Tecniche di Specifica e di Verifica

Model Checking under Fairness

- $K = (S, S_0, R, AP, L)$
- K may *not* be able to capture *exactly* the desired executions.

– Too generous.

• Use *fairness constraints* to rule out **undesired executions**.

a computation in which s1 or s2 or s3 is visited infinitely often but g1 and g2 are visited only finitely often is unfair.

K, s0 🖌 AG (w2 🗷 AF grt2)

A computation in which (c,n) or (c,w) is visited infinitely often but (n,n) and (n,w) are visited only finitely often.

K, s0 **⊨ EF EG** c1 !

- The *first kind of unfairness* has to do with a *bad scheduling policy*.
 - Find a better allocation scheme.
 - ≻Turn-based.
- The *second kind of unfairness* is unavoidable.
- Solution:

- Consider only *fair computations*.

- Fair Kripke Structures.
- First Attempt:
 - $-\mathbf{K} = (\mathbf{S}, \mathbf{S}_0, \mathbf{R}, \mathbf{AP}, \mathbf{L}, \mathbf{F})$
 - **F µ S** (*fairness constraint*)
- π is a *fair computation iff*:
 - It is a computation.
 - inf(**p**) **Ç F** ¹ **Æ**
 - inf(p) = {s : s appears infinitely often in p}

- Fair Kripke Structures.
- $\mathbf{K} = (\mathbf{S}, \mathbf{S}_0, \mathbf{R}, \mathbf{AP}, \mathbf{L}, \mathbf{F}_1, \mathbf{F}_2, \dots, \mathbf{F}_n)$ - $\mathbf{F}_i \boldsymbol{\mu} \mathbf{S} (fairness constraints})$
- **p** is a *fair computation iff*:
 - It is a computation.
 - $-\inf(\mathbf{p}) \mathbf{C} \mathbf{F}_i^{\mathbf{1}} \mathbf{E}$ for each $\mathbf{i} = 1, 2, ..., n$
 - inf(p) = {s : s appears infinitely often in p}

K, s0 ⊨ AG(w2 ® AF grt2) with above *fairness constraint* !

K, s0 = AG(w2 ® AF grt2)

F ---- Øw2 Ú grt2

K, s0 ⊭ EF (EG c1 Ú EG c2) with the above *fairness* constraint !

F ---- Øc1 ÙØc2

K, s0 ⊭ EF (EG c1 Ú EG c2) with the above *fairness constraint* !

NuSMV Fairness

- Can't always use sets of states to specify fairness.
 - State space is often defined implicitly.
- Use formulas!
- **f** ---- Property **f** is true *infinitely often*.
- *Model check* along only *fair computation paths*.

NuSMV Fairness

• $C = \{p_1, p_2, ..., p_n\}$

- Fairness constraints.

- $K = (S, S_0, R, AP, L, C)$
- s0 s1 s2 is a *fair computation iff*:
 - It is a computation.
 - For each i, there are infinitely many j such that

K, $s_j \models p_i$

• $C = \{p_1, p_2, ..., p_n\}$

- $K = (S, S_0, R, AP, L, C)$
- K, s **=**_c y ?
- K, s ⊧_c p *iff* there exists a *fair path* from s and K, s ⊧ p (i.e. p Î L(s))
- K, $s \models_{c} y_{1} \hat{U} y_{2}$ iff K, $s \models_{c} y_{1}$ and K, $s \models_{c} y_{2}$

• $C = \{p_1, p_2, ..., p_n\}$

- $K = (S, S_0, R, AP, L, C)$
- K,s ⊧_cy ?
- K,s⊧_cEXy *iff* there exists a *fair path* from s and there exists s' along that path with R(s, s') and K, s'⊧_cy.

• $C = \{p_1, p_2, ..., p_n\}$

- $K = (S, S_0, R, AP, L, C)$
- K,s**¢**_cy ?
- $\mathbf{K}, \mathbf{s} \models_{\mathbf{C}} \mathbf{EU}(\mathbf{y}_1, \mathbf{y}_2)$ iff there exists a fair path from **s** which satisfies $\mathbf{y}_1 \mathbf{U} \mathbf{y}_2$.

• $C = \{p_1, p_2, ..., p_n\}$

- $K = (S, S_0, R, AP, L, C)$
- K,s⊧_cy ?
- K,s⊧_cEGy *iff* there exists a *fair path* from s which satisfies y at every state along this fair path.

- $C = \{p_1, p_2, ..., p_n\}$
 - Fairness constraints.
- $K = (S, S_0, R, AP, L, C)$
- K,s**⊧**_cy ?
- It is possible to adapt the **NuSMV** model checking procedure:

– **K**,s **⊧ y**

to

– K,s ⊧_c y.

Fair Strongly Connected Comp.

A non-trivial strongly connected component C of K is fair with respect to the fair set C = {p₁, p₂,..., p_n} iff for each p_i **Î** C there is a state s **Î** C such that

K, *s* ⊨ p_{*i*}

M. C. with Fairness: EG(b)

- Let $\mathbf{K'} = (\mathbf{S'}, \mathbf{R'}, \mathbf{L'}, \mathbf{C})$ be the sub-graph of \mathbf{K} where
 - $-S' = \{ s \mid K, s \models_{C} b \}$
 - $-\mathbf{R'} = \mathbf{R}|_{\mathbf{S''}\mathbf{S'}}$ (the restriction of **R** to **S'**)
 - $-\mathbf{L}' = \mathbf{L}|_{\mathbf{S}'}$ (the restriction of **L** to **S**')
- Lemma: K, s ⊧_c EG(b) *iff*

1. s Î S' and

2. *there exists a path* in **K'** leading from **s** to a *non-trivial fair strongly connected component* **C** of the graph (S',R') *w.r.t.* **C**.

Computing the labeling for $EG(\beta)$

Algorithm Check Fair $EG(\beta)$ *Complexity: O(|K||C|)* S' := {s | β **Î** Labels(s)}; SCC := {C | C is a *fair* non trivial SCC of S'}; $\mathbf{T} := \mathbf{E}_{\mathbf{C}\mathbf{\widehat{I}}\mathbf{SCC}}\{\mathbf{s} \mid \mathbf{s} \mathbf{\widehat{I}} \mathbf{C}\};\$ for each $\mathbf{s} \, \mathbf{\hat{I}} \, \mathbf{T}$ do Labels(\mathbf{s}) := Labels(\mathbf{s}) $\mathbf{\hat{E}} \, \{\mathbf{EG}(\boldsymbol{\beta})\};$ while T¹ Æ do chose s **Î** T; $\mathbf{T} := \mathbf{T} \setminus \{\mathbf{s}\};$ for each $t\hat{\mathbf{I}}$ S' with $t \otimes s$ do if $EG(\beta)$ **I** Lables(t) then Labels(t) := Labels(t) $\mathbf{\check{E}} \{ \mathbf{EG}(\beta) \};$ $T := T \mathbf{\hat{E}} \{t\}$:

The Labels function

- Let *fair* be a new *atomic proposition* and let us use the algorithm Check_Fair_EG(*true*) to label *K* with this new proposition (i.e. *fair* = *EG true*).
- Then
- K, $s \models_{C} p$ iff K, $s \models (p \mathring{U} fair)$
- K, s ⊧_c EX**f** iff K, s ⊧ EX (**f Ù** fair)
- $-K, s \models_{C} EU(y, f)$ iff K, $s \models EU(y, f \check{U} fair)$

Symbolic MC for $EG_f f$

Let Z be the *largest set* of states with the following two properties:

- 1. all of the states in Z satisfy f, and
- 2. for all $p_k \hat{\mathbf{I}} \hat{\mathbf{C}}$ and all states s $\hat{\mathbf{I}} \mathbf{Z}$

there is a *non-empty* sequence of states from s to a state in Z satisfying p_k, and

> all states in the sequence satisfy the formula **f**.

It can be shown that each state in Z is the beginning of a path on which **f** is *always true*,

and every formula in C holds *infinitely often* on this path.

Symbolic MC for $EG_f f$

It follows that $\mathbf{EG}_{\mathbf{f}} \phi$ can be expressed as a greatest fixed point of the following function:

$$\mathbf{E}\mathbf{G}_{\mathbf{f}}\boldsymbol{\phi} = \mathbf{n}\mathbf{Z}.\boldsymbol{\phi}\,\mathbf{\hat{U}}\,\mathbf{\hat{U}}_{k=1...n}\,\mathbf{E}\mathbf{X}\,\mathbf{E}\mathbf{U}(\boldsymbol{\phi},\,\mathbf{Z}\,\mathbf{\hat{U}}\,\mathbf{p}_{k})$$

This equation can be used to compute the set of states that satisfy $\mathbf{EG}_{f} \phi$ according to the *fair semantics*.

Symbolic MC for $EX_f \phi$ and $EU_f(\phi, \psi)$

The set of all states which are the start of some *fair computation* is the set of states satisfying:

fair = EG_f *true*

Hence,

 $EX_{f} \phi = EX(\phi \tilde{U} fair);$ $EU_{f}(\phi, \psi) = EU(\phi, \psi \tilde{U} fair)$