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Abstract. We describe an automata-theoretic approach to the automated check-
ing of truth and validity for tempora logics. The basic idea underlying this
approach is that for any formula we can construct an alternating automaton that
accepts precisely the models of the formula. For linear temporal logics the au-
tomaton runs oninfinite wordswhile for branching temporal logics the automaton
runs on infinite trees. The simple combinatorial structures that emerge from the
automata-theoretic approach decouplethe logical and algorithmic components of
truth and validity checkingand yield clean and essentially optimal algorithms for
both problems.

1 Introduction

CADE is the mgjor forum for presentation of research in all aspects of automated
deduction. Essentially, thefocusof CADE ison checkingthevalidity of logical formulas.
Underlyingthe notion of logical vaidity, however, isthe notion of logical truth. In many
computer science applications, thefocusis onthe checking of logical truth rather than of
logicd validity. Thisiscertainly the case in database query evaluation (see [Var82]) and
in finite-state program verification (see [CES86]). (In fact, we have argued elsewhere
that even applications that traditionally focus on logica validity, such as knowledge
representation, might be better off focusing on logical truth[HV91].)

In general, the algorithmic techniques in computer-aided validity anaysis, i.e., va-
lidity checking, and in computer-aided truth anaysis, i.e., truth checking, seem to do
very little with each other, in spite of the obvious relationship between truth and va-
lidity. Our goal in this paper is to show that for tempora logicsit is possible to unify
the algorithmic techniques underlying validity and truth checking. We will argue that
alternating automata provide such a unifying agorithmic tool. (This tool is aso ap-
plicable to dynamic logics [FL79] and description logics [GL94], but because of space
constraintswe cannot cover these logicsin this paper.)

Temporal logics, which are logics geared towards the description of the tempora
ordering of events, have been adopted as a powerful tool for specifying and verifying
concurrent programs [Pnu77, MP92]. One of the most significant developmentsin this
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area is the discovery of agorithmic methods for verifying temporal |ogic properties of
finite-state programs [CES86, L P85, QS81]. This derives its significance from the fact
that many synchronization and communication protocol s can be modeled asfinite-state
programs [Liu89, Rud87]. Finite-state programs can be modeled by transition systems
where each state has a bounded description, and hence can be characterized by afixed
number of Boolean atomic propositions. This means that a finite-state program can be
viewed as afinite propositional Kripke structure and that its properties can be specified
using propositional temporal logic.

Thus, to verify the correctness of the program with respect to a desired behavior,
one only has to check that the propositiona tempora logic formulathat specifies that
behavior is true in the program, modeled as a finite Kripke structure; in other words,
the program has to be amodel of the formula. Hence the name model checking for the
verification methods derived from this viewpoint (see [CG87, Wol 89, CGL93]), though
we prefer to use theterm truth checking inthispaper. Notethat the formulathat specifies
the desired behavior clearly should be neither valid nor unsatisfiable, which entailsthat
a computer-aided verification system has to have the capacity for validity checking in
addition to truth checking.

We di stingui sh between two types of temporal logics: linear and branching [Lam80].
In linear tempora logics, each moment in time has a unique possible future, while in
branching temporal 1ogics, each moment in time may split into several possiblefutures.
For both types of tempora logics, a close and fruitful connection with the theory of
automata on infinite structures has been developed. The basic ideais to associate with
each temporal logicformulaafinite automaton oninfinitestructuresthat accepts exactly
all the computationsin which theformulaistrue. For linear temporal logicthe structures
areinfinitewords[WV S83, Sis83, LPZ85, Pei85, SVW87, VW94], whilefor branching
temporal logic the structures are infinite trees [ES84, SE84, Eme85, EJ88, VW86h].
This enables the reduction of temporal logic decision problems, both truth and vaidity
checking, to known automata-theoretic problems.

Initialy, the trandationsin the literature from temporal logic formul as to automata
used nondeterministic automata (cf. [VW86b, VW94]). These trandations have two
disadvantages. First, thetrandationitself israther nontrivial ; indeed, in [VW86b, VW94]
the trandationsgo through a series of ad-hoc intermediate representationsin an attempt
to simplify the trandation. Second, for both linear and branching temporal logics there
isan exponentia blow-up involved in going from formulas to automata. This suggests
that any agorithm that uses these trandations as one of its steps is going to be an
exponential-time algorithm. Thus, the automata-theoretic approach did not seem to be
applicable to branching-time truth checking, which in many cases can be donein linear
running time [ CES86, QS81, Cle93],

Recently it has been shown that if one uses alternating automata rather than nonde-
terministic automata, then these problems can be solved [Var94, BVW94]. Alternating
automata generalize the standard notion of nondeterministic automata by allowing sev-
eral successor states to go down aong the same word or the same branch of the tree.
In this paper we show that alternating automata offer the key to a comprehensive and
satisfactory automata-theoretic framework for tempora logics. We demonstrate this
claim by showing how alternating automata can be used to derive truth- and validity-



checking agorithms for both linear and branching tempora logics. The key obser-
vation is that while the trandation from tempora logic formulas to nondeterministic
automata is exponential [VW86b, VW94], the trandation to aternating automata is
linear [MSS88, EJ91, Var94, BVW94]. Thus, the advantage of dternating automata
is that they enable one to decouple the logic from the algorithmics. The trandations
from formulas to automata handle the logic, and the algorithms are then applied to the
automata.

2 Automata Theory
2.1 Wordsand Trees

We are given a finite nonempty aphabet X'. A finiteword isan dement of 2, i.e, a
finite sequence ay, . . ., a,, of symbols from X'. An infinite word is an element of >,
i.e, an infinite sequence ag, a1, . . . of symbolsfrom X.

A treeisa(finite or infinite) connected directed graph, with one node designated as
the root and denoted by ¢, and in which every non-root node has a unique parent (s is
the parent of ¢t and ¢ isachild of s if thereisan edge from s to ¢) and the root £ has no
parent. The arity of anode z in atree r, denoted arity(x), is the number of children
of z in 7. Thelevel of anode «, denoted |«|, isits distance from theroot; in particular,
|e] = 0. Let N denote the set of positive integers. A tree  over N is a subset of N*,
suchthatif z -7 € 7, wherez € N* and: € N, thenx € 7, thereisan edge from z to
z-i,andif i > 1thendsoz - (¢ — 1) € 7. By definition, the empty sequence ¢ isthe
root of such atree, Let D C N. Wesay that atree risaD-treeif r isatreeover N and
arity(z) € Dfordl z € r. If D isasingleton set {k} then we say that r is uniform
and we refer to D-trees as k-trees. A treeiscalled leafless if every node has at |east one
child. For example, an infiniteword is aleafless 1-tree.

A branch § = xg, 1, ... of atreeisamaximal sequence of nodes such that zg is
theroot and z; isthe parent of x,,1 for al ¢ > 0. Notethat 3 can befiniteor infinite; if
itisfinite, then thelast node of the branch has no children. A X'-labeled tree, for afinite
aphabet ¥, isapair (1, 7 ), wherer isatreeand 7 isamapping7 : nodes(t) — X that
assignsto every nodealabel. We often refer to 7 asthelabeled tree, leaving itsdomain
implicit. A branch 3 = xg,1,... of 7 defines aword 7(8) = 7 (»o), 7 (#1), . ..
consisting of the sequence of labels along the branch.

2.2 Nondeterministic Automataon Infinite Words

A nondeterministic Blichi word automaton A isatuple (X, S, s%, p, F), where X isa
finite nonempty alphabet, S is afinite nonempty set of states, s° € .S isaninitial sate,
F C S isthe set of accepting states, and p : S x ¥ — 2° is a transition function.
Intuitively, p(s, a) isthe set of states that A can move into when itisin state s and it
readsthe symbol a. Note that the automaton may be nondeterministic, sinceit may have
many initial states and the transition function may specify many possibletransitionsfor
each state and symbol.

A run r of A onan infiniteword w = aog, ay, ... over X' is a sequence sy, s1, - - -,
where so = s% and s;11 € p(si,a;), for al i > 0. We define lim(r) to be the set



{s|s = s; forinfinitely many ¢'s}, i.e, the set of statesthat occur in + infinitely often.
Since S isfinite, lim(r) isnecessarily nonempty. The run r isaccepting if thereis some
accepting state that repeats in  infinitely often, i.e,, lim(r) N F' # . Theinfiniteword
w isaccepted by A if thereis an accepting run of A on w. The set of infinite words
accepted by A isdenoted L, (A4).

An important feature of nondeterministic Buchi automata is their closure under
intersection.

Proposition 1. [Cho74] Let A; and A, be nondeter ministic word Biichi automata with
n1 and n, states, respectively. Then there is a Bilichi word automaton A with O(nin»)
statessuch that L., (A) = Ly (A1) N Ly (A2).

Oneof themost fundamental a gorithmicissuesinautomatatheory istesting whether
agiven automatonis*“interesting”, i.e., whether it accepts someinput. A Biichi automa-
ton A isnonempty if L, (A) # 0. The nonemptiness problem for automataisto decide,
given an automaton A, whether A isnonempty. It turns out that testing nonemptinessis

essy.
Proposition 2.

1. [EL85h, EL85a] The nonemptiness problem for nondeterministic Biichi word au-
tomatais decidablein linear time.

2. [VW94] The nonemptiness problem for nondeter ministic Blichi automata of size n
is decidable in space O(log? n).

2.3 Alternating Automata on Infinite Words

Nondeterminism gives acomputing device the power of existentia choice. Itsdud gives
a computing device the power of universal choice. It is therefore natural to consider
computing devices that have the power of both existential choice and universal choice.
Such devicesare called alternating. Alternationwas studied in [ CK S81] in the context of
Turing machines and in [BL80, CKS81] for finiteautomata. The alternation formalisms
in [BL8O0] and [CK S81] are different, though equivalent. We follow here the formalism
of [BL80], which was extended in [M S87] to automata on infinite structures.

For agivenset X, let BT (X) be the set of positive Boolean formulas over X (i.e,
Boolean formulas built from elementsin X using A and V), where we also alow the
formulas true and false. Let Y C X. We say that ¥ satisfiesa formulad € B*(X)
if the truth assignment that assigns true to the members of Y and assigns false to the
members of X — Y satisfes 6. For example, the sets {s1, s3} and {s1, s4} both satisfy
theformula(sy V s2) A (s3V s4), whiletheset {s1, so} does not satisfy thisformula

Consider a nondeterministic automaton A = (¥, S, 5%, p, F). The transition func-
tion p maps astate s € S and an input symbol « € X' to a set of states. Each element
in this set is a possible nondeterministic choice for the automaton’s next state. We
can represent p using BT (S); for example, p(s,a) = {s1, 52, s3} can be written as
p(s,a) = 51V s2V s3. Inadternating automata, p(s, a) can bean arbitrary formulafrom
Bt (S). We can have, for instance, atransition

p(s,a) = (s1 A s2) V (53 A s4),



meaning that the automaton accepts the word aw, where a isasymbol and w isaword,
whenitisinthe state s if it accepts the word w from both s; and s, or from both s3 and
s4. Thus, such atransition combines the features of existential choice (the digunction
inthe formula) and universal choice (the conjunctionsin the formula).

Formally, an alternating Biichi word automaton is a tuple A = (X, 5,59 p, F'),
where ¥ is afinite nonempty alphabet, S isafinite nonempty set of states, s° € S isan
initial state, F'isaset of accepting states, and p : S x ¥ — BT(S) isapartia transition
function.

Because of the universal choice in alternating transitions, a run of an aternating
automaton isatree rather than a sequence. A run of A onaninfiniteword w = agas . ..
isan S-labeled tree r such that r(¢) = s° and the following holds:

if |2| =4, r(x) = s, and p(s,a;) = 0, then « has k children z4, ..., zy, for
somek < |S|, and {r(x1),...,r(x;)} satisfiesd.

For example, if p(so, ag) is(s1V s2) A(s3V s4), thenthenodes of theruntreeat level 1
includethelabd s, or thelabe s, and aso includethelabel s3 or the label s4. Notethat
the run can also have finite branches; if |z| = 4, r(z) = s, and p(s, a;) = true, then »
does not need to have any children. On the other hand, we cannot have p(s, ¢;) = false
since false is not satisfiable, and we cannot have p(s, a;) be undefined. The run r is
accepting if every infinite branch in r includes infinitely many labelsin #'. Thus, a
branch in an accepting run has to hit thetrue transition or hit accepting states infinitely
often.

What is the rel ationship between alternating Buchi automata and nondeterministic
Biichi automata? It is easy to see that alternating Biichi automata generalize nondeter-
ministic Blichi automata; nondetermini stic automata correspond to alternating automata
wherethetransitionsare puredigunctions. It turnsout that they have the same expressive
power (although aternating Blichi automata are more succinct than nondeterministic
Buchi automata).

Proposition 3. [MH84] Let A be an alternating Buchi word automaton with n states.
Then there is a nondeterministic Biichi word automaton A,, with 2°() states such that
Ly(Ay) = Ly (A).

By combining Propositions 2 and 3 (with its exponentia blowup), we can obtain a
nonemptinesstest for alternating Blichi automata.

Proposition 4. [Var96] The nonemptinessproblemfor alternating Bichi word automata
is decidablein exponential time or in quadratic space.

2.4 Nondeterministic Automataon Infinite Trees

We now consider automata on labeled leafless D-trees. A nondeterministic Buchi tree
automaton A isatuple(X, D, S, s, p, F'). Here X isafiniteaphabet, P C N isafinite
set of arities, S isafiniteset of states, s° € Sisaninitia state, /' C S isaset of accepting
states, and p : S x ¥ x D — 257 isatransition function, where p(s, a, k) C S* for
eechs € S,a € X, andk € D.Thus, p(s, a, k) isaset of k-tuplesof states. Intuitively,



when the automaton is in state s and it is reading a k-ary node z of atree 7, it
nondeterministically chooses a k-tuple (s1, ..., sg) in p(s, 7 (x)), makes k copies of
itself, and then movestothenode « - i inthestate s; fori = 1,... k.Arunr: 17— S
of A onaX-labeled D-tree 7 isan S-labeled D-tree such that the root islabeled by the
initial state and the transitions obey thetransition function p; that is, 7(¢) = s°, and for
each node« suchthat arity(z) = k,wehave (r(x-1),...,7(z-k)) € p(r(z), T (z), k).
The run is accepting if lim(r(3)) N F # () for every branch 3 = g, 21, ... of r; that
is, for every branch # = zg, 21, . . ., we have that »(x;) € F' forinfinitely many ¢'s. The
set of trees accepted by A isdenoted 7, (A4).

Proposition 5. [Rab70, VW86b] The nonemptiness problemfor nondeter ministic Biichi
tree automata is decidablein quadratic time.

25 Alternating Automataon Infinite Trees

An alternating Biichi tree automaton A isatuple (2, D, S, s°, p, F). Here ¥ isafinite
aphabet, D C N isafiniteset of arities, S isafiniteset of states, s° € S isaninitia state,
F C Sisasetof accepting states, and p : S x U'xD — BT (N x.S) isapartia transition
function,wherep(s, a, k) € B*({1,...,k} xS)foreachs € S,a € X,andk € D such
that p(s, a, k) isdefined. For example, p(s, a,2) = ((1, s1) V (2, s2)) A ((1, 53) V (2, 51))
means that the automaton can choose between four splitting possibilities. In the first
possibility, one copy proceeds in direction 1 in the state s; and one copy proceeds in
direction 1 in the state s3. In the second possibility, one copy proceedsin direction 1in
the state s; and one copy proceedsin direction 2 in the state s;. In the third possibility,
one copy proceeds in direction 2 in the state s, and one copy proceeds in direction 1
in the state s3. Finaly, in the fourth possibility, one copy proceedsin direction 2 in the
state s, and one copy proceeds in direction 2 in the state s;. Note that it is possible for
more than one copy to proceed in the same direction.

A run r of an aternating Biichi tree automaton A on a X'-labeled lesfless D-tree
(r,T)isaN"* x S-labeled tree. Each node of » correspondsto anode of 7. A nodein
r, labeled by (z, s), describes a copy of the automaton that reads the node « of 7 in the
state s. Note that many nodes of » can correspond to the same node of 7; in contrast, in
arun of a nondeterministic automaton on {7, 7') there is a one-to-one correspondence
between the nodes of the run and the nodes of the tree. The labels of a node and its
children have to satisfy the transition function. Formally, r isa X, -labeled tree (7., 7,.)
where X, = N* x S and (7., 7,) satisfies thefollowing:

1. 7.(c) = (¢,5°).
2. Layern, T (y) = (x,s), arity(z) = k,and p(s, 7 (), k) = 0. Then thereisa
set @ = {(e1,81), (c1,81), .-+, (¢n,8n)F € {1,..., k} x S suchtha
— () satisfies 6, and
—fordll1<i<n,wehavey-i€rand7.(y-i)=(x ¢, s).

For example, if (7, 7) is atree with arity(c) = 2, 7(¢) = a and p(s° a) =
((1,s1) vV (1,52)) A ((1,s3) V (1, s1)), then thenodes of (7., 7.} at level 1includethe
label (1,s1) or (1, s2), and includethelabel (1, s3) or (1, q1).



As with aternating Biichi automata on words, alternating Buchi tree automata are
as expressive as nondeterministic Buchi tree automata.

Proposition 6. [MS95] Let A be an alternating Buchi automaton with n states. Then
there is a nondeterministic Biichi automaton A,, with 2°(?) states such that 7;, (4, ) =
To(A).

By combining Propositions 5 and 6 (with its exponentia blowup), we can obtain a
nonemptinesstest for alternating Biichi tree automata.

Proposition 7. [Var96] The nonemptiness problemfor alternating Buchi tree automata
is decidablein exponential time.

The nonemptiness problem for nondeterministic tree automatais reducibleto the 1-
letter nonemptiness problem for them, i.e., the nonemptiness problem for trees labeled
by a 1-letter aphabet, say {a}. Instead checking the nonemptiness of an automaton
A = (Z,D,S,5% p, F), one can check the nonemptiness of the automaton A’ =
({a}, D, S,s% p', F) where for al s € S, we have p'(s, a, k) = Usex p(s,b, k). Itis
easy to see that A accepts some tree iff A’ accepts some a-labeled tree. This can be
viewed asif A’ first guesses a X-labeling for the input tree and then proceeds like A on
this X-labeled tree. This reduction is not valid for aternating tree automata. Suppose
that we defined A" by taking p'(s, a, k) = \/,c 5 p(s,b, k). Then, if A" accepts some
a-labeledtree, it till doesnot guaranteethat A accepts sometree. A necessary condition
for the validity of thereductionisthat different copiesof A’ that run on the same subtree
guessthesame X-labeling for thissubtree. Nothing, however, prevents one copy of A’ to
proceed according to one labeling and another copy to proceed according to a different
labeling. This explains the difference in the complexitiesin Propositions 5 and 7.

The problem of coordinating between different copies of the automaton does not
occur when we consider uniform, leafless trees labeled by a singleton alphabet. There,
it is guaranteed that al copies proceed according to the same (single) labeling. In fact,
thereisno difference between arun of the automaton on a uniform, leaflesstree |abeled
by a singleton a phabet and a run on an infinite word over a singleton alphabet. It turns
out that nonemptiness for alternating word automata over a 1-letter alphabet is easier
than the general nonemptiness problem. Actualy, it is as easy as the nonemptiness
problem for nondeterministic Biichi tree automata (Proposition 5).

Proposition 8. [BVW94] The nonemptiness problem for alternating Biichi word au-
tomata over a 1-letter alphabet is decidablein quadratictime.

As we shall see later, the aternating automata in our applications have a specia
structure, studied first in [MSS86]. A weak alternating tree automaton (WAA) is an
aternating Biichi tree automaton in which there exists a partition of the state set .S into
digoint sets S, . . ., S, such that for each set \S;, either S; C F', inwhich case S; isan
accepting set, or S; N F = @, inwhich case S; isaregecting set. In addition, there exists
apartial order < on the collection of the S;’s such that for every s € S; and 5" € S;
for which s’ occursin p(s, a, k), forsomea € X and k € D, wehave S; < S;. Thus,
transitionsfromastatein .S; lead to statesin either the same S; or alower one. It follows



that every infinitepath of arun of aWAA ultimately gets“trapped” withinsome S;. The
path then satisfies the acceptance conditionif and only if \S; isan accepting set. That is,
arunvisitsinfinitely many statesin £ if and only if it getstrapped in an accepting set.
The number of setsin the partition of .S is defined as the depth of the automaton.

It turnsout that the nonemptiness problem for WAA onwordsover al-letter al phabet
is easier than the nonemptiness problem for aternating Buchi word automata over a
1-letter alphabet.

Proposition 9. [BVW94] The nonemptiness problem for weak alternating word au-
tomata over a 1-letter alphabet isdecidablein linear time.

Aswe will see, the WAA that we use have an even more specia structure. In these
WAA, each set S; can be classified as either transient, existential, or universal, such
that for each set S; and forall s € @;, a € X, and k € D, thefollowing hold:

1. If S; istransient, then p(s, a, k) containsno € ements of .5;.

2. If S; isexistential, then p(s, a, k) only contains digunctively related elements of
S; (i.e.if thetransitionisrewrittenin digunctive normal form, thereis at most one
element of .S; in each digunct).

3. If Q; isuniversd, then p(s, a, k) only contains conjunctively related elements of .S;
(i.e if the transition is rewritten in conjunctive normal form, there is at most one
element of @); in each conjunct).

This means that it is only when moving from one S; to the next, that aternation
actually occurs (alternation is moving from a state that is conjunctively related to states
initsset to astate that isdigunctively related to statesin its set, or vice-versa). In other
words, when a copy of the automaton visits a state in some existential set S;, then as
long asit staysin thisset, it proceedsin an “existentia mode”; namely, it imposes only
existential requirement onitssuccessorsin.S;. Similarly, when a copy of the automaton
visits a state in some universal set \S;, then aslong asit staysin thisset, it proceedsin
a “universal mode’. Thus, whenever a copy alternates modes, it must be that it moves
fromone S; tothe next. We call aWAA that satisfies this property ahesitant alternating
automata (or HAA, for short).

Proposition 10. [BVW94] The nonemptiness problem for hesitant alternating word
automata of size n and depth m over a 1-letter alphabet can be solved intime O(n) or
in space O(mlog? n).

3 Temporal Logicsand Alternating Automata
3.1 Linear Temporal Logic

Formulas of linear temporal logic (LTL) are built from a set Prop of atomic proposi-
tions and are closed under the application of Boolean connectives, the unary temporal
connective X (next), and the binary temporal connective U (until) [Eme90a]. LTL is
interpreted over computations. A computation is a function 7 : w — 277 which
assigns truth values to the elements of Prop at each timeinstant (natural number). An
LTL formula ¢ istrue in acomputation = and apoint 7 € w, denoted 7,7 |= ¢, under
the following conditions:



—miEpforp e Propiffp € w(i).

—miEEAYIffriEandr, i = .

—miEpiffnotm i@

—miEXpiff m,i+1F ¢.

— 7,1 = EUY iff forsomej > i,wehaver,j |E v andforal k,: < k < j, wehave
mkEE.

We say that aformulay istruein acomputation =, denoted = |= ¢, iff 7,0 = .

We now define the semantics of LTL with respect to programs. A program over a
set Prop of aomic propositionsis a structure of the form P = (W, w°, R, V), where
W isaset of states, w® € W isaninitia state, R C 1?2 isatotal accessibility relation,
and V : W — 2P7°r assigns truth values to propositionsin Prop for each state in
W. Theintuitionisthat 1V describes al the states that the program could be in (where
a state includes the content of the memory, registers, buffers, location counter, etc.),
R describes al the possible transitions between states (allowing for nondeterminism),
and V relates the states to the propositions. The assumption that R istotd (i.e, that
every state has an R-successor) isfor technica convenience. We can view aterminated
execution as repesting forever itslast state. We say that P isafinite-stateprogramif W
isfinite. A pathin P isasequence of states, u = ug, u1, . . . such that for every ¢ > 0,
we have that u; Ru; 1 holds.

Let u = ug, us . .. be apath of afinite-state program P = (W, w°, R, V') such that
ug = w®. The sequence V (uo), V(u1) . . . isacomputation of P. We say that the LTL
formulay istruein P if ¢ istrueinif all computations of P. We say that ¢ isvalid if
itistruein all programs. It iseasy to seethat ¢ isvaidiff it istruein al computatins.

Computations can also be viewed as infinitewords over the alphabet 2°7°7 . It turns
out that the computations in which a given formula is true are exactly those accepted
by some finite automaton on infinite words. The following theorem establishes a very
simpletrand ation between LTL and aternating Buchi automata on infinite words.

Theorem 11. [MSS88, Var94] Given an LTL formula ¢, one can build an alternating
Blichi automaton A, = (X, S, %, p, F), where £ = 2P7°r and | S| isin O(|¢|), such
that L., (A, ) isexactly the set of computationsin which the formula ¢ istrue.

Proof: Theset S of states consistsof al subformulasof ¢ and their negation (weidentify
the formula——1 with +»). Theinitial state s° is ¢ itsalf. The set I of accepting states
consists of dl formulasin S of the form —(¢U ). It remains to define the transition
function p.

The dual @ of aformulais obtained from ¢ by switching v and A, by switching
true and false, and, in addition, by negating subformulasin S, eg., -p V (¢ A X¢) is
p A (—qV -Xgq). Moreformaly,

—¢&=—¢, foré €8,
— true = falsg,
— false = true,

- (aApB)=(avp)and
~{a Vi) =(@nh).

We can now define p:



p(p,a) =trueif p € a,

p(p,a) =faseif p & a,
(€M/), a) = p(& a) A p(¢, a),
P, a) = p(¢, a),

(le, )— ,

By applying Proposition 3, we now get:

Corollary 12. [VW94] Given an LTL formula ¢, one can build a Buchi automaton
A, = (2,5,5% p, F), where & = 2P and | S| isin 290D such that L, (A,) is
exactly the set of computationsin which the formula ¢ istrue.

3.2 Branching Temporal Logic

The branching temporal logic CTL (Computation Tree Logic) provides tempora con-
nectives that are composed of a path quantifier immediately followed by asingle linear
temporal connective [Eme90a]. The path quantifiersare A (“for al paths’) and £ (“for
some path”). The linear-time connectives are X (“next time”) and U/ (“until”). Thus,
given aset Prop of atomic propositions, aCTL formulaisone of the following:

— p,fordlpe AP,
— =¢oré Ay, whereé and ¢ are CTL formulas.
— EX¢, AXE, E(EU), and A(EU ), where¢ and ¢ are CTL formulas.

The semantics of CTL isdefined with respect to programs. A CTL formula istrue
inaprogran P = (W, w® R, V) and astateu € W, denoted P, u = ¢, if following
conditions hold:

— PufEpforpe Propifp € V(u).
— PyulE ) if Pu 4.
uEEAYIffPulEéand P u = .
P,u | EX¢if P,v = ¢ for some v such that u Rv holds.
P,uE AXv if Pyv |= 4 for all v such that « Rv holds.
Pyu = B(EUY) if thereexist apathu = wog, uy, . . ., With ug = «, and some ¢ > 0,
suchthat P, u; = andforal j,0< j < i{,wehave P,u; = €.
P u = A(EU) if for dl pathsu = wg, ug, . .., Withug = u, thereissome i > 0
suchthat P, u; =+ andforal j,0< j < {,wehave P,u; = €.

We say that o istruein P, denoted P |= ¢, if P,uw® = ¢. Wesay that  isvalidif ¢ is
truein al programs P.

A program P = (W,w% R, V) isatree programif (W, R) is atree and w? isits
root. Note that in this case P is aleafless 2P -labeled tree (it is leafless, since R is
total). P isaD-tree program, for D C N, if (W, R) isaD-tree. It turnsout that thetree
programsin which agiven formulaistrue are exactly those accepted by somefinitetree
automaton. The following theorem establishes a very simple trandation between CTL
and weak alternating Biichi tree automata.



Theorem 13. [MSS88, BVW94] Given a CTL formula ¢ and a finiteset D C N, one
can build an HAA A = (£, D, 5, 5% p, F), where & = 2P7°P and | S| isin O(|g)),
suchthat 7, (A2) is exactly the set of D-tree programsin which ¢ istrue.

Proof: Theset S of states consistsof all subformulasof ¢ and their negation (weidentify
the formula——1 with +»). Theinitial state s° is ¢ itsalf. The set I of accepting states
congistsof al formulasin S of theform —E(£U ) and —~A(£U ). It remains to define
the transition function p. In the following definition we use the notion of dual, defined
inthe proof of Theorem 11.

,a, k) =trueif p € a.
k) falsen‘nga

¢, k)= p(€, k) A p(ah, a, k).

Aw, k) = /\ité(a ).
p(E(EUY), a,k) = p(,a, k) V (p(€, a, k) AN Zo(e, EEUV))).
p(AEUY), a, k) = p(v, a, k) V (p(€, a, k) A NEZg(e, A(EUR))).

Finally, we define a partition of S into digjoint sets and apartial order over the sets.
Eachformulay € S congtitutesa (singleton) set {+} inthepartition. Thepartial orderis
then defined by {£} < {«} iff £ asubformulaor thenegation of subformulaof ¢. Here,
all setsaretransient, expect for setsof theform { E(£U+)} and {—A((U )}, whichare
existential, and sets of theform { A((U )} and {=E(£U+)}, which are universa. I

4 Truth and Validity Checking
4.1 Linear Temporal Logic

We are given an LTL formulay. Recal that ¢ isvalidiff itistruein all computations.
By Corollary 12, we know that we can build a nondeterministic Blichi automaton A,
that accepts exactly the computations in which ¢ is true. In other words, ¢ is vaid
iff L,(A,) = X, where ¥ = 2F7°? which holds iff ¥« — L, (A,) = 0. Since
XY —Ly(Ay) = L (A-,), we have that pisvdidiff L,(A-,) = 0. Thus, vaidity
checking is been reduced to emptiness checking. We can now combine Proposition 2
with Corollary 12:

Theorem 14. [SC85] Checking whether an LTL formula ¢ isvalid can be doneintime
0(2°U¢D) or in space O((|¢])?).

We note that the upper space bound of Theorem 14 is essentially optimal, since the
validity problem for LTL is PSPACE-hard [SC85].

We now assume that we are given a finite-state program P = (W, w° R, V) and
an LTL formula ¢, and we want to check that ¢ istruein P. P can be viewed as a
nondeterministic Biichi automaton Ap = (X, W, {w®}, p, W), where ¥ = 2F7°r and
v € p(u, a) iff uRv holdsand a = V(). Asthisautomaton has a set of accepting states



equa to the whole set of states, any infinite run of the automaton is accepting. Thus,
L. (Ap) isthe set of computations of P.

Hence, for a finite-state program P and an LTL formula ¢, the truth-checking
problem isto verify that ¢ istruein al infinite words accepted by the automaton Ap.
The truth-checking problem thus reduces to the automata-theoretic problem of checking
that all computations accepted by theautomaton A p are also accepted by the automaton
A, thatis, L, (Ap) C L, (A,). Equivaently, we need to check that the automaton

that accepts L, (Ap) N L. (A, ) isempty, where

Lu(A7) = Tu(Ag) = T - Lu(4y).

First, notethat, by Corollary 12, L., (A,) = L, (A-,) and the automaton A, has
200D sates. (A straightforward approach, starting with the automaton A,, and then
complementingit, wouldresult in adoubly exponentia bl ow-up, since complementation
of nondeterministic Blichi automatais exponentia [SVW87, Mic88, Saf88, KV97]). To
get the intersection of the two automata, we use Proposition 1. Consequently, we can
build an automaton for L, (Ap) N L, (A-,) having |W]| - 2°U¢D states. We need to
check thisautomaton for emptiness. Using Proposition 2, we get the following results.

Theorem 15. [LP85, SC85, VW86a] Checking whether an LTL formula ¢ is truein
a finite-gtate program P can be done in time O(| P| - 2°U¢D) or in space O((|¢| +

log|P|)?).

We note that the upper space bound of Theorem 14 is essentially optimal, since
the truth-checking problem for LTL is PSPACE-hard [SC85] for fixed programs and
NLOGSPACE-hard for fixed formulas [VW864]. We also notethat atime upper bound
that is polynomid in the size of the program and exponential in the size of the specifi-
cation is considered here to be reasonabl e, since the specification isusually rather short
[LP85]. For a practica verification algorithm that is based on the automata-theoretic
approach see [CVWY 92].

4.2 Branching Temporal Logic

WearegivenaCTL formulay. Recdll that ¢ isvalidiff itistrueinall programs. For LTL,
Theorems 11 and 12 provided automata-theoretic characterizations of al models of the
formula. Thisis not the case for CTL, as Theorem 13 provides only a characterization
of tree models. Fortunately, this suffices for validity checking due to the following
proposition.

Proposition 16. [Eme90b] Let ¢ bea CTL formula. Then ¢ isvalid iff ¢ istruein all
|o|-tree programs.

Let A, bethe automaton AL?P i e, it is the automaton AT of Theorem 13, with
D = {|¢|}. It followsfrom Proposition 16 that aCTL formulaisvalidiff 7,,(A-,) = 0.
Combining thiswith Proposition 7, we get:

Theorem 17. [EH85] Checking whether a CTL formula ¢ isvalid can bedoneintime
O(QO(IwI))_



We note that the upper time bound of Theorem 17 is essentially optimal, since the
validity problem for CTL is EXPTIME-hard [FL79].

We now consider truth checking for CTL. For LTL, each program may correspond
to infinitely many computations. Truth checking is thus reduced to checking inclu-
sion between the set of computations alowed by the program and the language of
an automaton describing the formula. For CTL, each program corresponds to asingle
“computation tree”. On that account, truth checking is reduced to checking acceptance
of this computation tree by the automaton describing the formula.

A program P = (W, w® R, V) can be viewed as a W -labeled tree (rp, 7p) that
corresponds to the unwinding of P from w°. For every node w € W, let arity(w)
denote the number of R-successors of w and let succr(w) = (w1, ..., Warity(w)) DE
an ordered list of w's R-successors (we assume that the nodes of W are ordered). rp
and 7p are defined inductively:

1l cerpand7p(e) = w?,
2. For y € mp with sucer(7p(y)) = (w1,...,wg) andfordl 1 < ¢ < k, we have
y-i€rmpandTp(y- i) = w.

Let D bethe set of aritiesof statesof P,i.e, D = {arity(w) : w € W}. Clearly, 7p
isaD-tree.

Let (rp,V - Tp) be the 2F7°r-labeled D-tree defined by V - 7p(y) = V(7p(y))
fory € mp. Let ¢ bea CTL formula. Suppose that Af is an dternating automaton that
accepts exactly all D-tree programsinwhich ¢ istrue (per Theorem 13). It can easily be
shownthat (7p, V - Tp) isaccepted by AT iff P = . We now show that by taking the
product of P and AE we get hesitant alternating word automaton on a 1-letter al phabet
that isempty iff (rp, V - 7p) isaccepted by Ap .

Let Ap, = (247D, S, ¢, p, F') be an HAA that accepts exactly al D-tree pro-
gramsinwhicheistrue andlet.Sy, . . . ., .S, bethepartition of S. Theproduct automaton
of Pand Ap , istheHAA

Apyp = ({a}, W x S, 6, (w° ¢), G),
where § and GG are defined as follows:

—Lets € S, w e W, succg(w) = {wi,...,wg), and p(s, V(w), k) = 0. Then
§({w, s}, a) = ', where ¢ is obtained from # by replacing each atom (¢, s’) in ¢
by the atom (¢, {we, s'}).

- G=WxF

- W x Sispatitionedto W x Sy, W x Sy, ..., W x S,.

— W x S; istransient (resp., existentia, universal) if .S; istransient (resp., existential,
universal), for 1 < i < n.

Notethat if P has m; statesand Ap , has m, statesthen Ap , has O(mym,) states.
Proposition18. [BVW94] Ap ., isnonempty if and only if P = ¢.

We can now put together Propositions 9, 10, and 18 to get atruth-checking algorithm
for CTL.



Theorem 19. [CES86, BVW94] Checking whether a CTL formula ¢ istruein afinite-
state program P can be doneintime O(|P| - |¢|) or in space O(|¢| log? | P]).

We note that the upper space bound of Theorem 14 is probably optimal, since the truth-
checking problem for CTL is PTIME-hard for fixed programs and NLOGSPACE-hard
for fixed formulas [BVW94].
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