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Tecniche di Specifica e di 
Verifica

Model Checking under Fairness
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Fairness

• K =(S, S0, R, AP, L)
• K may not be able to capture exactly the 

desired executions.
– Too generous.

• Use fairness constraints to rule out 
undesired executions.
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a computation in which s1 or s2 or s3 is visited infinitely 
often but g1 and g2 are visited only finitely often is 
unfair.
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K, s0 £ AG ( w2 → AF grt2 )
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A computation in which (c,n) or (c,w) is visited infinitely 

often but (n,n) and (n,w) are visited only finitely often.
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K, s0 £ EF EG c1 !
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Fairness

• The first kind of unfairness has to do with a 
bad scheduling policy.
– Find a better allocation scheme.
ØTurn-based.

• The second kind of unfairness is unavoidable.

• Solution:
– Consider only fair computations.



8

Fairness

• Fair Kripke Structures.
• First Attempt:

– K = (S, S0, R, AP, L, F)
– F µ S ( fairness constraint)

• π is a fair computation iff:
– It is a computation.
– inf(π) ∩ F ≠ ∅
– inf(π) = {s : s appears infinitely often in π}
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Fairness

• Fair Kripke Structures.
• K = (S, S0, R, AP, L, F1, F2,..,Fn)

– Fi µ S ( fairness constraints )

• π is a fair computation iff:
– It is a computation.
– inf(π) ∩ Fi ≠ ∅ for each i = 1, 2,..,n
– inf(π) = {s : s appears infinitely often in π}
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K, s0 £ AG( w2 → AF grt2) with above fairness 
constraint !
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F ---- ¬w2 ∨ grt2

s0
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K, s0 £ EF (EG c1 ∨ EG c2 ) with the above fairness 
constraint !

F ---- ¬c1 ∧ ¬c2
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K, s0 £ EF (EGc1 ∨ EGc2) with the above 
fairness constraint !
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NuSMV Fairness

• Can’t always use sets of states to specify 
fairness.
– State space is often defined implicitly.

• Use formulas!

• φ ---- Property φ is true infinitely often.

• Model check along only fair computation 
paths.
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NuSMV Fairness

• C = {p1, p2,…, pn}
– Fairness constraints.

• K = (S, S0, R, AP, L, C)
• s0 s1 s2 ….. is a fair computation iff:

– It is a computation.
– For each i, there  are infinitely many j such 

that
K, sj £ pi
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Model Checking with Fairness.

• C = {p1, p2,…, pn}
– Fairness constraints.

• K = (S, S0, R, AP, L, C)
• K, s £C ψ ?
• K, s £C p iff there exists a fair path from 

s and K, s £ p (i.e. p ∈ L(s))
• K, s £C ψ1 ∧ ψ2 iff  

K, s £C ψ1 and  K, s £C ψ2
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Model Checking with Fairness.

• C = {p1, p2,…, pn}
– Fairness constraints.

• K = (S, S0, R, AP, L, C)
• K,s £Cψ ?

• K,s£C EXψ iff there exists a fair path from 
s and there exists s’ along that path with 
R(s, s’) and K, s’£Cψ. 
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Model Checking with Fairness.

• C = {p1, p2,…, pn}
– Fairness constraints.

• K = (S, S0, R, AP, L, C)
• K,s£Cψ ?

• K,s£C EU(ψ1,ψ2) iff there exists a fair path 
from s which satisfies ψ1Uψ2. 
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Model Checking with Fairness.

• C = {p1, p2,…, pn}
– Fairness constraints.

• K = (S, S0, R, AP, L, C)
• K,s£Cψ ?

• K, s £C EGψ iff there exists a fair path 
from s which satisfies ψ at every state along 
this fair path.
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Model Checking with Fairness.

• C = {p1, p2,…, pn}
– Fairness constraints.

• K = (S, S0, R, AP, L, C)
• K,s£Cψ ?
• It is possible to adapt the NuSMV model 

checking procedure:
– K,s £ ψ

to
– K,s £C ψ.
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Fair Strongly Connected Comp.

A non-trivial strongly connected component
C of K is fair with respect to the fair set C 
= {p1, p2,…, pn} iff for each pi ∈ C there is 
a state s ∈ C such that

K, s £ pi
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M. C. with Fairness: EG(β)

Let K’ = (S’,R’,L’, C) be the sub-graph of K where

– S’ = { s | K, s £C β } 

– R’ = R|S’× S’    (the restriction of R to S’) 

– L’ = L|S’           (the restriction of L to S’)

Lemma: K, s £C EG(β ) iff 
1. s ∈ S’ and 
2. there exists a path in K’ leading from s to a 
non-trivial fair strongly connected component C 
of the graph (S’,R’) w.r.t. C. 
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Computing the labeling for EG(β)
Algorithm Check_Fair_EG(β)

S’ := {s | β ∈ Labels(s)};
SCC := {C | C is a fair non trivial SCC of S’};
T := ∪C∈SCC{s | s ∈ C};
for each  s ∈ T do Labels(s) := Labels(s) ∪ {EG(β)};
while T ≠ ∅ do

chose s ∈ T;
T := T \{s}; 
for each  t ∈ S’ with t → s do

if EG(β) ∉ Lables(t) then
Labels(t) := Labels(t) ∪ {EG(β)};
T := T ∪ {t};

Complexity: O(|K||C|)
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Let fair be a new atomic proposition and let us 
use the algorithm Check_Fair_EG(true) to 
label K with this new proposition (i.e. fair = EG 
true).

Then 
– K, s £C p iff K, s £ (p ∧ fair)

– K, s £C EXφ iff K, s £ EX (φ ∧ fair)

– K, s £C EU(ψ, φ) iff  K, s £ EU(ψ, φ ∧ fair)

The Labels function
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Symbolic MC for EGf φ
Let Z be the largest set of states with the following two 

properties:
1. all of the states in Z satisfy φ, and
2. for all pk ∈ C and all states s ∈ Z
Ø there is a non-empty sequence of states from s to a state 

in Z satisfying pk, and
Ø all states in the sequence satisfy the formula φ.

It can be shown that each state in Z is the beginning of a 
path on which φ is always true,

and every formula in C holds infinitely often on this path.
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Symbolic MC for EGf φ

It follows that EGf φ can be expressed as a greatest 
fixed point of the following function:

EGf φ = νZ. φ ∧ ∧k=1…n EX EU(φ, Z ∧ pk)

This equation can be used to compute the set of 
states that satisfy EGf φ according to the fair 
semantics.
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Symbolic MC for EXf φ and EUf(φ,ψ)

The set of all states which are the start of some 
fair computation is the set of states satisfying:

fair = EGf true
Hence,

EXf φ = EX(φ ∧ fair);

EUf(φ, ψ) = EU(φ, ψ ∧ fair)


