ iff $\exists i \geq \mathbf{0}$ such that $\sigma^{i} \vDash \psi_{2}$,

$$
\text { and } \forall \mathbf{j}, \mathbf{0} \leq \mathbf{j}<\mathbf{i}, \sigma^{j} \vDash \psi_{1} .
$$

- We can then define the language $\mathcal{L}(\psi)=\{\sigma \mid \sigma \vDash \psi\}$.

Relation with Kripke structures

We extend our definition of "satisfies" to transition systems, or Kripke structures, as follows:

- $K_{A P} \vDash \psi$ iff for all computations (runs) π of $K_{A P}$, $\mathcal{L}(\pi) \vDash \psi$, or in other words, iff

$$
\mathcal{L}\left(\mathbf{K}_{A P}\right) \subseteq \mathcal{L}(\psi) .
$$

Relation with Kripke structures

We could transform any Kripke structure into a Büchi automaton as follows:

where every state is accepting! ${ }_{25}$

LTL Model Checking

LTL Model Checking: explanation

$$
\begin{aligned}
\mathbf{M} \vDash \psi & \Leftrightarrow \mathcal{L}\left(\mathbf{K}_{A P}\right) \subseteq \mathcal{L}(\psi) \\
& \Leftrightarrow \mathcal{L}\left(\mathbf{K}_{A P}\right) \cap\left(\Sigma_{A P}{ }^{\omega} \backslash \mathcal{L}(\psi)\right)=\varnothing \\
& \Leftrightarrow \mathcal{L}\left(\mathbf{K}_{A P}\right) \cap \mathcal{L}(\neg \psi)=\varnothing \\
& \Leftrightarrow \mathcal{L}\left(\mathbf{K}_{A P}\right) \cap \mathcal{L}\left(\mathbf{A}_{\neg \psi}\right)=\varnothing \\
& \Leftrightarrow \mathcal{L}\left(\mathbf{K}_{A P} \cap \mathbf{A}_{\neg \psi}\right)=\varnothing
\end{aligned}
$$

The algorithmic tasks to perform

We have reduced LTL model checking to two tasks:
1 Convert an LTL formula φ (i.e. $\neg \psi$) into a Büchi automaton A_{φ}, such that $\mathcal{L}(\varphi)=\mathcal{L}\left(\mathbf{A}_{\varphi}\right)$.

- Can we do this in general? Yes!!!......

2 Check whether $K_{A P} \vDash \psi$, by checking whether the intersection of languages $\mathcal{L}\left(K_{A P}\right) \cap \mathcal{L}\left(\mathbf{A}_{\neg \psi}\right)$ is empty.

- It is actually unwise to first construct all of $K_{A P}$, because $\mathrm{K}_{A P}$ can be far too big (state explosion).
- Instead, it is possible perform the check by constructing states of $\mathbf{K}_{A P}$ only as needed.

LTL to BA translation

- First, let's put LTL formulas φ in normal form where:
- \neg 's have been "pushed in", applying only to propositions.
- the only propositional operators are \neg, \wedge, \vee.
- the only temporal operators are \mathbf{X}, \mathbf{U} and its dual \mathbf{R}.
- In order to do that we use the following rules:
- $\mathrm{p} \rightarrow \mathrm{q} \equiv \neg \mathrm{p} \vee \mathrm{q} ; \mathrm{p} \leftrightarrow \mathrm{q} \equiv(\neg \mathrm{p} \vee \mathrm{q}) \wedge(\neg \mathrm{q} \vee \mathrm{p})$
- $\neg(\mathrm{p} \vee \mathrm{q}) \equiv \neg \mathrm{p} \wedge \neg \mathrm{q} ; \neg(\mathrm{p} \wedge \mathrm{q}) \equiv \neg \mathrm{p} \vee \neg \mathrm{q} ; \neg \neg \mathrm{p} \equiv \mathrm{p}$
- $\neg(\mathrm{p} \mathbf{U} q) \equiv(\neg \mathrm{p}) \mathbf{R}(\neg \mathrm{q}) ; \neg(\mathrm{p} \mathbf{R} \mathrm{q}) \equiv(\neg \mathrm{p}) \mathbf{U}(\neg \mathrm{q})$
- $\mathrm{Fp} \equiv \mathcal{T} \mathbf{U} p ; \mathrm{G} p \equiv \perp \mathbf{R} p ; \neg \mathrm{X} p \equiv \mathrm{X} \neg \mathrm{p}$

LTL to BA translation

- First, let's put LTL formulas φ in normal form
- \neg 's have been "pushed in", applying only to propositions.
- We use the following rules:
- $\mathrm{p} \rightarrow \mathrm{q} \equiv \neg \mathrm{p} \vee \mathrm{q} ; \mathrm{p} \leftrightarrow \mathrm{q} \equiv(\neg \mathrm{p} \vee \mathrm{q}) \wedge(\neg \mathrm{q} \vee \mathrm{p})$
- $\neg(\mathrm{p} \vee \mathrm{q}) \equiv \neg \mathrm{p} \wedge \neg \mathrm{q} ; \neg(\mathrm{p} \wedge \mathrm{q}) \equiv \neg \mathrm{p} \vee \neg \mathrm{q} ; \neg \neg \mathrm{p} \equiv \mathrm{p}$
- $\neg(\mathrm{p} \mathbf{U} \mathrm{q}) \equiv(\neg \mathrm{p}) \mathbf{R}(\neg \mathrm{q}) ; \neg(\mathrm{p} \mathbf{R} \mathrm{q}) \equiv(\neg \mathrm{p}) \mathbf{U}(\neg \mathrm{q})$
- $\mathrm{Fp} \equiv \boldsymbol{T} \mathbf{U} p ; \mathrm{G} p \equiv \perp \mathbf{R} p ; \neg \mathrm{X} p \equiv \mathrm{X} \neg \mathrm{p}$

Examples:

$$
\begin{aligned}
&((\mathrm{p} U \mathrm{q}) \rightarrow \mathrm{Fr}) \equiv \neg(\mathrm{p} \mathrm{Uq}) \vee \mathrm{Fr} \equiv \neg(\mathrm{p} \mathrm{Uq}) \vee(\mathcal{T} \mathrm{Ur}) \equiv \\
& \equiv(\neg \mathrm{pR} \neg \mathrm{q}) \vee(\mathcal{T} \mathrm{Ur}) \\
& \mathrm{GF} \mathrm{p} \rightarrow \mathrm{Fr} \equiv(\perp \mathbf{R}(\mathrm{Fp})) \rightarrow(\mathcal{T} \mathrm{Up}) \equiv(\perp \mathbf{R}(\mathcal{T} \mathrm{U} p)) \rightarrow(\mathcal{T} \mathrm{Ur}) \equiv \\
& \equiv \neg(\perp \mathbf{R}(\mathcal{T} \mathrm{U} \mathrm{p})) \vee(\mathcal{T} \mathrm{Ur}) \equiv(\mathcal{T} \mathrm{U} \neg(\mathcal{T} \mathrm{U} p)) \vee(\mathcal{T} \mathrm{Ur}) \equiv \\
& \equiv(\mathcal{T} \mathrm{U}(\perp \mathrm{R} \neg \mathrm{p})) \vee(\mathcal{T} \mathrm{Ur})
\end{aligned}
$$

LTL to BA translation

- States of \mathbf{A}_{φ} will be sets of subformulas of φ, thus if we have $\varphi=\mathbf{p}_{1} \mathbf{U} \neg \mathbf{p}_{2}$, a state is given by $\Gamma \subseteq\left\{\mathbf{p}_{1}, \neg \mathbf{p}_{2}, \mathbf{p}_{1} \mathbf{U} \neg \mathbf{p}_{2}\right\}$.
- Consider a word $\sigma=\sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots \in \Sigma_{A P}{ }^{\omega}$ such that $\sigma \vDash \varphi$, where, e.g., $\varphi=\psi_{1} \mathbf{U} \psi_{2}$.
- Mark each position i with the set of subformulas Γ_{i} of φ that hold true there:

$$
\begin{aligned}
& \Gamma_{0} \\
& \Gamma_{1} \\
& \Gamma_{2}
\end{aligned} \ldots \ldots \ldots \ldots .
$$

- Clearly, $\varphi \in \Gamma_{0}$. But then, by consistency, either:
- $\psi_{1} \in \Gamma_{0}$ and $\varphi \in \Gamma_{1}$, or
- $\psi_{2} \in \Gamma_{0}$.
- The consistency rules dictate our states and transitions.

LTL to BA translation

Let $\operatorname{sub}(\varphi)$ denote the set of subformulas of φ.
We define $\mathbf{A}_{\varphi}=(\mathbf{Q}, \Sigma, \mathbf{R}, \mathbf{L}, \mathbf{I n i t}, \mathbf{F})$ as follows.
First, the set of states of \mathbf{A}_{φ} is defined as follows:

- $\mathbf{Q}=\{\Gamma \subseteq \operatorname{sub}(\varphi) \mid$ s.t. Γ is locally consistent $\}$.
- For Γ to be locally consistent we should, e.g., have:
- $\perp \notin \Gamma$
- if $\psi \vee \gamma \in \Gamma$, then $\psi \in \Gamma$ or $\gamma \in \Gamma$.
- if $\psi \wedge \gamma \in \Gamma$, then $\psi \in \Gamma$ and $\gamma \in \Gamma$.
- if $\mathbf{p}_{\mathbf{i}} \in \Gamma$ then $\neg \mathbf{p}_{\mathrm{i}} \notin \Gamma$, and if $\neg \mathbf{p}_{\mathbf{i}} \in \Gamma$ then $\mathbf{p}_{\mathrm{i}} \notin \Gamma$.
- if $\psi \mathbf{U} \gamma \in \Gamma$, then $(\psi \in \Gamma$ or $\gamma \in \Gamma)$.
- if $\psi \mathbf{R} \gamma \in \Gamma$, then $\gamma \in \Gamma$.

LTL to BA translation

Now, labeling of the states of \mathbf{A}_{φ} is defined as:

- The labeling $\mathbf{L}: \mathbf{Q} \mapsto \Sigma$ is $\mathbf{L}(\Gamma)=\{\mathbf{1} \mid \mathbf{l} \in \Gamma \cap \Sigma\}$.
- We want a word $\sigma=\sigma_{0} \sigma_{1} \ldots \in\left(\Sigma_{\mathrm{AP}}\right)^{\omega}$ to be in $\mathcal{L}\left(\mathbf{A}_{\varphi}\right)$ iff there is a run $\pi=\Gamma_{0} \rightarrow \Gamma_{1} \rightarrow \Gamma_{2} \rightarrow \ldots$ of \mathbf{A}_{φ} s.t. $\forall \mathbf{i} \in \mathbb{N}$, we have that $\sigma_{\mathbf{i}}$ "satisfies" $\mathrm{L}\left(\Gamma_{\mathbf{i}}\right)$, i.e., σ_{i} is a "satisfying assignment" for $\mathbf{L}\left(\Gamma_{\mathrm{i}}\right)$.
- This constitutes a slight redefinition of Büchi automata, where labeling is on the states instead of on the edges. This facilitates a much more compact \mathbf{A}_{φ}.

LTL to BA translation

Then the transition relation of \mathbf{A}_{φ}.
It is based on the following $L T L$ rules:

- $(\psi \mathbf{U} \gamma) \equiv \gamma \vee(\psi \wedge \mathbf{X}(\psi \mathbf{U} \gamma))$
- $(\psi \mathbf{R} \gamma) \equiv \gamma \wedge(\psi \vee \mathbf{X}(\psi \mathbf{R} \gamma)) \equiv(\gamma \wedge \psi) \vee(\gamma \wedge \mathbf{X}(\psi \mathbf{R} \gamma))$ and on the semantics of the operator \mathbf{X}.
- $\mathbf{R} \subseteq \mathbf{Q} \times \mathbf{Q}$, where $\left(\Gamma, \Gamma^{\prime}\right) \in \mathbf{R}$ iff:
- if $(\psi \mathbf{U} \gamma) \in \Gamma$ then $\gamma \in \Gamma$, or $\left(\psi \in \Gamma\right.$ and $\left.(\psi \mathbf{U} \gamma) \in \Gamma^{\prime}\right)$.
- if $(\psi \mathbf{R} \gamma) \in \Gamma$ then $\gamma \in \Gamma$, and $\left(\psi \in \Gamma\right.$ or $\left.(\psi \mathbf{R} \gamma) \in \Gamma^{\prime}\right)$.
- if $\mathbf{X} \psi \in \Gamma$, then $\psi \in \Gamma$.

LTL to BA translation

- The initial states of \mathbf{A}_{φ} are Init $=\{\Gamma \in \mathbf{Q} \mid \varphi \in \Gamma\}$.
- The accepting states of \mathbf{A}_{φ} are defined as follows: for each $(\psi \mathbf{U} \gamma) \in \operatorname{sub}(\varphi)$, there is a set $\mathbf{F}_{i} \in \mathbf{F}$, such that:
- $\mathbf{F}_{i}=\{\Gamma \in \mathbf{Q} \mid(\psi \mathbf{U} \gamma) \notin \Gamma$ or $\gamma \in \Gamma\}$ or equivalently $\mathbf{F}_{i}=\{\Gamma \in \mathbf{Q} \mid$ if $(\psi \mathbf{U} \gamma) \in \Gamma$, then $\gamma \in \Gamma\}$
- Notice that if there is no $(\psi \mathbf{U} \gamma) \in \operatorname{sub}(\varphi)$, then the acceptance condition is the trivial acceptance condition: i.e., all states are accepting
Lemma: $\mathcal{L}(\varphi)=\mathcal{L}\left(\mathbf{A}_{\varphi}\right)$.
But \mathbf{A}_{φ} is now a generalized Büchi automaton ...

LTL to BA translation: example

Consider the following formula: $\mathbb{F} \boldsymbol{p} \equiv \mathcal{T} \mathbf{U} \boldsymbol{p}$

$$
\begin{gathered}
\operatorname{sub}(\mathcal{T} \mathbf{U} \boldsymbol{p})=\{\mathcal{T} \mathbf{U} \boldsymbol{p}, \boldsymbol{p}\} \\
\text { Init }=\{\Gamma \in \operatorname{sub}(\mathcal{T} \mathbf{U} \boldsymbol{p}) \mid \mathcal{T} \mathbf{U} \boldsymbol{p} \in \Gamma\}
\end{gathered}
$$

LTL to BA translation: example

Consider the following formula: $\mathcal{T} \mathbf{U} \boldsymbol{p}$

$$
(\mathcal{T} \mathbf{U} \boldsymbol{p}) \equiv \boldsymbol{p} \vee \mathbf{X}(\mathcal{T} \mathbf{U} \boldsymbol{p})
$$

LTL to BA translation: example

Consider the following formula: $\tau \mathbb{U} \boldsymbol{p}$

$$
(\mathcal{T} \mathbf{U} \boldsymbol{p}) \equiv \boldsymbol{p} \vee \mathbf{X}(\mathcal{T} \mathbf{U} \boldsymbol{p})
$$

LTL to BA translation: example

Consider the following formula: $\mathcal{T} \mathbf{U} \boldsymbol{p}$

$$
(\mathcal{T} \mathbf{U} \boldsymbol{p}) \equiv \boldsymbol{p} \vee \mathbf{X}(\mathcal{T} \mathbf{U} \boldsymbol{p})
$$

LTL to BA translation: example

Consider the following formula: $\mathcal{T} \mathbf{U} \boldsymbol{p}$

$$
(\mathcal{T} \mathbf{U} \boldsymbol{p}) \equiv \boldsymbol{p} \vee \mathbf{X}(\mathcal{T} \mathbf{U} \boldsymbol{p})
$$

LTL to BA translation: example

Consider the following formula: $\mathcal{T} \mathbf{U} \boldsymbol{p}$

$$
\begin{gathered}
\operatorname{sub}(\mathcal{T} \mathbf{U} \boldsymbol{p})=\{\mathcal{T} \mathbf{U} \boldsymbol{p}, \mathbf{p}\} \\
\mathbf{F}=\left\{\mathbf{F}_{\mathcal{T} \mathbf{U} p}\right\}=\{\Gamma \in \operatorname{sub}(\mathcal{T} \mathbf{U} \boldsymbol{p}) \mid(\mathcal{T} \mathbf{U} \boldsymbol{p}) \notin \Gamma \text { or } \boldsymbol{p} \in \Gamma\}
\end{gathered}
$$

LTL to BA translation: example

Consider the following formula: $\mathbf{G} p \equiv \perp \mathbf{R} p$

$$
\operatorname{sub}(\perp \mathbf{R} p)=\{\perp \mathbf{R} p, p\}
$$

Init $=\{\Gamma \in \operatorname{sub}(\perp \mathbf{R} p) \mid \perp \mathbf{R} p \in \Gamma\}$

LTL to BA translation: example

Consider the following formula: $\mathbf{G} p \equiv \perp \mathbf{R} p$

$$
\begin{gathered}
\operatorname{sub}(\perp \mathbf{R} p)=\{\perp \mathbf{R} p, p\} \\
(\perp \mathbf{R} p) \equiv \boldsymbol{p} \wedge \mathbf{X}(\perp \mathbf{R} p)
\end{gathered}
$$

LTL to BA translation: example

Consider the following formula: $\mathbf{G} \boldsymbol{p} \equiv \perp \mathbf{R} p$

$$
\operatorname{sub}(\perp \mathbf{R} p)=\{\perp \mathbf{R} p, p\}
$$

There are no eventualities, hence $F=\{Q\}$

LTL to BA translation: example

Consider the following formula: $p \mathbf{U} q$

$$
\operatorname{sub}(p \mathbf{U} q)=\{p \cup q, p, q\}
$$

$$
\text { Init }=\{\Gamma \in \operatorname{sub}(p \mathbf{U} p) \mid p \mathbf{U} \boldsymbol{q} \in \Gamma\}
$$

LTL to BA translation: example

Consider the following formula: $p \mathbf{U} q$

$$
\operatorname{sub}(p \mathbf{U} q)=\{p \cup q, p, q\}
$$

$$
\text { Init }=\{\Gamma \in \operatorname{sub}(p \mathbf{U} p) \mid p \mathbf{U} \boldsymbol{q} \in \Gamma\}
$$

LTL to BA translation: example

Consider the following formula: $p \mathbf{U} q$

$$
\begin{gathered}
\operatorname{sub}(p \mathbf{U} q)=\{p \mathbf{U} q, p, q\} \\
(p \mathbf{U} q) \equiv q \vee(p \wedge \mathbf{X}(p \mathbf{U} q))
\end{gathered}
$$

LTL to BA translation: example

Consider the following formula: $p \mathbf{U} q$

$$
\begin{gathered}
\operatorname{sub}(p \mathbf{U} q)=\{p \mathbf{U} q, p, q\} \\
\mathbf{F}=\left\{\mathbf{F}_{p \mathbf{U} q}\right\}=\{\Gamma \in \operatorname{sub}(p \mathbf{U} q) \mid(p \mathbf{U} q) \notin \Gamma \text { or } \boldsymbol{q} \in \Gamma\}_{48}
\end{gathered}
$$

