Verifica di Sistemi

Modelli di sistemi con Automi e Sistemi a Transizioni

1

Transition systems

• A *transition system* is a structure $TS = (S, S_0, R)$

where:

- -**S** is a finite set of states.
- $-S_0 \subseteq S$ is the set of initial states.
- $-\mathbf{R} \subseteq \mathbf{S} \times \mathbf{S}$ is a transition relation
- $-\mathbf{R}$ must be *total*, that is
 - $\forall s \in S. \exists s' \in S. (s, s') \in R$ or, equivalently,
 - for every state s in S, there exists s' in S such that (s, s') is in R (the system is non blocking).

Notions and Notations

- $TS = (S, S_0, R)$
- Transitions: $(s, s') \in \mathbb{R}$ or $\mathbb{R}(s, s')$ or $s \to s'$
- A (finite) *path* from **s** is a sequence of states:

 $s_1,\!s_2,\!\ldots,\!s_n$

such that

 $-\mathbf{s} = \mathbf{s}_1$

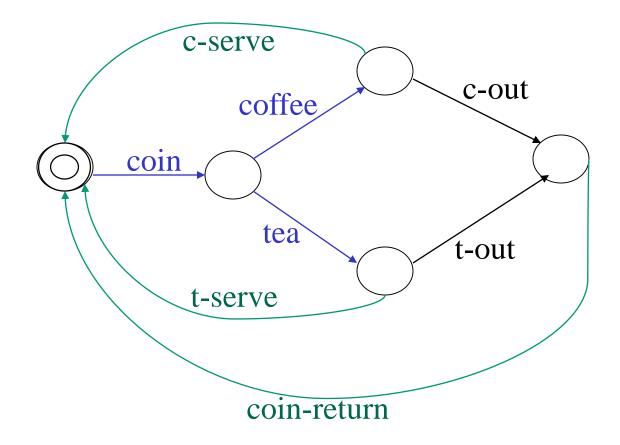
 $-\mathbf{s_i} \rightarrow \mathbf{s_{i+1}}$ for 0 < i < n.

- It is from s to s' if $s_n = s'$.
- An **infinite** path from **s** is an *infinite sequence* $s_1, s_2, \ldots, s_n, \ldots$, satisfying the same conditions above

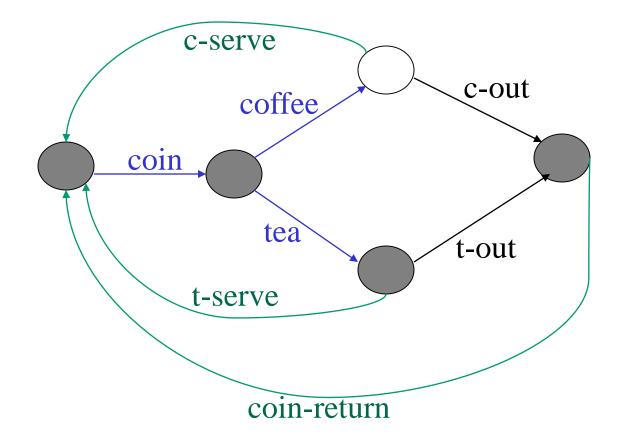
Labeled transition systems

- Sometimes we may use a *finite* set of actions:
 Act = {a, b, ..}
- The actions will be used to label the transitions.
- $TS = (S, Act, S_0, R)$ $-R \subseteq S \times Act \times S$, labeled transitions. $-(s, a, s') \in R - R(s, a, s') - s \xrightarrow{a} s'$

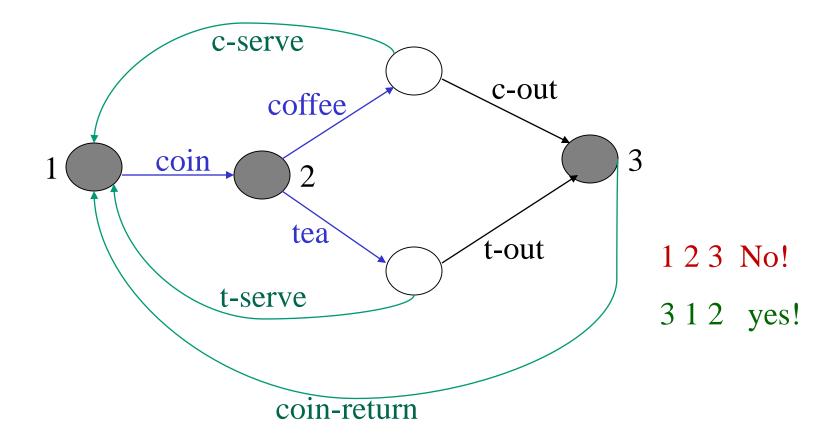
A vending machine



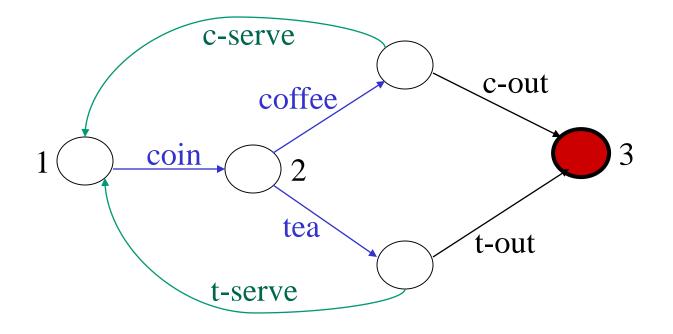
A path



A non-path



A non-total transition relation



Kripke Structures

• **AP** is a finite set of atomic propositions.

- "value of x is 5"

- "**x** = 5"

• $M = (S, S_0, R, L)$, a Kripke Structure.

 $-(S, S_0, R)$ is a transition system.

 $-L: S \longrightarrow 2^{AP}$

 $-2^{AP} \quad --- \quad \text{The set of subsets of AP} \\ (L(s) \in 2^{AP} \text{ identifies a state})$

2^{AP} identifies the state space)

Kripke Structures

- The atomic propositions and L together convert a transitions system into a model.
- We can start interpreting *formulas* over the *Kripke structure*.
- The atomic propositions make basic (easy) assertions about system states.

Automata and Kripke Structures

- **AP** set of elementary property
- <**S**,**A**,**R**,**s**₀,**L**>
- **S** set of states
- A set of transition labels
- $\mathbf{R} \subseteq \mathbf{S} \times \mathbf{A} \times \mathbf{S}$ (labeled) transition relation
- L interpretation mapping $L:S \longrightarrow 2^{AP}$
- In *FO representation* we would need two sets of variables: V and Act (for actions or input).

Modeling Data-Dependent Systems

- Let $Var = \{v_1, v_2, ..., v_k\}$ be a set of variables with values in domain $D = \bigcup_{1 \le i \le k} D_i$ (D_i the domain for v_i)
- A Program graph over Var is a tuple $PG = \langle Loc, Act, Effect, \hookrightarrow, Loc_0, g_0 \rangle$

Where

- -Loc is a set of locations and Act a set of actions
- -Effect : Act \times Eval(Var) \rightarrow Eval(Var) captures the effects of the actions on the variables
- $\neg \hookrightarrow \subseteq \text{Loc} \times \text{Cond}(\text{Var}) \times \text{Act} \times \text{Loc}$

 $-Loc_0$, is the set of initial locations and g_0 is the initial condition

Program Conditions and Actions

• Let $Expr(Var \cup D)$ be the set of (arithmetic) expression over $Var \cup D$.

- examples: v+1, v+2*d, v+2*v',... (with $d \in D$)

• The conditions Cond(Var) on Var is the set of Boolean combinations of comparisons of the form

 $\exp_1 \bullet \exp_2$

with $\bullet \in \{<,>,\leq,=,\neq\}$ and $\exp_i \in Expr(Var \cup D)$

• The actions on Var is the set of assignements of

v := exp

where $v \in Var$ and $exp \in Expr(Var \cup D)$

State space

- The *state space* of a program is the set of *all its possible valuations Eval(Var)* of the state variables.
- For example, if **V**={**a**, **b**, **c**} and the variables range over the natural numbers, then the *state space* includes:
 - <a=0,b=0,c=0>, <a=1,b=0,c=0>,
 - <a=1,b=1,c=0>, <a=932,b=5609,c=6658>

The set Loc can be considered as the domain of an implicit variable pc encoding a program counter.

Action Effects

• Given an evaluation $\eta \in Eval(Var)$ and an action of the form

$$a \stackrel{\text{\tiny def}}{=} v := exp$$

Where exp is an expression on Var \cup D, the effect of a on η is

Effect(a, η) = η [v \leftarrow exp]

• For example if a = v := v+1 and $\eta(v) = 5$, then Effect(a, η) is the valuation η ' such that $\eta'(v) = 6$ Transition system of a Program Graph

If PG = <Loc, Act, Effect, \hookrightarrow , Loc₀, g_0 > then

 $TS(PG) = \langle S, Act, \rightarrow, S_0, AP, L \rangle$

•S = Loc \times Eval(Var)

• $\rightarrow \subseteq S \times Act \times S$ such that - If $l \stackrel{g:a}{\longrightarrow} l'$ in PG and $\eta \models g$, then $\langle l, \eta \rangle \stackrel{a}{\longrightarrow} \langle l', \eta' \rangle$ in TS(PG), with $\eta' = Effect(a, \eta)$

• $S_0 = \{ <l, \eta > | l \in Loc_0 \text{ and } \eta \models g_0 \}$ • $AP = Loc \cup Cond(Var)$

•L($\langle l,\eta \rangle$) = {1} \cup {g | g \in Cond(Var) and $\eta \models g$ }

Composition and Synchronization

- Complex systems are very hard to specify in their entirety.
- The difficulty is to account for all the possible interactions among their components, in particular if they execute in a concurrent fashion.
- The natural approach is to specify them as *composition* of smaller and sequential *subsystems* (or *modules*), which are easier to describe.
- We need to describe the way in which these modules coordinate (composition) and cooperate (communication).
- There are several methods to define composition and communication (i.e., to *synchronize* the components).

Synchronous Composition

- The system model is the cartesian product of the simpler modules.
- Let TS_1, \ldots, TS_n be n TSs, s.t. $TS_i = \langle S_i, A_i, R_i, S_{i0} \rangle$
- Then $TS = TS_1 \parallel ... \parallel TS_n = \langle S, A, R, S_0 \rangle$ is s.t.
 - $S = S_1 \times \ldots \times S_n$
 - $A = A_1 \times \ldots \times A_n$
 - $S_0 = S_{10} \times \ldots \times S_{n0}$
 - R contains $\langle s_1, \dots, s_n \rangle \xrightarrow{\langle a_1, \dots, a_n \rangle} \langle s_1, \dots, s_n \rangle$, if $s_i \xrightarrow{a_i} s_i$, for all $1 \leq i \leq n$ and $\langle a_1, \dots, a_n \rangle \in A$

Asynchronous Composition

- The system model is the cartesian product of the simpler modules with an additional null action -
- Let $TS_1, ..., TS_n$ be n TSs, s.t. $TS_i = \langle S_i, A_i, R_i, S_{i0} \rangle$
- Then $TS = TS_1 \parallel ... \parallel TS_n = \langle S, A, R, S_0 \rangle$ is s.t.

$$- S = S_1 \times \ldots \times S_n$$

- A = (A₁ U {-}) × ... × (A_n U {-})

$$- S_0 = S_{10} \times \ldots \times S_{n0}$$

- R contains $\langle s_1, \dots, s_n \rangle \xrightarrow{\langle a_1, \dots, a_n \rangle} \langle s_1, \dots, s_n \rangle$, if, for all $1 \leq i \leq n, a_i = -$ or $s_i \xrightarrow{a_i} s_i$ and $a_i \neq -$, and $\langle a_1, \dots, a_n \rangle \in A$

Asynchronous Composition: Interleaving

- The system model is the cartesian product of the simpler modules with an additional null action -
- Let $TS_1, ..., TS_n$ be n TSs, s.t. $TS_i = \langle S_i, A_i, R_i, S_{i0} \rangle$
- Then $TS = TS_1 \parallel ... \parallel TS_n = \langle S, A, R, S_0 \rangle$ is s.t.

$$- S = S_1 \times \ldots \times S_n$$

 $- A \subset (A_1 \cup \{-\}) \times ... \times (A_n \cup \{-\}) \text{ s.t. } \langle a_1, ..., a_n \rangle \in A$ iff $a_i \in A_i$ implies $a_j = -$, for all $j \neq i$

$$- S_0 = S_{10} \times \ldots \times S_{n0}$$

- R contains $\langle s_1, \dots, s_n \rangle \xrightarrow{\langle a_1, \dots, a_n \rangle} \langle s_1, \dots, s_n \rangle$, if, for all $1 \leq i \leq n, a_i = -$ or $s_i \xrightarrow{a_i} s_i$ and $a_i \neq -$, and $\langle a_1, \dots, a_n \rangle \in A$

Interleaving of Program Graphs • Let

 $PG_i = \langle Loc_i, Act_i, Effect_i, \hookrightarrow_i, Loc_{i0}, g_{i0} \rangle$

be n program graphs, each one over Var_i.

Then the Program Graph of the interleaving composition of $PG = PG_1 || PG_2 || ... || PG_n$ is

 $PG = \langle Loc, Act, Effect, \hookrightarrow, Loc_0, g_0 \rangle$ where

 $-Loc = Loc_1 \times Loc_2 \times ... \times Loc_n$ $-Act = \biguplus_{1 \le i \le n} Act_i (\uplus \text{ disjoint union}) \text{ and } Var = \bigcup_{1 \le i \le n} Var_i$ $-Loc_0 = Loc_{10} \times Loc_{20} \times ... \times Loc_{n0}$ $-g_0 = g_{10} \wedge g_{20} \wedge ... \wedge g_{n0}$

Interleaving of Program Graphs

• If $\mathbf{l}_{i} \stackrel{g:a}{\hookrightarrow}_{i} \mathbf{l}_{i}$ ', then

<l₁,..., l_i,..., l_n $> \hookrightarrow^a <$ l₁,..., l_i',..., l_n> in PG.

• Effect : Act \times Eval(Var) \rightarrow Eval(Var) is defined as:

 $Effect(a,\eta)(v) = \begin{cases} Effect_i^{\eta}(a,\eta_i)(v) & \text{if } a \in Act_i \\ \eta(v) & \text{otherwise} \end{cases}$

where η_i is the restriction of η to the variables in Var_i and $\text{Effect}_i^{\eta}(a, \eta_i)$ is the extension of $\text{Effect}_i(a, \eta_i)$ to the variables in Var that gives the value $\text{Effect}_i(a, \eta_i)(v)$, for all the variables $v \in \text{Var}_i$, and the value $\eta(v)$ for all the variables $v \in \text{Var} \setminus \text{Var}_i$.

A Mutual Exclusion Protocol

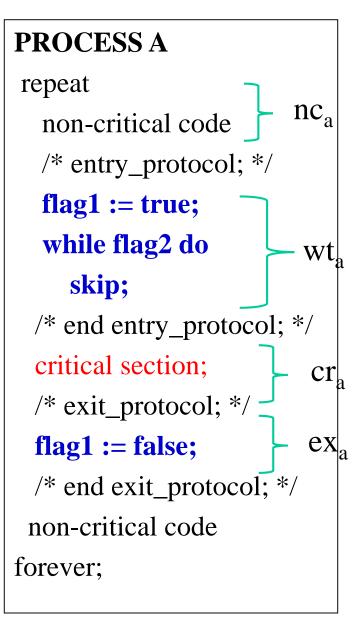
PROCESS A

repeat non-critical code /* entry_protocol; */ flag1 := true; while flag2 do skip; /* end entry_protocol; */ critical section; /* exit_protocol; */ flag1 := false; /* end exit_protocol; */ non-critical code forever;

PROCESS B

repeat non-critical code /* entry_protocol; */ flag2 := true; while flag1 do skip; /* end entry_protocol; */ critical section; /* exit_protocol; */ flag2 := false; /* end exit_protocol; */ non-critical code forever;

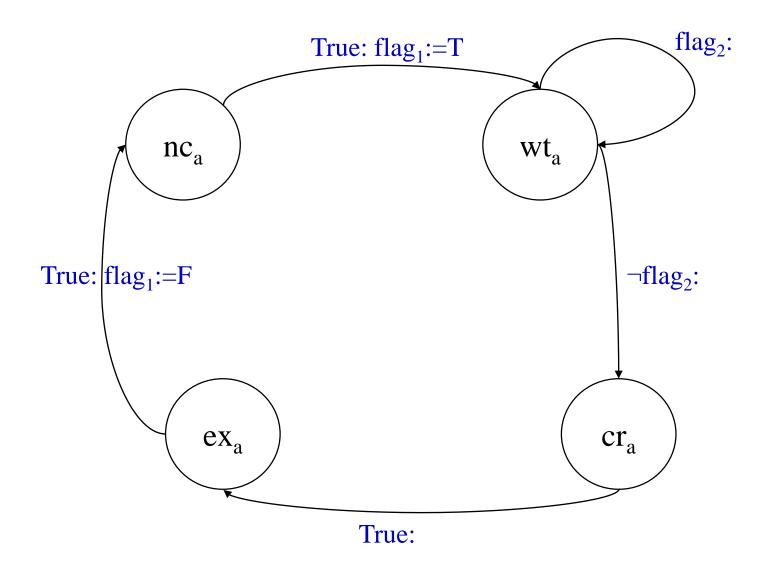
A Mutual Exclusion Protocol



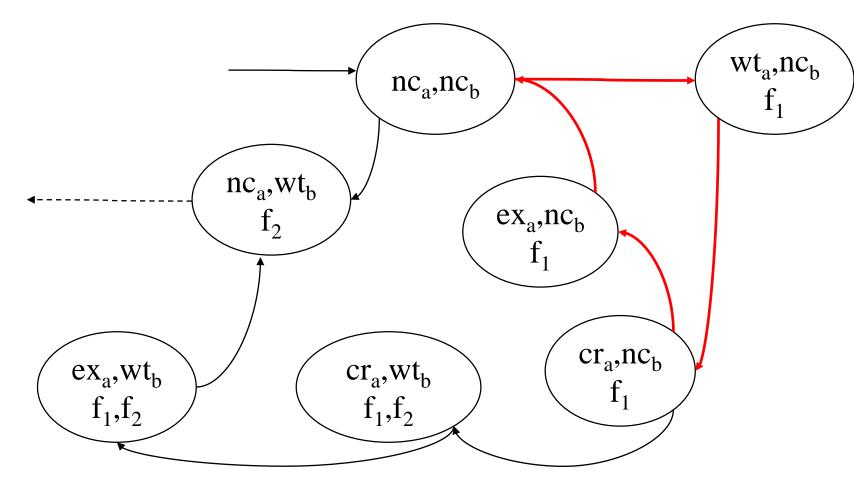
PROCESS B

repeat non-critical code /* entry_protocol; */ flag2 := true; while flag1 do skip; /* end entry_protocol; */ critical section; /* exit_protocol; */ flag2 := false; /* end exit_protocol; */ non-critical code forever;

The Automaton for Process A



Composition: LTS (fragment)



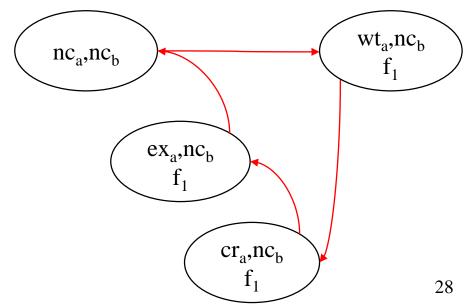
Fairness

- Fairness constraints are meant to capture general constraints of «good behavior» of concurrent systems.
- For instance: concurrent systems (multi-threaded, multi-process) rely on a scheduling mechanism that select the next process (or thread) to execute during computation.
- Fairness constraints capture very general constraints that every reasonable scheduling mechanism should guarantee, without requiring any detailed specification of the scheduling mechanism itself.

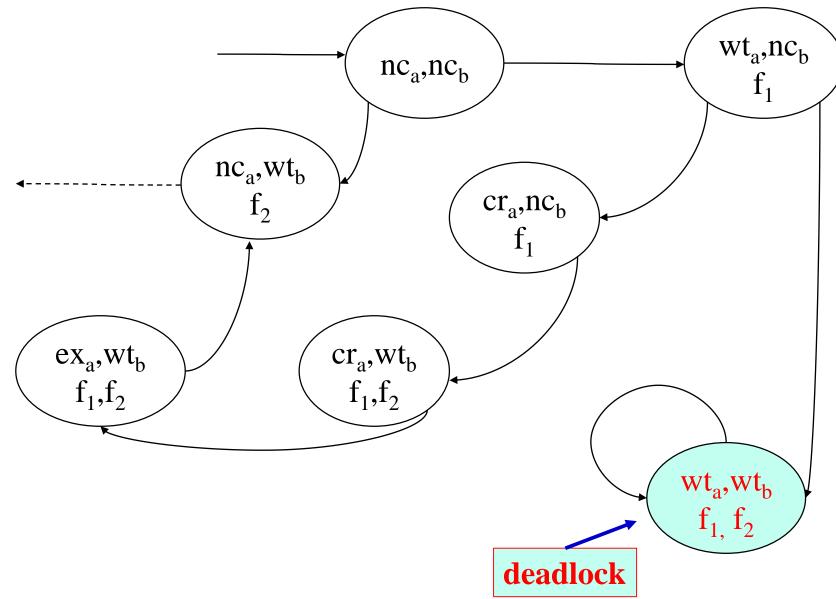
Popular Fairness Conditions

- Unconditional fairness: each process must be scheduled for execution infinitely often
- Weak fairness: a process continuously enabled must be scheduled for execution infinitely often
- Strong fairness: a process infinitely often enabled must be scheduled for execution infinitely often.

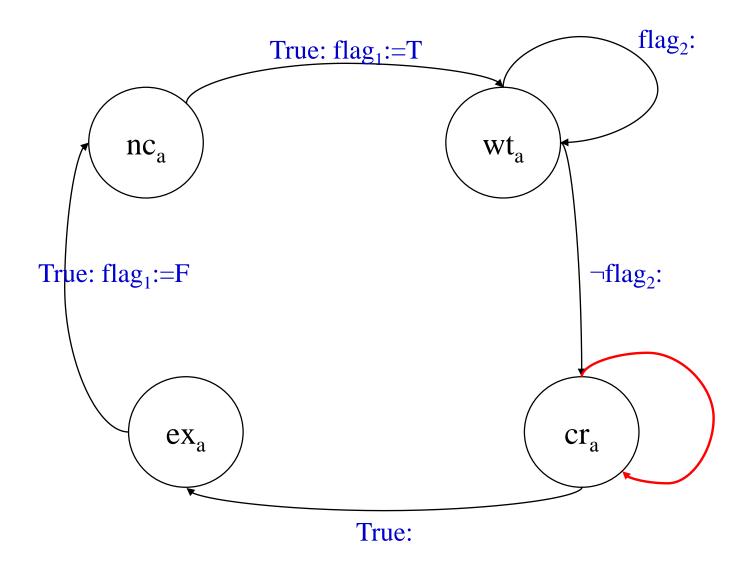
Under any of the above fairness conditions the computation remaining in the loop forever is no longer admissible.



Composition: LTS (fragment)



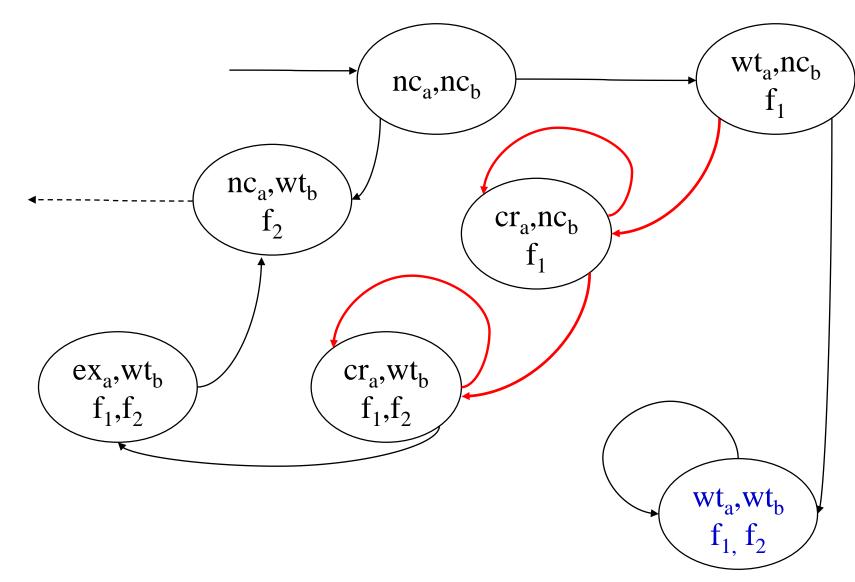
Adding non-determinism



Non Determinism

- Non deterministic choices are often used to model partially specified systems or behaviors.
- Non determinism used to:
 - Model systems under incomplete information on its behavior (e.g. system internal decisions not known, unpredictable behavior of the environment,...).
 - Increase the abstraction level of the specification: less details are explicitly given so as to obtain more compact/general models (e.g., state sequences involving only internal computations of the system modeled by a single state).

Composition: LTS (fragment)

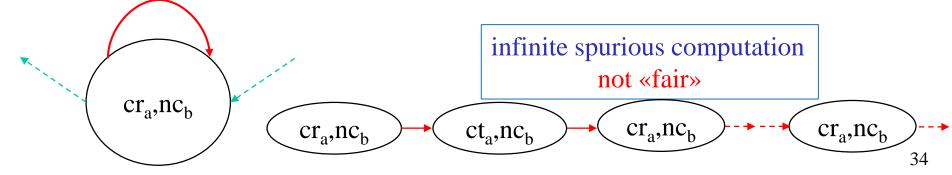


Problems with non-determinism

- May introduce «spurious» computations in the model.
- A computation is «spurious» if it is admitted in the model but not by the actual system.
- E.g., Process A enters its critical section but never leaves it.
- «Spurious» computations can be eliminated by means of appropriate fairness constraints
- E.g.: Process A (B) must be infinitely often outside its critical sections, i.e. in a state different from c_a (c_b).
 - the computation where Process A never releases the critical section is no longer an admissible computation.

Problems with non-determinism

- May introduce «spurious» computations in the model.
- A computation is «spurious» if it is admitted in the model but not by the actual system.
- E.g., Process A enters its critical section but never leaves it.
- «Spurious» computations can be eliminated by means of appropriate fairness constraints
- E.g.: Process A (B) must be infinitely often outside its critical sections, i.e. in a state different from $c_a (c_b)$.



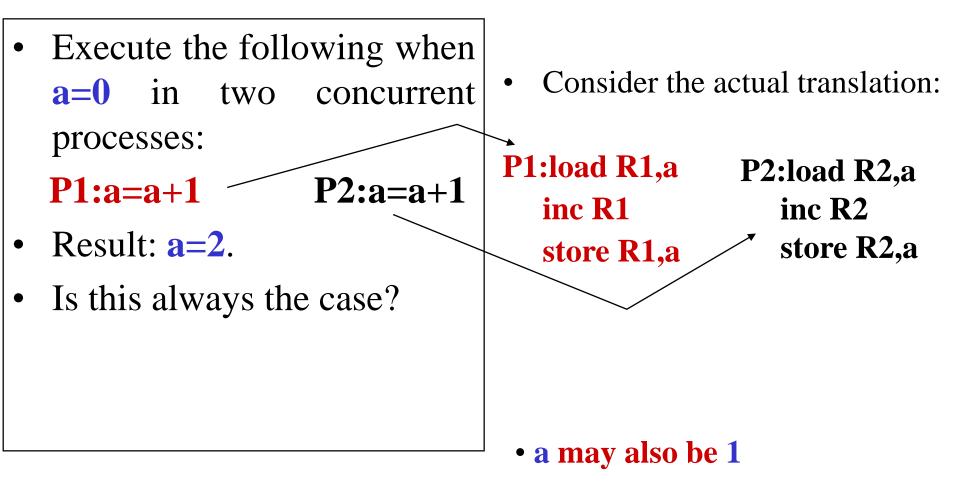
Atomic transition

- Each *atomic transition* represents a small piece of code (or *execution step*), such that *no smaller* peace of code (or *step*) is observable.
- Often is not easy to identify which actions are atomic transitions and which are not.
- Atomicity may even depend on the abstraction level of the specification.
- Is a:=a+1 atomic?

Atomic transition

- Each *atomic transition* represents a small peace of code (or *execution step*), such that *no smaller* peace of code (or *step*) is observable.
- Often is not easy to identify which actions are atomic transitions and which are not.
- Atomicity may even depend on the abstraction level of the specification.
- Is a:=a+1 atomic? It may or may not be!
- In some systems it is, e.g., when a is a register and the transition is executed using an inc command

(Non) Atomicity (race conditions)



Mutual Exclusion II

PROCESS A

repeat

non-critical code
/* entry_protocol; */
while flag2 do
 skip;
flag1 := true;
/* end entry_protocol; */

critical section;

```
/* exit_protocol; */
```

flag1 := false;

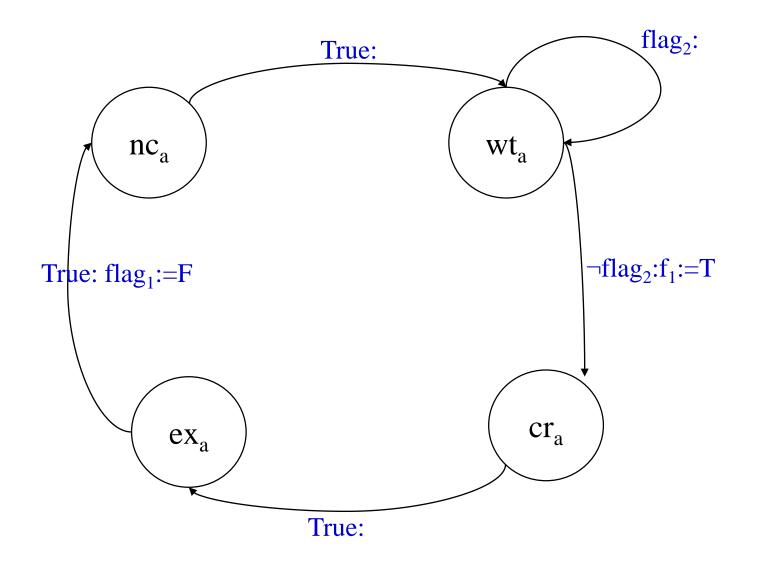
```
/* end exit_protocol; */
non-critical code
```

forever;

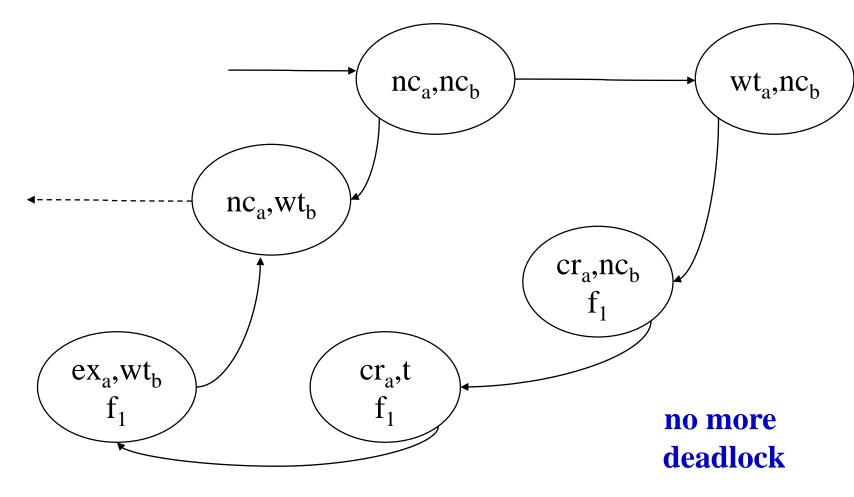
PROCESS B

repeat non-critical code /* entry_protocol; */ while flag1 do skip; flag2 := true; /* end entry_protocol; */ critical section; /* exit_protocol; */ flag2 := false; /* end exit_protocol; */ non-critical code forever;

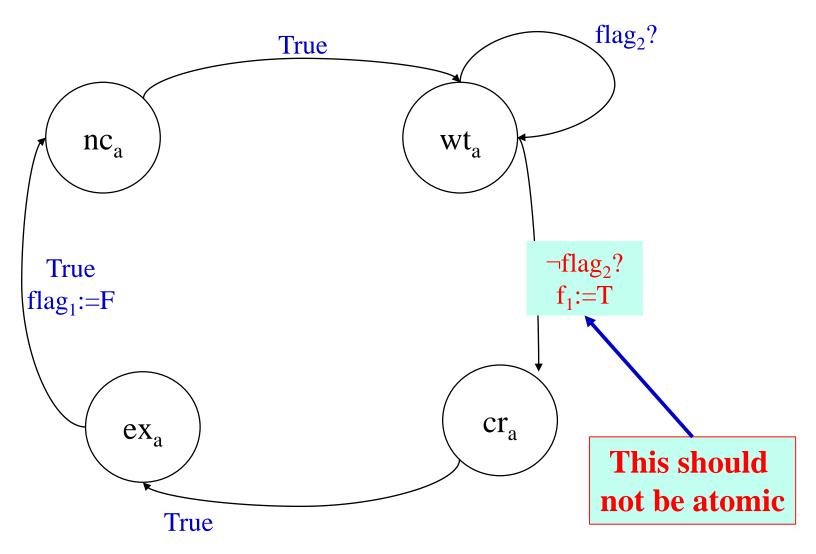
A possible automaton for Process A



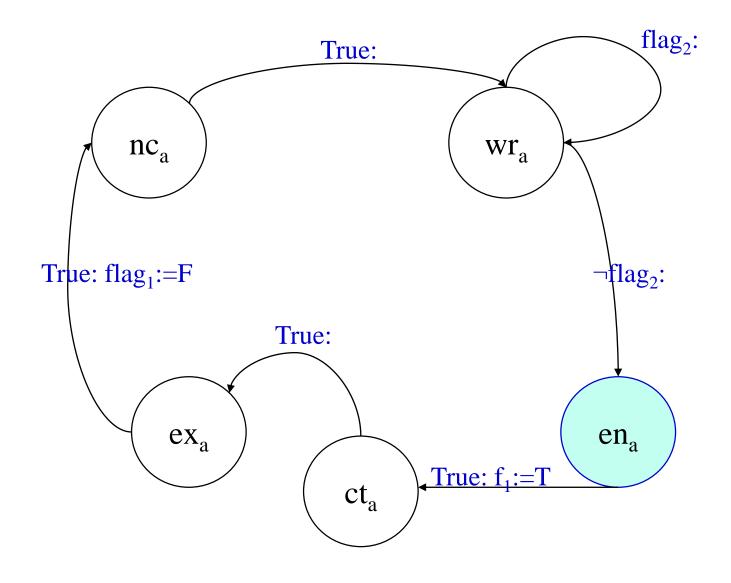
Composition: LTS (fragment)



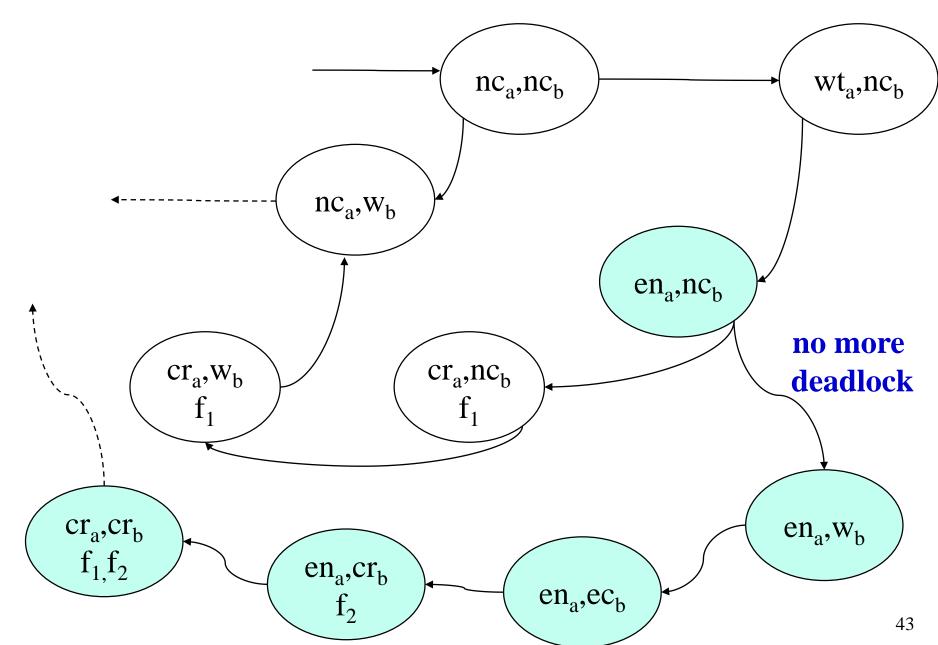
Non atomicity in Process A



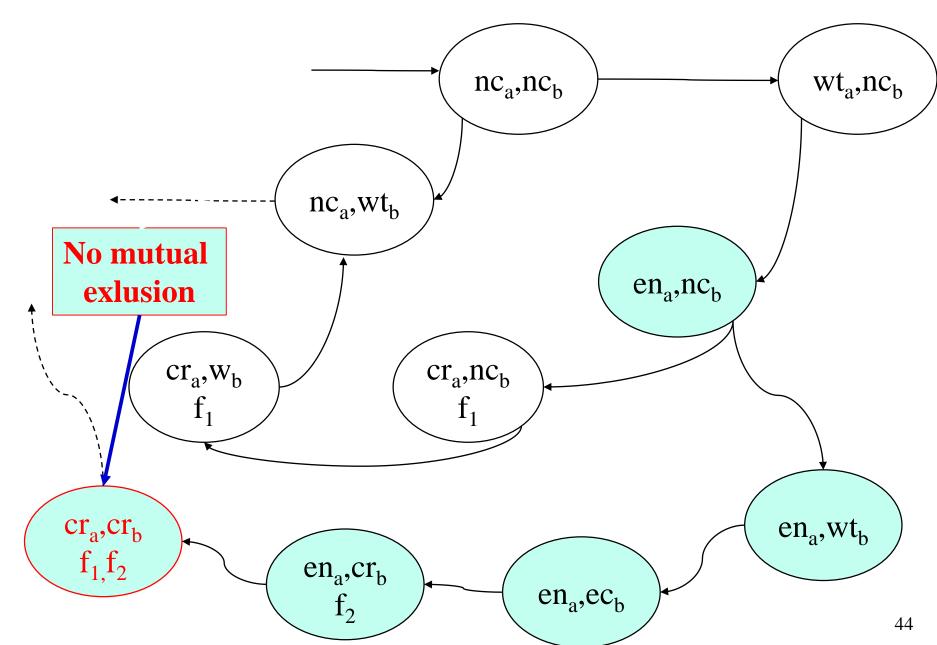
A more adequate automaton for Proc. A



Composition: LTS (fragment)



Composition: LTS (fragment)



Synchronization via handshake

- Let TS_1 and TS_2 be 2 TSs, with $TS_i = \langle S_i, A_i, R_i, S_{i0} \rangle$
- Let $Sync = A_1 \cap A_2$ be the synchronization actions
- The system model is the cartesian product of the simpler modules with an additional null action -
- Then $TS = TS_1 || TS_2 = \langle S, A, R, S_0 \rangle$ is s.t.

$$- S = S_1 \times S_2$$

- $A \subset Sync \cup ((A_1 \cup \{-\} \setminus Sync) \times (A_2 \cup \{-\} \setminus Sync)) \text{ s.t.}$
 - Sync \subseteq A and $\langle a_1, a_2 \rangle \in A$ iff either $a_1 = -$ or $a_2 = -$
- $S_0 \!=\! S_{10} \!\times S_{20}$
- R contains $\langle s_1, s_1 \rangle \xrightarrow{a} \langle s_1', s_2' \rangle$, if $a \in Sync and s_i \xrightarrow{a} i s_i'$, for $i \in \{1,2\}$, or $a = \langle a_1, a_2 \rangle \in A$ and $s_i \xrightarrow{a_i} i s_i'$, if $a_i \neq -$, and $s_i' = s_i$, otherwise

Communication via channels

- A *channel* c is a fifo buffer of some capacity $cap(c) \ge 0$
- When cap(c) = 0 communication is synchronous
- With each channel c a domain dom(c) is associated
- Two processes modeled as program graphs on Var = Var₁ ∪
 Var₂ and channels Chan communicate by means of communication actions of the form

c?x and c!d

where c is a channel in Chan, x a variable in Var and d a value in D

-c?x stands for a receive of a value from channel c, which is then assigned to variable x.

-c!d stands for a send of value d over channel c

• The set of communication actions is defined as:

 $Com = \{c!d,c?x \mid c \in Chan, d \in D, x \in Var and dom(c) \subseteq dom(x)\}$

Communication via channels

- A *Channel System* CS over (Var,Chan) is a composition

$$CS = PG_1 | \dots | PG_n$$

of program graphs PG_i over $(Var_i, Chan)$, where we take $Var = \bigcup_{1 \le i \le n} Var_i$.

Effects of channel actions

- If cap(c) = 0 then
 - transition $l_i \stackrel{c!d}{\hookrightarrow}_i l_i$ is executable by process P_i only if transition $l_j \stackrel{c?x}{\hookrightarrow}_j l_j$ is executable by process P_j , and
 - the two transitions occur *simultaneously* and x=d.
- If cap(c) > 0 then
 - transition $l_i \stackrel{c!d}{\hookrightarrow}_i l_i$ is executable by process P_i only if channel c is *not full*, i.e. it contains less than cap(c) messages: $c = < m_1, ..., m_k > \Rightarrow c = < m_1, ..., m_k, d >$.
 - transition $l_j \stackrel{c?x}{\rightarrow}_j l_j$ is executable by process P_j only if channel c is *not empty*, i.e. it contains at least one message. The first value in c is assigned to variable x: $c=<m_1,...,m_k> \Rightarrow c=<m_2,...,m_k>$ and $x=m_1$.

Transition system for Channel System

• The resulting transition system TS(CS) has states of the form

 $< l_1, ..., l_n, \eta, \chi >$

where is the evaluation function for channels and assigns to each channel with cap(c) > 0 its content (a sequence of messages), i.e., χ : Chan $\rightarrow dom(c)^* \in Eval(Chan)$.

- For the initial states, the locations are the initial locations of the processes, $\eta \models g_{i0}$ and $\chi(c) = \varepsilon$ (i.e., the empty sequence), for each $c \in$ Chan.
- Let χ_0 denote such initial channel evaluation function.

Transition system for Channel System

• TS(CS) is defined as follows:

 $(S, Act, \rightarrow, S_0, AP, L)$

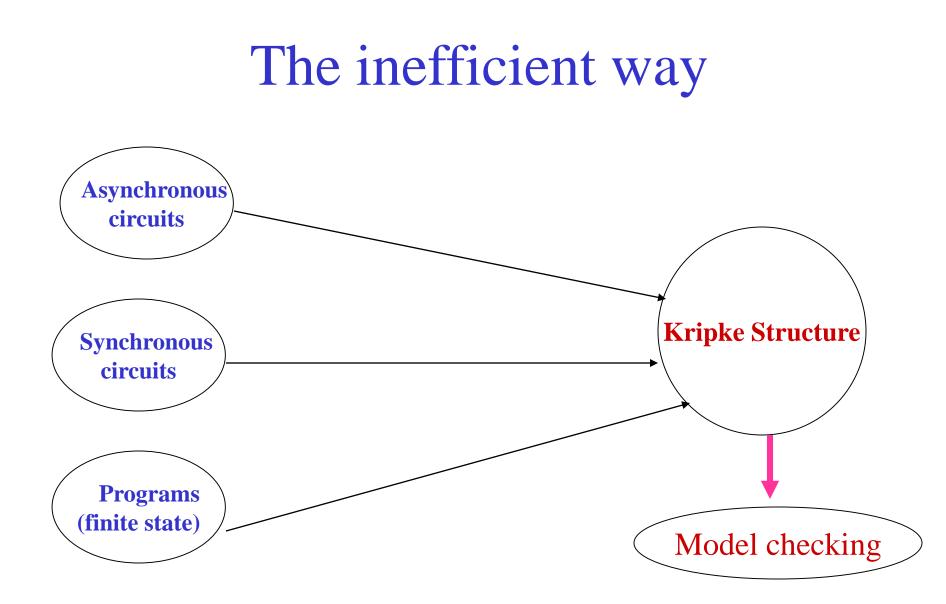
- $S = (Loc_1 \times ... \times Loc_n) \times Eval(Var) \times Eval(Chan)$

- Act = $\biguplus_{1 \le i \le n} Act_i$ \biguplus { τ } (τ denotes an internal action)
- $S_0 = \{ < l_1, \dots, l_n, \eta, \chi > \mid l_i \in \text{Loc}_{i0}, \eta \vDash g_{i0} \text{ and } \chi = \chi_0 \}$
- $AP = \biguplus_{1 \le i \le n} Loc_i \uplus Cond(Var)$
- $L(\langle l_1, \dots, l_n, \eta, \chi \rangle) = \{l_1, \dots, l_n\} \cup \{g \in Cond(Var) \mid \eta \vDash g\}$
- and the transition relation \rightarrow is defined as follows:

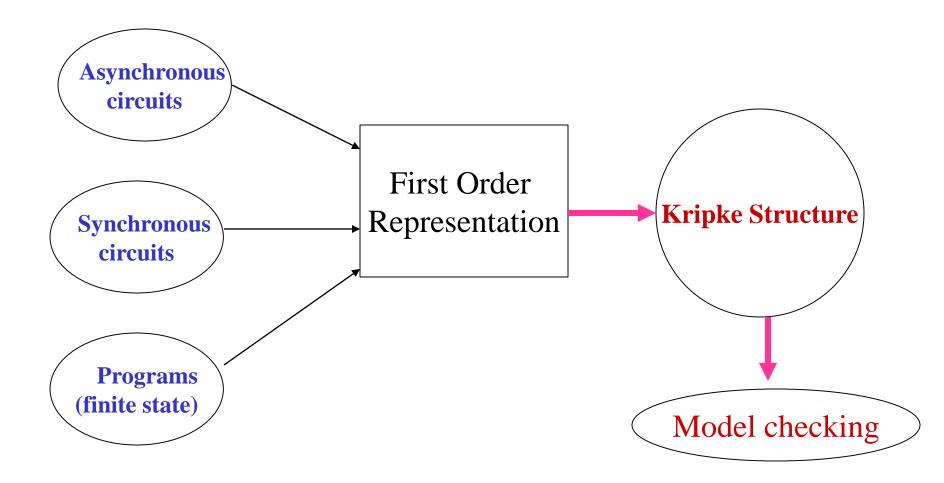
$$\begin{split} & \textbf{Transition system for Channel System} \\ & \textbf{If } l_i \stackrel{g_{i}a}{\rightarrow} l_i^*, a \in Act_i, and \eta \vDash g \text{ then} \\ & < l_1, \dots, l_i, \dots, l_n, \eta, \chi > \xrightarrow{a} < l_1, \dots, l_i^*, \dots, l_n, \eta^*, \chi > \\ & \text{where } \eta^* = \text{Effect}(a, \eta) \\ & \textbf{If } l_i \stackrel{g_{i}c \upharpoonright d}{\rightarrow} l_i^*, \eta \vDash g, \text{len}(c) = k < \text{cap}(c) \text{ and } \chi(c) = d_1, \dots, d_k \text{ then} \\ & < l_1, \dots, l_i, \dots, l_n, \eta, \chi > \xrightarrow{\tau} < l_1, \dots, l_i^*, \dots, l_n, \eta, \chi^* > \\ & \text{where } \chi^* = \chi[c := d_1, \dots, d_k, d]. \\ & \textbf{If } l_i \stackrel{g_{i}c \upharpoonright \chi}{\rightarrow} l_i^*, \eta \vDash g, \text{len}(c) = k > 0 \text{ and } \chi(c) = d_1, \dots, d_k \text{ then} \\ & < l_1, \dots, l_i, \dots, l_n, \eta, \chi > \xrightarrow{\tau} < l_1, \dots, l_i^*, \dots, l_n, \eta^*, \chi^* > \\ & \text{where } \eta^* = \eta[x := d_1] \text{ and } \chi^* = \chi[c := d_2, \dots, d_k]. \\ & \textbf{If } l_i \stackrel{g_{i}c \upharpoonright \chi}{\rightarrow} l_i^*, l_i^*, \frac{g_{i}c \upharpoonright d}{\rightarrow} l_i^*, \eta \vDash g_1 \land g_2, \text{cap}(c) = 0 \text{ and } i \neq j \text{ then} \\ & < l_1, \dots, l_i, \dots, l_n, \eta, \chi > \xrightarrow{\tau} < l_1, \dots, l_i^*, \dots, l_n^*, \eta^*, \chi > \\ & \text{where } \eta^* = \eta[x := d]. \\ \end{array}$$

The common framework

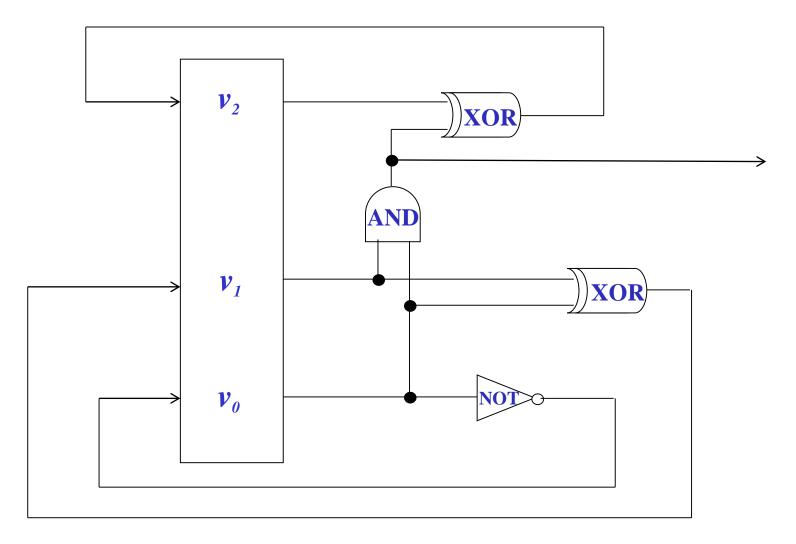
- Many systems need to be modeled.
 - Digital circuits
 - Synchronous
 - Asynchronous
 - Programs
- Strategy : Capture the main features using a logical framework (nothing to do with temporal logics!) : *First order representation*



The efficient way



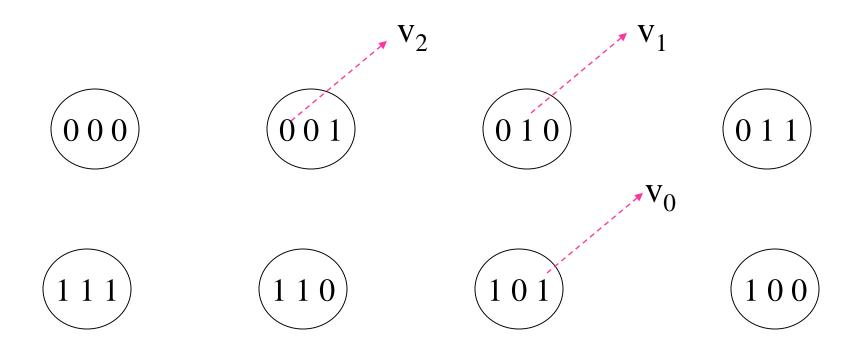
Synchronous counter modulo 8



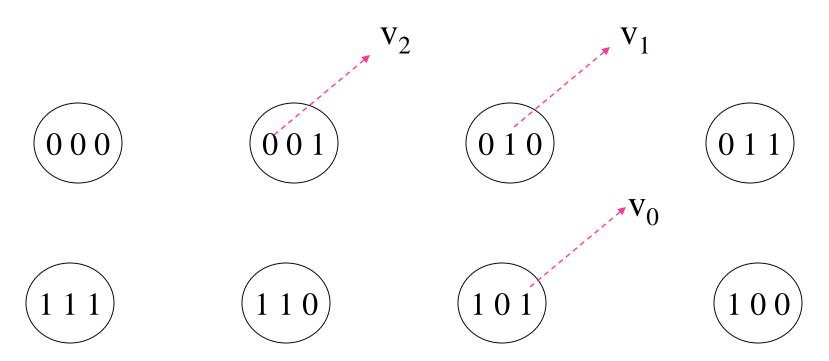
The mod-8 counter

- System variables : $V = \{v_2 v_1 v_0\}$
- Domain of v₂ is {0, 1}
 Same domain for v₁ and v₀ as well.
- Special case : These variables are boolean
- Each state s can also be seen as a function assigning to each variable a value in its domain. $-s: V \rightarrow B$
 - $-s(v_0) = 0 s(v_1) = 1 s(v_2) = 1$
 - This specifies the state $\mathbf{s} = (1 \ 1 \ 0) !$

A mod-8 counter: states



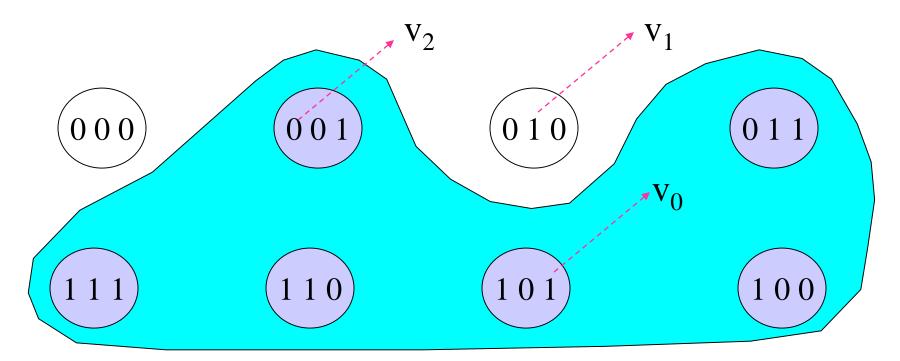
State Predicates



A set of states can be picked out by a propositional formula:

 $\mathbf{X} = \mathbf{v}_2 \lor \mathbf{v}_0$ is the set {...}

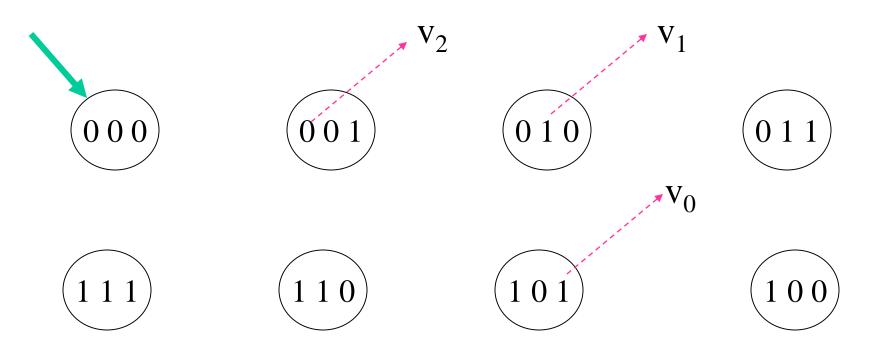
State Predicates



A set of states can be picked out by a propositional formula:

 $X = v_2 \lor v_0$ is the set {100, 101, 110, 111, 001, 011}

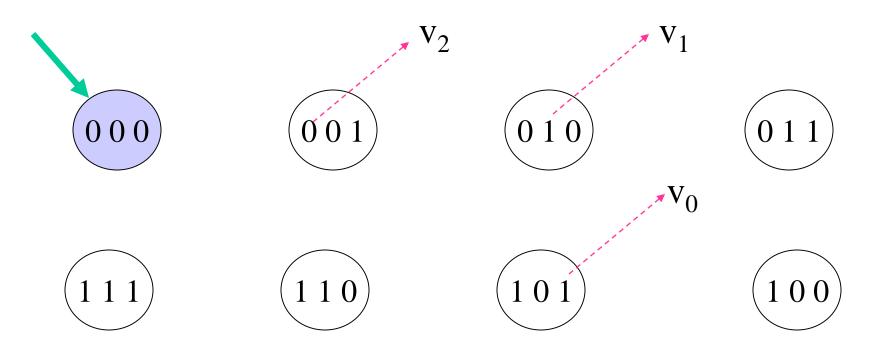
Initial States Predicate



A set of states can be picked out by a formula;

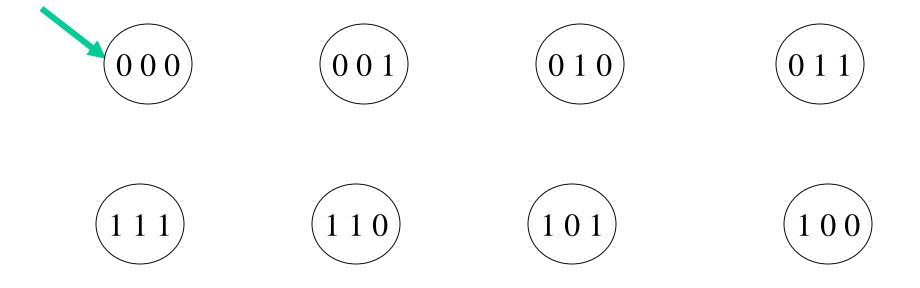
 $\mathbf{S}_0 = \neg \mathbf{V}_2 \land \neg \mathbf{V}_1 \land \neg \mathbf{V}_0$

Initial States Predicate



A set of states can be picked out by a formula;

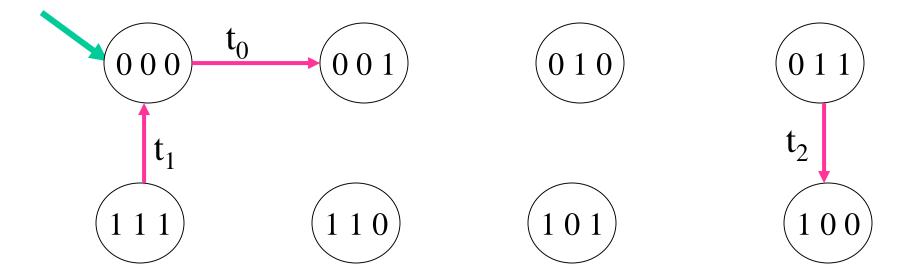
 $\mathbf{S}_0 = \neg \mathbf{v}_2 \land \neg \mathbf{v}_1 \land \neg \mathbf{v}_0$ therefore $\mathbf{X}_1 = \{ \mathbf{S}_0 \} = \{ 000 \}$



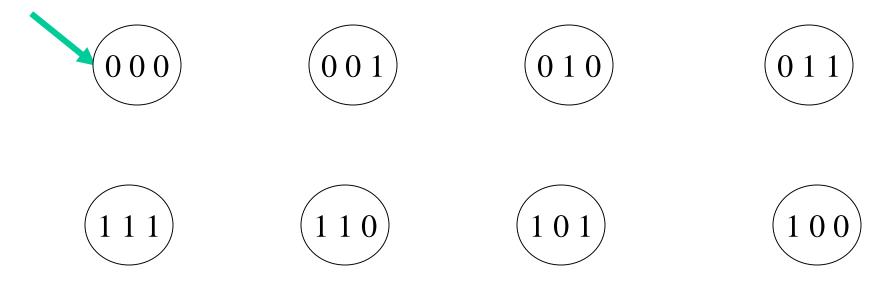
A set of *transitions* can also be picked out by a formula.

 $\mathbf{R}_2 = \mathbf{v}_2^{\prime} \Leftrightarrow (\mathbf{v}_0 \land \mathbf{v}_1) \oplus \mathbf{v}_2$

 v_2 – current value v_2 – next value



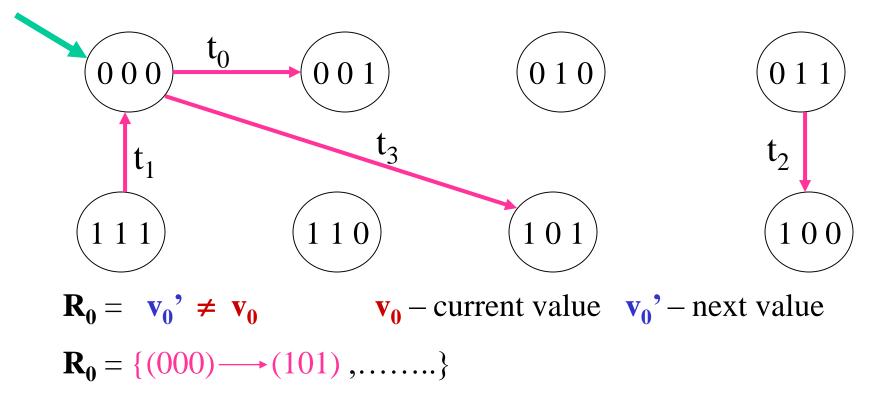
A set of transitions can also be picked out by a formula.



R = **Formula**(v_2 , v_1 , v_0 , v_2 ', v_1 ', v_0 ')

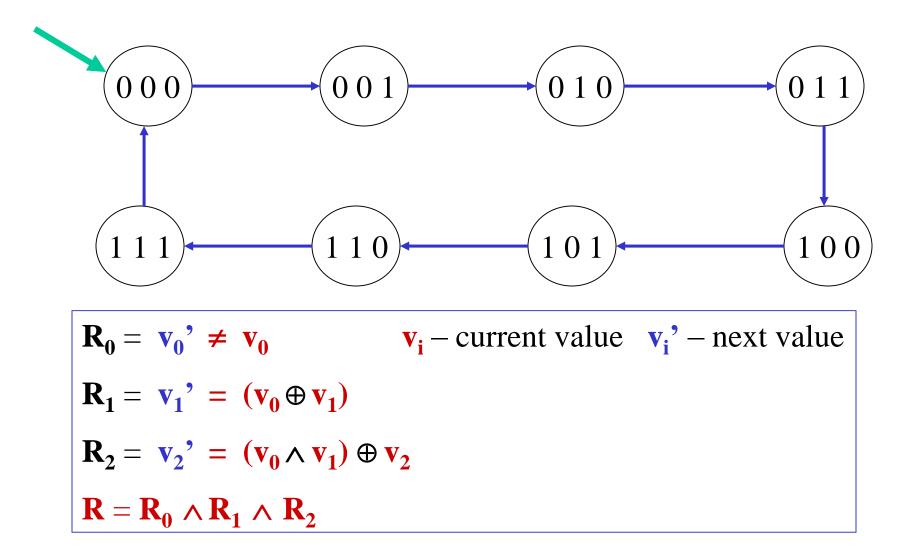
Not all formulae will define subsets of transitions.

You must pick the right formula .



But this is not a transition!

 $\{\mathbf{t}_0, \mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3\} \subseteq \mathbf{R}_0 \text{ but } \mathbf{t}_3 \notin \mathbf{R}_2$



Symbolic Representation of Transition Systems

- {**v**₁, **v**₂, ...,**v**_n}--- System variables.
- **D**₁, **D**₂, ..., **D**_n --- The corresponding domains.
- $\mathbf{D} = \bigcup \mathbf{D}_{\mathbf{i}}$
- $s : \{v_1, v_2, ..., v_n\} \longrightarrow D$ such that $s(v_1) \in D_1 \dots$
- S --- The set of states.

Initial States

- $S_0(v_1, v_2, ..., v_n)$ is a FO formula describing the set of initial states.
- Atomic formula
 - v = d where v is is a system variable and d is a constant symbol interpreted as a member of the domain of v.

Example:

- "S₀ is the set of all states where the pc = 0 and *input* is a power of 2"
- $(pc = 0) \land n \ge 0 \land (input = EXP(n))$

Transition relation

- $R(v_1, v_2, ..., v_n, v_1, v_2, ..., v_n)$ is a FO formula involving the *current variables* $v_1, v_2, ..., v_n$ (the system variables) and the *next variables* v_1 ', $v_2', ..., v_n'$.
- $(\mathbf{d}_1, \mathbf{d}_2, ..., \mathbf{d}_n) \longrightarrow (\mathbf{d}_1', \mathbf{d}_2', ..., \mathbf{d}_n')$ iff $R(v_1, v_2, ..., v_n, v_1', v_2', ..., v_n')$ is true under the valuation $\mathbf{v}_1 = \mathbf{d}_1, ..., \mathbf{v}_n = \mathbf{d}_n, \mathbf{v}_1' = \mathbf{d}_1', ..., \mathbf{v}_n' = \mathbf{d}_n'.$

Synchronization: no interaction

- The system model is just the *cartesian product* of the simpler modules.
- Let TS_1, \dots, TS_n be *n* automata (or TSs), where $TS_i = \langle S_i A_i, R_i S_{i0} \rangle$

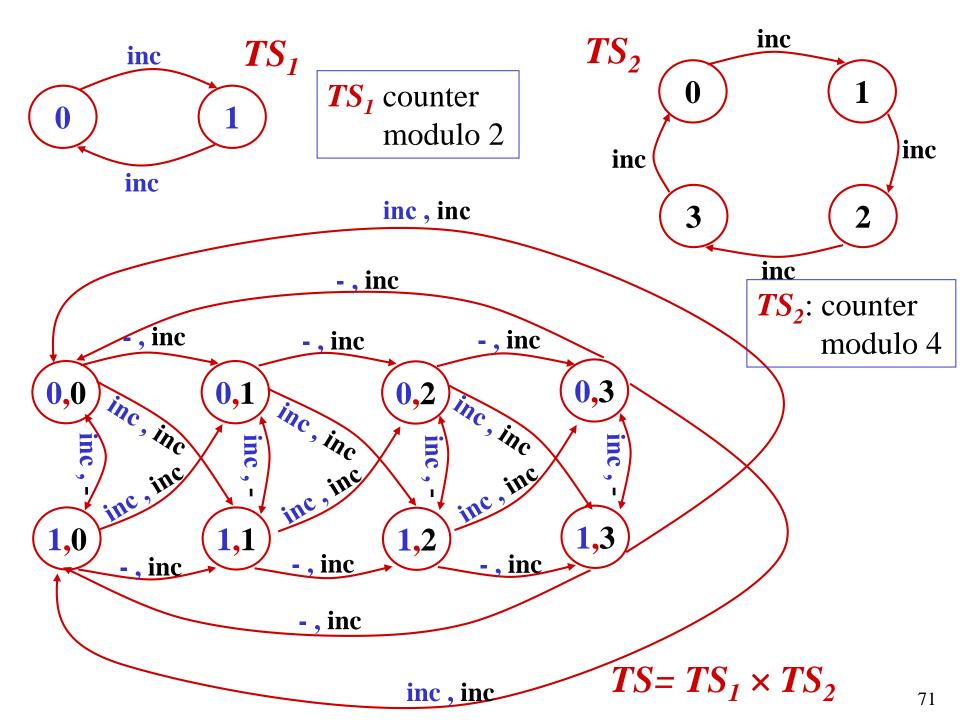
The system is then defined as $TS = \langle S, A, R, s_0 \rangle$ where

$$S = S_1 \times S_2 \times ... \times S_n$$

$$A = A_1 \cup \{-\} \times A_2 \cup \{-\} \times ... \times A_n \cup \{-\}$$

$$R = \{(, ,)/forall i, a_i \neq -and (s_i, a_i, s'_i) \in R_i, or a_i = -and s'_i = s_i\}$$

$$s_0 =$$



Synchronization: interaction

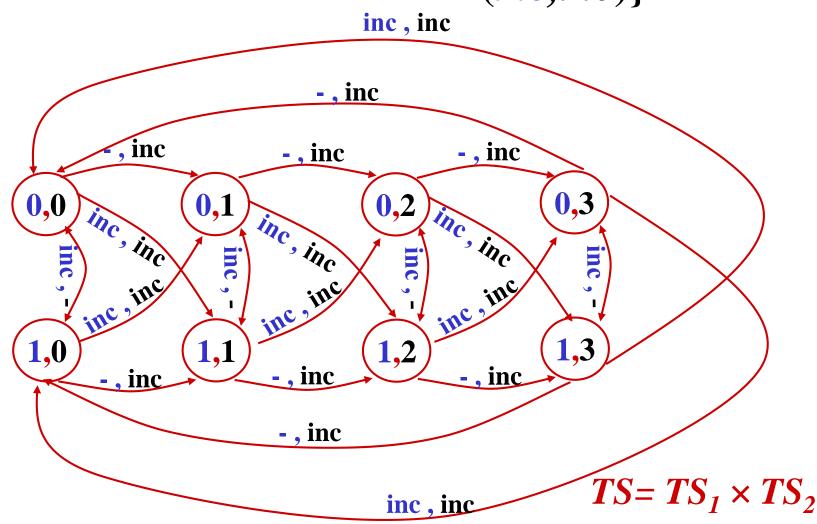
- To allow for interaction, or synchronization on specific actions we can introduce a Synchronization Set (to inhibit undesired transitions) :
- Synchronization set is just a subset of the composite actions:

 $Sync \subseteq A_1 \cup \{-\} \times A_2 \cup \{-\} \times \ldots \times A_n \cup \{-\}$

• Then we will have to define the possible transitions as:

$$R = \{(\langle s_{1}, ..., s_{n} \rangle, \langle a_{1}, ..., a_{n} \rangle, \langle s'_{1}, ..., s'_{n} \rangle) | \\ (a_{1}, ..., a_{n}) \in Sync \text{ and for all } i, a_{i} \neq - \\ and (s_{i}, a_{i}, s'_{i}) \in R_{i}, \text{ or } a_{i} = - and s'_{i} = s_{i}\}$$

Free synchronization (Asynchronous systems): $Sync = \{inc, -\} \times \{-, inc\} = \{(-, -), (inc, -), (-, inc), (inc, inc)\}$

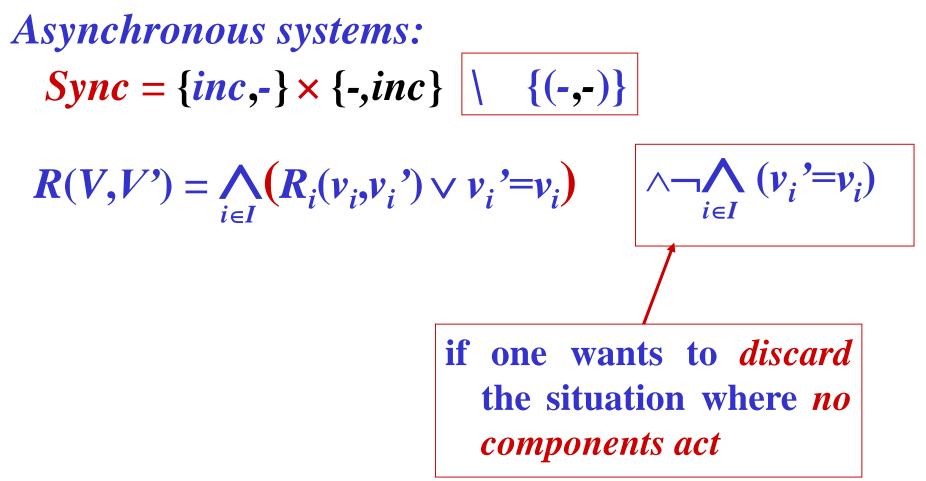


Free synchronization

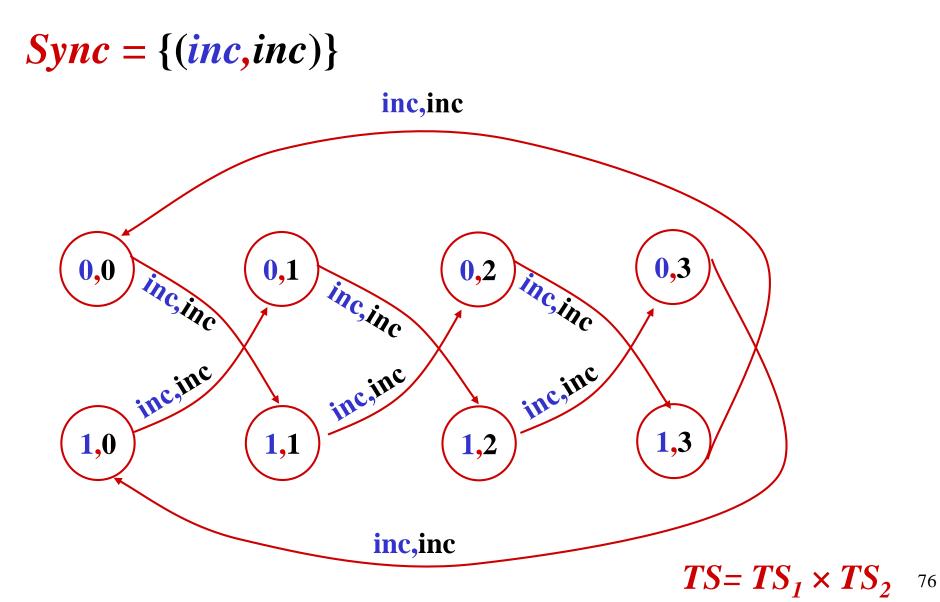
Asynchronous systems: $Sync = \{inc, -\} \times \{-, inc\}$

$$R(V,V') = \bigwedge_{i \in I} \left(R_i(v_i,v_i') \lor v_i' = v_i \right)$$

Free synchronization



Synchronization on all actions (Synchronous systems)



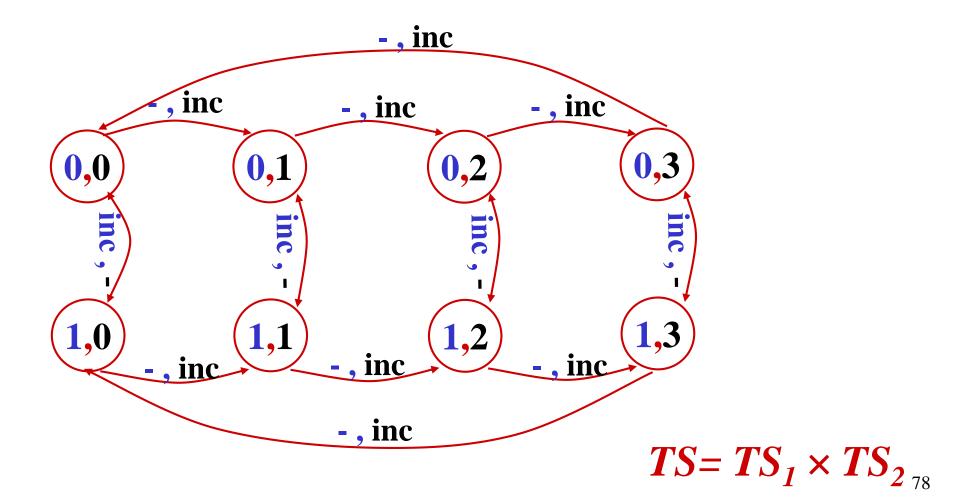
Synchronous systems

Synchronous systems: Sync = {(inc,inc)}

$$R(V,V') = \bigwedge_{i \in I} R_i(v_i,v_i')$$

Asynchronous systems with interleaving (only one component acts at any time):

Sync = $\{(-,inc),(inc,-)\}$



Asynchronous systems: Interleaving

Asynchronous systems: only one component acts at any time. $Sync = \{(-,inc),(inc,-)\}$ $R(V,V') = \bigvee_{i \in I} (R_i(v_i,v_i') \land \bigwedge_{i \neq i} same(v_j))$

- Many systems to be verified can be viewed as concurrent programs
 - operating system routines
 - cache protocols
 - communication protocols
- $P = cobegin (P_1 || P_2 || ... || P_n) coend$
- **P**₁, **P**₂,..**P**_n --- Sequential Programs.
- **Program variables** set $V = V_1 \cup ... \cup V_n$ (set V_i for program i)
- *Program counters* set **PC** (one for each program)
- Usually interleaving semantics is assumed

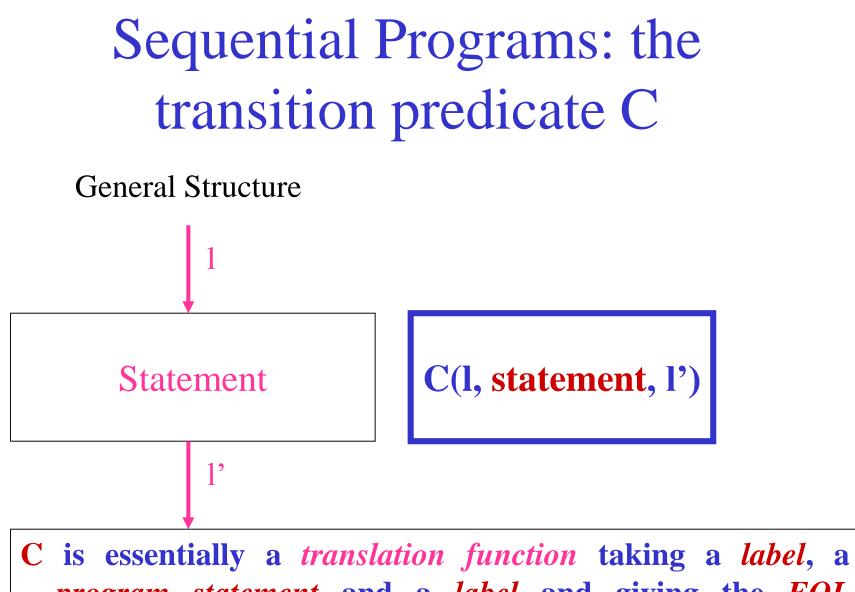
Program Statements

- A program **P** is a sequence of statements of the following form:
- skip
- **v:= Expr** (Expr an arithmetical expression)
- wait(Cond) (Cond an boolean expression)
- lock(v) (v a varible: semaphore)
- **unlock(v)** (v a varible: semaphore)
- Statm₁; Statm₂; ...; Statm_n (sequential composition)
- IF Cond THEN Statm₁ ELSE Statm₂ ENDIF
- WHILE Cond DO Statm DONE
- COBEGIN $(\mathbf{P}_1 \| \mathbf{P}_2 \| \dots \| \mathbf{P}_n)$ COEND

Transition relation of a program

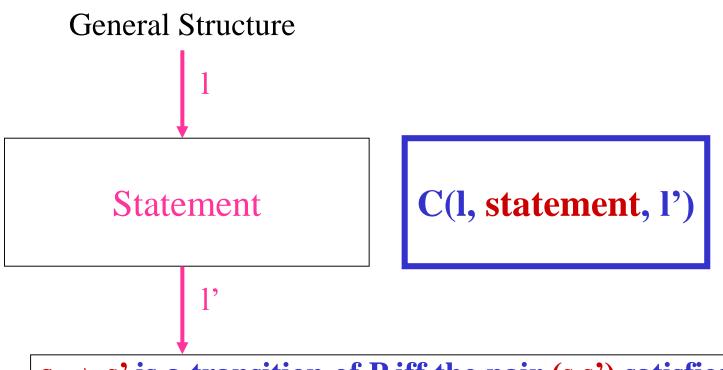
• $R(v_1, v_2, ..., v_n, v_1', v_2', ..., v_n')$ is a formula involving the *current variables* $v_1, v_2, ..., v_n$ (the system variables) and the *next variables* $(v_1', v_2', ..., v_n')$.

• $(d_1, d_2,..., d_n) \longrightarrow (d_1', d_2',..., d_n')$ iff $R(v_1, v_2,..., v_n, v_1', v_2',..., v_n')$ is true under the valuation $v_1 = d_1,..., v_n = d_n, v_1' = d_1',..., v_n' = d_n'.$

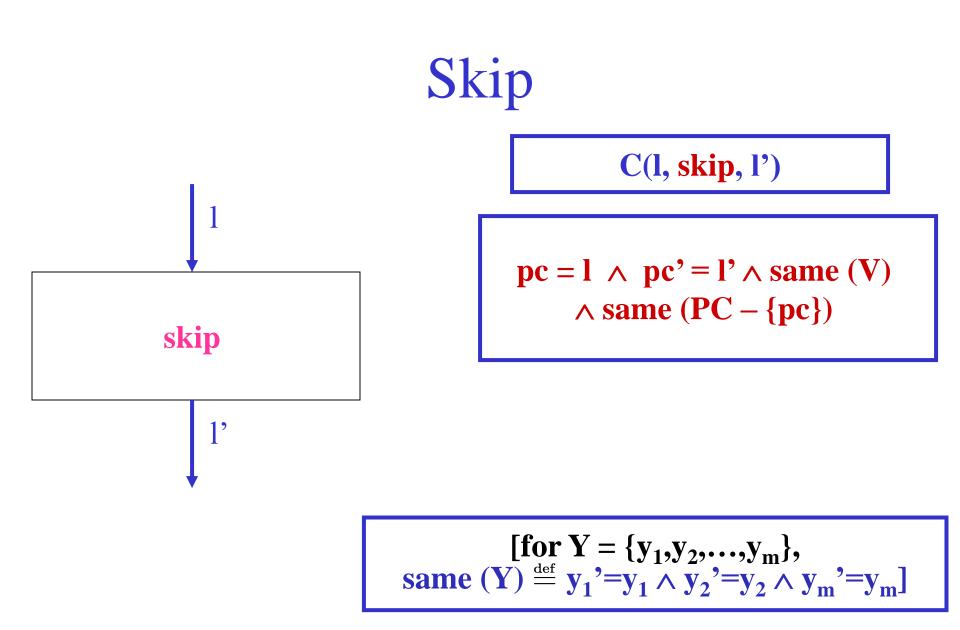


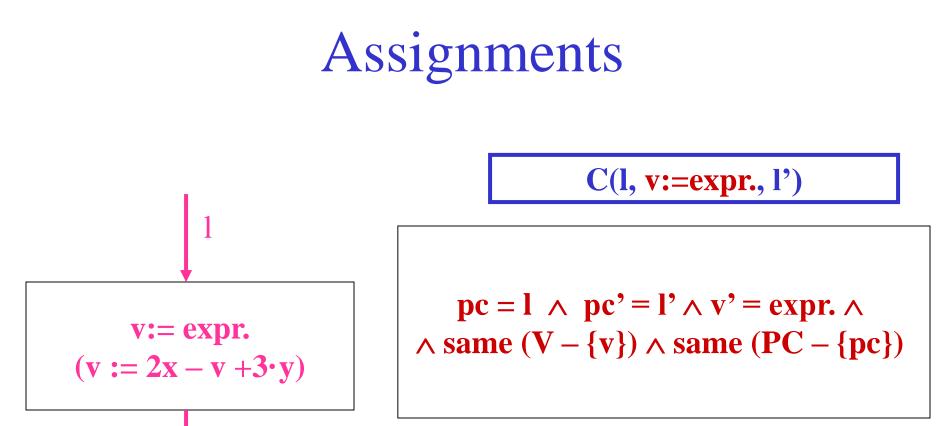
program statement and a *label* and giving the *FOL* formula specifying the transition relation induced by the statement.

Sequential Programs: the transition predicate C



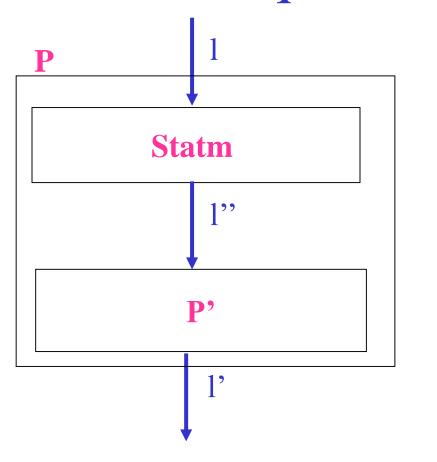
 $s \rightarrow s$ ' is a transition of P iff the pair (s,s') satisfies the formula $C(l_{init}, P, l_{end})$, where l_{init} and l_{end} are the initial and final nodes of the CFG of P.





1'

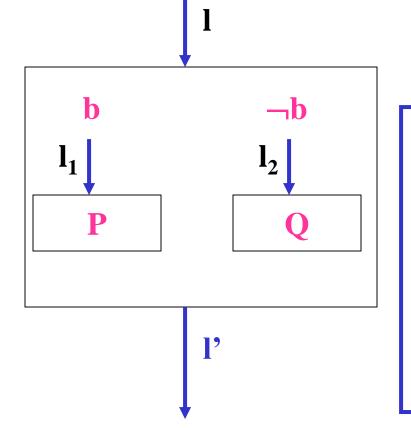
Sequential composition



C(l, Statm ; P', l')

C(l, Statm, l") ∨ C(l", P', l')

Conditional statement



 $C(l, IF-THEN-ELSE(b, l_1, l_2), l')$

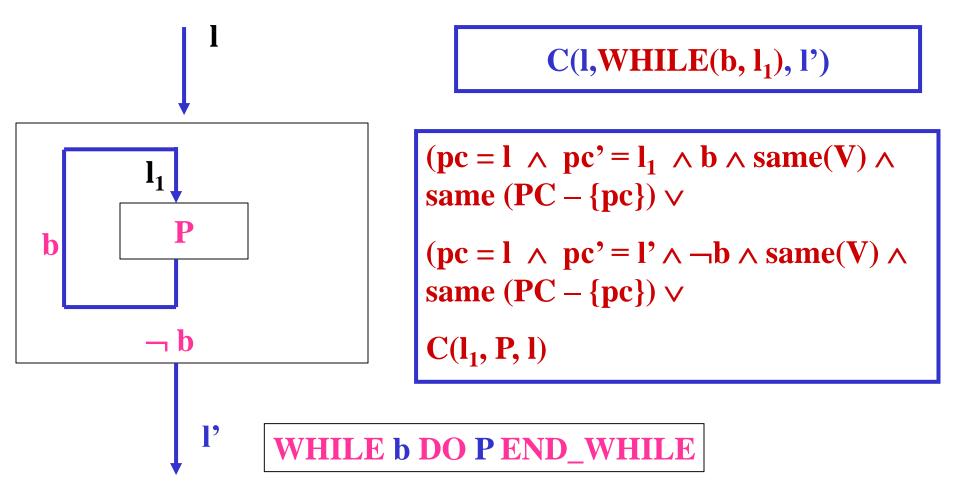
 $(pc = l \land pc' = l_1 \land b \land same(V) \land same(PC - \{pc\}) \lor$

 $(pc = l \land pc' = l_2 \land \neg b \land same(V) \land same(PC - \{pc\}) \lor$

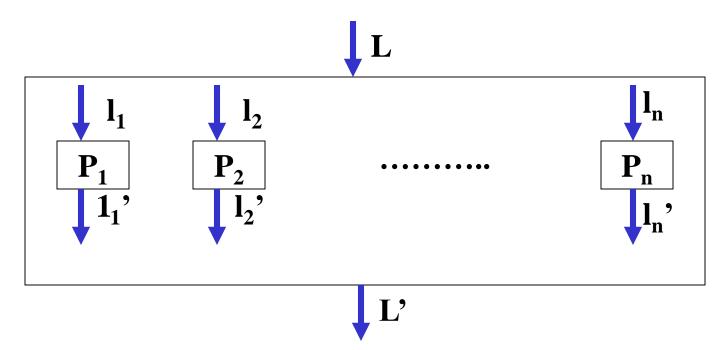
 $C(l_1, P, l') \lor$ $C(l_2, Q, l')$

IF b THEN P ELSE Q FI

While statement



- $P = cobegin (P_1 || P_2 || ... || P_n) coend$
- P₁, P₂,..P_n --- Sequential Programs.



- $P = cobegin (P_1 || P_2 || ... || P_n) coend$
- P₁, P₂,..P_n --- Sequential Programs.
- C(l₁, P₁, l₁') --- The transitions of program P₁ (defined *inductively* on the structure of P₁!).
- V_i ---- The set of variables of program P_i .
- Programs may *share* variables!
- $\mathbf{pc_i}$ The program counter of program $\mathbf{P_i}$.

- pc ---- the program counter of the *concurrent program*; it could be part of a larger program!
- ⊥ denotes an *undefined* program counter value.
- $S_0(V, PC) = \operatorname{pre}(V) \land (\operatorname{pc}=L) \land$ $(\operatorname{pc}_1=\bot) \land \dots \land (\operatorname{pc}_n=\bot)$

The Transition Predicate

$$(pc = L \land pc_{1}' = l_{1} \land \dots \land pc_{n}' = l_{n} \land pc' = \bot \land same(V))$$

$$\lor$$

$$(C(l_{1}, P_{1}, l_{1}') \land Same (V - V_{1}) \land Same(PC \setminus \{pc_{1}\}))$$

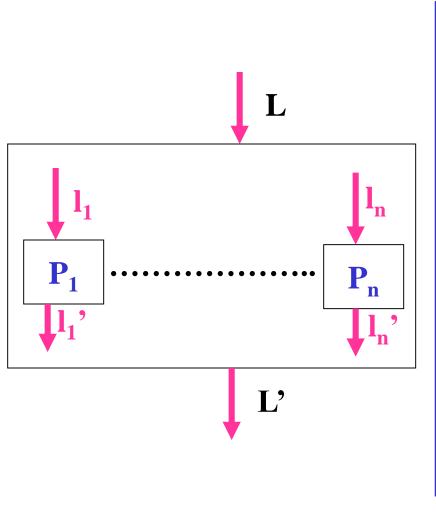
$$\lor \dots \lor$$

$$C(l_{n}, P_{n}, l_{n}') \land Same (V - V_{n}) \land Same(PC \setminus \{pc_{n}\}))$$

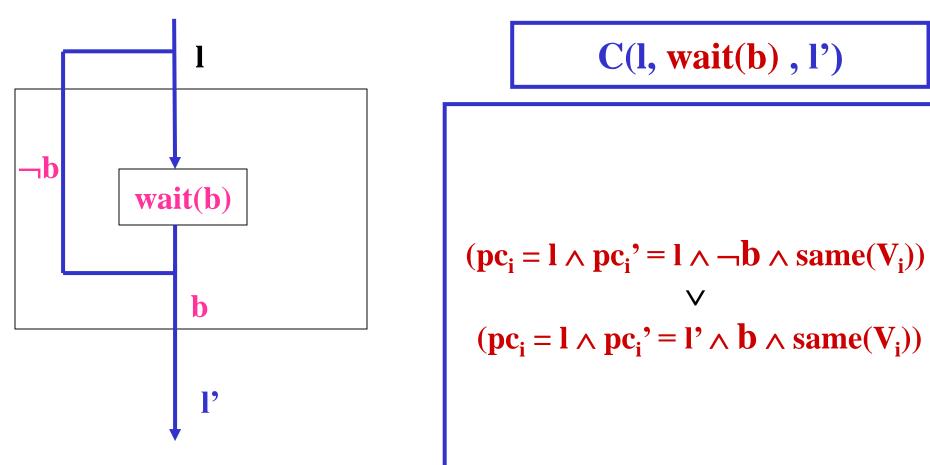
$$\lor$$

$$(pc = \bot \land pc_{1} = l_{1}' \land \dots \land pc_{n} = l_{n}' \land \land pc' = L' \land$$

$$pc_{1}' = \bot \land \dots pc_{n}' = \bot \land same(V))$$

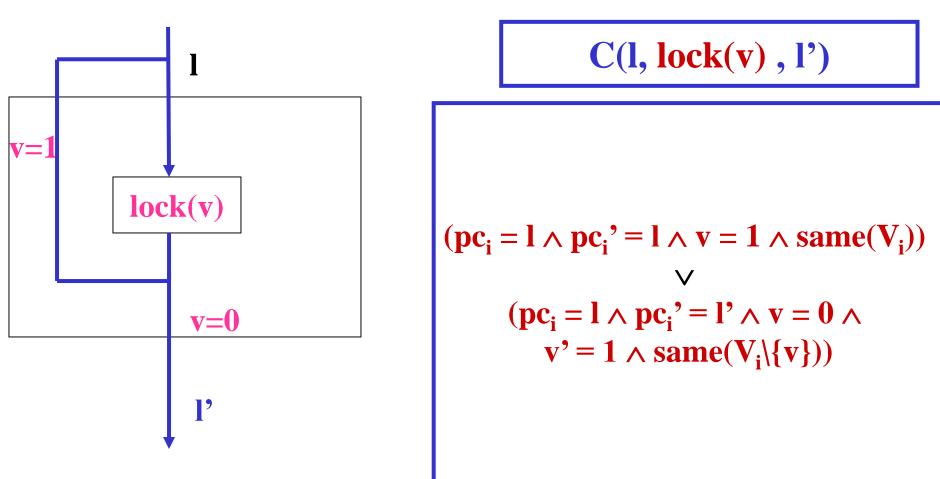


The Transition Predicate

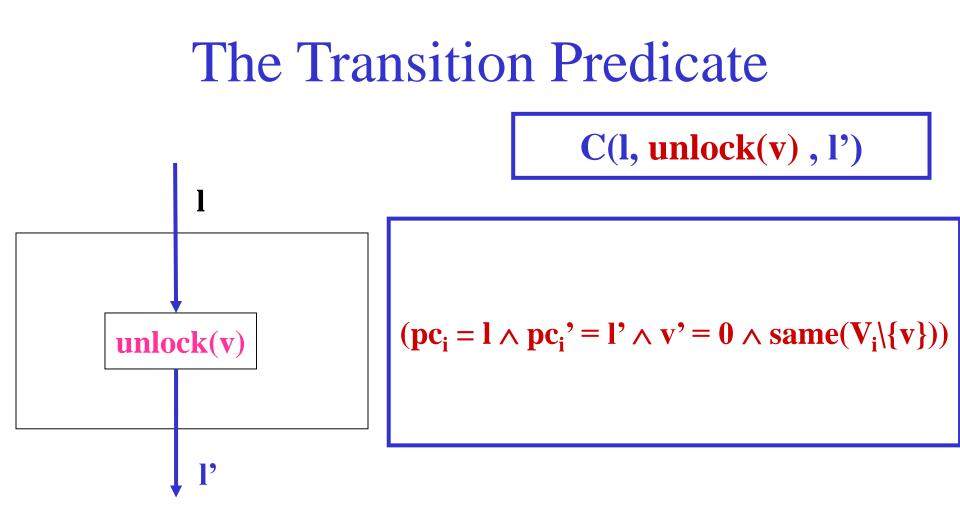


Repeatedly tests the boolean expression **b** until it is true. When **b** becomes **true** proceeds to the next step.

The Transition Predicate



Similar to wait with boolean expression v=0, but when the condition becomes true, v is updated to 1 and it proceeds to next step.



Simply sets variable v to 0, thus, possibly, enabling other processes to trigger their lock (or wait) transition to enter critical regions.

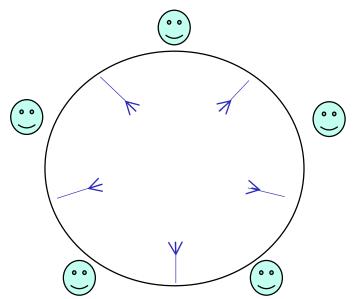
Summary

- System variables
- Domain of values
- States
- Initial state predicate
- Transition predicate
- pc values (for programs)
- Synchronization mechanisms

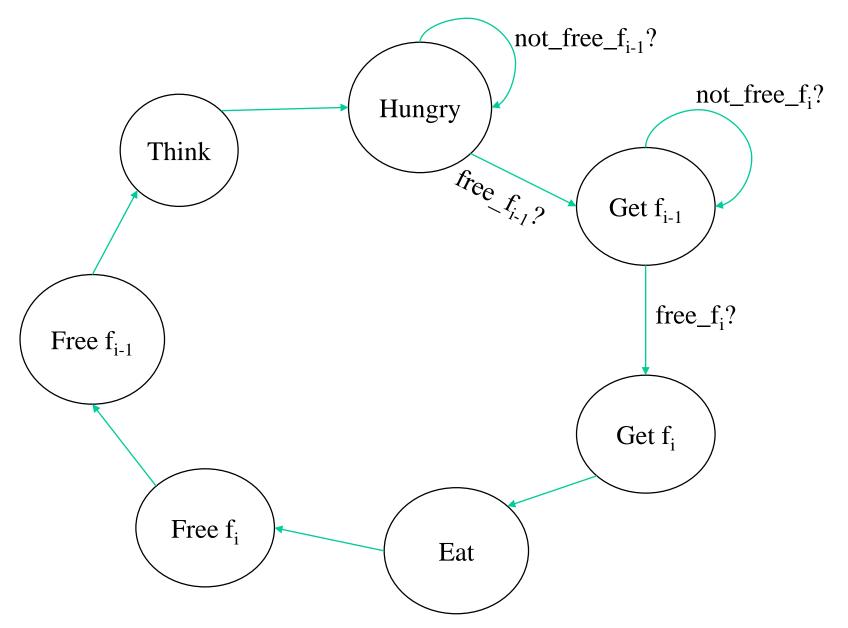
Example: shared resurces

"Dining Philosophers"

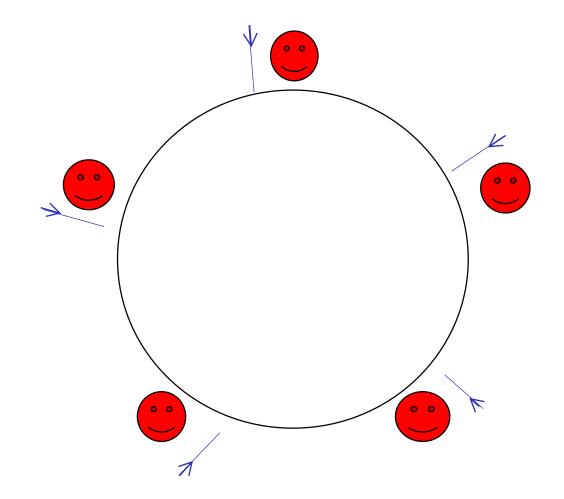
- Five philosophers sit around a table;
- Next to each philosopher is a fork (5 philosophers and 5 forks);
- Philosophers think most of the time and, when hungry, they can eat as long as they can grab two forks.



Possible philosopher's automaton



A problem: deadlock

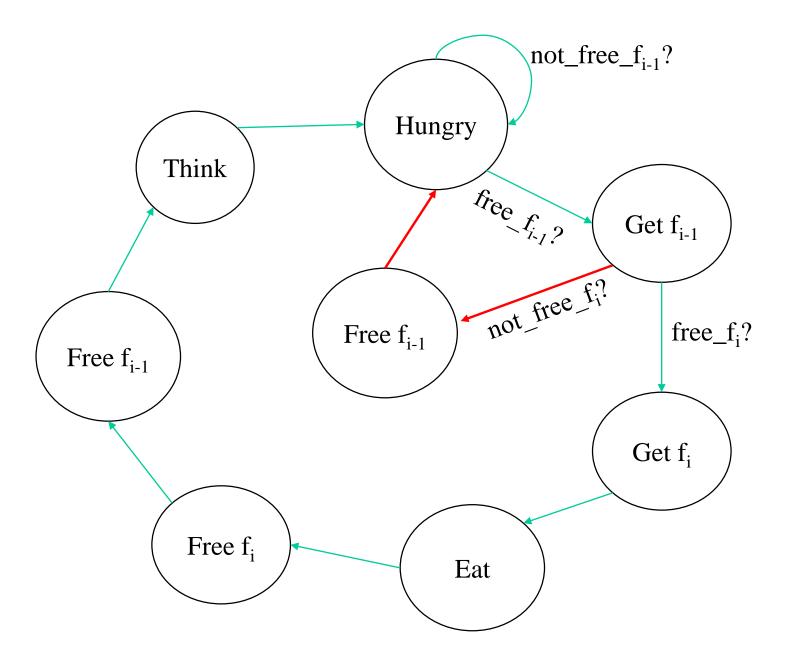


Problems

"Dining Philosophers"

- Possible problems:
 - *Deadlock*: System state where no further action is possible (global state change).
 - *Starvation*: When one system component is prevented to access the resurce.
 - *Livelock*: When no component is "blocked" but the system, as a whole, cannot progress.

Alternative solution: no deadlock



Fairness

Dining Philosophers

- A possible solution to deadlock:
 - Pick up left fork only if both are present
 - **System assumptions:**
 - *weak fairness*: transitions *continuously enabled* will
 eventually be executed (e.g., each philosopher will stop eating)
 - strong fairness: transitions enabled infinitely often will eventually be executed (e.g., if 2 forks are available infinitely often, the phisolopher will be able to eat).

Starvation

Dining Philosophers

- Possible solution
 - Pick up left fork only if both are present

Assumption:

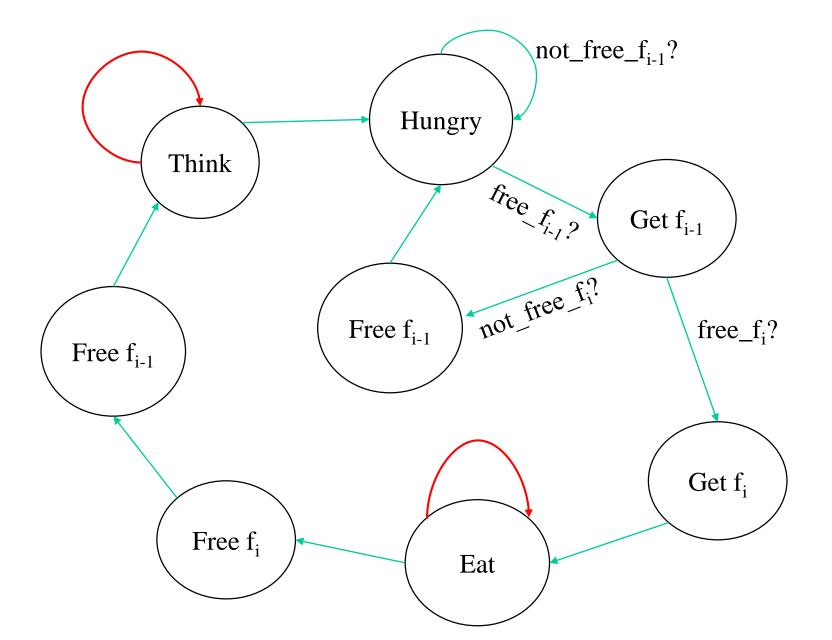
strong fairness: transitions enabled *infinitely often* will
 eventually be executed (e.g., if 2 forks are available infinitely often, the philosopher will be able to eat).

Strong fairness is not sufficient to avoid starvation

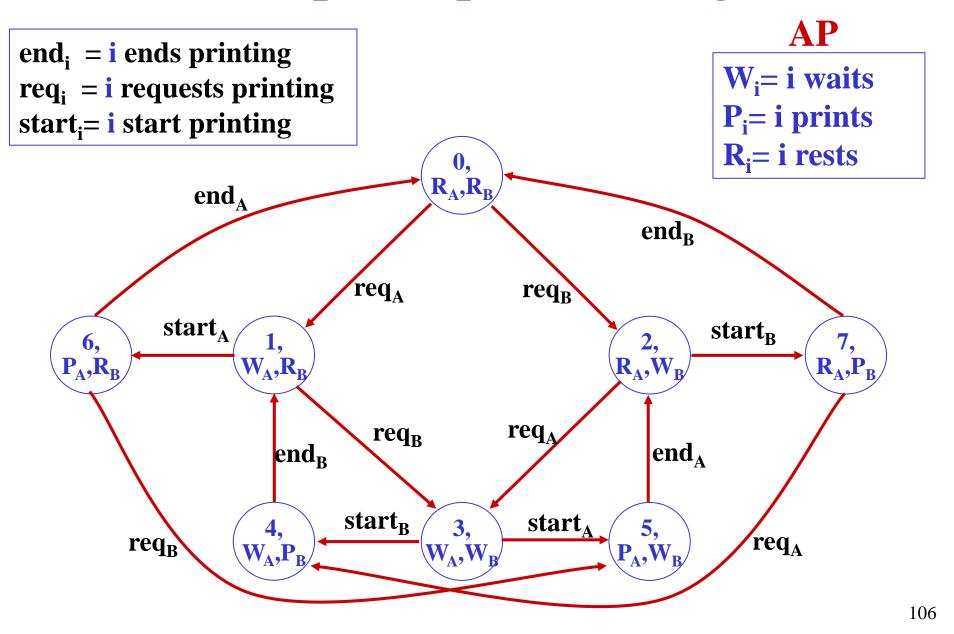
Why? Think to the case of 4 philosophers!

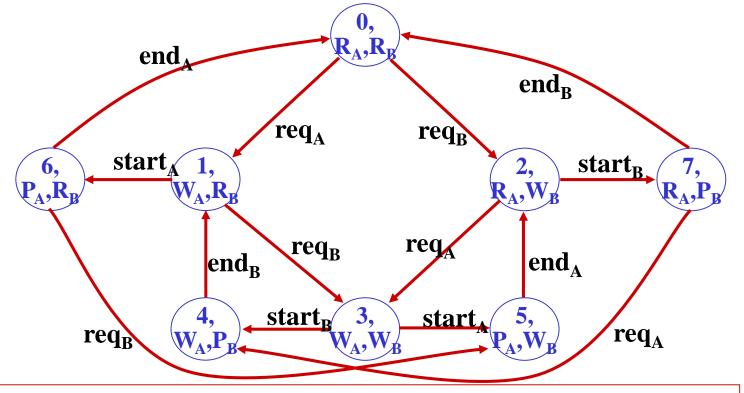
Sol.(?): *Prevent consecutive forks pick ups by each philosopher*. Still suffers from *starvation* with 5 philosophers! *Why*?

Non Determinismo



Example: a print manager





- $S = \{0, 1, 2, 3, 4, 5, 6, 7\}$
- $A = \{end_A, end_B, req_A, req_B, start_A, start_B\}$
- R = {(0,req_A,1), (0,req_B,2), (1,req_B,3), (1,start_A,6), (2,req_A,3), (2,start_B,7), (3,start_A,5), (3,start_B,4), (4,end_B,1), (5,end_A,2), (6,end_A,0), (6,req_B,5), (7,end_B,0), (7,req_A,4),}
- $\mathbf{L} = \{\mathbf{0} \rightarrow \{\mathbf{R}_{A}, \mathbf{R}_{B}\}, \mathbf{1} \rightarrow \{\mathbf{W}_{A}, \mathbf{R}_{B}\}, \mathbf{2} \rightarrow \{\mathbf{R}_{A}, \mathbf{W}_{B}\}, \mathbf{3} \rightarrow \{\mathbf{W}_{A}, \mathbf{W}_{B}\}, \mathbf{4} \rightarrow \{\mathbf{W}_{A}, \mathbf{P}_{B}\}, \mathbf{5} \rightarrow \{\mathbf{P}_{A}\mathbf{W}_{B}\}, \mathbf{6} \rightarrow \{\mathbf{P}_{A}, \mathbf{R}_{B}\}, \mathbf{7} \rightarrow \{\mathbf{R}_{A}\mathbf{P}_{B}\} \}_{107}$

Properties of the printing systems

- 1. Every state in which P_A holds, is preceded by a state in which W_A holds
- 2. Any state in which W_A holds is followed (possibly not immediately) by a state in which P_A holds.
- The first can easily be checked to be true
- The second is *false* (e.g. 0134134134...) in other words the system is *not fair*.

Transition Relation

- $V = \{x, y, z\}$
- Program : {x, y, z, pc}
 - l_0 : begin
 - l_1 : statement₁
 - l_2 : statement₂

.... l_5 : if even(x) then x = x/2 else x = x - 1 l_6 :

Transition Relation

- $V = \{x, y, z\}$
- Program : {x, y, z, pc}
 l₅ : if even(x) then x = x/2 else x = x -1
 l₆ :
- φ (x, y, z, pc, x', y', z', pc')
 pc = l₅ ∧ pc' = l₆ ∧ (∃n. (x = 2n) ⊃ x' = x/2) ∧ (¬∃n. (x = 2n) ⊃ x' = x-1) ∧ same(y, z)

Notice that the formula above is equivalent to:

- $\mathbf{pc} = \mathbf{l}_5 \land \mathbf{pc'} = \mathbf{l}_6 \land$ ($(\exists \mathbf{n}.(\mathbf{x}=2\mathbf{n}) \land \mathbf{x'}=\mathbf{x}/2) \lor (\neg \exists \mathbf{n}.(\mathbf{x}=2\mathbf{n}) \land \mathbf{x'}=\mathbf{x}-1)) \land$ same(y, z)
- where same(y, z) stands for $y' = y \land z' = z$

Transition Relation

- In a similar fashion, we can specify the transition relation formulae for :
 - Assignment statement
 - While statements
 - etc.etc.
 - See the text book!