
1

Tecniche di Specifica e di
Verifica

Modeling with Transition Systems

2

An example

The Dining Philosophers
• Possible problems:

– Deadlock: system state where no action can be
taken (no transition possible)

– Livelock: When system component is prevented
to take any action, or a particular one
(individual starvation)

– Starvation: obvious.

3

Fairness
The Dining Philosophers
• Possible solution to deadlock:

– pick up right fork only if both are present
Assumptions:
– weak fairness: any trans. continuously enabled,

will eventually fire (eating philosophers will
finish)

– strong fairness: any trans. enabled infinitely often,
will eventually occur (if 2 fork available infinitely
often, phil. will eventually eat).

4

Livelock
The Dining Philosophers
• Possible solution:

– pick up fork only if both are present
Assumptions:
– strong fairness: any transition enabled infinitely

often, will eventually occur (if 2 fork available
infinitely often, philosopher will eventually eat).

strong fairness is not enough to prevent livelock
Why? Think of the case with 4 philosophers!
Sol.(?): Try preventing consecutive eating.

Still suffers from livelock with 5 phils! Why?

5

Outline

• The model – Transition systems
• Some features

– Paths
– Computations
– Branching

• First order representation

6

Transition systems

• A transition system (Kripke structure) is a
structure

TS = (S, S0, R)
where:
– S is a finite set of states.
– S0 ⊆ S is the set of initial states.
– R ⊆ S × S is a transition relation
§ R must be total, that is

– ∀s ∈ S ∃s’ ∈ S . (s, s’) ∈ R or, equivalently,
– For every state s in S, there exists s’ in S such

that (s, s’) is in R.

7

Notions and Notations

• TS = (S, S0, R)
• (s, s’) ∈ R R(s, s’) s → s’
• A (finite) path from s is a sequence

s1, s2,…,sn

such that
– s = s1

– si → si+1 for 0 < i < n.
• It is from s to s’ if sn = s’.
• An infinite path from s is an infinite sequence …..

8

Labeled transition systems

• Sometimes we may use a finite set of actions:
– Act = {a, b, ..}

• The actions will be used to label the
transitions.

• TS = (S, S0, Act, R)
– R ⊆ S × Act × S, labeled transitions.
– (s, a, s’) ∈ R - R(s, a, s’) - s s’a

9

A vending machine

coin

coffee

tea

c-out

t-out
t-serve

c-serve

coin-return

10

A path

coin

coffee

tea

c-out

t-out
t-serve

c-serve

coin-return

11

A non-path

coin

coffee

tea

c-out

t-out
t-serve

c-serve

coin-return

1 2 3

1 2 3 No!

3 1 2 yes!

12

A non-total transition relation

coin

coffee

tea

c-out

t-out
t-serve

c-serve

1 2 3

13

State space

• The state space of a system (e.g. program) is the
set of all its possible states.

• For example, if V={a, b, c} and the variables
range over the naturals, then the state space
includes:
<a=0,b=0,c=0>, <a=1,b=0,c=0>, <a=1,b=1,c=0>,
<a=932,b=5609,c=6658>…

14

Atomic transition

• Each atomic transition represents a small
peace of code (or execution step), such that
no smaller peace of code (or step) is
observable.

• Is a:=a+1 atomic?
• In some systems, e.g., when a is a register

and the transition is executed using an inc
command.

15

(Non)Atomicity (race conditions)

• Execute the following when
x=0 in two concurrent
processes:
P1:a=a+1
P2:a=a+1

• Result: a=2.
• Is this always the case?

• Consider the actual translation:
P1:load R1,a

inc R1
store R1,a

P2:load R2,a
inc R2
store R2,a

• a may also be 1

16

The common framework

• Many systems need to be modeled.
– Digital circuits
§ Synchronous
§Asynchronous

– Programs

• Strategy : Capture the main features using a
logical framework (nothing to do with temporal
logics!) : First order representation

17

The inefficient way

Asynchronous
circuits

synchronous
circuits

Programs
(finite state)

Kripke Structure

Model checking

18

The efficient way

Asynchronous
circuits

synchronous
circuits

Programs
(finite state)

Kripke Structure

Model checking

First Order
Representation

19

A mod-8 counter

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

v2 v1

v0

20

The mod-8 counter

• System variables : v2 v1 v0

• Domain of v2 = {0, 1}
Same domain for v1 and v0

• Special case : These variables are boolean
• A state s can be seen as a function which

assigns to each variable a value in its domain.
– s(v0) = 0 s(v1) = 1 s(v2) = 1
– It is the state (1 1 0) !

21

State Predicates

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

v2 v1

v0

A set of states can be picked out by a formula;

X = v2 ∨ v0 is the set {...}

22

State Predicates

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

v2 v1

v0

A set of states can be picked out by a formula;

X = v2 ∨ v0 is the set {100, 101, 110, 111, 001, 011}

23

Initial States Predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

v2 v1

v0

A set of states can be picked out by a formula;

X’ = ¬v2 ∧ ¬v1 ∧ ¬v0

24

Initial States Predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

v2 v1

v0

A set of states can be picked out by a formula;

X’ = ¬v2 ∧ ¬v1 ∧ ¬v0 X’ = { S0 } = { 000 }

25

Transition relation predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

A set of transitions can also be picked out by a formula.

R2 = v2’ ∫ (v0 ∧ v1) ⊕ v2 v2 – current value v2’ – next value

26

Transition relation predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

A set of transitions can also be picked out by a formula.

R2= v2’ ∫ (v0 ∧ v1) ⊕ v2 v2 – current value v2’ – next value

{t0, t1} ⊆ R2

t1
t0

27

Transition relation predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

T = Formula(v2, v1, v0, v2’, v1’, v0’)

Not all formulae will define subsets of transitions.

You must pick the right formula .

28

Transition relation predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

T0 = v0’ ≠ v0 v0 – current value v0’ – next value

T0 = {(000) (101) ,……..}

But this is not a transition!

29

Transition relation predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

T0 = v0’ ≠ v0 vi – current value vi’ – next value

T1 = v1’ = (v0 ⊕ v1)

T2 = v1’ = (v0 ∧ v1) ⊕ v2

T = T0 ∧ T1 ∧ T2

30

Summary of Predicates

• System variables v0, v1, v2, …..,vn.
• Each vi has a domain of values

– Boolean , {a,b,c,..}, {5,8,0,7}…
– Each domain is required to be finite.

• A state is a function s which assigns to each
system variable a value in its domain.

• The set of states is finite.

31

Summary

• Predicates can be used to pick out –succinctly-
sets of states (useful for identifying initial
states).

• X = Formula(v0, v1, v2,...,vn)

• But this works only when all domains are
boolean.

• In general Formula can be a first order formula.

32

Summary

• A set of transitions can also be picked out
using predicates.

• T = Formula(v0, v1,…, vn, v0’, v1’,…,vn’)
• T is the set of all transitions

(v0, v1,…,vn) (v0’, v1’,…,vn’)
such that Formula (above!) is satisfied.

• Not all (state or transition) formulas will be
legitimate.

33

Why use formulae?

• Formulae allow us to compactly describe a system
and its dynamics

• It’s easy to go from a “logical” description to
Kripke structures.

• Once we have a Kripke structure, we are in
business.

• We can use
– Temporal Logics to specify properties
– Model checking to verify these properties.

34

First Order Logic

• The general structure :
– Syntax
§ Formulas

– Semantics
§When is a formula true ?
§Models

– Interpretations
– Valuations

35

Syntax

• Terms
– Variables
– Functions symbols, constant symbols

• Atomic formulas
– Relation symbols, equality, terms

• Formulas
– Atomic formulas
– Propositional connectives
– Existential and universal quantifiers

36

Syntax
• (individual) variables --- x, y, v3, v’,…

– System variables in our context
• Function symbols : f (n)

– n is the arity of f.

– Add (2)

– Next (1)

• Function symbols will capture the functions
used in the programs, circuits, …

37

Constant symbols

• Apart from variables, it will also be
convenient to have constant symbols.
– zero , five, ….

• Variables can be assigned different values
but a constant symbol is assigned a fixed
value.

38

Terms

• Terms are used to point at values.
• A variable is a term.

– x , v , v’’

• A constant symbol is a term.
• Suppose f is a function symbol of arity n

and t1, t2, …,tn are terms then
f(t1, t2,…,tn) is also a term.

39

Terms

• Let Plus be a function symbol of arity 2.
• v1 , v2, Plus(v2, Plus(v1, v1)) are terms.

– the semantics of the last term is intuitively
v2 + 2v1

• Let weird_op be a function symbol of arity 3
• Then

Plus(weird_op(v, Plus(v1, v2), five), Plus(v, v”))

is a term.

40

Predicates

• Relation (predicate) symbols :
– P which also has an arity
– Greater-Than has arity 2
– Prime has arity 1
– Middle has arity 3 -- Middle(t1, x, t2)
§ intuitively, x lies between t1 and t2

• Equal has arity 2
– will be denoted as =
– It is a “constant” relation symbol.

41

Atomic formulas.

• If t1 and t2 are terms then =(t1, t2) is an
atomic formula.
– also written t1 = t2

• Suppose P has arity n and t1, t2, …, tn are
terms.

• Then P(t1, t2, …, tn) is an atomic formula.

42

Atomic formulas

• Greater-Than(five, zero)
• Greater-Than(two, four)
• Prime(Plus(v1, v”))
• Plus(v,Zero) = weird_op(v,v,four)
• v = Greater_Than(v1,v2) is not an atomic

formula !

43

Terms and Predicates

• A term is meant to denote a value.
– Makes no sense to talk about a term being true

or false.

• An atomic formula may be true or false
(depends on the interpretation).
– Does not make sense to associate a value with

an atomic formula.

44

Formulas

• Every atomic formula is a formula.
• If ϕ is a formula then ¬ϕ is a formula.
• If ϕ and ϕ’ are formulas then ϕ ∨ ϕ’ is a

formula.
• ϕ ∧ ϕ’ abbreviates: ¬(¬ϕ ∨ ¬ϕ’)
• ϕ ⊃ ϕ’ abbreviates : ¬ϕ ∨ ϕ’
• ϕ ≡ ϕ’ abbreviates : (ϕ ⊃ ϕ’) ∧ (ϕ’ ⊃ ϕ)

45

Formulas

• If ϕ is a formula and x is a variable then ∃x.ϕ
is a formula.

• ∀x.ϕ abbreviates : ¬∃x.¬ϕ

• These are existential and universal quantifiers.

• The power of first order logic comes from
these operators!

46

Semantics
• Models :

– Domain of interpretation
– Interpretation
§ For the function, constant and relation symbols.

– Fixed for all formulas.

§ For the individual variables, on a “per formula”
basis.

– Valuations.

47

Semantics

• Domain
– Each variable will have its domain of values.
– We pretend all these domains are the same.
– Or rather, a big enough “universe” that will

contain all these domains.

• Fix D the universe of values.

48

Semantics

Interpretation function I
• Assigns a concrete function to each function

symbol (of the same arity!)
• Assigns a concrete member of D to each

constant symbol.
• Assigns a concrete relation to each relation

symbol (of the same arity!).

49

Semantics II

• Assign a concrete function to each function
symbol (of the same arity!)

• Assign a concrete member of D to each
constant symbol.

• Assign a concrete relation to each relation
symbol (of the same arity!).

50

Semantics II

• Assume we have fixed an interpretation for
all function symbols, constant symbols and
relational symbols.

• Let ϕ be a formula. Fix a valuation
(assignment) V which assigns a member of
D to each variable.

• V : Variables D

51

Lift V to All Terms

• We have :
– An interpretation for the function symbols and

constant symbols.
– An assignment V : Variables D

• Using these, we can construct (uniquely!)
V_T : Terms D

52

Constructing V_T

Variables

Constant
symbols

f(t1, t2, t3)

V_T

??

D

53

Constructing V_T

Variables

Constant
symbols

V_T

Interpretation

V

D

f(t1, t2, t3)

54

Constructing V_T

Variables

Constant
symbols

V

D

d1 d2 d3

F

f(t1, t2, t3)

55

Constructing V_T
f(t1, t2, t3) V

D

d1 d2 d3

F

F(d1, d2, d3)

56

Semantics II

• Let ϕ be a formula. Fix a valuation V which
assigns a member of D to each variable.

• So we now have V_T that assigns a
member of D each term.

• ϕ is satisfied under V (and the interpretation
we have fixed for all formulas) if :

57

Semantics II

• Suppose P(t1, t2,.., tn) is an atomic formula
and V_T(t1) = d1, ….V_T(tn) = dn

and PCON is the relation assigned to P by
our interpretation.

• Then P(t1, t2,.., tn) is satisfied under V iff
PCON(d1, d2,…,dn) holds in D.
(d1, d2, ….,dn) ∈ PCON ⊆ D × D ×…× D

58

Semantics II

• Suppose ϕ is of the form ¬ ϕ’.
• Then ϕ is satisfied under V iff ϕ’ is not

satisfied under V.
• Suppose ϕ is of the form ϕ1∨ ϕ2

• Then ϕ is satisfied under V iff ϕ1 is satisfied
under V or ϕ2 is satisfied under V.

59

Semantics II

• Greater-Than(Plus(v, 3), Multi(x, 2))
t1 t2

• V(v) = 2 V(x) = 1
• V_T(t1) = 5 V_T(t2) = 2
• (5, 2) ∈ > ⊆ Integers × Integers
• V’(v) = 1 V’(x) = 6
• Under V’, the atomic formula is not true.

60

Semantics II

• The only case left is when ϕ is of the form
∃x.ϕ’

• ϕ is satisfied under V iff there is a valuation
V’ such that ϕ’ is satisfied under V’ and V’
is required to meet the condition:
– V’ is exactly V for all variables except x.
– For x , V’ can assign any value of its choosing.

61

Semantics II

• Whether ∃x.ϕ is true or not under V
– does not depend on what V does on x !

• ∃x.2x = y is true under V(y) = 4, V(x) = 1!
• Because, we can find V’ with V’(y) = 4 but

V’(x) = 2.
• One says x is bound in the formula and y is

free.

62

The efficient way

Asynchronous
circuits

synchronous
circuits

Programs
(finite state)

Kripke Structure
First Order

Representation

Model checking

63

First Order Representation to
Transition Systems

• {v1, v2, …,vn}--- System variables.
• D1, D2, …,Dn --- The corresponding domains.

• D = ∪ Di

• s : {v1, v2, …,vn} D such that
s(v1) ∈ D1 …..

• S --- The set of states.

64

Initial States

• S0(v1, v2, …,vn) is a FO formula describing the set
of initial states.

• Atomic formula
– v = d where v is is a system variable and d is a constant

symbol interpreted as a member of the domain of v.

Example:
• “S0 is the set of all states where the pc = 0 and

input is a power of 2”
• ∃n. (input = EXP(n)) ∧ (pc = 0)

65

Transition relation

• R (v1, v2, ..vn, v1’, v2’,..,vn’) is a FO formula
involving the variables v1, v2,..vn (the system
variables) and the new variables (v1’, v2’,..,vn’).

• (d1, d2,..,dn) (d1’, d2’,..,dn’) iff
R (v1, v2, ..vn, v1’, v2’,..,vn’) is true under the
valuation v1 = d1,…,vn =dn, v1’ = d1’,..vn’ = dn’.

66

Transition Relation

• V = {x, y, z}
• Program : {x, y, z, pc}

l0 : begin
l1 : statement1
l2 : statement2
….
l5 : if even(x) then x = x/2 else x = x –1
l6 : ….

67

Transition Relation
• V = {x, y, z}
• Program : {x, y, z, pc}

l5 : if even(x) then x = x/2 else x = x –1
l6 : ….

• ϕ (x, y, z, pc, x’, y’, z’, pc’)
• pc = l5 ∧ pc’ = l6 ∧ (∃n. (x = 2n) ⊃ x’ = x/2) ∧

(¬∃n. (x = 2n) ⊃ x’ = x-1) ∧ same(y, z)
which is equivalent to
• pc = l5 ∧ pc’ = l6 ∧

((∃n.(x=2n) ∧ x’=x/2) ∨ (¬∃n.(x=2n) ∧ x’=x-1))) ∧
same(y, z)

• same(y, z) --- y’ = y ∧ z’ = z

68

Transition Relation

• In a similar fashion , we can construct
transition relation formulas for :
– Assignment statement
– While statements
– etc.etc.
– See the text book!

69

Kripke Structures

• AP is a finite set of atomic propositions.
– “value of x is 5”
– “x = 5”

• M = (S, S0, R, L), a Kripke Structure.
– (S, S0, R) is a transition system.
– L : S 2AP

– 2AP ---- The set of subsets of AP

70

Kripke Structures

• The atomic propositions and L together
convert a transitions system into a model.

• We can start interpreting formulas over the
Kripke structure.

• The atomic propositions make basic (easy)
assertions about system states.

71

Automata and Kripke Structures

• AP - set of elementary property
• <S,A,R,s0,L>
• S - set of states
• A - set of transition labels
• R ⊆ S×A×S - (labeled) transition relation
• L - interpretation mapping L:S 2AP

72

Example: a print manager

Wi= i waits
Pi= i prints
Ri= i rests0,

RA,RB

6,
PA,RB

1,
WA,RB

2,
RA,WB

7,
RA,PB

4,
WA,PB

3,
WA,WB

5,
PA,WB

endA

reqA

endB

reqB

reqB

reqA

reqB reqA

startA

startB startA

startB

endB endA

endi= i ends printing
reqi= i requests printing
starti= i start printing

AP

73

• S = {0,1,2,3,4,5,6,7}
• A = {endA,endB, reqA, reqB, startA, startB}
• R = {(0,reqA,1), (0,reqB,2), (1,reqB,3), (1,startA,6), (2,reqA,3),

(2,startB,7), (3,startA,5), (3,startB,4), (4,endB,1), (5,endA,2),
(6,endA,0), (6,reqB,5), (7,endB,0), (7,reqA,4),}

• L = {0→ {RA,RB}, 1→ {WA,RB}, 2→ {RA,WB}, 3→ {WA,WB},
4→ {WA,PB}, 5→ {PAWB}, 6→ {PA,RB}, 7→ {RAPB} }

0,
RA,RB

6,
PA,RB

1,
WA,RB

2,
RA,WB

7,
RA,PB

4,
WA,PB

3,
WA,WB

5,
PA,WB

endA

reqA

endB

reqB

reqB

reqA

reqB reqA

startA

startB startA

startB

endB endA

74

Properties of the printing systems

• Every state in which PA holds, is preceded
by a state in which WA holds

• In any state in which WA holds is followed
(possibly not immediately) by a state in
which PA holds.

• The first can easily be checked to be true
• The second is false (e.g. 0134134134…) -

in other words the system is not fair.

75

Synchronization

• Usually complex systems are composed of a
number of smaller subsystems (modules)

• It is natural to model the whole system
starting from the models of the subsystems.

• And then define how they cooperate.
• There are many ways to define cooperation

(synchronization).

76

Synchronization: no interaction
The system model is just the cartesian product of

the simple modules.
Let TS1,…,TSn be n automata (or TS), where

TSi=<Si,Ai,Ri,si0>
The system is then defined as TS=<S,A,R,s0> where

S = S1 × S2 × … × Sn

A = A1∪{-} × A2∪{-} × … × An∪{-}
R = {((s1,s2,...,sn),(a1,a2,...,an),(s’1,s’2,...,s’n))| forall i

ai≠- and (si,ai,s’i) ∈ Ri, or a1=- and s’i =si}
s0 = (s10,s20,...,sn0)

77

0 1

inc

inc TS1

0,0

1,0

0,1

1,1

0,3

1,3

0,2

1,2

inc , inc

inc
,-

- , inc - , inc - , inc

inc , inc

inc
,-

inc
,-

inc
,-

inc , inc

inc , inc
inc , inc

inc , inc

- , inc

inc , inc

- , inc - , inc - , inc

inc , inc

- , inc

TS= TS1 × TS2

TS1 contatore
modulo 2

0 1

3 2

inc

inc

inc

inc

TS2

TS2: contatore
modulo 4

78

To allow for interaction, or synchronization on
specific actions we can introduce a Synchro-
nization Set (to inhibit undesired transitions) :

• Synchronization set is just a subset of the composite
actions:

Sync ⊆ A1∪{-} × A2∪{-} × … × An∪{-}
• Then we will have to define the possible transitions

as:

R={((s1,s2,...,sn),(a1,a2,...,an),(s’1,s’2,...,s’n)) |
(a1,a2,...,an)∈Sync and for all i,
ai≠ - and (si,ai,s’i) ∈ Ri, or a1=- and s’i =si}

Synchronization: interaction

79

Free synchronization (Asynchronous systems):
Sync = {inc,-} × {inc,-}

0,0

1,0

0,1

1,1

0,3

1,3

0,2

1,2

inc , inc

inc
,-

- , inc - , inc - , inc

inc , inc

inc
,-

inc
,-

inc
,-

inc , inc

inc , inc

inc , inc
inc , inc

- , inc

inc , inc

- , inc - , inc - , inc

inc , inc

- , inc

TS= TS1 × TS2

80

Free synchronization

Asynchronous systems:
Sync = {inc,-} × {inc,-}

• R(V,V’) = ∧(Ri(vi,vi’) ∨ same(vi))i∈I
∧ ¬∧same(vi)

if one wants to discard
the situation where no
component acts

81

0,0

1,0

0,1

1,1

0,3

1,3

0,2

1,2

inc,inc
inc,inc

inc,inc

inc ,inc
inc,inc

inc,inc

inc,inc

inc,inc

TS= TS1 × TS2

Synchronization on all actions (Synchronous
systems):
Sync = {(inc,inc)}

82

Synchronous systems

Synchronous systems:
Sync = {(inc,inc)}

• R(V,V’) = ∧Ri(vi,vi’)
i∈I

83

0,0

1,0

0,1

1,1

0,3

1,3

0,2

1,2

inc
,-

- , inc - , inc - , inc

inc
,-

inc
,-

inc
,-

- , inc

- , inc - , inc - , inc

- , inc
TS= TS1 × TS2

Asynchronous systems with interleaving (only one
component acts at any time):
Sync = {(-,inc),(inc,-)}

84

Asynchronous systems:
Interleaving

Asynchronous systems:
Sync = {inc,-} × {inc,-}

• R(V,V’) = ∨(Ri(vi,vi’) ∧ ∧same(vj))
i∈I i ≠ i

85

Concurrent programs

• Many systems to be verified can be viewed
as concurrent programs
– operating system routines
– cache protocols
– communication protocols

• P = cobegin (P1 || P2 || …|| Pn) coend
• P1, P2,..Pn --- Sequential Programs.
• Usually interleaving semantics is assumed

86

Sequential Programs

General Structure

Statement

l

l’

C(l, statement, l’)

C is a transition procedure which
takes a label, a program statement
and a label and gives the FOL
formula specifying the transition
relation.

87

Assignments

v:= expression
(v := 2x – v +3·y)

l

l’

pc = l ∧ pc’ = l’ ∧
v’ = expression ∧ same (V – {v})

[Y = {y1, y2, ..ym}
y1’ = y1 ∧ y2’ = y2 ∧… ∧ ym]

C(l, assignment, l’)

88

Skip

Skip

l

l’

pc = l ∧ pc’ = l’ ∧ same (V)

C(l, skip, l’)

89

Conditional statement

l’

P Q

IF b THEN P ELSE Q FI

l
C(l, b, IF-THEN-ELSE, l1, l2, l’)

b ¬b
l1 l2

(pc = l ∧ pc’ = l1 ∧ b ∧ same(V)) ∨

(pc = l ∧ pc’ = l2 ∧ ¬ b ∧ same(V)) ∨

C(l1, P, l’) ∨

C(l2, Q, l’)

90

While statement

l’

P

WHILE b DO P END_WHILE

l
C(l, b, l1, WHILE, l’)

b

¬ b

l1
(pc = l ∧ pc’ = l1 ∧ b ∧ same(V)) ∨

(pc = l ∧ pc’ = l’ ∧ ¬ b ∧ same(V)) ∨

C(l1, P, l)

91

Concurrent programs

• P = cobegin (P1 || P2 || …|| Pn) coend
• P1, P2,..Pn --- Sequential Programs.

L

L’

P1 P2 Pn
………..

l1

11’

l2

l2’

ln

ln’

92

Concurrent programs

• P = cobegin (P1 || P2 || …|| Pn) coend
• P1, P2,..Pn --- Sequential Programs.
• C(l1, P1, l1’) --- The transitions of P1

(defined inductively!).
• Vi ---- The set of variables of Pi.
• Programs may share variables !
• pci – The program counter of Pi.

93

Concurrent programs

• pc ---- the program counter of the concurrent
program; it could be part of a larger program!

• ⊥ denotes the program counter value is
undefined .

• S0(V, PC) = pre(V) ∧ pc = L ∧
pc1 = ⊥ ∧ …… ∧ pcn = ⊥

94

The Transition Predicate

L

L’

P1

l1

……………….. Pn

ln

(pc = L ∧ pc1’ = l1 ∧….
∧pcn’ = ln ∧ pc’ = ⊥) ∨
(pc = ⊥ ∧ pc1 = l1’ ∧…
pcn = ln’ ∧ pc’ = L’ ∧

pc1’ = ⊥ ∧ …pcn’ = ⊥) ∨
(C(l1, P1, l1’) ∧ Same (V – V1)

∧ Same(PC –{pc1})) ∨…
C(ln, Pn, ln’) ∧ Same (V – Vn)

∧ Same(PC –{pcn}))
l1’ ln’

95

Summary

• System variables
• Domain of values
• States
• Initial state predicate
• Transition predicate
• pc values (for programs)

