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Abstract

We significantly reduce the complexity of BDD-based symbolic verification
by using partitioned transition relations to represent state transition graphs.
This method can be applied to both synchronous and asynchronous circuits.
The times necessary to verify a synchronous pipeline and an asynchronous
stack are both bounded by a low polynomial in the size of the circuit. We
were able to handle stacks with over 10°° reachable states and pipelines with

over 10120 reachable states.



1 Introduction

Although methods for verifying sequential circuits by searching their state
transition graphs have been investigated for many years, it is only recently
that such methods have begun to seem practical. Before, the largest circuits
that could be verified had about 10° states. Now it is easy to check circuits
that have many orders of magnitude more states [3, 5, 6, 7]. The reason
for the dramatic increase is the use of special data structures such as binary
decision diagrams (BDDs) [2] for encoding the state transition graphs of such
systems.

In this paper, we show how to process state transition graphs more effi-
ciently than in our previous work [5, 6]. Our new approach involves using
multiple BDDs, which are implicitly conjuncted or disjuncted, to represent
the graphs. We call this kind of representation a partitioned transition rela-
tion. The BDDs that make up the partitioned transition relation are derived
in a natural way from the structure of the circuit being verified. We illus-
trate the power of the technique by verifying an asynchronous stack [10] and
a synchronous pipeline circuit [5]. Using a partitioned transition relation, we
were able to verify a stack 32 bits wide and 2 cells deep. For comparison,
we were unable to verify a stack only 1 bit wide and 1 cell deep when us-
ing a single BDD to represent the transition relation because the transition
relation required more than 350,000 BDD nodes. For a pipeline with 4 regis-
ters, each 32 bits wide, the partitioned transition relation required less than
2,500 BDD nodes, while using a single BDD required nearly 340,000 nodes, a
savings of nearly a factor of 140. On a Sun 4, the verification time improved
from approximately 14,000 seconds (projected) to 995 seconds, a factor of
about 14. We were also able to handle example pipelines with over 10*%°
reachable states.

There are several other methods that use BDDs in the verification of se-
quential circuits. Bryant and Seger [3] use a symbolic switch-level simulator
to check pre- and post-conditions specified in a restricted form of temporal
logic. The logic allows boolean conjunction and the next time modality (X).
Coudert, Berthet, and Madre describe a system for showing equivalence be-
tween deterministic finite automata [7]. Their system performs a symbolic
breadth-first search of the state space reachable by the product of the two
automata. None of these methods can easily handle nondeterministic sys-
tems. With transition relations, it is very natural to model examples like



the cache coherency protocol for the Encore Gigamax, which McMillan has
recently investigated [11]. A major feature of the Gigamax architecture is
an asynchronous, and hence nondeterministic, interconnection network. The
use of abstraction to hide certain details of the cache replacement policy also
gives rise to nondeterminism in this example.

2 Symbolic verification

Given a circuit, let V' be its set of boolean state variables. We identify a
boolean formula over V' with the set of valuations which make the formula
true. A valuation of the variables corresponds in a natural way to a state
of the circuit; hence the formula may be thought of as representing a set of
circuit states. The BDD for the formula is in practice a concise representation
for this set of states. In the remainder of the paper, we will denote sets of
states using S and 7. We denote the BDD representing the set S by S(V),
where V is the set of variables that the BDD depends on. In addition to
representing sets of states of a circuit, we must represent the transitions that
the circuit can make. To do this, we use a second set of variables V'. A
valuation for the variables in V and V' can be viewed as designating a pair
of states in the circuit, and we can represent sets of pairs using BDDs as
above. We will refer to sets of pairs of states as transition relations. If
N is a transition relation, then we write N(V, V') to denote the BDD that
represents it.

There are many finite state verification methods that can make effective
use of this representation [5, 7]. For our purposes, the important property
of these algorithms is that the basic step is performing computations of the
following form:

SV =4 [SV)aANV V.
veV
(The notation above indicates a series of nested existential quantifications,
one for each variable in V.) This expression, called a relational product, gives
the set of states S’ reachable in one step from the set of states S in a circuit
with transition relation N. It is crucial to be able to do this computation
efficiently. A special algorithm is typically used to do this operation in one
pass over the BDDs S(V) and N(V,V’). By using such an algorithm, it is
possible to avoid building the BDD for S(V) A N(V, V'), which would often



be impractically large. Unfortunately, the BDD N(V, V) itself is often very
big. Up to this point, being forced to construct this BDD has been the major
stumbling block in trying to verity complex circuits. In the following sections,
we describe how to overcome this problem by using a partitioned transition
relation to represent N.

3 Deriving transition relations

The first step in verifying a circuit is to derive its transition relation. Our
goal is to reflect the structure of the circuit in the structure of the transition
relation, so that the transition relation can be stored and manipulated more

efficiently.
For a synchronous circuit with n state variables, we let V = {vg,...,v,_1}
and V' = {v},...,v!_;}. For each state variable v;, there is a piece of com-

binational logic which determines how it is updated. Let f; be the function
computed by this logic. Then the value of v; in the next state is given by

These equations are used to define the relations
N(V, V') = (vi & fi(V)).

In a legal transition of the circuit, each N; must be true; hence the transition
relation for the circuit is

N(V,V') = No(V,V'Y A+ A Ny (V, V'),

Thus, the transition relation for a synchronous circuit can be expressed as a
conjunction of relations.

In practice, each N; can often be represented by a small BDD (typically
fewer than 100 nodes). However, the size of the BDD representing the en-
tire transition relation may grow as the product of the sizes of the individual
parts, and thus may be prohibitively large. In the past, this has been the ma-
jor limitation of symbolic model checking. For our new method, we instead
represent the transition relation by a list of the parts, which are implicitly
conjuncted. We call this representation a conjunctive partitioned transition
relation.



Asynchronous circuits can be modeled with a conjunctive partitioned
transition relation, like synchronous circuits, and can also be represented
by a disjunctive partioned transition relation. To simplify the description
of how these forms of transition relation are computed, we assume that all
the components of the circuit have exactly one output, and have no internal
state variables. It is straightforward to generalize the method to handle cases
where this assumption does not hold.

In asynchronous circuits, there can be an arbitrary delay between when
a transition is enabled and when it actually occurs. We can model this by
allowing each component to nondeterministically choose whether to transi-
tion its output, resulting in a conjunctive partitioned relation with n parts,
all of the form

N(V, VY= (vl & fi(V)) V (vl & v).

For some components, such as C-elements and flip-flops, the function f;(V)
may depend on the current value of the output of the component, as well as
the inputs.

The above model for asynchronous circuits allows wires to transition con-
currently. We can also use an interleaving model, which allows only one wire
to transition at a time. This idea can be used to construct a disjunctive
partitioned transition relation, as follows. First, apply distributivity to the
conjunction of the R;, giving a disjunction of 2" terms. Each of these terms
corresponds to the simultaneous transitioning of some subset of the n wires
in the circuit. Second, keep only those terms that correspond to exactly one
wire transitioning. This results in a disjunction of the form

NV, V') = No(V,V')V -V Ny (V, V')

where
NV, V') = (v} & F(V) A N\ < v)).
J#
We represent the full transition relation as a list of the N;(V, V"), which are
implicitly disjuncted.

4 Computing relational products

As noted earlier, computing relational products is a fundamental operation
in many symbolic verification methods. This section describes how relational
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products can be computed using the representations described in the previous
section. These techniques significantly increase the size of circuits that can
be verified compared to previous methods.

For a disjunctive partitioned transition relation, the relational product
computed is of the form

SV = [SV)A NV, V)V -V N (V, V).

veV

This relational product can be computed without ever constructing the BDD
for the full transition relation by rewriting S’(V'),

SV = [SV)AN(V, V)] Ve v T [S(V) A Na(V, V).

veV veV

Thus, we are able to reduce the problem of computing S’'(V') to one of
computing a series of relational products involving relatively small BDDs.
This technique was used previously for verifying asynchronous circuits [5].
Much larger asynchronous circuits could be verified using this method than
with a monolithic transition relation.

For a conjunctive partitioned transition relation, the relational product
computed is of the form

SV = [SV)A NV, V) Ao AN (V, V). (1)

veV

The main difficulty in computing S'(V') without building the conjunction
is that conjunction does not distribute over existential quantification. The
method given below overcomes this difficulty.

Our new technique is based on two observations. First, circuits exhibit
locality, so many of the N;(V,V’) will depend on only a small number of
the variables in V and V’. Second, although conjunction does not distribute
over existential quantification, subformulas can be moved out of the scope of
existential quantification if they do not depend on any of the variables being
quantified. We will take advantage of these observations by conjuncting the
N;(V, V') with S(V) one at a time and quantifying out each variable v when
none of the remaining N;(V, V') depend on v. More formally, the user must
choose a permutation p of {0,...,n — 1}. This permutation determines the



order in which the N;(V, V') are conjuncted. For each ¢, let D; be the set of
variables in V' that N;(V, V') depends on. Also, let

n—1
Ei=Dyiy— |J Doy
k=i+1

Thus, E; is the set of variables contained in D, that are not contained
in D, for any k larger than i. The E; are pairwise disjoint and their union
is equal to V. The relational product in equation 1 can be computed as

$i(V, V) = o [S(V) A Ny (V. V)]

UEEO

SV = T [SiViV) A Ny (V. V)]

UEEl

SVY= 3 [Secr(ViV) ANy (V, V)]

UeEn—l

The ordering p has a significant impact on how early in the computation state
variables can be quantified out. This affects the size of the BDDs constructed
and the efficiency of the verification procedure. Thus, it is important to
choose p carefully, just as with the BDD variable ordering. In practice, we
have found it fairly easy to come up with orderings which give good results.

In the previous section, we described how a circuit could be represented
by a set of N;(V, V'), each depending on exactly one variable in V’. While this
is almost always more efficient than constructing the full transition relation,
it may not be the best choice. As long as the BDDs do not get too large, it
is better to combine several of the N;(V, V') into one BDD by forming their
disjunction or conjunction.

5 Verifying asynchronous circuits

Asynchronous circuits can be verified in two steps. First, compute the set
of states the circuit, composed with an environment, can reach from a given
set of initial states. Then check that no hazard can occur in any of the
reachable states. Finding the reachable states is the most computationally



expensive of these two steps. In practice, checking for hazards is usually done
as the reachable states are computed. This is similar to Dill’s [9] method for
verifying safety properties of asynchronous circuits.

The set of reachable states is found by computing the least fixed point S
of

S(V') = Se(V)v 3 [S(V) ANV, VY,
veV
where Sg is the initial set of states and NV is the transition relation of the
circuit. We use frontier set simplification to speed up the computation of
this fixed point [5, 7]

There are significant differences in the complexity of doing reachability
analysis using conjunctive and disjunctive partitioned transition relations.
Consider two uncoupled systems M’ and M" with disjoint sets of state vari-
ables V' and V". Let M be the composition of these two systems. This is
an unrealistic example, but it helps illustrate what happens when computing
the reachable states of loosely coupled systems. The BDD S(V) representing
the set of reachable states of M is equal to S'(V') A S"(V"), where S'(V')
(S"(V")) is the BDD for the reachable states of M’ (M"), and V = V' UV".
An efficient way to order the BDD variables of the combined system in this
case is to have all the variables of one component (say M’) before any of
the variables in the other component. Then the number of BDD nodes in
S(V) is equal to the sum of the nodes in S’(V’) and S”(V"), independent of
whether conjunctive or disjunctive partitioning is used. However, the sizes
of the BDDs representing the intermediate state sets are potentially different
for the two methods.

Let S;(V), SI{(V') and S”(V") be the BDDs representing the states reach-
able in ¢ steps by M, M’ and M", respectively, using non-interleaved seman-
tics. Similarly, let T;(V), T/(V') and T(V") be the BDDs representing the
states reachable in ¢ steps by M, M" and M", respectively, using interleaved
semantics. In the conjunctive case, S;(V) = SI{(V') A SY(V"), so the size of
each S;(V) is equal to the sum of the sizes of S/(V’) and S”(V"), just as for
the set of reachable states. However, for the disjunctive case,

T(V) =\ TV ) AT (V).
k=0
Thus, interleaving semantics introduces an artificial correlation between the

local states of M" and M" in the T;(V'). The T;(V') are generally much larger
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than the S;(V'), since each T;(V') must contain 7}/ (V') for all £ < . Because of
this effect, reachability analysis with disjunctive partitioning is less efficient
than with conjunctive partitioning.

We can make disjunctive partitioning more efficient by moditying the
breadth first search used for reachability analysis. To search the reachable
states of M, first compute states reachable by transitions of wires in M’.
Then compute the states reachable from that set by transitioning on wires
in M"”. This is equal to the global reachable state set, since M’ and M"
are uncoupled. Separately computing local fixed points for the two parts
of the system in this way removes the artificial correlation described above.
In general, for a circuit C' divided into loosely coupled subcircuits C;, we
compute the reachable states of C' by repeatedly computing local fixed points
for each C; until a global fixed point is reached. This idea can be extended
to a hierarchy with any number of levels.

6 An asynchronous stack

In this section, we compare conjunctive and disjunctive partitioned transition
relations for verifying asynchronous circuits by considering an asynchronous
lazy stack due to Martin [10]. To determine the asymptotic performance of
the various methods discussed earlier, we performed a reachability analysis
for stacks with varying depth d and word width w. This is sufficient to
determine the asymptotic complexity of verification, even though we did not
check for hazards. Hazard checking increases the times by a constant factor.

The stack consists of an array of d cells, each cell consisting of a control
part, a data part and a completion tree. The data part of each cell consists
of w storage elements. The completion trees signal when all the storage
elements in a cell have completed the current data transfer.

The verification system that we use is written in a combination of C
and LISP. The BDD package is written in C and is roughly comparable in
performance to the package described by Brace, Rudell and Bryant [1].

We studied how verification time varied with w for four different methods:

1. Disjunctive partitioning using standard breadth first search. We com-
bined the transition relations for the gates making up each individual
control part, each of the individual storage elements, and each comple-
tion tree.



2. Disjunctive partitioning using modified breadth first search and the
same partitioning of the transition relation as above. At the top level,
the hierarchy used for local fixed point computation consisted of the
environment and each cell as a unit. Each cell was broken into the
control part, the completion tree and the data part. The data part was
further subdivided into [lg(w)] levels, each of two parts.

3. Conjunctive partitioning using the same partitioning of the transition
relation as above. We used the following ordering p of the parts of
transition relation: the environment at the top of the stack; the control
part and data parts of each cell, ordered from the top of the stack to
the bottom; the completion trees, also ordered from the top of the stack
to the bottom; and the environment at the bottom of the stack.

4. Conjunctive partitioning using the same partitioning as above, but with
the control and data parts within each cell combined into one BDD.
The p used above is modified in the obvious way.

In all cases, we used an initial state set in which each cell could be full
or empty and the data in each cell was arbitrary. Using a more restricted
set of initial states, such as having all cells initially empty, can increase the
verification time by as much as a factor of d.

A graph of the search times versus stack width for the various methods
is shown in figure 1. We found that disjunctive partitioning with breadth
first search were feasible only for small examples. Disjunctive partitioning
with modified breadth first search and conjunctive partitioning were all much
more efficient. Search times using methods 2 and 3 grew slightly faster than
quadratically. Method 4 gave a growth rate of roughly w!?®. Using this
method, we were able to find the reachable states of a 32 bit wide, depth 2
stack in under an hour of CPU time on a Sun 4. This circuit had over 989
boolean state variables and 10°° reachable states.

The BDDs in the transition relation are all of constant size, except for
those representing the completion trees. These BDDs are growing as w's?,
but for the values of w we considered, they are still quite small. For larger w,
it might be necessary to split the completion trees into more than one BDD.

We also explored how the search time varied with the depth of the stack,
using conjunctive partitioning. The number of steps needed to compute the
reachable states grows quadratically in d. The states which require the largest
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number of steps to reach are states in which internal signals within the stack
control are not stable. Thus, we were able to avoid the quadratic search depth
by replacing the control part of each cell by an abstract model having only
external signals. We separately verified that the abstract model correctly
describes the external behavior of the control part. With this abstraction,
the number of steps needed to find all reachable states is linear in d, and the
search time is cubic in d (see figure 2).

Although this kind of abstraction can greatly improve the efficiency of
verifiers that explicitly enumerate states, it is usually not nearly as helpful
when used with symbolic verifiers. For example, the search times for stacks
of depth one improve only about 20 percent when the abstract model of the
control part is used. The effect that abstraction has on the search depth, as
described above, is an exception to this rule.

7 A synchronous pipeline

We also considered the verification of a synchronous pipeline circuit. This
circuit, described in an earlier paper [5], performs three-address arithmetic
and logical operations on operands stored in a register file. We experimented
with a number of versions of the pipeline with varying numbers of registers,
register widths, numbers of pipe stages, and numbers of operations. The
verification times grow as low polynomials in all dimensions. We also ran
several more realistic examples. The largest of these was a pipeline with
8 registers, each 32 bits wide, 2 pipe registers, and one operation. This
example had 406 state variables resulting in more than 10'?° reachable states,
and the verification took 4 hours and 20 minutes of CPU time on a Sun 4.
Details of the verification of the pipeline can be found in [4].

8 Discussion and future research

Using partitioned transition relations significantly improves the efficiency of
symbolic verification. We verified a stack with over 950 state variables and
more than 10°° reachable states and a pipeline with more than 400 state
variables and over 10'?° reachable states. We also studied the asymptotic
performance of our verification methods. This kind of asymptotic analysis is
an important way to compare different techniques.
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For deterministic systems, a transition function vector can be used to rep-
resent how a circuit transitions from one state to another. In this method,
a separate BDD is used for each state holding node of the system. This
BDD represents the function computed by the combinational logic driving
the associated node. Coudert et al. [7, 8] describe a number of algorithms
for manipulating transition functions. They note that the monolithic tran-
sition relation can require many more BDD nodes than the corresponding
transition function vector [8]. However, they report that computations with
transition relations are faster than those using transition functions. Parti-
tioned transition relations provide the speed of transition relations and the
memory efficiency of transition functions.

Touati et al. [12] proposed another method for representing transition re-
lations as implicit conjunctions. They use the constrain operator of Coudert
et al. [7] to eliminate the state set S(V') in equation 1. Then they compute the
resulting conjunction as a balanced binary tree, quantifying out each variable
in V' when all the BDDs depending on that variable have been combined. We
believe that this method is inferior to the one proposed here because the con-
strain operator may introduce dependencies on any of the variables in S(V).
This makes it impossible to compute in advance a schedule for quantifying
out the variables in V', which in turn reduces the practicality of caching re-
sults between relational product computations. In addition, if S(V') depends
on most of the variables in V', it may not be possible to quantify out many
variables before performing the final conjunction. They also suggest having
one transition relation per state variable. In our experience, it is often better
to combine parts of the transition relations to reduce overhead; this idea is
also applicable to their method. We implemented their method and tested it
on some of the examples in section 7. For a pipeline with four 8 bit registers,
one pipe register and one operation, our method was more than five times
faster. In addition, for some of the relational product computations, the in-
termediate BDDs using their method were more than an order of magnitude
larger than the final result.
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