Tecniche di Specifica e di Verifica

Boolean Decision Diagrams I (BDDs)

Outline

- NuSMV
- The state explosion problem.
- Techniques for overcoming this problem:
- Compact representation of the state space.
- BDDs.
- Abstractions (bisimulations)
- Symmetries.
- Partial Order Reductions.

NuSMV

- New Symbolic Model Verifier.
- Developed at CMU-IRST (Ed Clarke, Ken McMillan, Cimatti et al.) as extension/reimplementation of SMV.
- NuSMV has its own input language (also called SMV!).

NuSMV

- You must prepare your verification problem in this language.
- An NuSMV program is a convenient way to describe a Kripke structure.
- You can insert the properties you want to verify in the program.
- Read the tutorial and on a need-to-know basis, the manual.

Parallel Composition

- $\mathbf{T S}_{1}=\left(\mathbf{S}_{1}, \mathbf{S}_{1}{ }^{\mathbf{0}}, \Sigma_{1}, \mathbf{R}_{1}\right) \quad \mathbf{R}_{\mathbf{1}} \boldsymbol{\mu} \mathbf{S}_{\mathbf{1}} \mathbf{£} \Sigma_{\mathbf{1}} \mathbf{£} \mathbf{S}_{\mathbf{1}}$
- $\mathbf{T S}_{2}=\left(\mathbf{S}_{2}, \mathbf{S}_{2}{ }^{0}, \Sigma_{2}, \mathbf{R}_{2}\right) \quad \mathbf{R}_{2} \boldsymbol{\mu} \mathbf{S}_{\mathbf{2}} £ \Sigma_{2} £ \mathbf{S}_{2}$
- $\mathbf{a} 2 \Sigma_{1}$ and $\mathbf{a} \notin \Sigma_{2}$
- An "internal" action of TS_{1}.
- a $2 \Sigma_{1} \AA \Sigma_{2}$
- A common (synchronizing) action of TS_{1} and TS_{2}.

Parallel Composition

- $\mathbf{T S}_{1}=\left(\mathbf{S}_{1}, \mathbf{S}_{1}{ }^{0}, \Sigma_{1}, \mathbf{R}_{1}\right) \quad \mathbf{R}_{1} \boldsymbol{\mu} \mathbf{S}_{1} \mathbf{£} \Sigma_{1} \mathbf{£} \mathbf{S}_{\mathbf{1}}$
- $\mathbf{T S}_{2}=\left(\mathbf{S}_{2}, \mathbf{S}_{2}{ }^{0}, \Sigma_{2}, \mathbf{R}_{2}\right) \quad \mathbf{R}_{2} \boldsymbol{\mu} \mathbf{S}_{\mathbf{2}} £ \Sigma_{2} \mathbf{£} \mathbf{S}_{\mathbf{2}}$
- $\mathrm{TS}=\left(\mathrm{TS}_{1} \mathrm{kTS}_{2}\right)=\left(\mathbf{S}, \mathrm{S}^{0}, \Sigma, \mathbf{R}\right)$.

$$
\begin{aligned}
& -\mathbf{S}=\mathbf{S}_{1} £ \mathbf{S}_{\mathbf{2}} \\
& -\mathbf{S}^{0}=\mathbf{S}_{1}{ }^{0} £ \mathbf{S}_{2}{ }^{0} \\
& -\Sigma=\Sigma_{1}\left[\Sigma_{2}\right.
\end{aligned}
$$

Parallel Composition

- $\mathbf{T S}_{1}=\left(\mathbf{S}_{1}, \mathbf{S}_{1}{ }^{\mathbf{0}}, \Sigma_{1}, \mathbf{R}_{1}\right) \quad \mathbf{R}_{\mathbf{1}} \boldsymbol{\mu} \mathbf{S}_{\mathbf{1}} \mathbf{£} \Sigma_{\mathbf{1}} \mathbf{£} \mathbf{S}_{\mathbf{1}}$
- $\mathbf{T S}_{2}=\left(\mathbf{S}_{2}, \mathbf{S}_{2}{ }^{0}, \Sigma_{2}, \mathbf{R}_{2}\right) \quad \mathbf{R}_{2} \boldsymbol{\mu} \mathbf{S}_{\mathbf{2}} £ \Sigma_{2} \mathbf{£} \mathbf{S}_{\mathbf{2}}$
- $\mathrm{TS}=\left(\mathrm{TS}_{1} \mathrm{kTS}_{2}\right)=\left(\mathbf{S}, \mathbf{S}^{0}, \Sigma, \mathbf{R}\right)$.

$$
\begin{aligned}
& -\mathbf{R} \boldsymbol{\mu} \mathbf{S} \boldsymbol{£} \boldsymbol{£} \mathbf{S} \\
& -\mathrm{S}=\mathrm{S}_{1} \mathbf{£} \mathrm{~S}_{2} \text {. } \\
& -\mathbf{R}((\mathbf{s} 1, \mathbf{s} \mathbf{2}), \mathbf{a},(\mathbf{t} \mathbf{1}, \mathbf{t} \mathbf{2})) \text { ? } \\
& \text { - if a } 2 \Sigma_{1} \text { and } \mathbf{a} \notin \Sigma_{2} \\
& \text { - then } \mathbf{R}_{1}(\mathrm{~s} 1, \mathrm{a}, \mathbf{t 1}) \text { and } \mathbf{s} \mathbf{2}=\mathbf{t} \mathbf{2} \text {. }
\end{aligned}
$$

Parallel Composition

- $\mathbf{T S}_{1}=\left(\mathbf{S}_{1}, \mathbf{S}_{1}{ }^{\mathbf{0}}, \Sigma_{1}, \mathbf{R}_{1}\right) \quad \mathbf{R}_{\mathbf{1}} \boldsymbol{\mu} \mathbf{S}_{\mathbf{1}} \mathbf{£} \Sigma_{\mathbf{1}} \mathbf{£} \mathbf{S}_{\mathbf{1}}$
- $\mathbf{T S}_{2}=\left(\mathbf{S}_{2}, \mathbf{S}_{2}{ }^{0}, \Sigma_{2}, \mathbf{R}_{2}\right) \quad \mathbf{R}_{2} \boldsymbol{\mu} \mathbf{S}_{\mathbf{2}} £ \Sigma_{2} \mathbf{£} \mathbf{S}_{\mathbf{2}}$
- $\mathbf{T S}=\left(\mathrm{TS}_{1} \mathrm{kTS}_{2}\right)=\left(\mathbf{S}, \mathbf{S}^{\mathbf{0}}, \Sigma, \mathbf{R}\right)$.

$$
\begin{aligned}
& -\mathbf{R} \boldsymbol{\mu} \mathbf{S} \boldsymbol{£} \boldsymbol{£} \mathbf{S} \\
& -\mathrm{S}=\mathrm{S}_{1} \mathbf{£} \mathrm{~S}_{2} \text {. } \\
& -\mathbf{R}((\mathbf{s} 1, \mathbf{s} \mathbf{2}), \mathbf{a},(\mathbf{t} \mathbf{1}, \mathbf{t} \mathbf{2})) \text { ? } \\
& \text { - if a } 2 \Sigma_{2} \text { and } \mathbf{a} \notin \Sigma_{1} \\
& \text { - then } \mathbf{R}_{2}(\mathbf{s} 2, \mathrm{a}, \mathrm{t} 2) \text { and } \mathrm{s} \mathbf{1}=\mathbf{t} \mathbf{1} \text {. }
\end{aligned}
$$

Parallel Composition

- $\mathbf{T S}_{\mathbf{1}}=\left(\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{1}}^{\mathbf{0}}, \Sigma_{1}, \mathbf{R}_{\mathbf{1}}\right) \quad \mathbf{R}_{\mathbf{1}} \boldsymbol{\mu} \mathbf{S}_{\mathbf{1}} \mathbf{£} \Sigma_{\mathbf{1}} \mathbf{£} \mathbf{S}_{\mathbf{1}}$
- $\mathbf{T S}_{2}=\left(\mathbf{S}_{2}, \mathbf{S}_{\mathbf{2}}{ }^{\mathbf{0}}, \Sigma_{2}, \mathbf{R}_{2}\right) \quad \mathbf{R}_{\mathbf{2}} \boldsymbol{\mu} \mathbf{S}_{\mathbf{2}} \mathbf{£} \Sigma_{2} \mathbf{£} \mathbf{S}_{\mathbf{2}}$
- $\mathbf{T S}=\left(\mathrm{TS}_{1} \mathrm{kTS}_{2}\right)=\left(\mathbf{S}, \mathbf{S}^{\mathbf{0}}, \Sigma, \mathbf{R}\right)$.

$$
\begin{aligned}
& -\mathbf{R} \boldsymbol{\mu} \mathbf{S} \boldsymbol{£} \boldsymbol{\Sigma} \mathbf{S} \\
& -\mathrm{S}=\mathrm{S}_{1} £ \mathrm{~S}_{2} \text {. } \\
& -\mathbf{R}((\mathbf{s} 1, \mathbf{s} 2), \mathbf{a},(\mathbf{t} 1, \mathbf{t} 2)) \text { ? } \\
& \text { - if a } \mathbf{2} \Sigma_{1} \text { and a } \mathbf{2} \Sigma_{2} \\
& \text { - then } \mathbf{R}_{1}(\mathrm{~s} 1, \mathrm{a}, \mathrm{t} 1) \text { and } \mathbf{R}_{2}(\mathrm{~s} 2, \mathrm{a}, \mathrm{t} 2)
\end{aligned}
$$

Parallel Composition

- $\mathrm{TS}=\left(\mathrm{TS}_{1} \mathrm{kTS}_{2}\right) \mathrm{kTS}_{3}$
- $\mathrm{TS}=\mathrm{TS}_{1} \mathbf{k}\left(\mathrm{TS}_{2} \mathrm{kTS}_{3}\right)$
- $\mathrm{TS}=\mathrm{TS}_{1} \mathrm{kTS}_{\mathbf{2}} \mathrm{kTS}_{3}$

Parallel Composition

- $\mathrm{TS}=\mathrm{TS}_{1} \mathrm{kTS}_{2} \ldots \mathrm{kTS}_{\mathrm{n}}$
- $\operatorname{Size}\left(\mathrm{TS}_{\mathrm{i}}\right){ }^{1 / 4} \mathbf{j} \mathrm{~S}_{\mathrm{j}} \mathbf{j}=\mathrm{k}_{\mathrm{i}}>2$
- Description of $T S^{1 / 4} \mathbf{k}_{1}+k_{2} \ldots+k_{n}$
- $\operatorname{Size}(T S)=k_{1} £ \mathbf{k}_{2} \ldots £ \mathbf{k}_{\mathrm{n}}$ $>2^{\mathrm{n}}$!
- Size of TS is exponential in \mathbf{n} (the number of components).
- State space explosion problem.

How to circumvent state space explosion?

- Use succinct representations of the state space.
- Boolean Decision Diagrams.
- Reduce TS to TS' such that:
- TS has the required property iff TS' has the required property.
- Symmetries
- Abstractions (bisimulations)
- Partial order reductions.

Symbolic Model checking

- $\mathbf{K}=\left(\mathbf{S}, \mathbf{S}_{0}, \mathbf{R}, \mathbf{A P}, \mathbf{V}\right)$
- ψ a CTL formula
- To check whether:
$-\mathbf{K}, s^{2} \psi$
- We need to
- compute $|[\psi]|=\operatorname{states}(\psi)=\{\mathbf{s} \mathbf{j} \mathbf{K}, \mathbf{s} \in \psi\}$.
- then check whether s $2|[\psi]|$.

Symbolic Model checking

- $K=\left(\mathbf{S}, \mathbf{S}_{0}, \mathbf{R}, \mathbf{A P}, \mathbf{V}\right)$
- ψ a CTL formula
- $S^{\prime} \boldsymbol{\mu} S$ can be represented as a boolean function.
- \mathbf{R} can be represented as a boolean function.
- $|[\psi]|$ can then be represented as a boolean function.
- Boolean functions represent the characteristic functions of the given sets of states.

BDDs

- Boolean functions can be (often) succinctly represented as boolean decision diagrams.
- BDDs are easy to manipulate.
- Not all boolean functions have a succinct representation.
- Use BDDs to represent and manipulate the boolean functions associated with the model checking process.

Boolean Functions

- f: Domain! Range
- Boolean function:
- Domain $=\{\mathbf{0}, \mathbf{1}\}^{\mathrm{n}}=\{\mathbf{0 , 1}\} \mathbf{£} \ldots \mathbf{f}\{\mathbf{0}, \mathbf{1}\}$.
- Range $=\{0,1\}$
$-\mathbf{f}$ is a function of \mathbf{n} boolean variables.
- How many boolean functions of 3 variables are there?

Boolean Functions

- f: Domain! Range
- Boolean function:
- Domain $=\{\mathbf{0}, \mathbf{1}\}^{\mathrm{n}}=\{\mathbf{0}, \mathbf{1}\} \mathbf{£} \ldots \mathbf{\ldots}\{\mathbf{0}, \mathbf{1}\}$.
- Range $=\{0,1\}$
- \mathbf{f} is a function of \mathbf{n} boolean variables.
- How many boolean functions of 3 variables are there?
- Answer : $2^{2^{3}}=2^{8}$!

Truth Tables

| x | y | z | g | | |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | | |
| 0 | 0 | 1 | 1 | | |
| 0 | 1 | 0 | 1 | | |
| 0 | 1 | 1 | 0 | $\mathrm{~g}:\{0,1\} £\{0,1\} £\{0,1\}!$ | |
| 1 | 0 | 0 | 1 | | |
| 1 | 0 | 1 | 0 | | |
| 1 | 1 | 0 | 0 | | |
| 1 | 1 | 1 | 1 | | |

Boolean Expressions

- Given a set of Boolean variables $\boldsymbol{x}, \boldsymbol{y}, \ldots$ and the constants 1 (true) and $\mathbf{0}$ (false):

$$
t::=x|0| 1|\neg t| t \wedge t|t \vee t| t \Rightarrow t \mid t \Leftrightarrow t
$$

- The semantics of Boolean Expressions is defined by means of truth tables as usual.
- Given an ordering of Boolean variables, Boolean expressions can be used to express Boolean functions.

Boolean expressions

- Boolean functions can also be represented as boolean (propositional) expressions.
- $\mathbf{x} \wedge \mathbf{y}$ represents the function:
$-\mathbf{f}:\{0,1\} £\{0,1\}!\{0,1\}$
- $\mathbf{f}(\mathbf{0}, \mathbf{0})=$
- $\mathbf{f}(\mathbf{0}, \mathbf{1})=$
- $f(1,0)=$
- $f(1,1)=$

Boolean expressions

- Boolean functions can also be represented as boolean (propositional) expressions.
- $\mathbf{x} \wedge \mathbf{y}$ represents the function:

$$
\begin{aligned}
-f & :\{0,1\} £\{0,1\}!\{0,1\} \\
& \cdot f(0,0)=0 \\
& f(0,1)=0 \\
& f(1,0)=0 \\
& f(1,1)=1
\end{aligned}
$$

Boolean functions and expressions

x $\mathrm{y}^{\text {d }}$		
00	0	
00	11	
011	1	
011	10	$\mathrm{g}:\{\mathbf{0 , 1}\} \mathbf{f}\{\mathbf{0} \mathbf{1}\} \mathbf{f}\{\mathbf{0} \mathbf{1}\}$! $\{\mathbf{0}$,
10	01	
10	10	
11	0	
111	$1{ }_{1}$	

$$
\mathbf{g}=((\mathbf{x} \Leftrightarrow \mathbf{y}) \wedge \mathbf{z}) \vee((\mathbf{x} \Leftrightarrow \neg \mathbf{y}) \wedge \neg \mathbf{z})
$$

\section*{Boolean expressions and functions
 | x | y | z | g |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | |
| 0 | 0 | 1 | |
| 0 | 1 | 0 | |
| 0 | 1 | 1 | |
| 1 | 0 | 0 | |
| 1 | 0 | 1 | |
| 1 | 1 | 0 | |
| 1 | 1 | 1 | |
 \[

\mathbf{g}=(\mathbf{x} \wedge \mathbf{y} \wedge \neg \mathbf{z}) \vee(\mathbf{x} \wedge \neg \mathbf{y} \wedge \mathbf{z}) \vee(\neg \mathbf{x} \wedge \mathbf{y})
\]}

Boolean expressions and functions

Three Representations

- Boolean functions
- Truth tables
- Propositional formulas.
- Three equivalent representations.
- Here is a fourth one!

Boolean Decision Tree

- A boolean function is represented as a (binary) tree.
- Each internal node is labeled with a (boolean) variable.
- Each internal node has a positive (full line) and a negative (dotted line) successor.
- The terminal nodes are labeled with 0 or 1.

Boolean Decision Diagrams

- A compact way of representing boolean functions.
- Can be used in CTL model checking.
- Represent a subset of states as a boolean function.
- Represent the transition relation as a boolean function.
- Reduce $\mathbf{E X}(\psi), \mathbf{E U}\left(\psi_{1}, \psi_{2}\right)$ and $\mathbf{E G}(\psi)$ to manipulating boolean functions and checking for boolean function equality.
- Go from NuSMV (program) representation directly to its BDD representation!

Boolean Decision Tree

- A boolean function is represented as a (binary) tree.
- Each node is labeled with a (boolean) variable.
- Each node has a positive (full line) and a negative (dotted line) successor.
- The terminal nodes are labeled with 0 or 1.

Boolean decision trees.

If-Then-Else representation

$$
\mathbf{x} \wedge \mathbf{y}=\mathbf{x} \rightarrow \mathbf{y}, \mathbf{0}
$$

Shannon Expansion:

$$
\mathbf{f}=\mathbf{x} \rightarrow \mathbf{f}_{[1 / \mathbf{x}]}, \mathbf{f}_{[0 / \mathbf{x}]}
$$

where

$$
\mathbf{f}_{[\mathrm{a} / \mathrm{x}]}(\ldots, \mathbf{x}, \ldots)=\mathbf{f}(\ldots, a, \ldots)
$$

$$
\mathbf{x} \wedge \mathbf{y}
$$

for $\mathbf{a}=\mathbf{0 , 1}$.

BDDs

A BDD is finite rooted directed acyclic graph in which:

- There is a unique initial node (the root)
- Each terminal node is labeled with a $\mathbf{0}$ or $\mathbf{1}$.
- Each non-terminal (internal) node \boldsymbol{v} has three attribute:
- var(v), and
- exactly two successors low(v) and high(v): one labeled 0 (dotted edge, low(v)) and the other labeled 1 (solid edge, high(v)).

$$
\mathbf{g}=(\mathbf{y} \wedge(\mathbf{x} \Leftrightarrow \mathbf{z})) \vee(\neg \mathbf{y} \wedge(\mathbf{x} \Leftrightarrow \neg \mathbf{z}))
$$

Reduction Rules

- Three reduction rules:
- Share identical terminal nodes. (R1)
- Remove redundant tests (R2)
- Share identical non-terminal nodes. (R3)

Reduction Rules

- Three reduction rules:
- Share identical terminal nodes. (R1)
- If a BDD contains two terminal nodes m and n both labeled $\mathbf{0}$ then, remove n and direct all incoming edges at \mathbf{n} to m .
- Similarly for two terminal nodes labeled 1.

Share identical terminal nodes. (R1)

Share identical terminal nodes. (R1)

Share identical terminal nodes. (R1)

Reduction Rules

- Three reduction rules:
- Share identical terminal nodes. (R1)
- Remove redundant tests (R 2)
- If both successors of node m lead to the same node n then remove m and direct all incoming edges of m to n .

Remove redundant tests (R2)

Reduction Rules

- Three reduction rules:
- Share identical terminal nodes. (R1)
- Remove redundant tests (R2)
- Share identical non-terminal nodes. (R3)
- If the sub-BDDs rooted at the nodes m and n are "identical" then remove \mathbf{m} and direct all its incoming edges to n .

Share identical non-terminal nodes. (R3)

Share identical non-terminal nodes. (R3)

Reduced BDDs

- A BDD is reduced iff none of the three reduction rules can be applied to it.
- Start from the bottom layer (terminal nodes).
- Apply the rules repeatedly to level i. And then move to level i-1 (in this way checking for applicability of R3 only needs testing whether $\operatorname{var}(\mathbf{m})=\operatorname{var}(\mathbf{n})$, $\operatorname{low}(m)=\operatorname{low}(n)$ and $\operatorname{high}(m)=\operatorname{high}(n)$).
- Stop when the root node has been treated.
- This can be done efficiently.

Binary Decision Tree

Reduced BDD

Ordered BDDs

- $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}\right\}$
- An indexed (ordered) set of boolean variables.
$-\mathrm{x}_{1}<\mathrm{x}_{2} \ldots \ldots<\mathrm{x}_{\mathrm{n}}$
- G is an ordered BDD w.r.t. the above variable ordering iff:
- Each variable that appears in \mathbf{G} is in the above set. (but the converse may not be true).
- If $\mathbf{i}<\mathbf{j}$ and $\mathbf{x}_{\mathbf{i}}$ and $\mathbf{x}_{\mathbf{j}}$ appear on a path then $\mathbf{x}_{\mathbf{i}}$ appears before \mathbf{x}_{j}.

Ordered BDDS

- Fundamental Fact:
- For a fixed variable ordering, each boolean function has exactly one reduced Ordered BDD!
- Reduced OBDDs are canonical objects.
- To test if f and g are equal, we just have to check if their reduced OBDDs are identical.
- This will be crucial for model checking!

$$
y<z<x
$$

Reduced OBDD

- An OBDD is reduced (i.e. it is a ROBDD) if there are only two terminal vertices $\mathbf{0}$ and 1, and for all non terminal vertices v, u :

$$
\begin{aligned}
& -\operatorname{low}(v) \neq \operatorname{high}(v)(\text { non-redundant tests }) \\
& -\operatorname{low}(v)=\operatorname{low}(u), \operatorname{high}(v)=\operatorname{high}(u) \text { and } \operatorname{var}(v)=\operatorname{var}(u) \\
& \quad \text { implies } v=u(\text { uniqueness })
\end{aligned}
$$

Canonicity of ROBDD

Let us denote a ROBDD with its root node and the function represented by subgraph a rooted in node u with f^{u}. Then:

Theorem: For any function $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ there exists a unique ROBDD u with variable ordering $x_{1}, x_{2}, \ldots, x_{\mathrm{n}}$ such that

$$
\mathbf{f}^{\mathrm{u}}=\mathbf{f}\left(x_{1}, \ldots, x_{\mathrm{n}}\right)
$$

Consequences of canonicity

Theorem: For any function $\mathrm{f}:\{\mathbf{0 , 1}\}^{\mathrm{n}} \rightarrow\{\mathbf{0 , 1}\}$ there exists a unique ROBDD u with variable ordering $x_{1}, x_{2}, \ldots, x_{\mathrm{n}}$ such that

$$
\mathbf{f}^{\mathrm{u}}=\mathbf{f}\left(x_{1}, \ldots, x_{\mathrm{n}}\right)
$$

Therefore we can say that:

- A function f^{u} is a tautology if its ROBDD u is equal to 1.
- A function f^{u} is a satisfiable if its ROBDD u is not equal to 0 .

Reduced OBDDs

- The ordering is crucial!
- $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{y}_{1}, \mathrm{y}_{2}\right\} \quad \mathrm{x}_{1} \mathrm{x}_{2}$

$$
\begin{aligned}
& -\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}_{1}, \mathbf{y}_{2}\right) \quad \mathbf{y}_{1} \quad \mathbf{y}_{2} \\
& -\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}_{1}, \mathbf{y}_{2}\right)=1 \text { iff }\left(\mathrm{x}_{1}=\mathrm{y}_{1} \wedge \mathrm{x}_{2}=\mathrm{y}_{2}\right)
\end{aligned}
$$

- If $x_{1}<y_{1}<x_{2}<y_{2}$, then the OBDD is of size $3 \cdot 2+2=8$.
- If $x_{1}<x_{2}<y_{1}<y_{2}$, then the OBDD is of size $3 \cdot 2^{2}-1=11$!

Reduced OBDDs

$$
\mathbf{x}_{1}<\mathbf{y}_{1}<\mathbf{x}_{2}<\mathbf{y}_{2} \quad \mathbf{x}_{1}<\mathbf{x}_{2}<\mathbf{y}_{1}<\mathbf{y}_{2}
$$

Reduced OBDDs

- The ordering is crucial!
- $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, x_{n}, \mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{\mathrm{n}}\right\} \quad \mathbf{x}_{1} \mathbf{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}$

$$
\begin{aligned}
& \mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}, \mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{\mathrm{n}}\right) \quad \mathbf{y}_{1} \mathbf{y}_{2} \ldots \mathbf{y}_{\mathrm{n}} \\
& -\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}, \mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{\mathrm{n}}\right)=1 \text { iff } \bigwedge_{\mathrm{i}=1}^{n}\left(\mathbf{x}_{\mathrm{i}}=\mathbf{y}_{\mathrm{i}}\right)
\end{aligned}
$$

- If $x_{1}<y_{1}<x_{2}<y_{2} \ldots<x_{n}<y_{n}$, then the OBDD is of size $3 n+2$.
- If $x_{1}<x_{2}<\ldots<x_{n}<y_{1}<\ldots<y_{n}$, then the OBDD is of size $3.2^{\mathrm{n}}-1$!

ROBDDs

- Finding the optimal variable ordering is computationally expensive (NP-complete).
- There are heuristics for finding "good orderings".
- There exist boolean functions whose sizes are exponential (in the number of variables) for any ordering.
- Functions encountered in practice are rarely of this kind.

Implementation of ROBDDs

Array-based implementation
root $=\boldsymbol{u}_{\boldsymbol{6}}$

	Var	Low	High
$\mathbf{0}$	$?$	$?$	$?$
1	$?$	$?$	$?$
\mathbf{u}_{1}	\mathbf{y}_{2}	0	1
\mathbf{u}_{2}	\mathbf{y}_{2}	1	0
\mathbf{u}_{3}	\mathbf{x}_{2}	\mathbf{u}_{2}	\mathbf{u}_{1}
\mathbf{u}_{4}	\mathbf{y}_{2}	0	\mathbf{u}_{3}
\mathbf{u}_{5}	\mathbf{y}_{1}	0	\mathbf{u}_{3}
\mathbf{u}_{6}	\mathbf{x}_{1}	\mathbf{u}_{5}	\mathbf{u}_{4}

The function MK

- The function MK searches for a node u with $\operatorname{var}(u)=x_{i}, \operatorname{low}(u)=l$ and $\operatorname{high}(u)=h$. If the node does not exists, then creates the new node after inserting it. The running time is $\boldsymbol{O}(1)$.
$H(i, l, h)$ is a hash function mapping a triple $\langle i, l, h\rangle$ into a node index in T .

```
Algorithm mk(i,l,h)
if l=h then
    return l
else if T[H(i,l,h)] # empty then
    return T[H(i,l,h)]
else u = add(T,H(i,l,h),i,l,h)
    return u
```


Operations on ROBDDs.

- During model checking, boolean operations will have to be performed on ROBDDs.
- These operations can be implemented efficiently.
- $\mathbf{f} \vee \mathbf{g}-\cdots-----G_{f} \mathbf{o p}_{\vee} \mathbf{G}_{\mathrm{g}}=\mathbf{G}_{\mathrm{f} \vee \mathrm{g}}$
- There is a procedure called APPLY to do this.

Operations on ROBDDs

- When performing an operation on \mathbf{G} and \mathbf{G}^{\prime} we assume their variable orderings are compatible.
- $\mathbf{X}=\mathbf{X}_{\mathbf{G}}\left[\mathbf{X}_{\mathbf{G}}\right.$,
- There is an ordering $<$ on \mathbf{X} such that:
$-<$ restricted to $\mathbf{X}_{\mathbf{G}}$ is $<_{G}$
$-<$ restricted to $\mathbf{X}_{\mathbf{G}}$, is $<_{G}$.

Operations on OBDDs

- The basic idea (Shannon Expansion):
- $\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathbf{n}}\right)$

$$
\begin{aligned}
& -\mathbf{f}_{\mathbf{x}_{1}=0}=\mathbf{f}\left(\mathbf{0}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathbf{n}}\right) \\
& \text { - } f=x_{1} C\left(\mathbf{x}_{2} \text { ®x }_{3}\right) \\
& \text { - } f_{\mathrm{x}_{1}=0}=\mathrm{x}_{2} \wedge \mathrm{x}_{3}
\end{aligned}
$$

- Similarly, $\mathbf{f} \mathbf{j}_{\mathbf{x} 1=1}=\mathbf{f}\left(\mathbf{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}\right)$

$$
\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}\right)=\left(\neg \mathbf{x}_{1} \wedge \mathbf{f} \mathbf{j}_{\mathbf{x}_{1}}=0\right) \vee\left(\mathbf{x}_{1} \wedge \mathbf{f} \mathbf{j}_{\mathbf{x}_{1}=1}\right)
$$

- This is true even if \mathbf{x}_{1} does not appear in \mathbf{f} !

Operations on OBDDs: Negation

- The basic idea (Shannon Expansion):

$$
\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}\right)=\left(\neg \mathbf{x}_{1} \wedge \mathbf{f} \mathbf{j}_{\mathbf{x}_{1}=0}\right) \vee\left(\mathbf{x}_{1} \wedge \mathbf{f} \mathbf{j}_{\mathbf{x}_{1}=1}\right)
$$

- Therefore, assuming $\mathbf{x}_{1}<\mathbf{x}_{2}<\ldots<\mathbf{x}_{\mathrm{n}}$,

$$
\begin{align*}
& \neg \mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}\right)=\neg\left(\left(\neg \mathbf{x}_{1} \wedge \mathbf{f} \mathbf{j}_{\mathrm{x}_{1}=\mathbf{0}}\right) \vee\left(\mathbf{x}_{\mathbf{1}} \wedge \mathbf{f} \mathbf{j}_{\mathrm{x}_{1}=1}\right)\right) \\
& =\left(\neg\left(\neg \mathbf{x}_{\mathbf{1}} \wedge \mathbf{f} \mathbf{j}_{\mathbf{x}_{1}=\mathbf{0}}\right) \wedge \neg\left(\mathbf{x}_{\mathbf{1}} \wedge \mathbf{f} \mathbf{j}_{\mathbf{x}_{1}=\mathbf{1}}\right)\right) \\
& =\left(\left(\mathbf{x}_{1} \vee \neg \mathbf{f} \mathbf{j}_{\mathrm{x}_{1}=0}\right) \wedge\left(\neg \mathbf{x}_{1} \vee \neg \mathbf{f} \mathbf{j}_{\mathrm{x}_{1}=1}\right)\right. \\
& =\left(\mathbf{x}_{1} \wedge \neg \mathbf{x}_{1}\right) \vee\left(\neg \mathbf{x}_{1} \wedge \neg \mathbf{f}_{\mathbf{x}_{1}=\mathbf{0}}\right) \vee \\
& \vee\left(\mathbf{x}_{\mathbf{1}} \wedge \neg \mathbf{f} \mathbf{j}_{\mathbf{x}_{1}=1}\right) \vee\left(\neg \mathbf{f} \mathbf{j}_{\mathbf{x}_{1}=0} \wedge \neg \mathbf{f} \mathbf{j}_{\mathbf{x}_{1}=1}\right) \\
& =\left(\neg \mathbf{x}_{1} \wedge \neg \mathbf{f} \mathbf{j}_{\mathbf{x}_{1}=\mathbf{0}}\right) \vee\left(\mathbf{x}_{\mathbf{1}} \wedge \neg \mathbf{f} \mathbf{j}_{\mathbf{x}_{1}=1}\right) \tag{65}
\end{align*}
$$

Operations on ROBDDs.

- Let \mathbf{x} be the top variable of \mathbf{G}_{f} and \mathbf{y} the top variable of $\mathbf{G}_{\mathbf{g}}$.
- To compute $\mathrm{G}_{\mathrm{f} \text { op } \mathrm{g}}$ we consider:

CASE1: $\mathrm{x}=\mathrm{y}$

- \mathbf{f} op $\mathrm{g}=\left(\neg \mathrm{x} \wedge\left(\mathbf{f} \mathrm{j}_{\mathrm{x}=0}\right.\right.$ op $\left.\mathrm{g} \mathrm{j}_{\mathrm{x}=0}\right) \vee$ ($\mathrm{x} \wedge\left(\mathrm{f} \mathrm{j}_{\mathrm{x}=1}\right.$ op g $\mathrm{j}_{\mathrm{x}=1}$)
- We have to solve now two smaller problems!

Operations on ROBDDs.

- Let \mathbf{x} be the top variable of \mathbf{G}_{f} and \mathbf{y} the top variable of $\mathbf{G}_{\mathbf{g}}$.
- To compute $\mathbf{G}_{\mathrm{f} \text { op } \mathrm{g}}$ we consider:

CASE2: $\mathrm{x}<\mathrm{y}$.

- Then \mathbf{x} does not appear in \mathbf{G}_{g} (why?).
$-g j_{x=0}=g=g j_{x=1}$
- \mathbf{f} op $g=\left(\neg x \wedge\left(f j_{x=0}\right.\right.$ op $\left.g\right) \vee\left(x \wedge\left(f j_{x=1}\right.\right.$ op $\left.g\right)$
- We have to solve now two smaller problems!

CASE2: $\mathrm{x}>\mathrm{y}$ is symmetric.

Operations on ROBDDs.

- To compute $\mathbf{G}_{\mathrm{f} \text { op } \mathrm{g}}$ we consider:

Base (terminal) cases depend upon op
Eg.: if $\mathbf{O p}=\vee$ then $\{0,0 \rightarrow \mathbf{0} ; \mathbf{1}\}$
if $\mathbf{o p}=\wedge$ then $\{1,1 \rightarrow \mathbf{1} ; \mathbf{0}\}$

Algorithm for Apply

Algorithm Apply(op,u,v)

```
Function App(u,v)
    if terminal_case(op,u,v) then return op(u,v)
    else if var(u) = var(v) then
    u = mk(var(u), App(op,low(u),low(v)),
                                    App(op,high(u),high(v)))
```

 else if \(\operatorname{var}(\mathbf{u})\) < \(\operatorname{var}(\mathrm{v})\) then
 \(\mathbf{u}=\mathbf{m k}(\operatorname{var}(\mathbf{u}), \operatorname{App}(\mathbf{o p}, \operatorname{low}(\mathbf{u}), \mathbf{v}), \operatorname{App}(o p, h i g h(u), v))\)
 else /* \(\operatorname{var}(\mathbf{u})>\operatorname{var}(\mathbf{v})\) */
 \(\mathbf{u}=\mathbf{m k}(\operatorname{var}(\mathbf{u}), \operatorname{App}(\mathrm{op}, \mathbf{u}, \operatorname{low}(\mathrm{v})), \operatorname{App}(\mathrm{op}, \mathbf{u}, \mathrm{high}(\mathrm{v})))\)
 return u
 return $\operatorname{App}(\mathbf{u}, \mathrm{v})$
running time $=\mathbf{O}\left(2^{\mathrm{n}}\right)$. Why?
$n=$ number of variables.

Efficient algorithm for Apply

Algorithm Apply(op,u,v)

$\operatorname{init}\left(G_{\text {op }}\right)$

Function $\operatorname{App}(\mathbf{u}, \mathbf{v})$
if $G_{o p}(u, v) \neq$ empty then return $G_{o p}(u, v)$
else if terminal_case(op,u,v) then return op(u,v)
else if $\operatorname{var}(\mathbf{u})=\operatorname{var}(\mathrm{v})$ then

$$
\begin{aligned}
\mathbf{r}=\mathbf{m k}(\operatorname{var}(\mathbf{u}), & \operatorname{App}(o p, \operatorname{low}(\mathbf{u}), \operatorname{low}(\mathbf{v})), \\
& \operatorname{App}(o p, \operatorname{high}(\mathbf{u}), \operatorname{high}(\mathbf{v})))
\end{aligned}
$$

else if $\operatorname{var}(u)$ < $\operatorname{var}(v)$ then $\mathbf{r}=\operatorname{mk}(\operatorname{var}(\mathbf{u}), \operatorname{App}(\mathbf{o p}, \operatorname{low}(\mathbf{u}), \mathbf{v}), \operatorname{App}(0 \mathrm{p}, \mathrm{high}(\mathbf{u}), \mathbf{v}))$ else /* var(u) > var(v) */
r = mk(var(u), App(op,u,low(v)), App(op,u,high(v)))
$G_{\text {op }}(\mathbf{u}, \mathbf{v})=\mathbf{r}$
return r
return $\operatorname{App}(\mathbf{u}, \mathrm{v})$

$$
\text { running time }=\mathbf{O}\left(\left|\mathrm{G}_{\mathrm{u}} \| \mathrm{G}_{\mathrm{v}}\right|\right) \text {. Why? }
$$

Exemple of Apply $\boldsymbol{Æ}$

The Restrict operation

- Problem: Given a (partial) truth assignment $x_{1}=b_{1}, \ldots, x_{k}=b_{k}$ (where $b_{j}=0$ or $b_{j}=1$), and a ROBDD t^{u}, compute the restriction of t^{u} under the assignment.
- E.G.: if $f\left(x_{1}, x_{2}, x_{3}\right)=\left(\left(x_{1} \Leftrightarrow x_{2}\right) \vee x_{3}\right)$ we want to compute $f\left(x_{1}, x_{2}, x_{3}\right)\left[0 / x_{2}\right]=f\left(x_{1}, 0, x_{3}\right)$ i.e.: $f\left(x_{1}, 0, x_{3}\right)=\neg x_{1} \vee x_{3}$

Restrict Operation: example

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(\left(x_{1} \Leftrightarrow x_{2}\right) \vee x_{3}\right) \quad f\left(x_{1}, x_{2}, x_{3}\right)\left[0 / x_{2}\right]=\neg x_{1} \vee x_{3}
$$

Restrict Operation

- Let \mathbf{x} be the root of $\mathbf{G}_{\mathbf{f}}$
- To compute $\left.\mathbf{G}_{\mathrm{f}}\right|_{\mathrm{y}=\mathrm{b}}$ we consider: CASE1: $\mathrm{x}=\mathrm{y}$
- $\mathrm{f}_{\mathrm{y}=\mathrm{b}}=\operatorname{low}\left(\mathrm{G}_{\mathrm{f}}\right) \quad$ if $\mathrm{b}=0$
- $\left.f\right|_{y=b}=\operatorname{high}\left(G_{f}\right) \quad$ if $b=1$

Restrict Operation

- Let \mathbf{x} be the root of $\mathbf{G}_{\mathbf{f}}$
- To compute $\mathrm{G}_{\mathrm{f}} \mathrm{l}_{\mathrm{y}=\mathrm{b}}$ we consider:

CASE2: x > y

- $\left.f\right|_{y=b}=\mathbf{f}$

Restrict Operation

- Let \mathbf{x} be the root of $\mathbf{G}_{\mathbf{f}}$
- To compute $\left.\mathbf{G}_{\mathrm{f}}\right|_{\mathrm{y}=\mathrm{b}}$ we consider:

CASE2: $\mathrm{x}<\mathrm{y}$

$$
\text { - }\left.\mathbf{f}\right|_{\mathbf{y}=b}=\left(\left.\neg \mathbf{x} \wedge\left(\left.\mathbf{f}\right|_{x=0}\right)\right|_{y=b}\right) \vee\left(\left.\mathbf{x} \wedge\left(\left.\mathbf{f}\right|_{\mathbf{x}=1}\right)\right|_{\mathrm{y}=b}\right)
$$

- We have to solve now two smaller problems!

Algorithm for Restrict

Algorithm Restrict(u,i,b)

Function Res(u)
if $\operatorname{var}(u)>$ ithen return u
else if $\operatorname{var}(u)$ < i then return $\operatorname{mk}(\operatorname{var}(\mathbf{u}), \operatorname{Res}(\operatorname{low}(\mathbf{u})), \operatorname{Res}(\operatorname{high}(\mathbf{u})))$
else $/ * \operatorname{var}(\mathbf{u})=\mathbf{i} * /$
if $b=0$ then
return Res(low(u))
else $/ * \operatorname{var}(\mathbf{u})=\mathrm{i}$ and $\mathrm{b}=1$ */
return Res(high(u))
return $\operatorname{Res}(\mathbf{u})$

$$
\text { running time }=\mathrm{O}\left(2^{\mathrm{n}}\right) . \text { Why? }
$$

Efficient algorithm for Restrict

```
Algorithm Restrict(u,i,b)
    init( \(\mathrm{G}_{\text {res }}\) )
    Function Res(u)
    if \(\mathbf{G}_{\text {res }}(\mathbf{u}) \neq\) empty then return \(\mathrm{G}_{\text {res }}(\mathbf{u})\)
    if \(\operatorname{var}(u)>\) ithen return \(u\)
    else if \(\operatorname{var}(u)\) < \(i\) then
        \(\mathbf{r}=\operatorname{mk}(\operatorname{var}(\mathbf{u}), \operatorname{Res}(\operatorname{low}(\mathbf{u})), \operatorname{Res}(\operatorname{high}(\mathbf{u})))\)
    else /* var(u) \(=\operatorname{var}(\mathbf{v})\) */
        if \(b=0\) then
        \(\mathbf{r}=\operatorname{Res}(\operatorname{low}(\mathbf{u}))\)
        else \(/ * \operatorname{var}(\mathbf{u})=\operatorname{var}(\mathrm{v})\) and \(\mathrm{b}=1\) */
        \(\mathbf{r}=\operatorname{Res}(\operatorname{high}(\mathbf{u}))\)
    \(\mathbf{G}_{\text {res }}(\mathbf{u})=\mathbf{r}\)
    return \(r\)
return \(\operatorname{Res}(\mathbf{u})\)
running time \(=\mathbf{O}\left(\left|\mathrm{G}_{\mathrm{u}}\right|\right)\). Why?
```


Quantification

- Extend the boolean language with

$$
\exists \text { x.t } \mid \forall \text { x.t }
$$

- They can be defined in terms of ROBDD operations:

$$
\begin{aligned}
& \exists \mathrm{x} . \mathrm{t}=\mathrm{t}[0 / \mathrm{x}] \vee \mathrm{t}[1 / \mathrm{x}] \\
& \forall \mathrm{x} . \mathrm{t}=\mathrm{t}[0 / \mathrm{x}] \wedge \mathrm{t}[1 / \mathrm{x}]
\end{aligned}
$$

We can use an appropriate combination of Restrict and Apply

Symbolic CTL Model Checking

- Represent the required subsets of states as boolean functions and hence as ROBDDs.
- Represent the transition relation as a boolean function and hence as a ROBDD.
- Reduce the iterative fixed point computations of the model checking process to operations on OBDDs.
- Check for the termination of the fixpoint computation by checking ROBDD equivalence.

Symbolic Model Checking

- $K=\left(S, S_{0}, R, A P, L\right)$
- Assume that if $\mathbf{L}(\mathbf{s})=\mathbf{L}\left(\mathbf{s}^{\prime}\right)$ then $\mathbf{s}=\mathbf{s}^{\prime}$.
- If not, add a few new atomic propositions if necessary, so as to distinguish states only based on labeling.
- $\mathbf{A P}=\{\mathbf{p}, \mathbf{q}, \mathbf{r}\}$
- $\mathbf{L}(\mathbf{s})=\{\mathbf{p}\}$

$$
-\mathbf{f}_{\mathrm{s}}=\mathbf{p} \wedge \neg \mathbf{q} \wedge \neg \mathbf{r}
$$

- $f_{\left\{s_{1}, s_{2}, s_{5}\right\}}=f_{s_{1}} \vee f_{s_{2}} \vee f_{s_{5}}$

Symbolic Model Checking

- $K=\left(S, S_{0}, \mathbf{R}, \mathbf{A P}, L\right)$
- $\mathbf{A P}=\{\mathbf{p}, \mathbf{q}, \mathbf{r}\}$
- Add the next-state boolean variables $\left\{\mathbf{p}^{\prime}, \mathbf{q}^{\prime}, \mathbf{r}^{\prime}\right\}$
- Suppose ($\mathbf{s}_{1}, \mathbf{s}_{2}$) in \mathbf{R} (i.e. $\mathbf{R}\left(\mathbf{s}_{1}, \mathbf{s}_{2}\right)$) with $\mathbf{L}\left(\mathbf{s}_{1}\right)=\{\mathbf{p}, \mathbf{q}\}$ and $\mathbf{L}\left(\mathbf{s}_{2}\right)=\{r\}$.
Then $f_{R\left(s_{1}, s_{2}\right)}=f_{s_{1}} \wedge \mathbf{f}_{\mathbf{s}_{2}}$.
- where $\mathbf{f}_{s_{1}}=\mathbf{p} \wedge \mathbf{q} \wedge \neg \mathbf{r}$ and $\mathbf{f}_{s_{2}}=\neg \mathbf{p}^{\prime} \wedge \neg \mathbf{q}^{\prime} \wedge \mathbf{r}^{\prime}$
- $f_{R}=V_{\left(s_{1}, s_{2}\right)} \mathbf{2 R}\left(f_{R\left(s_{1}, s_{2}\right)}\right)$
- Choose the ordering $\mathbf{p}<\mathrm{p}^{\prime}<\mathrm{q}<\mathrm{q}^{\prime}<\mathrm{r}<\mathrm{r}^{\prime}$!

CTL symbolic Model Checking

- $\left|\left[\mathrm{x}_{\mathrm{i}}\right]\right|=\mathrm{f}_{\mathrm{x}_{\mathrm{i}}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{x}_{\mathrm{i}}$
(the OBDD for the boolean variable \mathbf{x}_{i})
- $|[\neg \phi]|=\neg \mathbf{f}_{\phi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}\right)$
(apply negation to the OBDD for ϕ)
- $|[\phi \vee \psi]|=\mathbf{f}_{\phi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}\right) \vee \mathbf{f}_{\psi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}\right)$
(apply \vee operation to the OBDDs for ϕ and ψ)
- $|[\phi \wedge \psi]|=\mathbf{f}_{\phi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}\right) \wedge \mathbf{f}_{\psi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}\right)$
(apply \wedge operation to the OBDDs for ϕ and ψ)

CTL Symbolic Model Checking

- $|[\mathbf{E X} \phi]|=$

This is also called the relational product, or the pre-image of $|[\phi]|$ by \boldsymbol{R} (see Section 6.6 in Clarke's book for a more efficient algorithm).

- $|[E \mathbf{E U}(\phi, \psi)]|=\mu \mathbf{Z} .\left(\mathbf{f}_{\psi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}\right) \vee\right.$

$$
\left.\left(\mathbf{f}_{\phi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}\right) \wedge \mathbf{E X Z}\right)\right)
$$

- $|[E G \phi]|=v \mathbf{Z} .\left(\mathbf{f}_{\phi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}\right) \wedge \mathbf{E X ~ Z}\right)$

Symbolic model checking: example

Let $\mathbf{V}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$, then $|[\mathbf{E G} \psi]|$ can be computed as follows:

1. Assume the $\operatorname{ROBDD} \mathbf{f}_{\psi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}\right)$ has been computed.
2. Set $\left.\mathbf{X}_{0}=\mathbf{f}_{\psi}\left(\mathbf{x}^{\prime}, \ldots, \mathbf{x}^{\prime}{ }_{\mathrm{n}}\right) \quad \begin{array}{l}\text { [computed from } \mathbf{f}_{\psi}\left(\mathbf{x}_{1}, \ldots, \mathbf{X}_{\mathrm{n}}\right) \\ \text { by substitution }\end{array}\right]$
3. We need to compute $\mathbf{X}_{\mathbf{i}+1}=\mathbf{X}_{\mathbf{i}} \cap \mathbf{Y}_{\mathbf{i}}$ where:

$$
\begin{aligned}
& \mathbf{Y}_{\mathbf{i}}=\exists \mathbf{x}_{1}^{\prime}, \ldots, \mathbf{x}_{\mathbf{\prime}}^{\prime}\left(\mathbf{f}_{\psi}\left(\mathbf{x}_{1}^{\prime}, \ldots, \mathbf{x}_{\mathbf{n}}^{\prime}\right) \wedge \mathbf{f}_{\mathbf{R}}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{x}_{1}^{\prime}, \ldots, \mathbf{x}_{n}^{\prime}\right)\right) \\
& \mathbf{X}_{\mathrm{i}+1} \text { can easily be computed as } \mathbf{X}_{i} \wedge \mathbf{Y}_{i}
\end{aligned}
$$

4. Check whether $\mathbf{X}_{i+1}=\mathbf{X}_{\mathbf{i}}$ by checking whether the corresponding ROBDDs are identical.
5. If not, substitute the next-state variables for the statevariables in $\mathbf{X}_{\mathbf{i}+1}$, and repeat from step 3.

Algorithm Compute_EG(β)
$\mathbf{f}_{1}(x):=\mathbf{f}_{\beta}(x) ;$
$\mathrm{j}=1$;
repeat

$$
\begin{aligned}
& \mathbf{j}:=\mathbf{j}+1 \\
& \mathbf{f}_{\mathbf{j}}:=\mathbf{f}_{\beta}(x) \wedge \exists x^{\prime} \cdot\left(\mathbf{f}_{\mathbf{R}}\left(x, x^{\prime}\right) \wedge \mathbf{f}_{\mathrm{j}-1}\left(x^{\prime}\right)\right) \\
& \text { until } \mathbf{f}_{\mathbf{j}}(x)=\mathbf{f}_{\mathbf{j}-1}(x)
\end{aligned}
$$

Algorithm Compute_EU(β_{1}, β_{2})
$\mathbf{f}_{1}(x):=\mathbf{f}_{\beta_{2}}(x) ;$
$\mathrm{j}=1$;
repeat

$$
\begin{aligned}
& \mathbf{j}:=\mathbf{j}+\mathbf{1} \\
& \mathbf{f}_{\mathbf{j}}:=\mathbf{f}_{\beta_{2}}(x) \vee\left(\mathbf{f}_{\beta_{1}}(x) \wedge \exists x^{\prime} \cdot\left(\mathbf{f}_{\mathbf{R}}\left(x, x^{\prime}\right) \wedge \mathbf{f}_{\mathbf{j}-1}\left(x^{\prime}\right)\right)\right) \\
& \text { until } \mathbf{f}_{\mathbf{j}}(x)=\mathbf{f}_{\mathbf{j}-1}(x)
\end{aligned}
$$

CTL Symbolic model checking

Finally, assuming boolean variable $\mathbf{V}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}\right\}$, and the ROBDD for $|[\phi]|$ already computed.

- Checking whether
$\mathbf{K}^{2} \phi$
amounts to checking whether the ROBDD for $f_{\text {Init }} \wedge f_{\neg \phi}$ is identical to the ROBDD for $\mathbf{0}$, where $f_{\text {Init }}$ is the ROBDD for the set Init of initial states of \mathbf{K}.
(remember that $\mathbf{K}^{2} \phi$ iff Init $\subseteq|[\phi]|$)

Symbolic Model Checking

- The actual Kripke structure will be, in general, too large.
- State explosion.
- So one must try to compute the ROBDDs directly from the system model (NuSMV program) and run the model checking procedure with the help of this implicit representation.
- Symbolic model checking.
- This may not be sufficient, though! Additional techniques may be needed (e.g., abstraction).

