Tecniche di Specificaed
Verifica

Modeling with Transition Systems

An example

The Dining Philosophers

* Possible problems:

— Deadlock: system state where no action can be
taken (no transition possible)

— Livelock: When system component Is prevented
to take any action, or a particular one
(individual starvation)

— Starvation: obvious.

Falrness

The Dining Philosophers

 Possible solution to deadlock:
— pick up right fork only if both are present
Assumptions:

—weak fairness: any trans. continuously enabled,
will eventually fire (eating philosophers will
finish)

— strong fairness. any trans. enabled infinitely often,

will eventually occur (if 2 fork avallable infinitely
often, phil. will eventually eat).

Livelock

The Dining Philosophers

* Possible solution:
— pick up fork only if both are present
Assumptions;

—strong fairness. any transition enabled infinitely
often, will eventually occur (if 2 fork avallable
infinitely often, philosopher will eventually eat).

strong fairness is not enough to prevent livel ock
Why? Think of the case with 4 philosophers!
Sol.(?): Try preventing consecutive eating.

Still suffers from livelock with 5 phils! Why?

Outline

 Themodel — Transition systems

e Some features
— Paths
— Computations
— Branching

o First order representation

Transition systems

e A transition system (Kripke structure) is a
structure

TS=(S S, R)
where:
— S Isafinite set of states.

- S, | Sisthesetof initial states.

—~R | S Sisatransitionreation
= R must betotal, that 1s
~"sl S$s1 S.(s,s)1 Ror, equivaently,

—For evary state s in S, there exists S in S such
that (s, s') IsinR.

Notions and Notations

TS=(S S, R)
(55S)T R R(sS) s® S
A (finite) path from sis aseguence

such that

—s=s,

-5® s,, for0O<i<n.

ltisfroms tos ifs,=s.

An infinite path from sisan infinite sequence

| abeled transition systems

e Sometimes we may use afinite set of actions:
—Act ={a, b, ..}
« The actions will be used to label the

transitions.
.+ TS=(S, S, Act, R)
—RI| S” Act” S, labeled transitions.

-(s,a,s)I R- R(sas) - s—2»¢9

A vending machine

coin-return

coin-return

10

coin-return

123 No!
312 yes

11

A non-total transition relation

C-out

t-out

12

State space

* The state space of a system (e.g. program) Is the
set of all its possible states.

 For example, iIf V={a, b, c} and the variables
range over the naturals, then the state space
Includes:
<a=0,b=0,c=0>, <a=1,b=0,c=0>, <a=1,b=1,c=0>,
<a=932,b=5609,c=6658>...

13

Atomic transition

e Each atomic transition represents a small
peace of code (or execution step), such that
no smaller peace of code (or step) Is
observable.

e |sa=atl atomic?
* |In some systems, e.g., when a Is a register

and the transition Is executed using an Inc
command.

14

(Non)Atomicity (race conditions)

e Execute the following when
x=0 in two concurrent| ¢ Considerthe actua translation:
NroCesses: /'Pl:load Rl,a
Inc R1
D1+ 4—
La=atl storeR1,a
P2:a=a+] \
e Reault: a=2 +P2:load R2,a
» |Isthisaways the case? IncR2
store R2,a

eamay alsobel

15

The common framework

 Many systems need to be model ed.
— Digital circuits
= Synchronous
= Asynchronous
— Programs

o Strategy : Capture the main features using a
logical framework (nothing to do with temporal
logics!) : First order representation

16

The inefficient way

Asynchronous
circuits

synchronous Kripke Structure

circuits

Programs
(finite state)

Model checking

17

The efficient way

Asynchronous
circuits

synchronous
circuits

Programs
(finite state)

First Order
Representation = K ripke Structure

>

Model checking

18

N\

000

A mod-8 counter

Vy

o~ Vo ol

Vo

19

The mod-8 counter

System variables: v, v, v

Domain of v, ={0, 1}

Same domain for v, and v,

Special case: These variables are boolean

A state s can be seen as afunction which
assigns to each variable avalue in its domain.

~S(Vg) =0 s(v;) =1 s(v;) =1
—ltisthestate (11 0) !

20

State Predi cates

\

Vi

é t19) Q

A set of states can be picked out by aformula;
X =v,Uv, istheset {..}

Vo
100

21

State Predicates

A set of states can be picked out by aformulg;
X =v,Uv, istheset {100, 101, 110, 111, 001, 011}

22

Initial States Predicate

\

Vi

é t19) Q

A set of states can be picked out by aformula;
X' =@v, U@v, Udv,

Vo
100

23

Initial States Predicate

\

Vi

é t19) Q

A set of states can be picked out by aformula;

Vo
100

X' =@gv,Udv,Udv, X ={S}={000}

24

Transition relation predicate

A set of transitions can also be picked out by aformula.

R,= v, =(Vo,UV) AV, Vv, —current value v,’ —next value

25

Transition relation predicate

000 »@

t, b

A set of transitions can also be picked out by aformula.

R,= Vv, =(V,Uv)A Vv,

{tO’ tl} II R2

Vv, —current value v," —next value

26

Transition relation predicate

T = Formula(v,, vy, Vg, Vo', V', V')

Not all formulae will define subsets of transitions.

Y ou must pick the right formula.

27

Transition relation predicate

oG

To= Vo ! V, —current value v, — next value
Ty ={(000) H(lOl))

But thisis not atransition!

28

Transition relation predicate

—E——

0= Vo 1! v; —current value v;’ —next value

29

Summary of Predicates

System variables vy, vy, Vs, ..., V..
Each v, has adomain of values
— Boolean, {ab,c,..}, {5,8,0,7} ...
— Each domain isrequired to befinite.

A state Is afunction swhich assigns to each
system variable avalue in its domain.

The set of states isfinite.

Summary

Predicates can be used to pick out —succinctly-
sets of states (useful for identifying initial
states).

X =Formula(vy, V4, Vo,...,V,)

But this works only when al domains are
bool ean.

In general Formula can be afirst order formula.

31

Summary

A set of transitions can also be picked out
using predicates.

T =Formula(vg, V4,..., Vi, Vo' V1 1.0V,)
T Isthe set of all transitions

(Vg, Vqyeee V) — (Vo' V.. V,)

such that Formula (above!) Is satisfied.

Not all (state or transition) formulas will be
legitimate.

32

Why use formulae?

Formulae allow usto compactly describe a system
and its dynamics
It's easy to go from a“logical” description to
Kripke structures.
Once we have a Kripke structure, we arein
business.
We can use

— Temporal Logicsto specify properties

— Model checking to verify these properties.

First Order Logic

* The general structure
— Syntax
* Formulas

— Semantics

= \When isaformula true ?

= Models

— Interpretations
—Valuations

Syntax

e Terms

— Variables

— Functions symbols, constant symbols
o Atomic formulas

— Relation symbols, equality, terms
 Formulas

— Atomic formulas

— Propositional connectives

— Existential and universal quantifiers

Syntax

 (Individual) variables--- X, y, v, V',...
— System variables in our context

 Function symbols: f ™
— n isthe arity of f.

— Add®@
— Next

e Function symbols will capture the functions
used In the programs, circuits, ...

36

Constant symbols

e Apart from variables, it will also be
convenient to have constant symbols.

—zero, five, ...
« Variables can be assigned different values

but a constant symbol is assigned afixed
value.

37

Terms

Termsareusedtopointat values.
A variableisaterm.

—X,V,V"’

A constant symbol Isaterm. |
Suppose f Is afunction symbol of arity n
andt,, t,,t, areterms then :

f(ty, ty... 1) Isalso aterm.

38

Terms

Let Plus be afunction symbol of arity 2.
V,,V,, Plus(v,, Plus(v,, v,)) areterms,

—the semantics of the last term isintuitively

V, + 2v,
Let weird op beafunction symbol of arity 3
Then
Plus(weird_op(v, Plus(v,, v,), five), Plus(v, v"))

ISaterm.

39

Predicates

o Relation (predicate) symbols:
— P which also has an arity
— Greater-Than hasarity 2
— Prime hasarity 1
— Middlehasarity 3 -- Middle(t,, x, t,)
= intuitively, x lies betweent, and t,
* Equal hasarity 2
— will be denoted as =
— Itisa“constant” relation symbol.

Atomic formulas.

o If t, and t, are terms then =(t,, t,) IS an
atomic formula
—asowrittent; =1t,

e Suppose P hasarity nand t,, t,, ..., t, are
terms.

 Then P(t,, t,, ...,) Isan atomic formula.

41

Atomic formulas

Greater-Than(five, zero)
Greater-Than(two, four)
Prime(Plus(v,, v"))

Plus(v,Zero) = weird_op(v,v,four)

v = Greater _Than(v,,v,) ISnot an atomic
formula!

42

Terms and Predicates

e A termis meant to denote avalue.

— Makes no sense to talk about aterm being true
or false.

 An atomic formulamay be true or false
(depends on the interpretation).

— Does not make sense to associate a vaue with
an atomic formula.

Formulas

 Every atomic formulaisaformula.

e If] Isaformula then &) isaformula.

e Ifj andj’ areformulasthenj Uj ' isa
formula.

e | Uj’ abbreviates: @(@j UQj ")
e j Ej’ abbreviates:@j U |’
e j ©j abbreviates:(j Ej)U(Ej)

Formulas

If | isaformulaand x is avariable then $x.]
Isaformula.

" X.] abbreviates: @%$x.J]

nese are existential and universal quantifiers.

ne power of first order logic comes from
these operators!

Semantics

e Models:

—Domain of interpretation

— I nterpretation
= For the function, constant and relation symbols.
— Fixed for all formulas.
* For the individual variables, on a*per formula’
basis.
— Valuations.

46

Semantics

e Domain

— Each variable will have its domain of values.

— We pretend all these domains are the same.

— Or rather, abig enough “universe” that will
contan al these domains.

 Fix D the universe of values.

a7

Semantics

| nterpretation function |

e Assigns aconcrete function to each function
symbol (of the same arity!)

* Assigns aconcrete member of D to each
constant symbol.

e Assigns aconcrete relation to each relation
symbol (of the same arity!).

Semantics ||

e Assign aconcrete function to each function
symbol (of the same arity!)

* Assign aconcrete member of D to each
constant symbol.

e Assign aconcrete relation to each relation
symbol (of the same arity!).

49

Semantics ||

e Assume we have fixed an interpretation for

all function symbols, constant symbols and
relational symbols.

e Let] beaformula Fix avaluation

(assignment) V which assigns a member of
D to each variable.

e V :Variables —— D

Lift V to All Terms

e We have:

— Aninterpretation for the function symbols and
constant symbols.

— Anassignment V : Variables —— D
« Using these, we can construct (uniquely!)
V.T:Teems —— D

ol

/

e

|
\

\

)

ConstructingV_T

Variables! \
""" |
/ 7 - e, N\ I

\ [

(Constanty /

o \symbols) 7
N / 7
S SN’

-_" e am ©

52

Constructing V_T

f(t]_! t2, t3) \V

V. T
//’§\
ICOnstant\‘ _____________________________________
/

S~

ConstructingV_T

f(ty, t t

e ~ N
,Constant\‘

\ symbolsy
\ /

N o

ConstructingV_T

I(ty, b, to)

~
~
~
~
~
~

L F(dl’ d2, d3)

955

Semantics ||

 Let] beaformula Fix avauationV which
assigns a member of D to each variable.

e Sowenow haveV T that assignsa
member of D each term.

* | Issatisfied under VV (and the interpretation
we have fixed for all formulas) If :

56

Semantics ||

e Suppose P(t,, t,,.., t,) ISan atomic formula
andV_T(t,))=d,...V_T(t,)=d,
and PCON istherelation assigned to P by
our Interpretation.

 Then P(t,, t,,.., t) Is satisfied under V iff
PCON(d,, d,,...,d)) holdsin D.
(d;,d,,....d) T PCONI D " D"...” D

S7

Semantics ||

Suppose| iIsof theform @) .

Then| Issatisfied under V iff J ’ Isnot
satisfied under V.

Supposej isof theformj ,Uj ,

Then| issatisfied under V iff | ; Issatisfied
under V or | , Is satisfied under V.

Semantics ||

o Greater-Than(Plus(v, 3), Multi(x, 2))
t, t,

e V(V)=2 V(X)=1

e V_T(t,)=5 V_T(t,) =2

e (52)1 > 1 Integers” Integers

e V'(V)=1V'(X)=6

e Under V', the atomic formulais not true.

59

Semantics ||

 Theonly caseleft iswhen| Isof theform
$xX.j

e | Issatisfied under V iff thereisavauation
V’ suchthat| ' issatisfied under V' and V’
IS required to meet the condition:
— V'’ Isexactly V for al variables except x.
— For x, V' can assign any value of its choosing.

60

Semantics ||

Whether $x.] Istrue or not under V
— does not depend on what V doeson x !

$x.2x =y istrueunder V(y) =4, V(x) = 1!
Because, we can find V' with V' (y) = 4 but
V’(X) = 2.

One says x Is bound inthe formulaandy Is
free.

61

The efficient way

Asynchronou
circuits

First Order |
synchronous > Repregentation - Kripke Structure

circuits

Programs
(finite state)

Modd checking

First Order Representation to
Transition Systems

{Vy, Vo, ...,V }--- System variables.
D,, D,, ...,D, --- The corresponding domains.

N\

D=E D

I
S:{Vy V,, ...,V .} — D such that

s(v,)1 D,
S --- The set of states.

63

|Initial States

* Sy(Vq, Vo, -..0V,) IsaFO formula describing the set
of Initia states.
e Atomic formula

— v=d wherevisisasystem variable and d is a constant
symbol interpreted as a member of the domain of v.

Example:

e “S,Isthe set of all states where the pc = 0 and
Input Is apower of 2"

e $n. (input = EXP(n)) U (pc=0)

Transition relation

e R(v, vy, .V, V', V...V,) IsaFO formula
Involving the variables v, v,,..v,, (the system
variables) and the new variables (v,’, v, ,..,V,)’).

e (d{, d,,..,d)—(d;,d,,...d) iff
R (v, Vs, .V, V', V) ,..,V,)) Istrue under the
valuationv, =d,,...,v,=d ,v, =d;,.v, =d. .

65

Transition Relation

e V={X,Yy, z}
 Program: {X,Y, z, pc}
o - begin

| - Statement,
, . statement,

. 11T even(x) thenx =x/2 elsex =x -1

g ...

Transition Relation
* V={XY,7
e Program: {X,V, z, pc}
I 1 If even(X) then x =x/2 elsex =x -1

s ...
*] (X,y,z,pc,x,y,Z,pC) , \
e pc=IcU pc =1, UGn.(x=2n)E X’ =x/2) U
(@$N.(x = 2n) E X' = x-1) U same(y, 2)
which isequivalent to
e pc=1:U pc =1 U
(($n.(x=2n) UX’ =x/2) U (@$n.(x=2n) U X’ =x-1))) U
same(y, 2)
e same(y,z) -y =y UZ =z

67

Transition Relation

e |[nasmilar fashion, we can construct
transition relation formulas for :
— Assignment statement
— While statements
— etc.etc.
— See the text book!

68

Kripke Structures

AP isafiniteset of atomic propositions.

—“valueof xI1s5”
—“x=5"

c M =(S S, R, L), aKripke Structure.
— (S, S, R) Isatrangtion system.
—L:S—— 2AP
— 2AP ---- The set of subsets of AP

69

Kripke Structures

* The atomic propositions and L together
convert atransitions system into a model.

e \We can start interpreting formulas over the
Kripke structure.

e The atomic propositions make basic (easy)
assertions about system states.

70

Automata and Kripke Structures

AP - set of elementary property
e <SAR,5,,L>

o S-set of states

e A -set of transition labels

e Rl S A" S-(labeled) transition relation
e L -interpretation mapping L :S—2AF

71

Example: aprint manager

end;= 1 ends printing
reg;= 1 requests printing
start,=1 start printing

AP
W= walits
P=1prints

R=1rests

72

S={0,1,2,3,4,5,6,7}

A ={end,endg, req,, reqg, start,, startg}

R ={(0,req,,1), (O,reqg,2), (1,reqg,3), (1,start,,6), (2,req,,3),

(2,starty,7), (3,start,,5), (3,start;,4), (4,ends,1), (5,end,,2),

(6,end,,0), (6,reqg,5), (7,endg,0), (7,req,,4).}

L ={0® {R,Rg}, 1® {W,,Rp}, 20 {R,,W3}, 3® {W, W},
4® {W,,Pg}, 5® {P Wz}, 6® {P,,Rg}, 7® {R,Pg}} =

Properties of the printing systems

e Every state in which P, holds, Is preceded
by a state in which W , holds

 |n any state in which W, holds is followed
(possibly not immediately) by a state In
which P, holds.

* Thefirst can easlly be checked to be true

 The second Is false (e.g. 0134134134...) -
In other words the system isnot fair.

74

Synchronization

Usually complex systems are composed of a
number of smaller subsystems (modules)

It Is natural to model the whole system
starting from the models of the subsystems.

And then define how they cooperate.

There are many ways to define cooperation
(synchronization).

75

Synchronization: no interaction

The system model is just the cartesian product of
the ssmple modules.

Let TS,...,TS, be n automata (or TS), where
T15=<5,A;.R;.S¢>

The system isthen defined as TS=<S A,R,5,> where

S=5° S, ...7 §,

A:AlE{-}, AZE{_}, e AnE{'} |

R={((s,S,-.-,S,),(81,85,...,8,),(S 1,S 5,...,S ;)| forall |

al-and (s,a,s)l R,ora= and s =s}
S = (810:201+1Sh0)

(9]

inc TSl TSZ JLs
Q a TS, contatore Q
modulo 2 - e
INC
INC , inc e
q_/

Inc
TS,: contatore
modulo 4

77

Synchronization: interaction

To allow for Interaction, or synchronization on
specific actions we can introduce a Synchro-
nization Set (to inhibit undesired transitions) :

e Synchronization set Is just a subset of the composite
actions.
Syncl AE{-}" AE{} .." AE{}
 Then we will have to define the possible transitions
as.
R:{((Sl1SZ1---1Sh)1(al’a2""’an)’(s’ 1’8’2""’8’ n)) |

(a,,a,,...,a,)] Syncand for all i,
al -and(s,a,s)l R,ora= and s =s}

Free synchronization (Asynchronous systems):
Sync ={inc,-} " {inc,-}

INC , inc

79

Free synchronization

Asynchronous systems:
Sync ={inc,-} "~ {inc,-}

e R(\V,V') = iTl.\IJ(Ri(vi V') Usame(v))| U @Usame(vi)

/

If one wants to discard
the stuation where no
component acts

Synchronization on all actions (Synchronous
systems).
Sync ={(inc,inc)}

Inc,inc

Inc,inc

TSSTS, " TS, o

Synchronous systems

Synchronous systems:
Sync = {(inc,inc)}

e R(V,V) = URi (Vv

~
.I I

82

Asynchronous systems with interleaving (only one
component acts at any time):

Sync = {(-,inc),(inc,-)}

- . 1nC

Asynchronous systems:
| nterleaving

Asynchronous systems:
Sync ={inc,-} " {inc,-}

* R(V,V') = U(Ri(vi V') U_Qsame(\/j))

Concurrent programs

Many systems to be verified can be viewed
as concurrent programs

— operating system routines
— cache protocols
— communication protocols

P = cobegin (P, || P, || ...|| P,) coend
2., P,,..P,, --- Sequential Programs.
Jsually interleaving semantics is assumed

85

Seguential Programs

Genera Structure

l |

Statement

C(l, statement, I’)

il,

C iIs a trandgtion procedure which
takes a label, a program statement
and a label and gives the FOL
formula specifying the transition
relation.

86

l |

Assignments

| C(l, assignment, I')

V.= expression
(V:=2X—V +3y)

pc=l Upc =I"U

il,

v’ = expression Usame (V —{v})

[Y = Y1, Yoo Yk
y: =y, Uy, =y, U... Uy,]

87

Skip

c(l, skip, I') |

pc=| U pc =I' Usame (V)

Conditional statement

‘C(I, b, IF-THEN-ELSE, I, I,,, I)

I@b (c=1U pc =1, Ub Usame(V)) U
’ (pc=1 U pc =1, U@ b Usame(V)) U
Q c(, P,I" U
C(l,, Q, 1)

IFb THENPELSE Q FI

89

While statement

‘ c(,b,1,, WHILE, ')

(pc=1 U pc =1, Ub Usame(V)) U
(pc=1 U pc =I' UB b Usame(V)) U
C(y, P, 1)

WHILE b DO PEND WHILE

Concurrent programs

e P=cobegin(P,[|P,] ...l| P,) coenc
* P, P,,..P,--- Sequential Programs.

Concurrent programs

 P=cobegin(P,|P,]l-...]|P,) coend

¢ P, P,,..P, --- Sequential Programs,

 C(l, Py, 1) --- Thetransitions of P,
(defined inductively!).

* V., ---- The set of variables of P..

* Programs may share variables!
* pc; — The program counter of P..

92

Concurrent programs

e pc ---- the program counter of the concurrent
program; it could be part of alarger program!

« N denotes the program counter value Is
undefined .

e S,(V,PC)=pre(V)Upc=L L
pc,="U...... Upc, =~

93

The Transition Predicate

(pc=L Upc, =1, U....
Upc, =1, Upc =")U
(pc=" Upc, =1, U...
pc, =1’ Upc =L"U
pc, =" U...pc, ="U
(C(,, P,,1,") USame (V - V,)
U Same(PC {pc,})) U...
Cd,,P.,1.’YUSame(V-V,)
U Same(PC —{pc,}))

Summary

System variables
Domain of values
States

Initial state predicate
Transition predicate

pc values (for programs)

95

