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Verifica di Sistemi

Modelli di sistemi con Automi e 

Sistemi a Transizioni
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Transition systems

• A transition system is a structure

TS = (S, S0, R)

where:

– S is a finite set of states.

– S0  S is the set of initial states.

– R  S  S is a transition relation

– R must be total, that is

▪sS. s’S. (s, s’)  R or, equivalently,

▪ for every state s in S, there exists s’ in S such that
(s, s’) is in R (the system is non blocking).
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Notions and Notations

• TS = (S, S0, R)

• Transitions: (s, s’)  R  or R(s, s’)  or s  s’

• A (finite) path from s is a sequence of states:

s1,s2,…,sn

such that 

– s = s1

– si  si+1 for  0 < i < n.

• It is from s to s’ if sn = s’.

• An infinite path from s is an infinite sequence

s1,s2,…,sn,…, satisfying the same conditions above
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Labeled transition systems

• Sometimes we may use a finite set of actions:

– Act = {a, b, ..}

• The actions will be used to label the

transitions.

• TS = (S, Act, S0, R)

– R  S Act  S, labeled transitions.

– (s, a, s’)  R - R(s, a, s’) - s s’
a
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A vending machine

coin

coffee

tea

c-out

t-out

t-serve

c-serve

coin-return
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A path

coin

coffee

tea

c-out

t-out

t-serve

c-serve

coin-return
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A non-path

coin

coffee

tea

c-out

t-out

t-serve

c-serve

coin-return

1 2
3

1 2 3  No!

3 1 2   yes!
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A non-total transition relation

coin

coffee

tea

c-out

t-out

t-serve

c-serve

1 2
3
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Kripke Structures

• AP is a finite set of atomic propositions.

– “value of x is 5”

– “x = 5”

• M = (S, S0, R, L), a Kripke Structure.

– (S, S0, R) is a transition system.

– L : S              2AP

– 2AP ---- The set of subsets of AP 

(L(s)2AP identifies a state 

2AP identifies the state space)
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Kripke Structures

• The atomic propositions and L together 

convert a transitions system into a model.

• We can start interpreting formulas over the 

Kripke structure.

• The atomic propositions make basic (easy) 

assertions about system states.
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Automata and Kripke Structures

• AP - set of elementary property

• <S,A,R,s0,L>

• S - set of states

• A - set of transition labels

• R  SAS - (labeled) transition relation 

• L - interpretation mapping L:S          2AP

• In FO representation we would need two sets of 

variables: V and Act (for actions or input).
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Modeling Data-Dependent Systems

• Let Var = {v1,v2,…,vk} be a set of variables with
values in domain D = 1≤i≤kDi (Di the domain for vi)

• A Program graph over Var is a tuple

PG = <Loc, Act, Effect, , Loc0, g0>

Where

–Loc is a set of locations and Act a set of actions

–Effect : Act  Eval(Var)  Eval(Var) captures the effects 

of the actions on the variables

 Loc  Cond(Var) Act  Loc

–Loc0, is the set of initial locations and g0 is the initial 

condition
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Program Conditions and Actions
• Let Expr(Var D) be the set of (arithmetic)

expression over Var D.

– examples: v+1, v+2*d, v+2*v’,… (with d  D)

• The conditions Cond(Var) on Var is the set of

Boolean combinations of comparisons of the form

exp1• exp2

with •{<,>,≤,≥,=,≠} and expi Expr(Var D)

• The actions on Var is the set of assignements of

v := exp
where vVar and exp Expr(Var D)
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State space
• The state space of a program is the set of all its

possible valuations Eval(Var) of the state

variables.

• For example, if V={a, b, c} and the variables range

over the natural numbers, then the state space

includes:

<a=0,b=0,c=0>, <a=1,b=0,c=0>, 

<a=1,b=1,c=0>, <a=932,b=5609,c=6658>

…

The set Loc can be considered as the domain of an

implicit variable pc encoding a program counter.
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Action Effects

• Given an evaluation   Eval(Var) and an action

of the form

a  v := exp

Where exp is an expression on Var  D, the effect of a

on  is

Effect(a,) = [v  exp]

• For example if a = v := v+1 and (v) = 5, then

Effect(a,) is the valuation ’ such that ’(v) = 6



16

Transition system of a Program Graph

If PG = <Loc, Act, Effect, , Loc0, g0> then

TS(PG) = <S, Act, , S0, AP, L>

•S = Loc × Eval(Var)

• S × Act × S such that

– If l l’ in PG and  g , then <l,>     <l’,’> in
TS(PG), with ’ = Effect(a,) 

•S0 = {<l,> | l  Loc0 and  g0}

•AP = Loc Cond(Var)

•L(<l,>) = {l} {g | g  Cond(Var) and  g}

ag:a
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Composition and Synchronization

• Complex systems are very hard to specify in their entirety.

• The difficulty is to account for all the possible interactions

among their components, in particular if they execute in a

concurrent fashion.

• The natural approach is to specify them as composition of

smaller and sequential subsystems (or modules), which

are easier to describe.

• We need to describe the way in which these modules

coordinate (composition) and cooperate (communication).

• There are several methods to define composition and

communication (i.e., to synchronize the components).



Synchronous Composition
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• The system model is the cartesian product of the 

simpler modules.

• Let TS1, …, TSn be n TSs, s.t. TSi = <Si,Ai,Ri,Si0>

• Then TS = TS1 || … || TSn = <S,A,R,S0> is s.t.

– S = S1  …  Sn

– A = A1  … An

– S0 = S10  …  Sn0

– R contains <s1,…,sn> <s1’,…,sn’>, if si si’

for all 1≤i≤n and <a1,…,an> A

<a1,…,an> ai



Asynchronous Composition
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• The system model is the cartesian product of the 

simpler modules with an additional null action -

• Let TS1, …, TSn be n TSs, s.t. TSi = <Si,Ai,Ri,Si0>

• Then TS = TS1 || … || TSn = <S,A,R,S0> is s.t.

– S = S1  …  Sn

– A = (A1 {-})  …  (An {-})

– S0 = S10  …  Sn0

– R contains <s1,…,sn> <s1’,…,sn’>, if, for all

1≤i≤n, ai = - or si si’ and ai ≠ -, and <a1,…,an> A

<a1,…,an>

ai
i



Asynchronous Composition: Interleaving
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• The system model is the cartesian product of the 

simpler modules with an additional null action -

• Let TS1, …, TSn be n TSs, s.t. TSi = <Si,Ai,Ri,Si0>

• Then TS = TS1 || … || TSn = <S,A,R,S0> is s.t.

– S = S1  …  Sn

– A  (A1 {-})  …  (An {-}) s.t. <a1,…,an>  A

iff ai Ai implies aj = -, for all j ≠ i

– S0 = S10  …  Sn0

– R contains <s1,…,sn> <s1’,…,sn’>, if, for all

1≤i≤n, ai = - or si si’ and ai ≠ -, and <a1,…,an> A

<a1,…,an>

ai
i
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Interleaving of Program Graphs
• Let

PGi = <Loci, Acti, Effecti, i, Loci0, gi0>

be n program graphs, each one over Vari . 

Then the Program Graph of the interleaving composition

of PG = PG1 || PG2 ||… || PGn is 

PG = <Loc, Act, Effect, , Loc0, g0>  where

–Loc = Loc1  Loc2  …  Locn

–Act = 1≤i≤n Acti ( disjoint union) and Var = 1≤i≤n Vari

–Loc0 = Loc10  Loc20  …  Locn0

–g0 = g10  g20  …  gn0
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Interleaving of Program Graphs

a

g:a



A Mutual Exclusion Protocol
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PROCESS A

repeat

non-critical code

/* entry_protocol; */

flag1 := true; 

while flag2 do

skip;

/* end entry_protocol; */

critical section;

/* exit_protocol; */

flag1 := false;

/* end exit_protocol; */

non-critical code

forever;

PROCESS B

repeat

non-critical code

/* entry_protocol; */

flag2 := true; 

while flag1 do

skip;

/* end entry_protocol; */

critical section;

/* exit_protocol; */

flag2 := false;

/* end exit_protocol; */

non-critical code

forever;



A Mutual Exclusion Protocol

24

PROCESS A

repeat

non-critical code

/* entry_protocol; */

flag1 := true; 

while flag2 do

skip;

/* end entry_protocol; */

critical section;

/* exit_protocol; */

flag1 := false;

/* end exit_protocol; */

non-critical code

forever;

PROCESS B

repeat

non-critical code

/* entry_protocol; */

flag2 := true; 

while flag1 do

skip;

/* end entry_protocol; */

critical section;

/* exit_protocol; */

flag2 := false;

/* end exit_protocol; */

non-critical code

forever;

wta

nca

cra

exa
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The Automaton for Process A

nca wta

craexa

flag2:True: flag1:=T

¬flag2:True: flag1:=F

True:



Composition: LTS (fragment)

nca,ncb

cra,ncb

f1

wta,ncb

f1

cra,wtb

f1,f2

exa,wtb

f1,f2

nca,wtb

f2
exa,ncb

f1

26
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Fairness

• Fairness constraints are meant to capture general

constraints of «good behavior» of concurrent

systems.

• For instance: concurrent systems (multi-threaded,

multi-process) rely on a scheduling mechanism that

select the next process (or thread) to execute during

computation.

• Fairness constraints capture very general constraints

that every reasonable scheduling mechanism should

guarantee, without requiring any detailed

specification of the scheduling mechanism itself.



28

Popular Fairness Conditions

• Unconditional fairness: each process must be
scheduled for execution infinitely often

• Weak fairness: a process continuously enabled must
be scheduled for execution infinitely often

• Strong fairness: a process infinitely often enabled
must be scheduled for execution infinitely often.

nca,ncb

cra,ncb

f1

wta,ncb

f1

exa,ncb

f1

Under any of the above
fairness conditions the
computation remaining
in the loop forever is no
longer admissible.



29

Composition: LTS (fragment)

nca,ncb

cra,ncb

f1

wta,ncb

f1

wta,wtb

f1, f2

cra,wtb

f1,f2

exa,wtb

f1,f2

nca,wtb

f2

deadlock
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Adding non-determinism

nca wta

craexa

flag2:True: flag1:=T

¬flag2:True: flag1:=F

True:



Non Determinism

• Non deterministic choices are often used to model

partially specified systems or behaviors.

• Non determinism used to:

– Model systems under incomplete information on its

behavior (e.g. system internal decisions not known,

unpredictable behavior of the environment,…).

– Increase the abstraction level of the specification: less

details are explicitly given so as to obtain more

compact/general models (e.g., state sequences

involving only internal computations of the system

modeled by a single state).

31
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Composition: LTS (fragment)

nca,ncb

cra,ncb

f1

wta,ncb

f1

wta,wtb

f1, f2

cra,wtb

f1,f2

exa,wtb

f1,f2

nca,wtb

f2



Problems with non-determinism
• May introduce «spurious» computations in the model.

• A computation is «spurious» if it is admitted in the

model but not by the actual system.

• E.g., Process A enters its critical section but never

leaves it.

• «Spurious» computations can be eliminated by means

of appropriate fairness constraints

• E.g.: Process A (B) must be infinitely often outside its

critical sections, i.e. in a state different from ca (cb).

– the computation where Process A never releases the critical

section is no longer an admissible computation.

33
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Problems with non-determinism
• May introduce «spurious» computations in the model.

• A computation is «spurious» if it is admitted in the

model but not by the actual system.

• E.g., Process A enters its critical section but never

leaves it.

• «Spurious» computations can be eliminated by means

of appropriate fairness constraints

• E.g.: Process A (B) must be infinitely often outside its

critical sections, i.e. in a state different from ca (cb).

cra,ncb
cra,ncb

cra,ncb

infinite spurious computation

not «fair»

cta,ncb
cra,ncb
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Atomic transition

• Each atomic transition represents a small piece

of code (or execution step), such that no smaller

peace of code (or step) is observable.

• Often is not easy to identify which actions are

atomic transitions and which are not.

• Atomicity may even depend on the abstraction

level of the specification.

• Is a:=a+1 atomic?
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Atomic transition

• Each atomic transition represents a small peace

of code (or execution step), such that no smaller

peace of code (or step) is observable.

• Often is not easy to identify which actions are

atomic transitions and which are not.

• Atomicity may even depend on the abstraction

level of the specification.

• Is a:=a+1 atomic? It may or may not be!

• In some systems it is, e.g., when a is a register

and the transition is executed using an inc

command.
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(Non) Atomicity (race conditions)

• Execute the following when

a=0 in two concurrent

processes:

P1:a=a+1 P2:a=a+1

• Result: a=2.

• Is this always the case?

• a may also be 1

• Consider the actual translation:

P1:load R1,a

inc R1

store R1,a

P2:load R2,a

inc R2

store R2,a



Mutual Exclusion II
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PROCESS A

repeat

non-critical code

/* entry_protocol; */

while flag2 do

skip;

flag1 := true; 

/* end entry_protocol; */

critical section;

/* exit_protocol; */

flag1 := false;

/* end exit_protocol; */

non-critical code

forever;

PROCESS B

repeat

non-critical code

/* entry_protocol; */

while flag1 do

skip;

flag2 := true;

/* end entry_protocol; */

critical section;

/* exit_protocol; */

flag2 := false;

/* end exit_protocol; */

non-critical code

forever;
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A possible automaton for Process A

nca wta

exa

flag2:True: 

¬flag2:f1:=TTrue: flag1:=F

cra

True: 
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Composition: LTS (fragment)

nca,ncb

cra,ncb

f1

wta,ncb

cra,t

f1

exa,wtb

f1

nca,wtb

no more 

deadlock
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Non atomicity in Process A

nca wta

exa

flag2?True

¬flag2?

f1:=T
True

flag1:=F

cra

True

This should

not be atomic
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A more adequate automaton for Proc. A

nca wra

enaexa

flag2: True:

¬flag2:True: flag1:=F

cta

True: 

True: f1:=T
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Composition: LTS (fragment)

nca,ncb

ena,ncb

wta,ncb

cra,ncb

f1

cra,wb

f1

nca,wb

no more 

deadlock

ena,wb

ena,ecb

ena,crb

f2

cra,crb

f1,f2
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Composition: LTS (fragment)

nca,ncb

ena,ncb

wta,ncb

cra,ncb

f1

cra,wb

f1

nca,wtb

No mutual

exlusion

ena,wtb

ena,ecb

ena,crb

f2

cra,crb

f1,f2



Synchronization via handshake
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• Let TS1 and TS2 be 2 TSs, with TSi = <Si,Ai,Ri,Si0>

• Let Sync = A1 A2 be the synchronization actions

• The system model is the cartesian product of the simpler 

modules with an additional null action -

• Then TS = TS1 || TS2 = <S,A,R,S0> is s.t.

– S = S1  S2

– A  Sync ( (A1 {-} \ Sync)  (A2 {-} \ Sync) ) s.t.

• Sync A and <a1, a2> A iff either a1 - or a2 -

– S0 = S10  S20

– R contains <s1,s1> <s1’, s2’>, if a Sync and si si’, for i

, or a = <a1, a2>  A and si si’, if ai -, and si’= si,

otherwise

a a
i

ai i



Communication via channels
• A channel c is a fifo buffer of some capacity cap(c) 

• When cap(c) = 0 communication is synchronous

• With each channel c a domain dom(c) is associated

• Two processes modeled as program graphs on Var = Var1

Var2 and channels Chan communicate by means of
communication actions of the form

c?x and c!d

where c is a channel in Chan, x a variable in Var and d a value in D

–c?x stands for a receive of a value from channel c, which is then
assigned to variable x.

–c!d stands for a send of value d over channel c

• The set of communication actions is defined as:

Com = {c!d,c?x | c Chan, d D, x Var and dom(c) dom(x)}
46



Communication via channels

• A Program Graph over (Var,Chan) is 

PGi = (Loci, Acti, Effecti, i, Loci0, gi0)

is a program graph on Vari such that i

i i  i  i  i

• A Channel System CS over (Var,Chan) is a

composition

CS = PG1 | … | PGn

of program graphs PGi over (Vari,Chan), where we take

Var = 1≤i≤nVari .

47



Effects of channel actions

• If cap(c) = 0 then
– transition li i li’ is executable by process Pi only if

transition lj j lj’ is executable by process Pj , and

– the two transitions occur simultaneously and x=d.

• If cap(c) > 0 then
– transition li i li’ is executable by process Pi only if

channel c is not full, i.e. it contains less than cap(c)
messages: c=<m1,…,mk> c=<m1,…,mk,d> .

– transition lj j lj’ is executable by process Pj only if

channel c is not empty, i.e. it contains at least one

message. The first value in c is assigned to variable x:
c=<m1,…,mk> c=<m2,…,mk> and x=m1.

48

c!d

c?x

c!d

c?x



Transition system for Channel System
• The resulting transition system TS(CS) has states

of the form

<l1,…,ln,,𝜒>

where is the evaluation function for channels and assigns

to each channel with cap(c) > 0 its content (a sequence of
messages), i.e., 𝜒 Chan dom(c)* Eval(Chan).

• For the initial states, the locations are the initial
locations of the processes,  gi0 and 𝜒(c) ε

(i.e., the empty sequence), for each c Chan.

• Let 𝜒 denote such initial channel evaluation

function.

49



• TS(CS) is defined as follows:

(S, Act, , S0,AP ,L)

– S = (Loc1 … Locn) Eval(Var) Eval(Chan)

– Act = Acti τ (τ denotes an internal action)

– S0 = {<l1,…,ln,,𝜒 | li  Loci0, gi0 and 𝜒 𝜒 }

– AP = Loci Cond(Var)

– L(<l1,…,ln,,𝜒>) = {l1,…,ln} {g Cond(Var) |  g}

– and the transition relation is defined as follows:

50

Transition system for Channel System



Transition system for Channel System
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If li i li’, a  Acti, and  g then

<l1,…,li, …,ln,,𝜒> <l1,…,li’,…,ln,’,𝜒>

where ’= Effect(a,)

If li i li’,  g, len(c)=k<cap(c) and 𝜒(c) = d1,…,dk then

<l1,…,li,…,ln,,𝜒> <l1,…,li’,…,ln,,𝜒’>

where 𝜒’= 𝜒[c := d1,…,dk,d].

If li i li’,  g, len(c)=k> 0 and 𝜒(c) = d1,…,dk then

<l1,…,li,…,ln,,𝜒> <l1,…,li’,…,ln,’,𝜒’>

where ’= [x := d1] and 𝜒’= 𝜒[c := d2,…,dk].

If li i li’, lj j lj’,  g1  g2, cap(c)=0 and i j then

<l1,…, li,…lj,…,ln,,𝜒> <l1,…,li’, …lj’,…,ln,’,𝜒>

where ’= [x := d].

g:a

a

τ

g:c?x

τ

τ

g:c!d

g1:c?x g2:c!d
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The common framework

• Many systems need to be modeled.

– Digital circuits

▪ Synchronous

▪ Asynchronous

– Programs

• Strategy : Capture the main features using a

logical framework (nothing to do with temporal

logics!) : First order representation
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The inefficient way

Asynchronous 

circuits

Synchronous 

circuits

Programs

(finite state)

Kripke Structure   

Model checking
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The efficient way

Asynchronous 

circuits

Synchronous 

circuits

Programs

(finite state)

Kripke Structure   

Model checking

First Order 

Representation
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Synchronous counter modulo 8

v0

v1

v2

AND

XOR

XOR

NOT
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The mod-8 counter

• System variables : V = {v2 v1 v0}

• Domain of v2 is {0, 1}

Same domain for v1 and v0 as well.

• Special case : These variables are boolean

• Each state s can also be seen as a function
assigning to each variable a value in its domain.

– s : V  B

– s(v0) = 0  s(v1) = 1  s(v2) = 1

– This specifies the state s = (1 1 0) !
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A mod-8 counter: states

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

v2 v1

v0
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State Predicates
v2 v1

A set of states can be picked out by a 

propositional formula:

X = v2  v0 is the set {...}

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

v0
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State Predicates

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

v2 v1

v0

A set of states can be picked out by a 

propositional formula:

X = v2  v0 is the set {100, 101, 110, 111, 001, 011}
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Initial States Predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

v2 v1

v0

A set of states can be picked out by a formula;

S0 = v2  v1  v0
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Initial States Predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

v2 v1

v0

A set of states can be picked out by a formula;

S0 = v2  v1  v0 therefore X1 = { S0 } = { 000 }
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Transition relation predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

A set of transitions can also be picked out by a formula.

R2 = v2’ (v0  v1)  v2 v2 – current value   v2’ – next value
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Transition relation predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

A set of transitions can also be picked out by a formula.

R2=   v2’ (v0  v1)  v2 v2 – current value   v2’ – next value

{t0, t1, t2}  R2

t1
t2

t0
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Transition relation predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

R = Formula(v2, v1, v0, v2’, v1’, v0’)

Not all formulae will define subsets of transitions.

You must pick the right formula .
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Transition relation predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

R0 =   v0’  v0 v0 – current value   v0’ – next value

R0 = {(000) (101) ,……..}

But this is not a transition!

{t0, t1, t2, t3}  R0 but t3  R2

t1
t3

t0

t2



66

Transition relation predicate

0 0 0 0 0 1 0 1 0 0 1 1

1 1 1 1 1 0 1 0 1 1 0 0

R0 =  v0’  v0 vi – current value   vi’ – next value

R1 =  v1’ =  (v0  v1)

R2 =  v2’ =  (v0  v1)  v2 

R = R0  R1   R2
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Symbolic Representation of 

Transition Systems

• {v1, v2, …,vn}--- System variables.

• D1, D2, …,Dn --- The corresponding domains.

• D =  Di

• s : {v1, v2, …,vn} D such that

s(v1)  D1 …..

• S --- The set of states.
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Initial States

• S0(v1, v2, …,vn) is a FO formula describing the set 

of initial states.

• Atomic formula

– v = d where v is is a system variable and d is a constant 

symbol interpreted as a member of the domain of v. 

Example:

• “S0 is the set of all states where the pc = 0 and 

input is a power of 2”

• (pc = 0)  n0 (input = EXP(n))
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Transition relation

• R(v1,v2,...vn,v1’,v2’,...,vn’) is a FO formula

involving the current variables v1,v2,…,vn (the

system variables) and the next variables v1’,

v2’,...,vn’.

• (d1, d2,..,dn)        (d1’, d2’,..,dn’)   iff

R(v1,v2,...vn,v1’,v2’,…,vn’) is true under the

valuation v1 = d1,…,vn =dn, v1’ = d1’,..vn’ = dn’.
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Synchronization: no interaction

The system model is just the cartesian product of

the simpler modules.

Let TS1,…,TSn be n automata (or TSs), where

TSi = <Si,Ai,Ri,si0>

The system is then defined as TS=<S,A,R,s0> where

S = S1 S2 … Sn

A = A1{-} A2{-}… An{-}

R = {(<s1,...,sn>,<a1,...,an>,<s’1,...,s’n>)| forall i, ai-

and (si,ai,s’i)Ri, or ai=- and s’i =si}

s0 = <s10,s20,...,sn0>
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0 1

inc

inc TS1

0,0

1,0

0,1

1,1

0,3

1,3

0,2

1,2

- , inc - , inc - , inc

- , inc

inc , inc

- , inc - , inc - , inc

- , inc

TS= TS1  TS2

TS1 counter 

modulo 2

0 1

3 2

inc

inc

inc

inc

TS2

TS2: counter

modulo 4
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To allow for interaction, or synchronization on

specific actions we can introduce a Synchro-

nization Set (to inhibit undesired transitions) :

• Synchronization set is just a subset of the composite

actions:

Sync  A1{-} A2{-}… An{-}

• Then we will have to define the possible transitions

as:

R={(<s1,...,sn>,<a1,...,an>,<s’1,...,s’n>) |

(a1,...,an)Sync and forall i, ai -

and (si,ai,s’i)Ri, or ai=- and s’i =si}

Synchronization: interaction
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Free synchronization (Asynchronous systems):

Sync = {inc,-} {-,inc} = {(-,-), (inc,-), (-,inc),

(inc,inc)}

0,0

1,0

0,1

1,1

0,3

1,3

0,2

1,2

- , inc - , inc - , inc

- , inc

inc , inc

- , inc - , inc - , inc

- , inc

TS= TS1  TS2
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Free synchronization

Asynchronous systems:

Sync = {inc,-} {-,inc}

R(V,V’) = (Ri(vi,vi’) vi’=vi)
iI
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Free synchronization

Asynchronous systems:

Sync = {inc,-} {-,inc}

R(V,V’) = (Ri(vi,vi’) vi’=vi)
iI

if one wants to discard

the situation where no

components act

\ {(-,-)}

 (vi’=vi)
iI
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0,0

1,0

0,1

1,1

0,3

1,3

0,2

1,2

inc,inc

TS= TS1  TS2

Synchronization on all actions

(Synchronous systems)

Sync = {(inc,inc)}
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Synchronous systems

Synchronous systems:

Sync = {(inc,inc)}

R(V,V’) =  Ri(vi,vi’)
iI
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0,0

1,0

0,1

1,1

0,3

1,3

0,2

1,2

- , inc - , inc - , inc

- , inc

- , inc - , inc - , inc

- , inc
TS= TS1  TS2

Asynchronous systems with interleaving (only one

component acts at any time):

Sync = {(-,inc),(inc,-)}
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Asynchronous systems: 

Interleaving

Asynchronous systems: only one component 

acts at any time.

Sync = {(-,inc),(inc,-)}

R(V,V’) = (Ri(vi,vi’)same(vj))
iI j  i
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Concurrent programs
• Many systems to be verified can be viewed as 

concurrent programs

– operating system routines

– cache protocols

– communication protocols

• P = cobegin (P1  P2  … Pn) coend

• P1, P2,..Pn --- Sequential Programs.

• Program variables set V = V1…Vn (set Vi for 
program i)

• Program counters set PC (one for each program)

• Usually interleaving semantics is assumed
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Program Statements

A program P is a sequence of statements of the
following form:

• skip

• v:= Expr (Expr an arithmetical expression)

• wait(Cond) (Cond an boolean expression)

• lock(v) (v a varible: semaphore)

• unlock(v) (v a varible: semaphore)

• Statm1; Statm2 ; … ; Statmn (sequential composition)

• IF Cond THEN Statm1 ELSE Statm2 ENDIF

• WHILE Cond DO Statm DONE

• COBEGIN (P1  P2  … Pn) COEND
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Transition relation of a program

• R(v1,v2,...vn,v1’,v2’,...,vn’) is a formula involving

the current variables v1,v2,…,vn (the system

variables) and the next variables (v1’, v2’,...,vn’).

• (d1, d2,..,dn)        (d1’, d2’,..,dn’)   iff

R(v1,v2,...vn,v1’,v2’,…,vn’) is true under the

valuation v1 = d1,…,vn =dn, v1’ = d1’,..vn’ = dn’.
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Sequential Programs: the 

transition predicate C

General Structure

Statement

l

l’

C(l, statement, l’)

C is essentially a translation function taking a label, a

program statement and a label and giving the FOL

formula specifying the transition relation induced by the

statement.



84

Sequential Programs: the transition 

predicate C

General Structure

Statement

l

l’

C(l, statement, l’)

s s’ is a transition of P iff the pair (s,s’) satisfies the

formula C(linit,P, lend), where linit and lend are the initial

and final nodes of the CFG of P.
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Skip

skip

l

l’

pc = l   pc’ = l’  same (V) 

 same (PC – {pc})

C(l, skip, l’)

[for Y = {y1,y2,…,ym},
same (Y) y1’=y1  y2’=y2  ym’=ym]
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Assignments

v:= expr.

(v := 2x – v +3·y)

l

l’

pc = l   pc’ = l’  v’ = expr. 

 same (V – {v})  same (PC – {pc})

C(l, v:=expr., l’)
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Sequential composition

Statm

l

l’’

C(l, Statm, l’’) 

C(l’’, P’ , l’)

C(l, Statm ; P’ , l’)

P’

l’

P
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Conditional statement

l’

P Q

IF b THEN P ELSE  Q FI

l
C(l, IF-THEN-ELSE(b,l1,l2), l’)

b b

l1 l2

(pc = l  pc’ = l1  b  same(V) 
same (PC – {pc}) 

(pc = l  pc’ = l2   b  same(V) 
same (PC – {pc}) 

C(l1, P, l’) 

C(l2, Q, l’)
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While statement

l’

P

WHILE b DO P END_WHILE

l
C(l,WHILE(b, l1), l’)

b

 b

l1
(pc = l  pc’ = l1  b  same(V) 

same (PC – {pc}) 

(pc = l  pc’ = l’  b  same(V) 

same (PC – {pc}) 

C(l1, P, l) 



90

Concurrent programs

• P = cobegin (P1  P2  … Pn) coend

• P1, P2,..Pn --- Sequential Programs.

L

L’

P1 P2 Pn
………..

l1

11’

l2

l2’

ln

ln’
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Concurrent programs

• P = cobegin (P1  P2  … Pn) coend

• P1, P2,..Pn --- Sequential Programs.

• C(l1, P1, l1’) --- The transitions of program P1

(defined inductively on the structure of P1!).

• Vi ---- The set of variables of program Pi.

• Programs may share variables!

• pci – The program counter of program Pi.
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Concurrent programs

• pc ---- the program counter of the concurrent

program; it could be part of a larger program!

•  denotes an undefined program counter

value.

• S0(V, PC) = pre(V)  (pc=L) 

(pc1=)  ……  (pcn=)
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The Transition Predicate

L

L’

P1

l1

……………….. Pn

ln

(pc = L  pc1’ = l1 ….  pcn’ = ln 

 pc’ =   same(V))



(C(l1, P1, l1’)  Same (V – V1) 

 Same(PC \{pc1}))

 … 

C(ln, Pn, ln’)  Same (V – Vn) 

 Same(PC \{pcn})) 



(pc =   pc1 = l1’ …  pcn = ln’ 

 pc’ = L’ 

pc1’ =   …pcn’ =   same(V))

l1’ ln’

C(L, P, L’)
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The Transition Predicate

(pci = l  pci’ = l  b  same(Vi))



(pci = l  pci’ = l’  b  same(Vi))

C(l, wait(b) , l’)

l’

wait(b)

l

b

b

Repeatedly tests the boolean expression b until it is true. 

When b becomes true proceeds to the next step.
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The Transition Predicate

(pci = l  pci’ = l  v = 1  same(Vi))



(pci = l  pci’ = l’  v = 0 

v’ = 1  same(Vi\{v}))

C(l, lock(v) , l’)

l’

lock(v)

l

v=1

v=0

Similar to wait with boolean expression v=0, but when the condition

becomes true, v is updated to 1 and it proceeds to next step.
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The Transition Predicate

(pci = l  pci’ = l’  v’ = 0  same(Vi\{v}))

C(l, unlock(v) , l’)

l’

unlock(v)

l

Simply sets variable v to 0, thus, possibly, enabling other processes

to trigger their lock (or wait) transition to enter critical regions.



97

Summary

• System variables

• Domain of values

• States

• Initial state predicate

• Transition predicate

• pc values (for programs)

• Synchronization mechanisms
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Example: shared resurces

“Dining Philosophers”

• Five philosophers sit around a table;

• Next to each philosopher is a fork (5 philosophers and 5

forks);

• Philosophers think most of the time and, when hungry,

they can eat as long as they can grab two forks.



Possible philosopher’s automaton
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Think

Hungry

Get fi-1

Eat

Get fi

Free fi-1

Free fi

free_fi?

not_free_fi?

not_free_fi-1?



A problem: deadlock

100
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Problems

“Dining Philosophers”

• Possible problems:

– Deadlock: System state where no further action is possible

(global state change).

– Starvation: When one system component is prevented to access

the resurce.

– Livelock: When no component is “blocked” but the system, as

a whole, cannot progress.



Alternative solution: no deadlock
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Think

Hungry

Get fi-1

Eat

Get fi

Free fi-1

Free fi

free_fi?

not_free_fi-1?

Free fi-1
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Fairness

Dining Philosophers

• A possible solution to deadlock:

– Pick up left fork only if both are present

System assumptions:

– weak fairness: transitions continuously enabled will

eventually be executed (e.g., each philosopher will

stop eating)

– strong fairness: transitions enabled infinitely often

will eventually be executed (e.g., if 2 forks are

available infinitely often, the phisolopher will be able

to eat).
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Starvation
Dining Philosophers

• Possible solution

– Pick up left fork only if both are present

Assumption:

– strong fairness: transitions enabled infinitely often will

eventually be executed (e.g., if 2 forks are available infinitely

often, the philosopher will be able to eat).

Strong fairness is not sufficient to avoid starvation

Why? Think to the case of 4 philosophers!

Sol.(?): Prevent consecutive forks pick ups by each philosopher.

Still suffers from starvation with 5 philosophers! Why?



Non Determinismo
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Think

Hungry

Get fi-1

Eat

Get fi

Free fi-1

Free fi

free_fi?

not_free_fi-1?

Free fi-1
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Example: a print manager

Wi= i waits

Pi= i prints

Ri= i rests0,
RA,RB

6,
PA,RB

1,
WA,RB

2,
RA,WB

7,
RA,PB

4,
WA,PB

3,
WA,WB

5,
PA,WB

endA

reqA

endB

reqB

reqB

reqA

reqB
reqA

startA

startB startA

startB

endB endA

endi   = i ends printing

reqi   = i requests printing

starti= i start printing

AP
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• S = {0,1,2,3,4,5,6,7}

• A = {endA,endB, reqA, reqB, startA, startB}

• R = {(0,reqA,1), (0,reqB,2), (1,reqB,3), (1,startA,6), (2,reqA,3), 

(2,startB,7), (3,startA,5), (3,startB,4), (4,endB,1), (5,endA,2), 

(6,endA,0), (6,reqB,5), (7,endB,0), (7,reqA,4),}

• L = {0 {RA,RB}, 1 {WA,RB}, 2 {RA,WB}, 3 {WA,WB}, 

4 {WA,PB}, 5 {PAWB}, 6 {PA,RB}, 7 {RAPB} }

0,
RA,RB

6,
PA,RB

1,
WA,RB

2,
RA,WB

7,
RA,PB

4,
WA,PB

3,
WA,WB

5,
PA,WB

endA

reqA

endB

reqB

reqB

reqA

reqB
reqA

startA

startB startA

startB

endB endA
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Properties of the printing systems

1. Every state in which PA holds, is preceded
by a state in which WA holds

2. Any state in which WA holds is followed
(possibly not immediately) by a state in
which PA holds.

• The first can easily be checked to be true

• The second is false (e.g. 0134134134…) -
in other words the system is not fair.
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Transition Relation

• V = {x, y, z}

• Program : {x, y, z, pc}

l0 : begin

l1 : statement1

l2 : statement2

….

l5 : if even(x) then x = x/2  else x = x –1

l6 : ….
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Transition Relation
• V = {x, y, z}

• Program : {x, y, z, pc}

l5 : if even(x) then x = x/2 else x = x –1

l6 : ….

•  (x, y, z, pc, x’, y’, z’, pc’)
• pc = l5  pc’ = l6  (n. (x = 2n)  x’ = x/2) 

(n. (x = 2n)  x’ = x-1)  same(y, z)

Notice that the formula above is equivalent to:
• pc = l5  pc’ = l6 

((n.(x=2n)  x’=x/2)  (n.(x=2n)  x’=x-1)) 
same(y, z)

• where same(y, z) stands for y’ = y   z’ = z
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Transition Relation

• In a similar fashion , we can specify the

transition relation formulae for :

– Assignment statement

– While statements

– etc.etc. 

– See the text book!


