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Abstract. We describe an automata-theoretic approach to the automated check-
ing of truth and validity for temporal logics. The basic idea underlying this
approach is that for any formula we can construct an alternating automaton that
accepts precisely the models of the formula. For linear temporal logics the au-
tomaton runs on infinite words while for branching temporal logics the automaton
runs on infinite trees. The simple combinatorial structures that emerge from the
automata-theoretic approach decouple the logical and algorithmic components of
truth and validity checking and yield clean and essentially optimal algorithms for
both problems.

1 Introduction

CADE is the major forum for presentation of research in all aspects of automated
deduction. Essentially, the focus of CADE is on checking the validity of logical formulas.
Underlying the notion of logical validity, however, is the notion of logical truth. In many
computer science applications, the focus is on the checking of logical truth rather than of
logical validity. This is certainly the case in database query evaluation (see [Var82]) and
in finite-state program verification (see [CES86]). (In fact, we have argued elsewhere
that even applications that traditionally focus on logical validity, such as knowledge
representation, might be better off focusing on logical truth [HV91].)

In general, the algorithmic techniques in computer-aided validity analysis, i.e., va-
lidity checking, and in computer-aided truth analysis, i.e., truth checking, seem to do
very little with each other, in spite of the obvious relationship between truth and va-
lidity. Our goal in this paper is to show that for temporal logics it is possible to unify
the algorithmic techniques underlying validity and truth checking. We will argue that
alternating automata provide such a unifying algorithmic tool. (This tool is also ap-
plicable to dynamic logics [FL79] and description logics [GL94], but because of space
constraints we cannot cover these logics in this paper.)

Temporal logics, which are logics geared towards the description of the temporal
ordering of events, have been adopted as a powerful tool for specifying and verifying
concurrent programs [Pnu77, MP92]. One of the most significant developments in this
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area is the discovery of algorithmic methods for verifying temporal logic properties of
finite-state programs [CES86, LP85, QS81]. This derives its significance from the fact
that many synchronization and communication protocols can be modeled as finite-state
programs [Liu89, Rud87]. Finite-state programs can be modeled by transition systems
where each state has a bounded description, and hence can be characterized by a fixed
number of Boolean atomic propositions. This means that a finite-state program can be
viewed as a finite propositional Kripke structure and that its properties can be specified
using propositional temporal logic.

Thus, to verify the correctness of the program with respect to a desired behavior,
one only has to check that the propositional temporal logic formula that specifies that
behavior is true in the program, modeled as a finite Kripke structure; in other words,
the program has to be a model of the formula. Hence the name model checking for the
verification methods derived from this viewpoint (see [CG87, Wol89, CGL93]), though
we prefer to use the term truth checking in this paper. Note that the formula that specifies
the desired behavior clearly should be neither valid nor unsatisfiable, which entails that
a computer-aided verification system has to have the capacity for validity checking in
addition to truth checking.

We distinguishbetween two types of temporal logics: linear and branching [Lam80].
In linear temporal logics, each moment in time has a unique possible future, while in
branching temporal logics, each moment in time may split into several possible futures.
For both types of temporal logics, a close and fruitful connection with the theory of
automata on infinite structures has been developed. The basic idea is to associate with
each temporal logic formula a finite automaton on infinite structures that accepts exactly
all the computations in which the formula is true. For linear temporal logic the structures
are infinite words [WVS83, Sis83, LPZ85, Pei85, SVW87, VW94], while for branching
temporal logic the structures are infinite trees [ES84, SE84, Eme85, EJ88, VW86b].
This enables the reduction of temporal logic decision problems, both truth and validity
checking, to known automata-theoretic problems.

Initially, the translations in the literature from temporal logic formulas to automata
used nondeterministic automata (cf. [VW86b, VW94]). These translations have two
disadvantages. First, the translation itself is rather nontrivial; indeed, in [VW86b, VW94]
the translations go through a series of ad-hoc intermediate representations in an attempt
to simplify the translation. Second, for both linear and branching temporal logics there
is an exponential blow-up involved in going from formulas to automata. This suggests
that any algorithm that uses these translations as one of its steps is going to be an
exponential-time algorithm. Thus, the automata-theoretic approach did not seem to be
applicable to branching-time truth checking, which in many cases can be done in linear
running time [CES86, QS81, Cle93],

Recently it has been shown that if one uses alternating automata rather than nonde-
terministic automata, then these problems can be solved [Var94, BVW94]. Alternating
automata generalize the standard notion of nondeterministic automata by allowing sev-
eral successor states to go down along the same word or the same branch of the tree.
In this paper we show that alternating automata offer the key to a comprehensive and
satisfactory automata-theoretic framework for temporal logics. We demonstrate this
claim by showing how alternating automata can be used to derive truth- and validity-



checking algorithms for both linear and branching temporal logics. The key obser-
vation is that while the translation from temporal logic formulas to nondeterministic
automata is exponential [VW86b, VW94], the translation to alternating automata is
linear [MSS88, EJ91, Var94, BVW94]. Thus, the advantage of alternating automata
is that they enable one to decouple the logic from the algorithmics. The translations
from formulas to automata handle the logic, and the algorithms are then applied to the
automata.

2 Automata Theory

2.1 Words and Trees

We are given a finite nonempty alphabet �. A finite word is an element of ��, i.e., a
finite sequence a0; : : : ; an of symbols from �. An infinite word is an element of �! ,
i.e., an infinite sequence a0; a1; : : : of symbols from �.

A tree is a (finite or infinite) connected directed graph, with one node designated as
the root and denoted by ", and in which every non-root node has a unique parent (s is
the parent of t and t is a child of s if there is an edge from s to t) and the root " has no
parent. The arity of a node x in a tree � , denoted arity(x), is the number of children
of x in � . The level of a node x, denoted jxj, is its distance from the root; in particular,
j"j = 0. Let N denote the set of positive integers. A tree � over N is a subset of N�,
such that if x � i 2 � , where x 2 N* and i 2 N , then x 2 � , there is an edge from x to
x � i, and if i > 1 then also x � (i � 1) 2 � . By definition, the empty sequence " is the
root of such a tree, Let D � N . We say that a tree � is a D-tree if � is a tree over N and
arity(x) 2 D for all x 2 � . If D is a singleton set fkg then we say that � is uniform
and we refer to D-trees as k-trees. A tree is called leafless if every node has at least one
child. For example, an infinite word is a leafless 1-tree.

A branch � = x0; x1; : : : of a tree is a maximal sequence of nodes such that x0 is
the root and xi is the parent of xi+1 for all i > 0. Note that � can be finite or infinite; if
it is finite, then the last node of the branch has no children. A�-labeled tree, for a finite
alphabet�, is a pair (�; T ), where � is a tree and T is a mappingT : nodes(� )! � that
assigns to every node a label. We often refer to T as the labeled tree, leaving its domain
implicit. A branch � = x0; x1; : : : of T defines a word T (�) = T (x0); T (x1); : : :
consisting of the sequence of labels along the branch.

2.2 Nondeterministic Automata on Infinite Words

A nondeterministic Büchi word automaton A is a tuple (�;S; s0; �; F ), where � is a
finite nonempty alphabet, S is a finite nonempty set of states, s0 2 S is an initial state,
F � S is the set of accepting states, and � : S � � ! 2S is a transition function.
Intuitively, �(s; a) is the set of states that A can move into when it is in state s and it
reads the symbol a. Note that the automaton may be nondeterministic, since it may have
many initial states and the transition function may specify many possible transitions for
each state and symbol.

A run r of A on an infinite word w = a0; a1; : : : over � is a sequence s0; s1; : : :,
where s0 = s0 and si+1 2 �(si; ai), for all i � 0. We define lim(r) to be the set



fs j s = si for infinitely many i’sg, i.e., the set of states that occur in r infinitely often.
Since S is finite, lim(r) is necessarily nonempty. The run r is accepting if there is some
accepting state that repeats in r infinitely often, i.e., lim(r) \ F 6= ;. The infinite word
w is accepted by A if there is an accepting run of A on w. The set of infinite words
accepted by A is denoted L!(A).

An important feature of nondeterministic Büchi automata is their closure under
intersection.

Proposition 1. [Cho74] Let A1 and A2 be nondeterministic word Büchi automata with
n1 and n2 states, respectively. Then there is a Büchi word automatonA with O(n1n2)
states such that L!(A) = L!(A1) \ L!(A2).

One of the most fundamental algorithmic issues in automata theory is testing whether
a given automaton is “interesting”, i.e., whether it accepts some input. A Büchi automa-
ton A is nonempty if L!(A) 6= ;. The nonemptiness problem for automata is to decide,
given an automatonA, whether A is nonempty. It turns out that testing nonemptiness is
easy.

Proposition 2.

1. [EL85b, EL85a] The nonemptiness problem for nondeterministic Büchi word au-
tomata is decidable in linear time.

2. [VW94] The nonemptiness problem for nondeterministic Büchi automata of size n
is decidable in space O(log2 n).

2.3 Alternating Automata on Infinite Words

Nondeterminism gives a computing device the power of existential choice. Its dual gives
a computing device the power of universal choice. It is therefore natural to consider
computing devices that have the power of both existential choice and universal choice.
Such devices are called alternating.Alternation was studied in [CKS81] in the context of
Turing machines and in [BL80, CKS81] for finite automata. The alternation formalisms
in [BL80] and [CKS81] are different, though equivalent. We follow here the formalism
of [BL80], which was extended in [MS87] to automata on infinite structures.

For a given set X, let B+(X) be the set of positive Boolean formulas over X (i.e.,
Boolean formulas built from elements in X using ^ and _), where we also allow the
formulas true and false. Let Y � X. We say that Y satisfies a formula � 2 B+(X)
if the truth assignment that assigns true to the members of Y and assigns false to the
members of X � Y satisfes �. For example, the sets fs1; s3g and fs1; s4g both satisfy
the formula (s1 _ s2) ^ (s3 _ s4), while the set fs1; s2g does not satisfy this formula.

Consider a nondeterministic automaton A = (�;S; s0; �; F ). The transition func-
tion � maps a state s 2 S and an input symbol a 2 � to a set of states. Each element
in this set is a possible nondeterministic choice for the automaton’s next state. We
can represent � using B+(S); for example, �(s; a) = fs1; s2; s3g can be written as
�(s; a) = s1 _ s2 _ s3. In alternating automata, �(s; a) can be an arbitrary formula from
B+(S). We can have, for instance, a transition

�(s; a) = (s1 ^ s2) _ (s3 ^ s4);



meaning that the automaton accepts the word aw, where a is a symbol and w is a word,
when it is in the state s if it accepts the wordw from both s1 and s2 or from both s3 and
s4. Thus, such a transition combines the features of existential choice (the disjunction
in the formula) and universal choice (the conjunctions in the formula).

Formally, an alternating Büchi word automaton is a tuple A = (�;S; s0; �; F ),
where � is a finite nonempty alphabet, S is a finite nonempty set of states, s0 2 S is an
initial state, F is a set of accepting states, and � : S�� ! B+(S) is a partial transition
function.

Because of the universal choice in alternating transitions, a run of an alternating
automaton is a tree rather than a sequence. A run ofA on an infinite word w = a0a1 : : :

is an S-labeled tree r such that r(") = s0 and the following holds:

if jxj = i, r(x) = s, and �(s; ai) = �, then x has k children x1; : : : ; xk, for
some k � jSj, and fr(x1); : : : ; r(xk)g satisfies �.

For example, if �(s0; a0) is (s1 _ s2)^ (s3 _ s4), then the nodes of the run tree at level 1
include the label s1 or the label s2 and also include the label s3 or the label s4. Note that
the run can also have finite branches; if jxj = i, r(x) = s, and �(s; ai) = true, then x
does not need to have any children. On the other hand, we cannot have �(s; ai) = false
since false is not satisfiable, and we cannot have �(s; ai) be undefined. The run r is
accepting if every infinite branch in r includes infinitely many labels in F . Thus, a
branch in an accepting run has to hit the true transition or hit accepting states infinitely
often.

What is the relationship between alternating Büchi automata and nondeterministic
Büchi automata? It is easy to see that alternating Büchi automata generalize nondeter-
ministic Büchi automata; nondeterministic automata correspond to alternating automata
where the transitionsare pure disjunctions. It turns out that they have the same expressive
power (although alternating Büchi automata are more succinct than nondeterministic
Büchi automata).

Proposition 3. [MH84] Let A be an alternating Büchi word automaton with n states.
Then there is a nondeterministic Büchi word automatonAn with 2O(n) states such that
L!(An) = L!(A).

By combining Propositions 2 and 3 (with its exponential blowup), we can obtain a
nonemptiness test for alternating Büchi automata.

Proposition 4. [Var96] The nonemptiness problem for alternatingBüchi word automata
is decidable in exponential time or in quadratic space.

2.4 Nondeterministic Automata on Infinite Trees

We now consider automata on labeled leafless D-trees. A nondeterministic Büchi tree
automatonA is a tuple (�;D; S; s0; �; F ). Here � is a finite alphabet,D � N is a finite
set of arities,S is a finite set of states, s0 2 S is an initial state,F � S is a set of accepting
states, and � : S � � � D ! 2S

�

is a transition function, where �(s; a; k) � Sk for
each s 2 S, a 2 �, and k 2 D. Thus, �(s; a; k) is a set of k-tuples of states. Intuitively,



when the automaton is in state s and it is reading a k-ary node x of a tree T , it
nondeterministically chooses a k-tuple hs1; : : : ; ski in �(s; T (x)), makes k copies of
itself, and then moves to the node x � i in the state si for i = 1; : : : ; k. A run r : � ! S

ofA on a �-labeled D-tree T is an S-labeled D-tree such that the root is labeled by the
initial state and the transitions obey the transition function �; that is, r(") = s0, and for
each node x such that arity(x) = k, we have hr(x�1); : : : ; r(x�k)i 2 �(r(x); T (x); k).
The run is accepting if lim(r(�)) \ F 6= ; for every branch � = x0; x1; : : : of � ; that
is, for every branch � = x0; x1; : : :, we have that r(xi) 2 F for infinitely many i’s. The
set of trees accepted by A is denoted T!(A).

Proposition 5. [Rab70, VW86b] The nonemptiness problem for nondeterministicBüchi
tree automata is decidable in quadratic time.

2.5 Alternating Automata on Infinite Trees

An alternating Büchi tree automatonA is a tuple (�;D; S; s0; �; F ). Here � is a finite
alphabet,D � N is a finite set of arities,S is a finite set of states, s0 2 S is an initial state,
F � S is a set of accepting states, and � : S���D ! B+(N�S) is a partial transition
function, where �(s; a; k) 2 B+(f1; : : : ; kg�S) for each s 2 S, a 2 �, andk 2 D such
that �(s; a; k) is defined. For example, �(s; a; 2) = ((1; s1)_(2; s2))^((1; s3)_(2; s1))
means that the automaton can choose between four splitting possibilities. In the first
possibility, one copy proceeds in direction 1 in the state s1 and one copy proceeds in
direction 1 in the state s3. In the second possibility, one copy proceeds in direction 1 in
the state s1 and one copy proceeds in direction 2 in the state s1. In the third possibility,
one copy proceeds in direction 2 in the state s2 and one copy proceeds in direction 1
in the state s3. Finally, in the fourth possibility, one copy proceeds in direction 2 in the
state s2 and one copy proceeds in direction 2 in the state s1. Note that it is possible for
more than one copy to proceed in the same direction.

A run r of an alternating Büchi tree automaton A on a �-labeled leafless D-tree
h�; T i is a N� � S-labeled tree. Each node of r corresponds to a node of � . A node in
r, labeled by (x; s), describes a copy of the automaton that reads the node x of � in the
state s. Note that many nodes of r can correspond to the same node of � ; in contrast, in
a run of a nondeterministic automaton on h�; T i there is a one-to-one correspondence
between the nodes of the run and the nodes of the tree. The labels of a node and its
children have to satisfy the transition function. Formally, r is a �r-labeled tree h�r ; Tri
where �r = N� � S and h�r ; Tri satisfies the following:

1. Tr(") = ("; s0).
2. Let y 2 �r , Tr(y) = (x; s), arity(x) = k, and �(s; T (x); k) = �. Then there is a

set Q = f(c1; s1); (c1; s1); : : : ; (cn; sn)g � f1; : : : ; kg � S such that
– Q satisfies �, and
– for all 1 � i � n, we have y � i 2 �r and Tr(y � i) = (x � ci; si).

For example, if h�; T i is a tree with arity(") = 2, T (") = a and �(s0; a) =
((1; s1) _ (1; s2)) ^ ((1; s3) _ (1; s1)), then the nodes of h�r ; Tri at level 1 include the
label (1; s1) or (1; s2), and include the label (1; s3) or (1; q1).



As with alternating Büchi automata on words, alternating Büchi tree automata are
as expressive as nondeterministic Büchi tree automata.

Proposition 6. [MS95] Let A be an alternating Büchi automaton with n states. Then
there is a nondeterministic Büchi automatonAn with 2O(n) states such that T!(An) =
T!(A).

By combining Propositions 5 and 6 (with its exponential blowup), we can obtain a
nonemptiness test for alternating Büchi tree automata.

Proposition 7. [Var96] The nonemptiness problem for alternating Büchi tree automata
is decidable in exponential time.

The nonemptiness problem for nondeterministic tree automata is reducible to the 1-
letter nonemptiness problem for them, i.e., the nonemptiness problem for trees labeled
by a 1-letter alphabet, say fag. Instead checking the nonemptiness of an automaton
A = (�;D; S; s0; �; F ), one can check the nonemptiness of the automaton A0 =
(fag;D; S; s0; �0; F ) where for all s 2 S, we have �0(s; a; k) =

S
b2� �(s; b; k). It is

easy to see that A accepts some tree iff A0 accepts some a-labeled tree. This can be
viewed as ifA0 first guesses a �-labeling for the input tree and then proceeds likeA on
this �-labeled tree. This reduction is not valid for alternating tree automata. Suppose
that we defined A0 by taking �0(s; a; k) =

W
b2� �(s; b; k). Then, if A0 accepts some

a-labeled tree, it still does not guarantee thatA accepts some tree. A necessary condition
for the validity of the reduction is that different copies ofA0 that run on the same subtree
guess the same�-labeling for this subtree. Nothing, however, prevents one copy ofA0 to
proceed according to one labeling and another copy to proceed according to a different
labeling. This explains the difference in the complexities in Propositions 5 and 7.

The problem of coordinating between different copies of the automaton does not
occur when we consider uniform, leafless trees labeled by a singleton alphabet. There,
it is guaranteed that all copies proceed according to the same (single) labeling. In fact,
there is no difference between a run of the automaton on a uniform, leafless tree labeled
by a singleton alphabet and a run on an infinite word over a singleton alphabet. It turns
out that nonemptiness for alternating word automata over a 1-letter alphabet is easier
than the general nonemptiness problem. Actually, it is as easy as the nonemptiness
problem for nondeterministic Büchi tree automata (Proposition 5).

Proposition 8. [BVW94] The nonemptiness problem for alternating Büchi word au-
tomata over a 1-letter alphabet is decidable in quadratic time.

As we shall see later, the alternating automata in our applications have a special
structure, studied first in [MSS86]. A weak alternating tree automaton (WAA) is an
alternating Büchi tree automaton in which there exists a partition of the state set S into
disjoint sets S1; : : : ; Sn such that for each set Si, either Si � F , in which case Si is an
accepting set, or Si \F = ;, in which case Si is a rejecting set. In addition, there exists
a partial order � on the collection of the Si’s such that for every s 2 Si and s0 2 Sj
for which s0 occurs in �(s; a; k), for some a 2 � and k 2 D, we have Sj � Si. Thus,
transitions from a state in Si lead to states in either the same Si or a lower one. It follows



that every infinite path of a run of a WAA ultimately gets “trapped” within some Si. The
path then satisfies the acceptance condition if and only if Si is an accepting set. That is,
a run visits infinitely many states in F if and only if it gets trapped in an accepting set.
The number of sets in the partition of S is defined as the depth of the automaton.

It turns out that the nonemptiness problem for WAA on words over a 1-letter alphabet
is easier than the nonemptiness problem for alternating Büchi word automata over a
1-letter alphabet.

Proposition 9. [BVW94] The nonemptiness problem for weak alternating word au-
tomata over a 1-letter alphabet is decidable in linear time.

As we will see, the WAA that we use have an even more special structure. In these
WAA, each set Si can be classified as either transient, existential, or universal, such
that for each set Si and for all s 2 Qi, a 2 �, and k 2 D, the following hold:

1. If Si is transient, then �(s; a; k) contains no elements of Si.
2. If Si is existential, then �(s; a; k) only contains disjunctively related elements of
Si (i.e. if the transition is rewritten in disjunctive normal form, there is at most one
element of Si in each disjunct).

3. IfQi is universal, then �(s; a; k) only contains conjunctively related elements of Si
(i.e. if the transition is rewritten in conjunctive normal form, there is at most one
element of Qi in each conjunct).

This means that it is only when moving from one Si to the next, that alternation
actually occurs (alternation is moving from a state that is conjunctively related to states
in its set to a state that is disjunctively related to states in its set, or vice-versa). In other
words, when a copy of the automaton visits a state in some existential set Si, then as
long as it stays in this set, it proceeds in an “existential mode”; namely, it imposes only
existential requirement on its successors in Si. Similarly, when a copy of the automaton
visits a state in some universal set Si, then as long as it stays in this set, it proceeds in
a “universal mode”. Thus, whenever a copy alternates modes, it must be that it moves
from one Si to the next. We call a WAA that satisfies this property a hesitant alternating
automata (or HAA, for short).

Proposition 10. [BVW94] The nonemptiness problem for hesitant alternating word
automata of size n and depthm over a 1-letter alphabet can be solved in time O(n) or
in space O(m log2 n).

3 Temporal Logics and Alternating Automata

3.1 Linear Temporal Logic

Formulas of linear temporal logic (LTL) are built from a set Prop of atomic proposi-
tions and are closed under the application of Boolean connectives, the unary temporal
connective X (next), and the binary temporal connective U (until) [Eme90a]. LTL is
interpreted over computations. A computation is a function � : ! ! 2Prop, which
assigns truth values to the elements of Prop at each time instant (natural number). An
LTL formula ' is true in a computation � and a point i 2 !, denoted �; i j= ', under
the following conditions:



– �; i j= p for p 2 Prop iff p 2 �(i).
– �; i j= � ^  iff �; i j= � and �; i j=  .
– �; i j= :' iff not �; i j= '

– �; i j= X' iff �; i+ 1 j= '.
– �; i j= �U iff for some j � i, we have �; j j=  and for all k, i � k < j, we have
�; k j= �.

We say that a formula ' is true in a computation �, denoted � j= ', iff �; 0 j= '.
We now define the semantics of LTL with respect to programs. A program over a

set Prop of atomic propositions is a structure of the form P = (W;w0; R; V ), where
W is a set of states, w0 2W is an initial state, R � W 2 is a total accessibility relation,
and V : W ! 2Prop assigns truth values to propositions in Prop for each state in
W . The intuition is that W describes all the states that the program could be in (where
a state includes the content of the memory, registers, buffers, location counter, etc.),
R describes all the possible transitions between states (allowing for nondeterminism),
and V relates the states to the propositions. The assumption that R is total (i.e., that
every state has an R-successor) is for technical convenience. We can view a terminated
execution as repeating forever its last state. We say that P is a finite-state program ifW
is finite. A path in P is a sequence of states, u = u0; u1; : : : such that for every i � 0,
we have that uiRui+1 holds.

Let u = u0; u1 : : : be a path of a finite-state program P = (W;w0; R; V ) such that
u0 = w0. The sequence V (u0); V (u1) : : : is a computation of P . We say that the LTL
formula ' is true in P if ' is true in if all computations of P . We say that ' is valid if
it is true in all programs. It is easy to see that ' is valid iff it is true in all computatins.

Computations can also be viewed as infinite words over the alphabet 2Prop. It turns
out that the computations in which a given formula is true are exactly those accepted
by some finite automaton on infinite words. The following theorem establishes a very
simple translation between LTL and alternating Büchi automata on infinite words.

Theorem 11. [MSS88, Var94] Given an LTL formula ', one can build an alternating
Büchi automatonA' = (�;S; s0; �; F ), where � = 2Prop and jSj is in O(j'j), such
that L!(A') is exactly the set of computations in which the formula ' is true.

Proof: The set S of states consists of all subformulas of' and their negation (we identify
the formula :: with  ). The initial state s0 is ' itself. The set F of accepting states
consists of all formulas in S of the form :(�U ). It remains to define the transition
function �.

The dual � of a formula is obtained from � by switching _ and ^, by switching
true and false, and, in addition, by negating subformulas in S, e.g., :p _ (q ^Xq) is
p ^ (:q _ :Xq). More formally,

– � = :�, for � 2 S,
– true = false,
– false = true,
– (� ^ �) = (� _ �), and
– (� _ �) = (� ^ �).

We can now define �:



– �(p; a) = true if p 2 a,
– �(p; a) = false if p 62 a,
– �(� ^  ; a) = �(�; a) ^ �( ; a),
– �(: ; a) = �( ; a),
– �(X ; a) =  ,
– �(�U ; a) = �( ; a) _ (�(�; a) ^ �U ).

By applying Proposition 3, we now get:

Corollary 12. [VW94] Given an LTL formula ', one can build a Büchi automaton
A' = (�;S; s0; �; F ), where � = 2Prop and jSj is in 2O(j'j), such that L!(A') is
exactly the set of computations in which the formula ' is true.

3.2 Branching Temporal Logic

The branching temporal logic CTL (Computation Tree Logic) provides temporal con-
nectives that are composed of a path quantifier immediately followed by a single linear
temporal connective [Eme90a]. The path quantifiers are A (“for all paths”) and E (“for
some path”). The linear-time connectives are X (“next time”) and U (“until”). Thus,
given a set Prop of atomic propositions, a CTL formula is one of the following:

– p, for all p 2 AP ,
– :� or � ^  , where � and  are CTL formulas.
– EX�, AX�, E(�U ), and A(�U ), where � and  are CTL formulas.

The semantics of CTL is defined with respect to programs. A CTL formula ' is true
in a program P = (W;w0; R; V ) and a state u 2 W , denoted P; u j= ', if following
conditions hold:

– P; u j= p for p 2 Prop if p 2 V (u).
– P; u j= : if P; u 6j=  .
– P; u j= � ^  iff P; u j= � and P; u j=  .
– P; u j= EX if P; v j=  for some v such that uRv holds.
– P; u j= AX if P; v j=  for all v such that uRv holds.
– P; u j= E(�U ) if there exist a path u = u0; u1; : : :, with u0 = u, and some i � 0,

such that P; ui j=  and for all j, 0 � j < i, we have P; uj j= �.
– P; u j= A(�U ) if for all paths u = u0; u1; : : :, with u0 = u, there is some i � 0

such that P; ui j=  and for all j, 0 � j < i, we have P; uj j= �.

We say that ' is true in P , denoted P j= ', if P;w0 j= '. We say that ' is valid if ' is
true in all programs P .

A program P = (W;w0; R; V ) is a tree program if (W;R) is a tree and w0 is its
root. Note that in this case P is a leafless 2Prop-labeled tree (it is leafless, since R is
total). P is a D-tree program, for D � N , if (W;R) is a D-tree. It turns out that the tree
programs in which a given formula is true are exactly those accepted by some finite tree
automaton. The following theorem establishes a very simple translation between CTL
and weak alternating Büchi tree automata.



Theorem 13. [MSS88, BVW94] Given a CTL formula ' and a finite set D � N , one
can build an HAA AD

' = (�;D; S; s0; �; F ), where � = 2Prop and jSj is in O(j'j),
such that T!(AD

' ) is exactly the set of D-tree programs in which ' is true.

Proof: The set S of states consists of all subformulas of' and their negation (we identify
the formula :: with  ). The initial state s0 is ' itself. The set F of accepting states
consists of all formulas in S of the form :E(�U ) and :A(�U ). It remains to define
the transition function �. In the following definition we use the notion of dual, defined
in the proof of Theorem 11.

– �(p; a; k) = true if p 2 a.
– �(p; a; k) = false if p 62 a.
– �(: ; a) = �( ; a),
– �(� ^  ; a; k) = �(�; a; k) ^ �( ; a; k).
– �(EX ; a; k) =

Wk�1
c=0 (c;  ).

– �(AX ; a; k) =
Vk�1
c=0 (c;  ).

– �(E(�U ); a; k) = �( ; a; k) _ (�(�; a; k) ^
Wk�1
c=0 (c; E(�U ))).

– �(A(�U ); a; k) = �( ; a; k) _ (�(�; a; k) ^
Vk�1
c=0 (c; A(�U ))).

Finally, we define a partition of S into disjoint sets and a partial order over the sets.
Each formula 2 S constitutes a (singleton) set f g in the partition. The partial order is
then defined by f�g � f g iff � a subformula or the negation of subformula of . Here,
all sets are transient, expect for sets of the form fE(�U )g and f:A(�U )g, which are
existential, and sets of the form fA(�U )g and f:E(�U )g, which are universal.

4 Truth and Validity Checking

4.1 Linear Temporal Logic

We are given an LTL formula '. Recall that ' is valid iff it is true in all computations.
By Corollary 12, we know that we can build a nondeterministic Büchi automaton A'

that accepts exactly the computations in which ' is true. In other words, ' is valid
iff L!(A') = �! , where � = 2Prop, which holds iff �! � L!(A') = ;. Since
�! � L!(A') = L!(A:'), we have that ' is valid iff L!(A:') = ;. Thus, validity
checking is been reduced to emptiness checking. We can now combine Proposition 2
with Corollary 12:

Theorem 14. [SC85] Checking whether an LTL formula ' is valid can be done in time
O(2O(j'j)) or in space O((j'j)2).

We note that the upper space bound of Theorem 14 is essentially optimal, since the
validity problem for LTL is PSPACE-hard [SC85].

We now assume that we are given a finite-state program P = (W;w0; R; V ) and
an LTL formula ', and we want to check that ' is true in P . P can be viewed as a
nondeterministic Büchi automaton AP = (�;W; fw0g; �;W ), where � = 2Prop and
v 2 �(u; a) iffuRv holds and a = V (u). As this automaton has a set of accepting states



equal to the whole set of states, any infinite run of the automaton is accepting. Thus,
L!(AP ) is the set of computations of P .

Hence, for a finite-state program P and an LTL formula ', the truth-checking
problem is to verify that ' is true in all infinite words accepted by the automaton AP .
The truth-checking problem thus reduces to the automata-theoretic problem of checking
that all computations accepted by the automatonAP are also accepted by the automaton
A', that is, L!(AP ) � L!(A'). Equivalently, we need to check that the automaton
that accepts L!(AP ) \ L!(A') is empty, where

L!(A') = L!(A') = �! � L!(A'):

First, note that, by Corollary 12, L!(A') = L!(A:') and the automaton A:' has
2O(j'j) states. (A straightforward approach, starting with the automaton A' and then
complementing it, would result in a doubly exponential blow-up, since complementation
of nondeterministic Büchi automata is exponential [SVW87, Mic88, Saf88, KV97]). To
get the intersection of the two automata, we use Proposition 1. Consequently, we can
build an automaton for L!(AP ) \ L!(A:') having jW j � 2O(j'j) states. We need to
check this automaton for emptiness. Using Proposition 2, we get the following results.

Theorem 15. [LP85, SC85, VW86a] Checking whether an LTL formula ' is true in
a finite-state program P can be done in time O(jP j � 2O(j'j)) or in space O((j'j +
log jP j)2).

We note that the upper space bound of Theorem 14 is essentially optimal, since
the truth-checking problem for LTL is PSPACE-hard [SC85] for fixed programs and
NLOGSPACE-hard for fixed formulas [VW86a]. We also note that a time upper bound
that is polynomial in the size of the program and exponential in the size of the specifi-
cation is considered here to be reasonable, since the specification is usually rather short
[LP85]. For a practical verification algorithm that is based on the automata-theoretic
approach see [CVWY92].

4.2 Branching Temporal Logic

We are given a CTL formula'. Recall that' is valid iff it is true in all programs. For LTL,
Theorems 11 and 12 provided automata-theoretic characterizations of all models of the
formula. This is not the case for CTL, as Theorem 13 provides only a characterization
of tree models. Fortunately, this suffices for validity checking due to the following
proposition.

Proposition 16. [Eme90b] Let ' be a CTL formula. Then ' is valid iff ' is true in all
j'j-tree programs.

Let A' be the automaton Afj'jg
' , i.e., it is the automaton AD

' of Theorem 13, with
D = fj'jg. It follows from Proposition 16 that a CTL formula is valid iffT!(A:') = ;.
Combining this with Proposition 7, we get:

Theorem 17. [EH85] Checking whether a CTL formula ' is valid can be done in time
O(2O(j'j)).



We note that the upper time bound of Theorem 17 is essentially optimal, since the
validity problem for CTL is EXPTIME-hard [FL79].

We now consider truth checking for CTL. For LTL, each program may correspond
to infinitely many computations. Truth checking is thus reduced to checking inclu-
sion between the set of computations allowed by the program and the language of
an automaton describing the formula. For CTL, each program corresponds to a single
“computation tree”. On that account, truth checking is reduced to checking acceptance
of this computation tree by the automaton describing the formula.

A program P = (W;w0; R; V ) can be viewed as a W -labeled tree h�P ; TP i that
corresponds to the unwinding of P from w0. For every node w 2 W , let arity(w)
denote the number of R-successors of w and let succR(w) = hw1; : : : ; warity(w)i be
an ordered list of w’s R-successors (we assume that the nodes of W are ordered). �P
and TP are defined inductively:

1. " 2 �P and TP (") = w0.
2. For y 2 �P with succR(TP (y)) = hw1; : : : ; wki and for all 1 � i � k, we have
y � i 2 �P and TP (y � i) = wi.

Let D be the set of arities of states of P , i.e., D = farity(w) : w 2 Wg. Clearly, �P
is a D-tree.

Let h�P ; V � TP i be the 2Prop-labeled D-tree defined by V � TP (y) = V (TP (y))
for y 2 �P . Let ' be a CTL formula. Suppose that AD

' is an alternating automaton that
accepts exactly allD-tree programs in which ' is true (per Theorem 13). It can easily be
shown that h�P ; V � TP i is accepted by AD

' iff P j= '. We now show that by taking the
product of P and AD

' we get hesitant alternating word automaton on a 1-letter alphabet
that is empty iff h�P ; V � TP i is accepted by AD;'.

Let AD;' = (2AP ;D; S; '; �; F ) be an HAA that accepts exactly all D-tree pro-
grams in which' is true, and letS1; : : : : ; Sn be the partition ofS. The product automaton
of P and AD;' is the HAA

AP;' = (fag;W � S; �; hw0; 'i; G);

where � and G are defined as follows:

– Let s 2 S, w 2 W , succR(w) = hw1; : : : ; wki, and �(s; V (w); k) = �. Then
�(hw; si; a) = �0, where �0 is obtained from � by replacing each atom (c; s0) in �
by the atom (c; hwc; s

0i).
– G = W � F

– W � S is partitioned to W � S1;W � S2; : : : ;W � Sn.
– W �Si is transient (resp., existential, universal) if Si is transient (resp., existential,

universal), for 1 � i � n.

Note that if P has m1 states and AD;' has m2 states then AP;' has O(m1m2) states.

Proposition 18. [BVW94] AP;' is nonempty if and only if P j= '.

We can now put together Propositions 9, 10, and 18 to get a truth-checking algorithm
for CTL.



Theorem 19. [CES86, BVW94] Checking whether a CTL formula ' is true in a finite-
state program P can be done in time O(jP j � j'j) or in space O(j'j log2 jP j).

We note that the upper space bound of Theorem 14 is probably optimal, since the truth-
checking problem for CTL is PTIME-hard for fixed programs and NLOGSPACE-hard
for fixed formulas [BVW94].
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