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Tecniche di Specifica e di 
Verifica

Modeling with Transition Systems
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An example

The Dining Philosophers
• Possible problems:

– Deadlock: system state where no action can be 
taken (no transition possible)

– Livelock: When system component is prevented 
to take any action, or a particular one 
(individual starvation)

– Starvation: obvious.
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Fairness
The Dining Philosophers
• Possible solution to deadlock:

– pick up right fork only if both are present
Assumptions:
– weak fairness: any trans. continuously enabled, 

will eventually fire (eating philosophers will 
finish)

– strong fairness: any trans. enabled infinitely often, 
will eventually occur (if 2 fork available infinitely 
often, phil. will eventually eat).
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Livelock
The Dining Philosophers
• Possible solution:

– pick up fork only if both are present
Assumptions:
– strong fairness: any transition enabled infinitely 

often, will eventually occur (if 2 fork available 
infinitely often, philosopher will eventually eat).

strong fairness is not enough to prevent livelock
Why? Think of the case with 4 philosophers! 
Sol.(?): Try preventing consecutive eating. 

Still suffers from livelock with 5 phils! Why?
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Outline

• The model – Transition systems
• Some features

– Paths
– Computations
– Branching

• First order representation
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Transition systems

• A transition system (Kripke structure) is a 
structure

TS = (S, S0, R)
where:
– S is a finite set of states.
– S0 ⊆ S is the set of initial states.
– R  ⊆ S × S is a transition relation
§ R must be total, that is 

– ∀s ∈ S ∃s’ ∈ S . (s, s’) ∈ R or, equivalently,
– For every state s in S, there exists s’ in S such 

that (s, s’) is in R.
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Notions and Notations

• TS = (S, S0, R)
• (s, s’) ∈ R     R(s, s’)    s → s’
• A (finite) path from s is a sequence 

s1, s2,…,sn

such that 
– s = s1

– si → si+1 for 0 < i < n.
• It is from s to s’ if sn = s’.
• An infinite path from s is an infinite sequence …..
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Labeled transition systems

• Sometimes we may use a finite set of actions:
– Act = {a, b, ..}

• The actions will be used to label the 
transitions.

• TS = (S, S0, Act, R)
– R ⊆ S × Act × S, labeled transitions.
– (s, a, s’) ∈ R - R(s, a, s’) - s         s’a
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A vending machine

coin

coffee

tea

c-out

t-out
t-serve

c-serve

coin-return
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A path

coin

coffee

tea

c-out

t-out
t-serve

c-serve

coin-return
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A non-path

coin

coffee

tea

c-out

t-out
t-serve

c-serve

coin-return

1 2 3

1 2 3  No!

3 1 2   yes!
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A non-total transition relation

coin

coffee

tea

c-out

t-out
t-serve

c-serve

1 2 3
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State space

• The state space of a system (e.g. program) is the 
set of all its possible states.

• For example, if V={a, b, c} and the variables 
range over the naturals, then the state space
includes:
<a=0,b=0,c=0>, <a=1,b=0,c=0>, <a=1,b=1,c=0>, 
<a=932,b=5609,c=6658>…
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Atomic transition

• Each atomic transition represents a small 
peace of code (or execution step), such that 
no smaller peace of code (or step) is 
observable.

• Is a:=a+1 atomic?
• In some systems, e.g., when a is a register 

and the transition is executed using an inc
command.
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(Non)Atomicity (race conditions)

• Execute the following when 
x=0 in two concurrent 
processes:
P1:a=a+1
P2:a=a+1

• Result: a=2.
• Is this always the case?

• Consider the actual translation:
P1:load R1,a

inc R1
store R1,a

P2:load R2,a
inc R2
store R2,a

• a may also be 1
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The common framework

• Many systems need to be modeled.
– Digital circuits
§ Synchronous
§Asynchronous

– Programs

• Strategy : Capture the main features using a  
logical framework (nothing to do with temporal 
logics!) : First order representation
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The inefficient way

Asynchronous 
circuits

synchronous 
circuits

Programs
(finite state)

Kripke Structure  

Model checking
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The efficient way

Asynchronous 
circuits

synchronous 
circuits

Programs
(finite state)

Kripke Structure  

Model checking

First Order 
Representation
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A mod-8 counter

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

v2 v1

v0
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The mod-8 counter

• System variables : v2 v1 v0

• Domain of v2 = {0, 1}
Same domain for v1 and v0

• Special case : These variables are boolean
• A state s can be seen as a function which 

assigns to each variable a value in its domain.
– s(v0) = 0  s(v1) = 1  s(v2) = 1
– It is the state (1 1 0) !
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State Predicates

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

v2 v1

v0

A set of states can be picked out by a formula;

X = v2 ∨ v0 is the set {...}
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State Predicates

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

v2 v1

v0

A set of states can be picked out by a formula;

X = v2 ∨ v0 is the set {100, 101, 110, 111, 001, 011}
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Initial States Predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

v2 v1

v0

A set of states can be picked out by a formula;

X’ = ¬v2 ∧ ¬v1 ∧ ¬v0
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Initial States Predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

v2 v1

v0

A set of states can be picked out by a formula;

X’ = ¬v2 ∧ ¬v1 ∧ ¬v0 X’ = { S0 } = { 000 }
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Transition relation predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

A set of transitions can also be picked out by a formula.

R2 = v2’ ∫ (v0 ∧ v1) ⊕ v2 v2 – current value   v2’ – next value
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Transition relation predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

A set of transitions can also be picked out by a formula.

R2=  v2’ ∫ (v0 ∧ v1) ⊕ v2 v2 – current value   v2’ – next value

{t0, t1} ⊆ R2

t1
t0
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Transition relation predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

T = Formula(v2, v1, v0, v2’, v1’, v0’)

Not all formulae will define subsets of transitions.

You must pick the right formula .



28

Transition relation predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

T0 = v0’  ≠ v0 v0 – current value   v0’ – next value

T0 = {(000) (101) ,……..}

But this is not a transition!
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Transition relation predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

T0 =  v0’  ≠ v0 vi – current value   vi’ – next value

T1 =  v1’  =  (v0 ⊕ v1)

T2 =  v1’  =  (v0 ∧ v1) ⊕ v2 

T = T0  ∧ T1  ∧ T2
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Summary of Predicates

• System variables v0, v1, v2, …..,vn.
• Each vi has a domain of values

– Boolean , {a,b,c,..}, {5,8,0,7}…
– Each domain is required to be finite.

• A state is a function s which assigns to each 
system variable a value in its domain.

• The set of states is finite.
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Summary 

• Predicates can be used to pick out –succinctly-
sets of states (useful for identifying initial 
states).

• X = Formula(v0, v1, v2,...,vn)

• But this works only when all domains are 
boolean.

• In general Formula can be a first order formula.
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Summary

• A set of transitions can also be picked out 
using predicates.

• T = Formula(v0, v1,…, vn, v0’, v1’,…,vn’)
• T is the set of all transitions 

(v0, v1,…,vn)             (v0’, v1’,…,vn’)
such that Formula (above!) is satisfied.

• Not all (state or transition) formulas will be 
legitimate.
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Why use formulae?

• Formulae allow us to compactly describe a system 
and its dynamics

• It’s easy to go from a “logical” description to 
Kripke structures.

• Once we have a Kripke structure, we are in 
business.

• We can use 
– Temporal Logics to specify properties
– Model checking to verify these properties. 
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First Order Logic

• The general structure :
– Syntax
§ Formulas

– Semantics
§When is a formula  true ?
§Models

– Interpretations
– Valuations
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Syntax

• Terms
– Variables
– Functions symbols, constant symbols

• Atomic formulas
– Relation symbols, equality, terms

• Formulas
– Atomic formulas
– Propositional connectives
– Existential and universal quantifiers
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Syntax
• (individual) variables --- x, y, v3, v’,…

– System variables in our context
• Function symbols : f (n)

– n is the arity of f.

– Add (2)

– Next (1)

• Function symbols will capture the functions 
used in the programs, circuits, …
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Constant symbols

• Apart from variables, it will also be 
convenient to have constant symbols.
– zero , five,  ….

• Variables can be assigned different values 
but a constant symbol is assigned a fixed 
value.
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Terms

• Terms are used to point at values.
• A variable is a term.

– x , v , v’’

• A constant symbol is a term.
• Suppose f is a function symbol of arity n

and t1, t2, …,tn are terms then
f(t1, t2,…,tn) is also a term.
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Terms

• Let Plus be a function symbol of arity 2.
• v1 , v2, Plus(v2, Plus(v1, v1)) are terms.

– the semantics of the last term is intuitively
v2 + 2v1

• Let weird_op be a function symbol of arity 3
• Then 

Plus(weird_op(v, Plus(v1, v2), five), Plus(v, v”))

is a term.
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Predicates

• Relation (predicate) symbols :
– P which also has an arity
– Greater-Than has arity  2
– Prime has arity 1
– Middle has arity 3  -- Middle(t1, x, t2)
§ intuitively, x lies between t1 and t2

• Equal has arity 2 
– will be denoted as =
– It is a “constant” relation symbol.
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Atomic formulas.

• If t1 and t2 are terms then =(t1, t2) is an 
atomic formula.
– also written t1 = t2

• Suppose P has arity n and t1, t2, …, tn are 
terms. 

• Then P(t1, t2, …, tn) is an atomic formula.
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Atomic formulas

• Greater-Than(five, zero)
• Greater-Than(two, four)
• Prime(Plus(v1, v”))
• Plus(v,Zero) = weird_op(v,v,four)
• v = Greater_Than(v1,v2) is not an atomic 

formula !
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Terms and Predicates

• A term is meant to denote a value. 
– Makes no sense to talk about a term being true 

or false.

• An atomic formula may be true or false 
(depends on the interpretation).
– Does not make sense to associate a value with 

an atomic formula. 
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Formulas

• Every atomic formula is a formula.
• If ϕ is a formula  then ¬ϕ is a formula.
• If ϕ and ϕ’ are formulas then ϕ ∨ ϕ’ is a 

formula.
• ϕ ∧ ϕ’ abbreviates:  ¬(¬ϕ ∨ ¬ϕ’)
• ϕ ⊃ ϕ’ abbreviates : ¬ϕ ∨ ϕ’
• ϕ ≡ ϕ’ abbreviates : (ϕ ⊃ ϕ’) ∧ (ϕ’ ⊃ ϕ)
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Formulas

• If ϕ is a formula and x is a variable then ∃x.ϕ
is a formula.

• ∀x.ϕ abbreviates : ¬∃x.¬ϕ

• These are existential and universal quantifiers.

• The power of first order logic comes from 
these operators!
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Semantics
• Models :

– Domain of interpretation
– Interpretation
§ For the function, constant and relation symbols.

– Fixed for all formulas.

§ For the individual variables, on a “per formula” 
basis.

– Valuations.
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Semantics

• Domain
– Each variable will have its domain of values.
– We pretend all these domains are the same.
– Or rather, a big enough “universe” that will 

contain all these domains.

• Fix D the universe of values.
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Semantics 

Interpretation function I
• Assigns a concrete function to each function 

symbol (of the same arity!)
• Assigns a concrete member of D to each 

constant symbol.
• Assigns a concrete relation to each relation 

symbol (of the same arity!).



49

Semantics II 

• Assign a concrete function to each function 
symbol (of the same arity!)

• Assign a concrete member of D to each 
constant symbol.

• Assign a concrete relation to each relation 
symbol (of the same arity!).
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Semantics II

• Assume we have fixed an interpretation for 
all function symbols, constant symbols and 
relational symbols.

• Let ϕ be a formula. Fix a valuation
(assignment) V which assigns a member of 
D to each variable.

• V : Variables             D
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Lift V to All Terms

• We have :
– An interpretation for the function symbols and 

constant symbols.
– An assignment  V : Variables               D

• Using these, we can construct (uniquely!)
V_T : Terms              D
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Constructing V_T

Variables

Constant 
symbols

f(t1, t2, t3)

V_T

??

D
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Constructing V_T

Variables

Constant 
symbols

V_T

Interpretation

V

D

f(t1, t2, t3)
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Constructing V_T

Variables

Constant 
symbols

V

D

d1 d2 d3

F

f(t1, t2, t3)
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Constructing V_T
f(t1, t2, t3) V

D

d1 d2 d3

F

F(d1, d2, d3)
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Semantics II

• Let ϕ be a formula. Fix a valuation V which 
assigns a member of D to each variable.

• So we now have V_T that assigns a 
member of D each term.

• ϕ is satisfied under V (and the interpretation 
we have fixed for all formulas) if :
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Semantics II

• Suppose P(t1, t2,.., tn) is an atomic formula
and V_T(t1) = d1, ….V_T(tn) = dn

and  PCON is the relation assigned to P by 
our interpretation.

• Then P(t1, t2,.., tn) is satisfied under V iff
PCON(d1, d2,…,dn) holds in D. 
(d1, d2, ….,dn)  ∈ PCON ⊆ D  × D ×…× D
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Semantics II

• Suppose ϕ is of the form ¬ ϕ’.
• Then ϕ is satisfied under V iff ϕ’ is not 

satisfied under V.
• Suppose ϕ is of the form ϕ1∨ ϕ2

• Then ϕ is satisfied under V iff ϕ1 is satisfied 
under V or ϕ2 is satisfied under V.
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Semantics II

• Greater-Than(Plus(v, 3), Multi(x, 2))
t1 t2

• V(v) = 2  V(x) = 1  
• V_T(t1) = 5  V_T(t2) = 2
• (5, 2) ∈ >  ⊆ Integers × Integers
• V’(v) = 1 V’(x) = 6
• Under V’, the atomic formula is not true.



60

Semantics II

• The only case left is when ϕ is of the form
∃x.ϕ’

• ϕ is satisfied under V iff there is a valuation 
V’ such that ϕ’ is satisfied under V’ and V’
is required to meet the condition: 
– V’ is exactly V for all variables except x.
– For x , V’ can assign any value of its choosing.
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Semantics II

• Whether ∃x.ϕ is true or not under V
– does not depend  on what V does on x !

• ∃x.2x = y is true under V(y) = 4, V(x) = 1!
• Because, we can find V’ with V’(y) = 4 but 

V’(x) = 2.
• One says x is bound in the formula and y is 

free. 
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The efficient way

Asynchronous 
circuits

synchronous 
circuits

Programs
(finite state)

Kripke Structure
First Order 

Representation

Model checking
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First Order Representation to 
Transition Systems

• {v1, v2, …,vn}--- System variables.
• D1, D2, …,Dn --- The corresponding domains.

• D = ∪ Di

• s : {v1, v2, …,vn} D such that
s(v1) ∈ D1 …..

• S --- The set of states.
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Initial States

• S0(v1, v2, …,vn) is a FO formula describing the set 
of initial states.

• Atomic formula
– v = d where v is is a system variable and d is a constant 

symbol interpreted as a member of the domain of v. 

Example:
• “S0 is the set of all states where the pc = 0 and 

input is a power of 2”
• ∃n. (input = EXP(n))  ∧ (pc = 0)
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Transition relation

• R (v1, v2, ..vn, v1’, v2’,..,vn’) is a FO formula 
involving the variables v1, v2,..vn (the system 
variables) and the new variables (v1’, v2’,..,vn’).

• (d1, d2,..,dn)        (d1’, d2’,..,dn’) iff
R (v1, v2, ..vn, v1’, v2’,..,vn’) is true under the 
valuation v1 = d1,…,vn =dn, v1’ = d1’,..vn’ = dn’.
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Transition Relation

• V = {x, y, z}
• Program : {x, y, z, pc}

l0 : begin
l1 : statement1
l2 : statement2
….
l5 : if even(x) then x = x/2  else x = x –1
l6 : ….
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Transition Relation
• V = {x, y, z}
• Program : {x, y, z, pc}

l5 : if even(x) then x = x/2 else x = x –1
l6 : ….

• ϕ (x, y, z, pc, x’, y’, z’, pc’)
• pc = l5 ∧ pc’ = l6 ∧ (∃n. (x = 2n) ⊃ x’ = x/2) ∧

(¬∃n. (x = 2n) ⊃ x’ = x-1) ∧ same(y, z)
which is equivalent to
• pc = l5 ∧ pc’ = l6 ∧

((∃n.(x=2n) ∧ x’=x/2) ∨ (¬∃n.(x=2n) ∧ x’=x-1))) ∧
same(y, z)

• same(y, z) --- y’ = y  ∧ z’ = z
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Transition Relation

• In a similar fashion , we can construct 
transition relation formulas for :
– Assignment statement
– While statements
– etc.etc. 
– See the text book!
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Kripke Structures

• AP is a finite set of atomic propositions.
– “value of x is 5”
– “x = 5”

• M = (S, S0, R, L), a Kripke Structure.
– (S, S0, R) is a transition system.
– L : S              2AP

– 2AP ---- The set of subsets of AP
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Kripke Structures

• The atomic propositions and L together 
convert a transitions system into a model.

• We can start interpreting formulas over the 
Kripke structure.

• The atomic propositions make basic (easy) 
assertions about system states.
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Automata and Kripke Structures

• AP - set of elementary property
• <S,A,R,s0,L>
• S - set of states
• A - set of transition labels
• R ⊆ S×A×S - (labeled) transition relation 
• L - interpretation mapping L:S        2AP
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Example: a print manager

Wi= i waits
Pi= i prints
Ri= i rests0,

RA,RB

6,
PA,RB

1,
WA,RB

2,
RA,WB

7,
RA,PB

4,
WA,PB

3,
WA,WB

5,
PA,WB

endA

reqA

endB

reqB

reqB

reqA

reqB reqA

startA

startB startA

startB

endB endA

endi= i ends printing
reqi= i requests printing
starti= i start printing

AP
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• S = {0,1,2,3,4,5,6,7}
• A = {endA,endB, reqA, reqB, startA, startB}
• R = {(0,reqA,1), (0,reqB,2), (1,reqB,3), (1,startA,6), (2,reqA,3), 

(2,startB,7), (3,startA,5), (3,startB,4), (4,endB,1), (5,endA,2), 
(6,endA,0), (6,reqB,5), (7,endB,0), (7,reqA,4),}

• L = {0→ {RA,RB}, 1→ {WA,RB}, 2→ {RA,WB}, 3→ {WA,WB}, 
4→ {WA,PB}, 5→ {PAWB}, 6→ {PA,RB}, 7→ {RAPB} }

0,
RA,RB

6,
PA,RB

1,
WA,RB

2,
RA,WB

7,
RA,PB

4,
WA,PB

3,
WA,WB

5,
PA,WB

endA

reqA

endB

reqB

reqB

reqA

reqB reqA

startA

startB startA

startB

endB endA
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Properties of the printing systems

• Every state in which PA holds, is preceded 
by a state in which WA holds

• In any state in which WA holds is followed 
(possibly not immediately) by a state in 
which PA holds.

• The first can easily be checked to be true
• The second is false (e.g. 0134134134…) -

in other words the system is not fair.
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Synchronization

• Usually complex systems are composed of a 
number of smaller subsystems (modules)

• It is natural to model the whole system 
starting from the models of the subsystems.

• And then define how they cooperate.
• There are many ways to define cooperation 

(synchronization).
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Synchronization: no interaction
The system model is just the cartesian product of 

the simple modules.
Let TS1,…,TSn be n automata (or TS), where

TSi=<Si,Ai,Ri,si0>
The system is then defined as TS=<S,A,R,s0> where

S = S1 × S2 × … × Sn 

A = A1∪{-} × A2∪{-} × … × An∪{-}
R = {((s1,s2,...,sn),(a1,a2,...,an),(s’1,s’2,...,s’n))| forall i

ai≠- and (si,ai,s’i) ∈ Ri, or a1=- and s’i =si}
s0  = (s10,s20,...,sn0)
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0 1

inc

inc TS1

0,0

1,0

0,1

1,1

0,3

1,3

0,2

1,2

inc , inc

inc
,-

- , inc - , inc - , inc

inc , inc

inc
,-

inc
,-

inc
,-

inc , inc

inc , inc
inc , inc

inc , inc

- , inc

inc , inc

- , inc - , inc - , inc

inc , inc

- , inc

TS= TS1 × TS2

TS1 contatore 
modulo 2

0 1

3 2

inc

inc

inc

inc

TS2

TS2: contatore 
modulo 4
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To allow for interaction, or synchronization on 
specific actions we can introduce a Synchro-
nization Set (to inhibit undesired transitions) :

• Synchronization set is just a subset of the composite 
actions:

Sync ⊆ A1∪{-} × A2∪{-} × … × An∪{-}
• Then we will have to define the possible transitions

as:

R={((s1,s2,...,sn),(a1,a2,...,an),(s’1,s’2,...,s’n)) |  
(a1,a2,...,an)∈Sync and for all i, 
ai≠ - and (si,ai,s’i) ∈ Ri, or a1=- and s’i =si}

Synchronization: interaction
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Free synchronization (Asynchronous systems):
Sync = {inc,-} × {inc,-}

0,0

1,0

0,1

1,1

0,3

1,3

0,2

1,2

inc , inc

inc
,-

- , inc - , inc - , inc

inc , inc

inc
,-

inc
,-

inc
,-

inc , inc

inc , inc

inc , inc
inc , inc

- , inc

inc , inc

- , inc - , inc - , inc

inc , inc

- , inc

TS= TS1 × TS2
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Free synchronization

Asynchronous systems:
Sync = {inc,-} × {inc,-}

• R(V,V’) = ∧(Ri(vi,vi’) ∨ same(vi))i∈I
∧ ¬∧same(vi)

if one wants to discard
the situation where no 
component acts
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0,0

1,0

0,1

1,1

0,3

1,3

0,2

1,2

inc,inc
inc,inc

inc,inc

inc ,inc
inc,inc

inc,inc

inc,inc

inc,inc

TS= TS1 × TS2

Synchronization on all actions (Synchronous 
systems):
Sync = {(inc,inc)}
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Synchronous systems

Synchronous systems:
Sync = {(inc,inc)}

• R(V,V’) = ∧Ri(vi,vi’)
i∈I
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0,0

1,0

0,1

1,1

0,3

1,3

0,2

1,2

inc
,-

- , inc - , inc - , inc

inc
,-

inc
,-

inc
,-

- , inc

- , inc - , inc - , inc

- , inc
TS= TS1 × TS2

Asynchronous systems with interleaving (only one 
component acts at any time):
Sync = {(-,inc),(inc,-)}
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Asynchronous systems: 
Interleaving

Asynchronous systems:
Sync = {inc,-} × {inc,-}

• R(V,V’) = ∨(Ri(vi,vi’) ∧ ∧same(vj))
i∈I i ≠ i
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Concurrent programs

• Many systems to be verified can be viewed 
as concurrent programs
– operating system routines
– cache protocols
– communication protocols

• P = cobegin (P1 || P2 || …|| Pn) coend
• P1, P2,..Pn --- Sequential Programs.
• Usually interleaving semantics is assumed
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Sequential Programs

General Structure

Statement

l

l’

C(l, statement, l’)

C is a transition procedure which 
takes a label, a program statement 
and a label and gives the FOL 
formula specifying the transition 
relation.
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Assignments

v:= expression
(v := 2x – v +3·y)

l

l’

pc = l  ∧ pc’ = l’ ∧
v’ = expression ∧ same (V – {v})

[Y = {y1, y2, ..ym}
y1’ = y1 ∧ y2’ = y2 ∧… ∧ ym]

C(l, assignment, l’)
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Skip

Skip

l

l’

pc = l  ∧ pc’ = l’ ∧ same (V)

C(l, skip, l’)
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Conditional statement

l’

P Q

IF b THEN P ELSE  Q FI

l
C(l, b, IF-THEN-ELSE, l1, l2,  l’)

b ¬b
l1 l2

(pc = l  ∧ pc’ = l1 ∧ b ∧ same(V)) ∨

(pc = l  ∧ pc’ = l2 ∧ ¬ b ∧ same(V)) ∨

C(l1, P, l’) ∨

C(l2, Q, l’)
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While statement

l’

P

WHILE b DO P END_WHILE

l
C(l, b, l1,  WHILE, l’)

b

¬ b

l1
(pc = l  ∧ pc’ = l1 ∧ b ∧ same(V)) ∨

(pc = l  ∧ pc’ = l’ ∧ ¬ b ∧ same(V)) ∨

C(l1, P, l) 
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Concurrent programs

• P = cobegin (P1 || P2 || …|| Pn) coend
• P1, P2,..Pn --- Sequential Programs.

L

L’

P1 P2 Pn
………..

l1

11’

l2

l2’

ln

ln’
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Concurrent programs

• P = cobegin (P1 || P2 || …|| Pn) coend
• P1, P2,..Pn --- Sequential Programs.
• C(l1, P1, l1’) --- The transitions of P1

(defined inductively!).
• Vi ---- The set of variables of Pi.
• Programs may share variables !
• pci – The program counter of Pi.
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Concurrent programs

• pc ---- the program counter of the concurrent 
program; it could be part of a larger program!

• ⊥ denotes the program counter value is 
undefined .

• S0(V, PC) = pre(V) ∧ pc = L ∧
pc1 = ⊥ ∧ …… ∧ pcn = ⊥
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The Transition Predicate

L

L’

P1

l1

……………….. Pn

ln

(pc = L ∧ pc1’ = l1 ∧…. 
∧pcn’ = ln ∧ pc’ = ⊥) ∨
(pc = ⊥ ∧ pc1 = l1’ ∧…
pcn = ln’ ∧ pc’ = L’ ∧

pc1’ = ⊥ ∧ …pcn’ = ⊥) ∨
(C(l1, P1, l1’) ∧ Same (V – V1) 

∧ Same(PC –{pc1})) ∨…
C(ln, Pn, ln’) ∧ Same (V – Vn) 

∧ Same(PC –{pcn}))
l1’ ln’
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Summary

• System variables
• Domain of values
• States
• Initial state predicate
• Transition predicate
• pc values (for programs)


