Tecniche di Specifica e di Verifica

Linear Time Temporal Logic

Temporal Logics: The context

- Kripke Structures model systems.
- *Temporal logics* model the dynamic behavioral properties of systems.
 - Linear Time
 - Branching Time
- *Model checking* can be used to determine if a system has the desired behavioral property.

Properties of computations: local properties

Refer to **immediate successors** or **predecessors** of the current state.

Examples:

Some/every immediate successor state satisfs the property φ :

- The system may enable the process *i* at the next state.
- If the light was red at the previous state and is orange now, it must turn green at the next state.

Some/every immediate predecessor satises the property ϕ (usually expressed as conditionals):

- If the process *i* is currently enabled, the scheduler must have disabled the process *j* at the previous state.
- If train is entering the tunnel now, the semaphore must have been switched red on the other end at the previous moment.

Local properties can be iterated a fixed number of times, but not indefinitely.

Universal properties of computations: invariance, safety

Invariance properties are properties that **must always hold** along the computation, while *safety properties* describe events that **must never happen** along the computation.

Invariance:

• The greatest common divisor of X and Y remains the same throughout the execution.

Safety:

- No *deadlock* will ever occur.
- At least one process will be enabled at any moment of time.
- Not more than one process will ever be in its *critical section* (e.g., not more than one train will ever be in the tunnel) at the same time.
- A resource will never be available to two or more processes simultaneously.

Also, partial correctness properties:

• If a *pre-condition* P holds at all initial states, then a *post-condition* Q will/must hold at all accepting (terminating) states.

Existential properties of computations: eventualities, liveness

Eventuality, liveness properties: those that **will (must) happen sometime** during the computation.

Examples:

- The execution of the program will terminate.
- If the train has entered the tunnel, it will eventually leave it.
- Once a printing job is activated, eventually it will be completed.
- If a message is sent, eventually it will be delivered.

Also, total correctness properties:

• If a *pre-condition* P holds at the initial state, then the computation will reach an accepting (terminating) state, where the *post-condition* Q will hold.

Properties of computations: fairness, precedence

Fairness properties: All processes will be treated "fairly" by the operating system (the scheduler, etc.)

Examples:

- Weak fairness: Every continuous request is eventually granted.
- Strong fairness: If a request is repeated infinitely often then it is eventually granted.
- *Impartiality*: Every process is scheduled infinitely often.
- **Precedence**: The event α will occur before the event β , which may or may not occur at all.
 - If the train has entered the tunnel, it will eventually leave it (before any other train has entered it).

Reachability properties in transition systems

- All important properties of computations can be expressed in terms of *reachability* or *non-reachability* of states with specic atomic properties.
- For instance, *eventuality* is just *reachability* of a "**good state**", while *safety* is *non-reachability* of "**bad states**", *fairness* corresponds to *repeated reachability*, etc.
- More generally, we may interested in *reachability* of a state or a set of states along some or all paths starting from a given state (or, set of states); this is called **forward reachability**.
- Likewise we may be interested in the states from which a state (or a set of states) is reachable; this is calles **backward** reachability.

Linear time temporal logics.

- LTL (Linear Time Temporal Logic)
 - Syntax
 - Semantics
 - The Model Checking Problem.
 - Its solution.

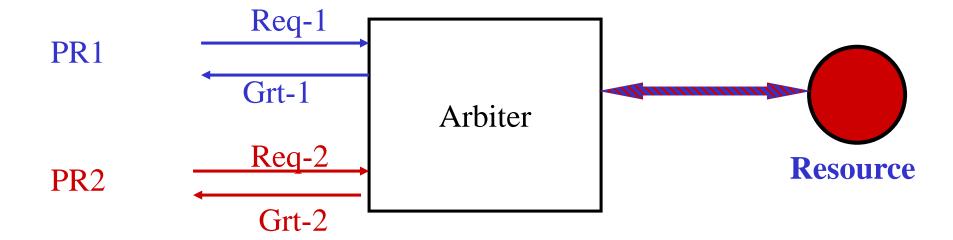
The Application

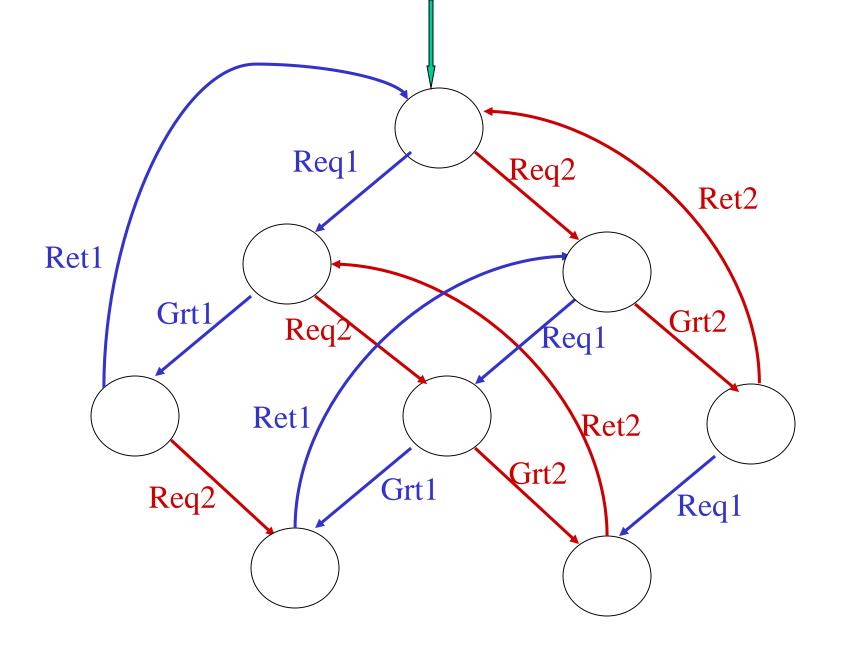
- Model a system to be verified as a Kripke structure:
 - Transition System $TS = (S, S_0, R)$
 - $-\mathbf{AP} = \mathbf{A}$ finite set of atomic propositions.
 - Basic assertions about the system
 - $-L:S \rightarrow 2^{AP}$ = The set of subsets of AP.
 - $-\mathbf{p} \in \mathbf{L}(\mathbf{s})$ ---- \mathbf{p} is true at \mathbf{s} .
 - $-\mathbf{p} \notin \mathbf{L}(\mathbf{s})$ ---- \mathbf{p} is not true at \mathbf{s} .
- $K = (S, S_0, R, AP, L)$ ---- Kripke Structure

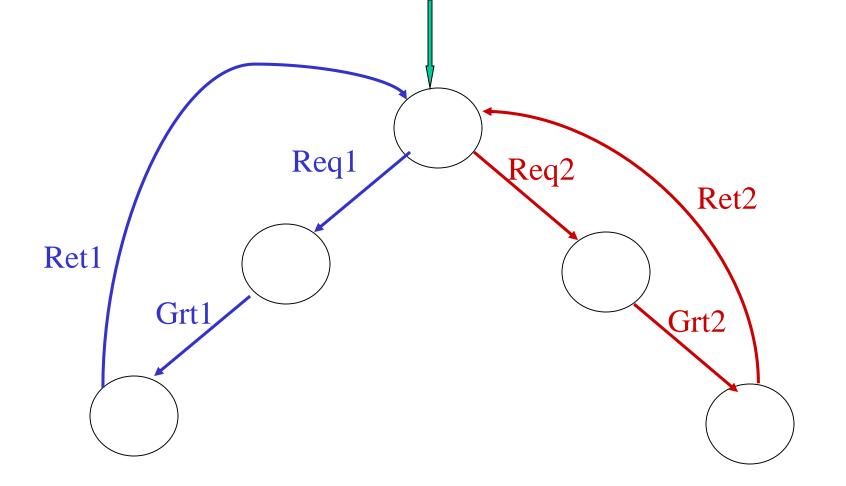
The Application

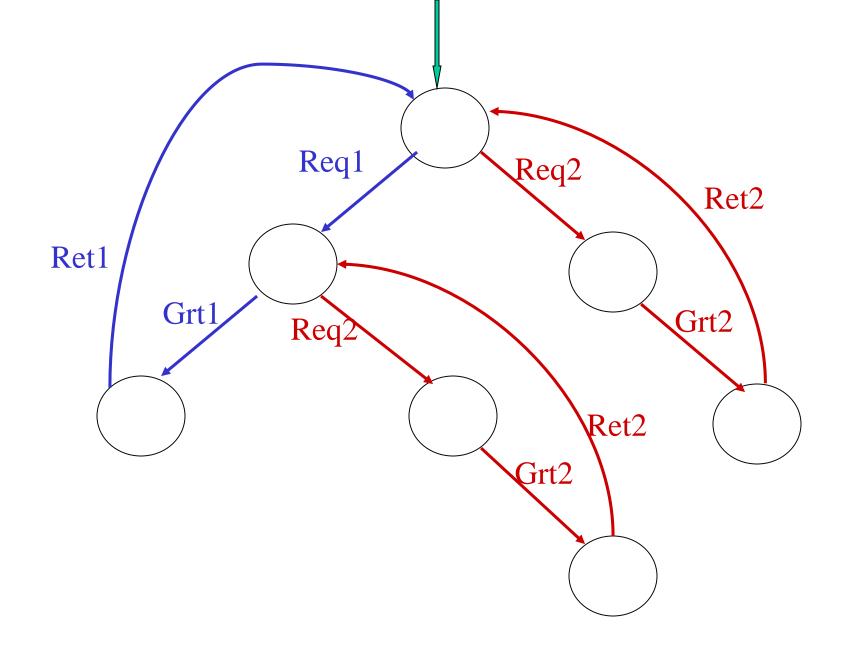
- *The computations* of the Kripke structure **K** will be the *models* for **LTL** formulas.
- *The property* to be verified is captured as an LTL formula φ.
- The modeled system K has the property φ
 iff every computation of K is a model of φ.
- We need to verify (*model check*) whether:
 - $-\mathbf{K} \models \mathbf{\varphi}$

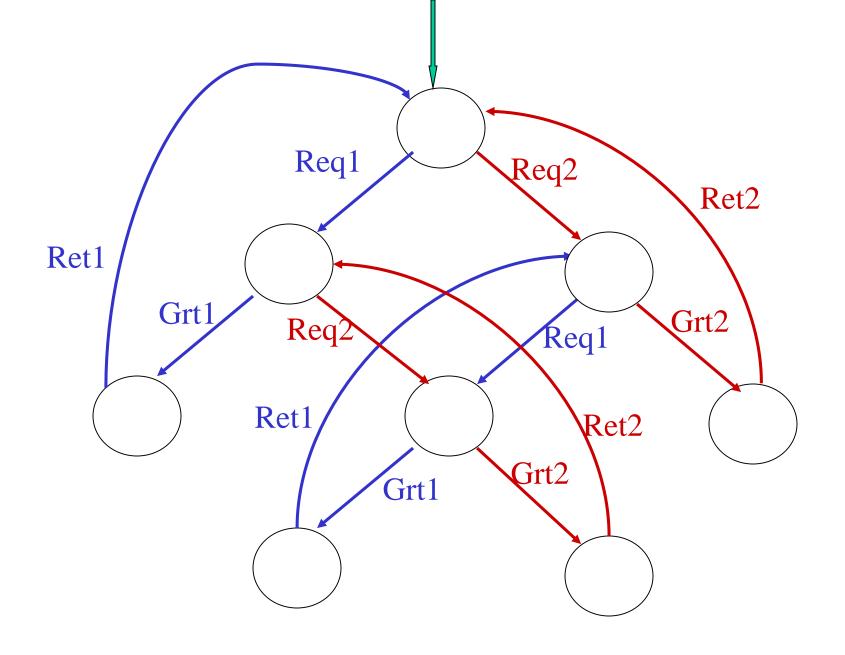
An Example

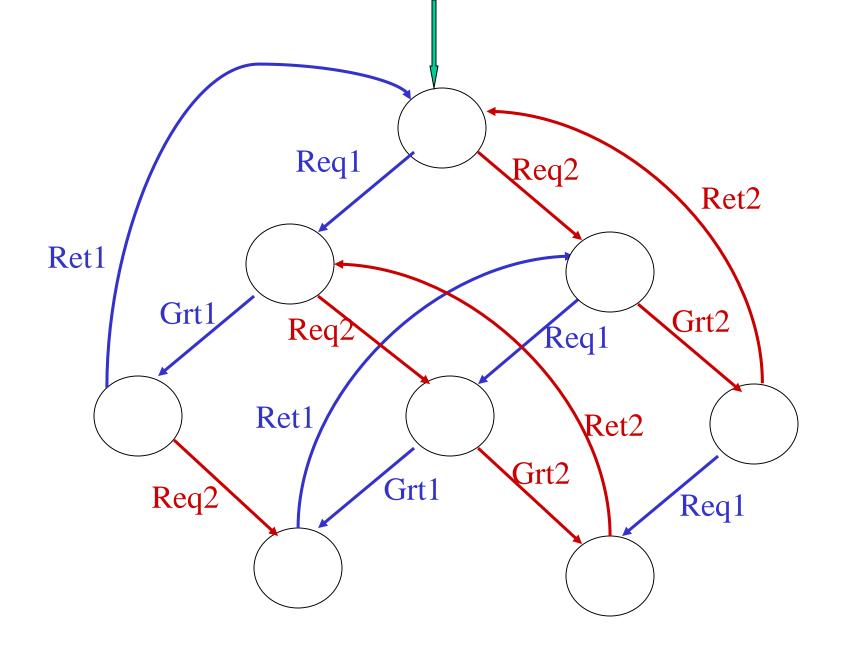




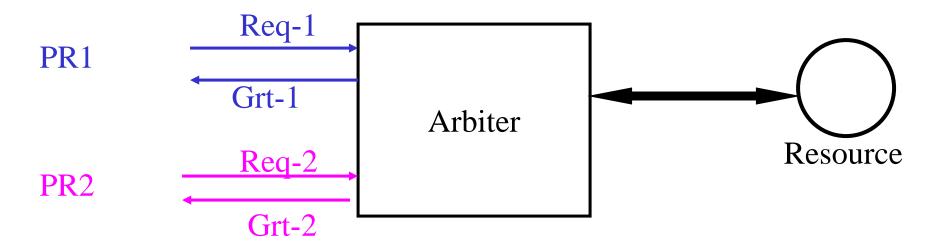








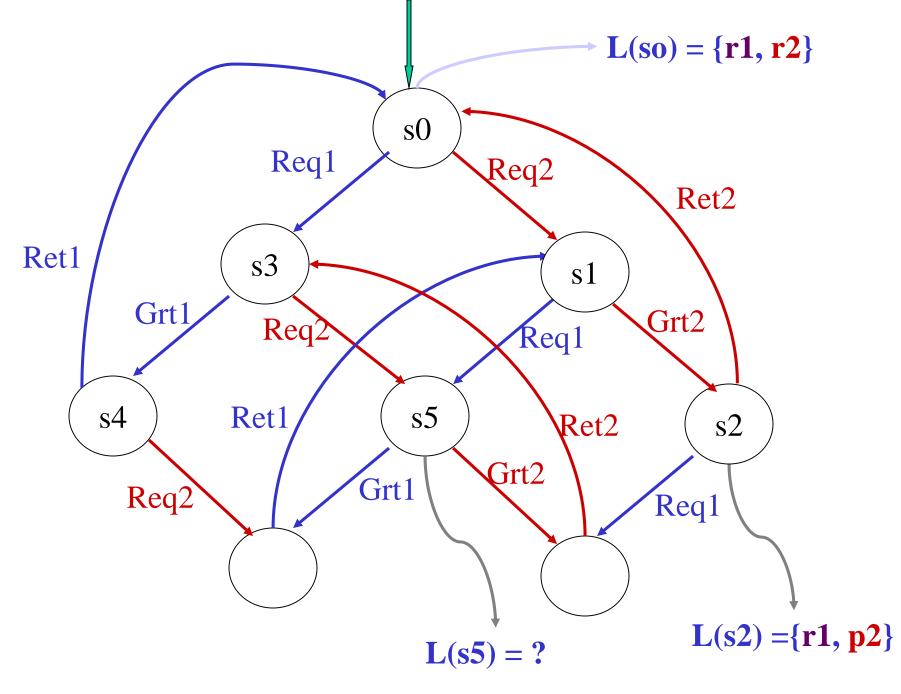
A set of Atomic Propositions

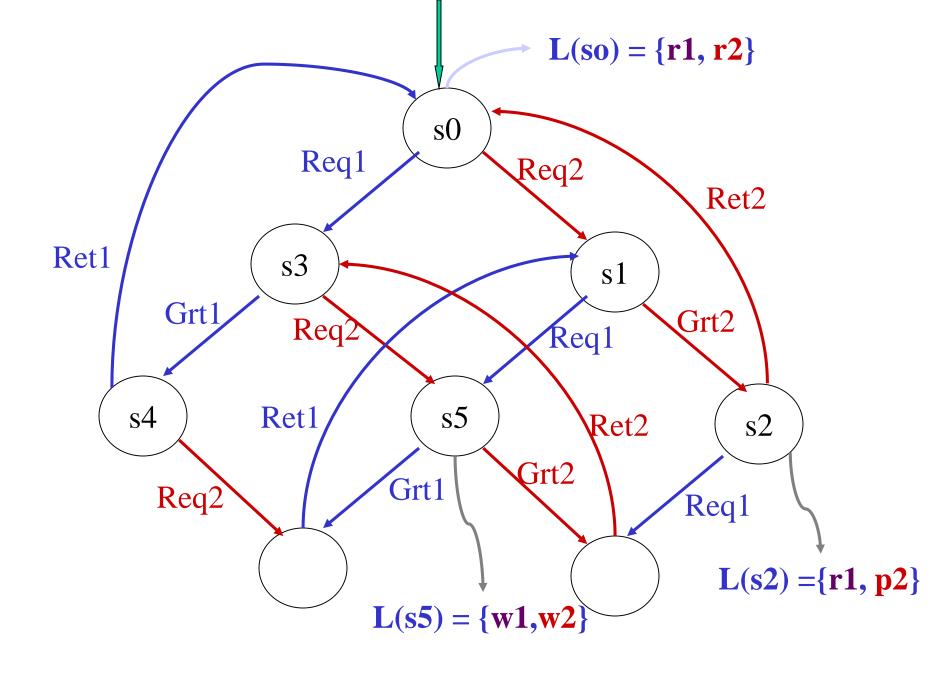


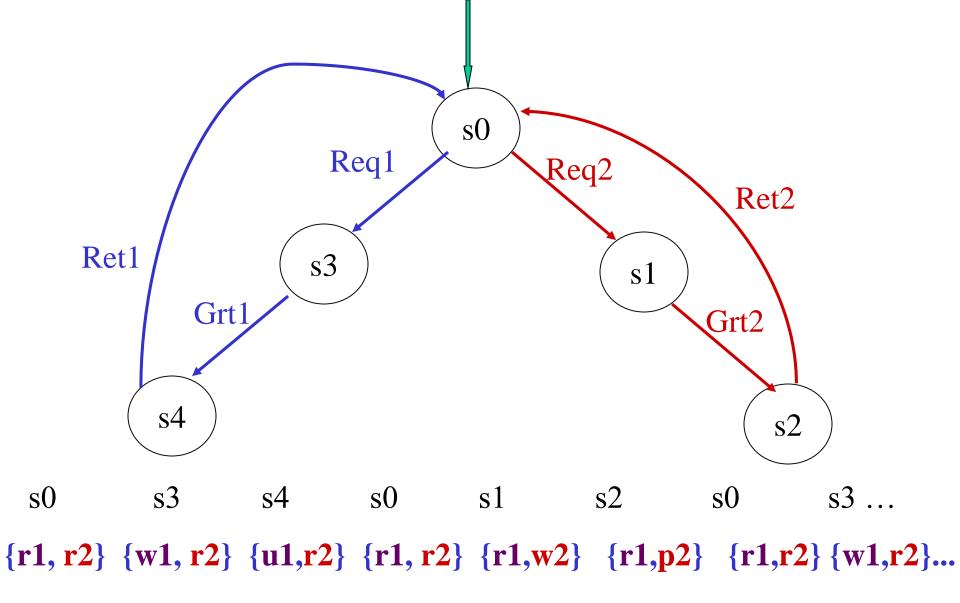
```
R1 – Process 1 is idle
W1– Process 1 is waiting
P1 – Process 1 is using the resource.
AP = { R1, W1, P1, R2, W2, P2}
```

The context

- Model a system to be verified as a Kripke structure:
 - Transition system $TS = (S, S_0, R)$
 - -AP = A finite set of atomic propositions.
 - Basic assertions about the system
 - $-L:S \longrightarrow 2^{AP}$ = The set of subsets of AP.
 - $-\mathbf{p} \in \mathbf{L}(\mathbf{s})$ ---- \mathbf{p} is true at \mathbf{s}
 - $p \notin L(s) ---- p$ is not true at s.
- $K = (S, S_0, R, AP, L)$ ---- Kripke structure







Assertions about a computation

s0 s3 s4 s0 s1 s2 s0 s3 ... {r1, r2} {w1, r2} {p1,r2} {r1, r2} {r1,w2} {r1,p2} {r1,r2} {w1,r2}...

- If at some stage Process 1 is **waiting** then at some later stage it is **printing** (i.e. using the resource).
- At no stage are both processes using the resource.
- If a process is waiting then it does so **until** it starts to use the resource.
- There is a stage at which both processes are waiting.

The Application

- $K = (S, S_0, R, AP, L)$
- Every computation (sequence of states) can be viewed as a sequence of subsets of AP.
- $s_0 s_1 s_2 \dots$ ---- $L(s_0) L(s_1) L(s_2) \dots$
- These **AP-computations** will be the models for the formulas of LTL.
- Verification:
 - Every AP-computation of K is a model of φ

Linear Time Temporal Logic (LTL)

• Syntax:

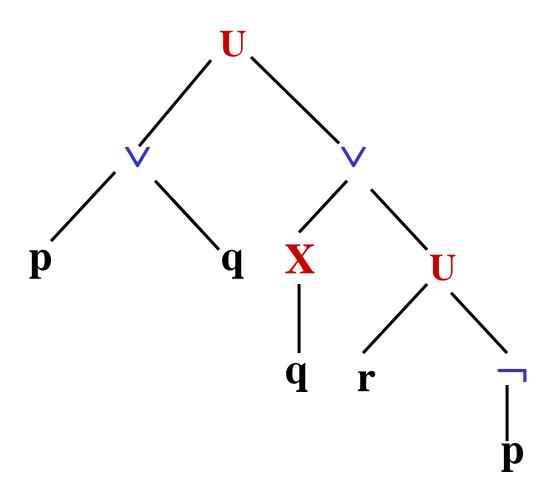
- $-\mathbf{AP} = \{\mathbf{p_0}, \mathbf{p_1}, \dots \mathbf{p_n}\}\$, a finite set of Atomic Propositions.
- Formulas :
 - Every **p**_i in AP is a *LTL formula*.
 - If φ is a formula then $\neg \varphi$ is a *LTL formula*.
 - If φ_1 and φ_2 are formulas then $(\varphi_1 \lor \varphi_2)$ is a *LTL* formula.
 - If φ is a formula then X φ, F φ and G φ are LTL formulae (Next, Eventually, Always).
 - If φ_1 and φ_2 are formulas then $(\varphi_1 \cup \varphi_2)$ is a *LTL* formula (Until).

Formulas

```
LTL ::= p \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \mathbf{X} \varphi \mid \mathbf{F} \varphi \mid \mathbf{G} \varphi \mid \varphi_1 \mathbf{U} \varphi_2
```

- \mathbf{p} ; $\mathbf{p} \vee \mathbf{q}$; $(\neg \mathbf{p} \vee \mathbf{q}) \vee \neg (\mathbf{r} \vee \mathbf{q})$
- Xq; $X(p \lor q)$; $X((\neg p \lor q) \lor X \neg (r \lor q))$
- $(p \lor q) U (X r \lor (\neg q U (X \neg p)))$

$(p \vee q) U (Xq \vee (r U \neg p))$



- AP = A finite set of atomic propositions.
- $\Sigma = 2^{AP}$ = The set of subsets of AP
- $AP = \{ p, q, r \}$
- $\Sigma = \{ \phi, \{p\}, \{q\}, \{r\}, \{p,q\}, \{p,r\}, \{q,r\}, \{p,q,r\} \}$

• Σ^{ω} = The set of *infinite sequences* over Σ .

```
• AP = {p, q, r} \Sigma = 2^{AP}

• \Sigma = \{\phi, \{p\}, \{q\}, ...., \{p, q, r\}\}

\sigma: { p,r} { q} \emptyset { p, q, r} { r}...

path: 0 \longrightarrow 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 ...
```

At stage 0 of σ, p and r are true but not q;
 at stage 2 of σ no member of AP is true....

- Σ^{ω} = The set of infinite sequences over Σ .
- $\sigma \in \Sigma^{\omega}$ --- A model
- $\sigma(i)$ ---- i-th position of σ
- {p} {q,r} Ø {r, q} {p, q, r}.....
 | | | | |
 0 1 2 3
- $\sigma(0) = \{p\}$ $\sigma(2) = \emptyset$ $\sigma(3) = ?$

- AP $\Sigma = 2^{AP}$
- Σ^{0} = The set of infinite sequences over Σ .
- $\sigma \in \Sigma^{\omega}$ --- A model
- $\sigma(i)$ ---- i-th position of σ
- φ, a formula.
- $\sigma(i) \models \varphi$
 - $-\sigma(i)$ satisfies φ
 - $-\phi$ is true in the i-th position of σ

LTL ::=
$$p \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid X \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 U \varphi_2$$

- $\sigma = \Gamma_0 \Gamma_1 \Gamma_2 \dots \Gamma_i \Gamma_{i+1} \dots$
- Each Γ_i is a subset of AP.
- $\sigma(i) \models p \text{ iff } p \in \Gamma_i$

LTL ::=
$$p$$
 | $\neg \varphi$ | $\varphi_1 \lor \varphi_2$ | $X \varphi$ | $F \varphi$ | $G \varphi$ | $\varphi_1 U \varphi_2$ | • $AP = \{p, q, r\}$ | • $\sigma = \{p,q\}$ | $\{r\}$ | $\emptyset \{q, r\}$ | $\{p, q, r\}$ | 0 | 1 | 2 | 3 | 4

- $\sigma(0)$ satisfies q
- σ(1) satisfies r
- $\sigma(2)$ does *not satisfy* q!

LTL ::=
$$p \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid X \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 U \varphi_2$$

 $\sigma = \Gamma_0 \Gamma_1 \Gamma_2 \dots \Gamma_i \Gamma_{i+1} \dots$

Each Γ_i is a subset of AP.

•
$$\sigma(i) \models \neg \phi \quad iff \quad \sigma(i) \not\models \phi$$

LTL ::=
$$p \mid \neg \phi \mid \phi_1 \lor \phi_2 \mid X \phi \mid F \phi \mid G \phi \mid \phi_1 U \phi_2$$

$$\sigma = \Gamma_0 \Gamma_1 \Gamma_2 \dots \Gamma_i \Gamma_{i+1} \dots$$

Each Γ_i is a subset of AP.

•
$$\sigma(\mathbf{i}) \models \varphi_1 \lor \varphi_2$$
 iff $\sigma(\mathbf{i}) \models \varphi_1 OR$
 $\sigma(\mathbf{i}) \models \varphi_2$

```
LTL ::= p \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid X \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 U \varphi_2

AP = {p, q, r}

\sigma = \{p, q\} \{r\} \varnothing \{q, r\} \{p, q, r\} \dots
0 1 2 3 4
```

- $\sigma(0)$ satisfies $\neg \mathbf{r}$; $\sigma(0)$ does not satisfy \mathbf{r}
- $\sigma(1)$ satisfies $p \vee r$; $\sigma(1)$ satisfies r
- $\sigma(2)$ satisfies $\neg(p \lor r)$?

```
LTL ::= p | \neg \varphi | \varphi_1 \lor \varphi_2 | X \varphi | F \varphi | G \varphi | \varphi_1 U \varphi_2

AP = \{p, q, r\}

\sigma = \{p, q\} \{r\} \varnothing \{q, r\} \{p, q, r\} ....

0 1 2 3 4
```

- $\sigma(2)$ satisfies $\neg(p \lor r)$? Yes!
- $\sigma(2)$ does *not satisfy* $p \vee r$

LTL ::=
$$p \mid \neg \phi \mid \phi_1 \lor \phi_2 \mid X \phi \mid F \phi \mid G \phi \mid \phi_1 U \phi_2$$
• $\sigma = \Gamma_0 \quad \Gamma_1 \quad \Gamma_2 \dots \quad \Gamma_i \quad \Gamma_{i+1} \dots \quad \Gamma_{i+1}$

```
LTL ::= p \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid X \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 U \varphi_2

AP = {p, q, r}

\sigma = \{p,q\} \quad \{r\} \quad \emptyset \quad \{q,r\} \quad \{p,q,r\} \dots
0 1 2 3 4
```

- $\sigma(2)$ satisfies X r; $\sigma(3)$ satisfies r
- $\sigma(0)$ satisfies $X(p \vee r)$; $\sigma(1)$ satisfies r
- $\sigma(1)$ does not satisfy $X(p \vee r)$
 - $-\sigma(2)$ does not satisfy $p \vee r$

LTL ::=
$$p \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid X \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 U \varphi_2$$

AP = {p, q, r}

$$\sigma = \{p,q\} \quad \{r\} \quad \emptyset \quad \{q,r\} \quad \{p,q,r\} \dots$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4$$
• $\sigma(1)$ satisfies $X(X \neg p)$ iff

$$-\sigma(2)$$
 satisfies $X \neg p$ iff

$$-\sigma(3)$$
 satisfies $\neg p$ iff

$$-\sigma(3)$$
 does not satisfy p

LTL ::=
$$p \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid X \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 U \varphi_2$$

• $\sigma = \Gamma_0 \quad \Gamma_1 \quad \Gamma_2 \quad \Gamma_i \quad \Gamma_{j-1} \quad \Gamma_j \quad$

LTL ::=
$$p \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid X \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 U \varphi_2$$

AP = {p, q, r}

$$\sigma = \{p,q\} \quad \{r\} \quad \emptyset \quad \{q,r\} \quad \{p,q,r\} \dots$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4$$
• $\sigma(0)$ satisfies $F(X p)$ this is true since

$$-\sigma(3)$$
 satisfies $X p$ iff

$$-\sigma(4)$$
 satisfies p is true since

LTL ::=
$$p \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid X \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 U \varphi_2$$

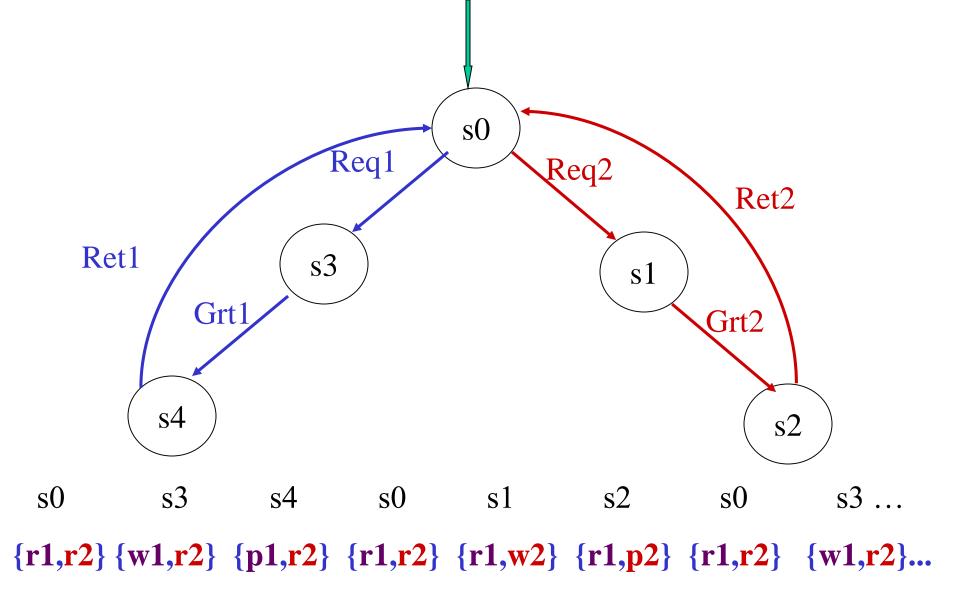
$$\sigma = \Gamma_0 \quad \Gamma_1 \dots \quad \Gamma_i \quad \Gamma_{i+1} \dots \quad \Gamma_{k-1} \quad \Gamma_k \dots$$

$$\varphi_1 \dots \quad \varphi_1 \quad \dots \quad \varphi_1 \quad \varphi_2$$

- $\sigma(i) \models \varphi_1 \cup \varphi_2$ iff there exists $k \ge i$ s.t.
 - $-\sigma(\mathbf{k}) \models \varphi_2$
 - $-\sigma(\mathbf{j}) \models \phi_1$ for every $\mathbf{i} \leq \mathbf{j} < \mathbf{k}$

LTL ::=
$$p \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid X \varphi \mid F \varphi \mid G \varphi \mid \varphi_1 U \varphi_2$$

- k could be arbitrarily greater than i.
- k = i is allowed and there is **no** $i \le j < k$
- $\sigma(i) \models \phi_1 \cup \phi_2$ iff there exists $k \ge i$ s.t.
 - $-\sigma(\mathbf{k}) \models \varphi_2$
 - $-\sigma(\mathbf{j}) \models \phi_1$ for every $\mathbf{i} \leq \mathbf{j} < \mathbf{k}$



An Example

 $AP = \{r1, w1, p1, r2, w2, p2\}$

- $\sigma(1)$ satisfies (r2 U w2);
 - \bullet $\sigma(4)$ satisfies w2 and
 - \bullet $\sigma(1)$, $\sigma(2)$, $\sigma(3)$ satisfy r2.

An Example

```
AP = \{r1, w1, p1, r2, w2, p2\}
```

```
{r1,r2} {w1,r2} {p1,r2} {r1,r2} {r1,w2} {r1,p2} {r1,r2} {w1,r2}...

0 1 2 3 4 5 6 7
```

- $\sigma(1)$ does not satisfy (r2 U p2);
 - \bullet $\sigma(5)$ satisfies p2 and
 - \bullet $\sigma(1)$, $\sigma(2)$, $\sigma(3)$ satisfy r2.
 - but $\sigma(4)$ does *not satisfy* r2!

An Example

```
AP = \{r1, w1, p1, r2, w2, p2\}
```

```
{r1,r2} {w1,r2} {p1,r2} {r1,r2} {r1,w2} {r1,p2} {r1,r2} {w1,r2}...

0 1 2 3 4 5 6 7
```

- $\sigma(1)$ does satisfy ((r2 \vee w2) U p2);
 - $-\sigma(5)$ satisfies p2 and
 - $\bullet \sigma(1)$, $\sigma(2)$, $\sigma(3)$ satisfy r2, hence also (r2 \vee w2).
 - $\bullet \sigma(4)$ satisfies w2, hence also $(r2 \lor w2)$!

Models

- AP $\Sigma^{AP} = 2$
- Σ^{ω} = The set of infinite sequences over Σ .
- $\sigma \in \Sigma^{\omega}$
- φ an LTL formula.
- A path σ is a *model* of φ ($\sigma \models \varphi$) *iff* $-\sigma(0) \models \varphi$

Validity in LTL

- AP $\Sigma^{AP} = 2$
- Σ^{0} = The set of infinite sequences over Σ .
- $\sigma \in \Sigma^{\omega}$
- φ an LTL formula.
- ϕ is LTL-valid ($\models \phi$) iff for every $\sigma \in \Sigma^{(0)}$ $-\sigma \models \phi$

Basic LTL Language

We will use the reduced LTL language

LTL ::=
$$p \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid X \varphi \mid \varphi_1 U \varphi_2$$

• $\varphi_1 \land \varphi_2 \longrightarrow \neg (\neg \varphi_1 \lor \neg \varphi_2)$ (and)
• $\varphi_1 \supset \varphi_2 \longrightarrow \neg \varphi_1 \lor \varphi_2$ (implies)

•
$$\varphi_1 \equiv \varphi_2$$
 ---- $(\varphi_1 \supset \varphi_2) \land (\varphi_2 \supset \varphi_1)$ (iff)

•
$$AP = \{p_1, p_2, ..., p_n\}$$

•
$$T - p_1 \vee p_1$$
 (true)

Fact : In every model σ, at every i,
 −σ(i) ⊢ T

- LTL ::= $p \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid X \varphi \mid \varphi_1 U \varphi_2$
- $\mathbf{F} \varphi \equiv (\mathsf{T} \mathbf{U} \varphi)$ (future; diamond: \diamondsuit)
- We gave the following semantics :
 - $-\sigma(i) \models F\varphi$ iff there exists $k \ge i$ such that $\sigma(k) \models \varphi$.

We gave the following semantics :

```
-\sigma(i) \models F\varphi iff there exists k \ge i such that \sigma(k) \models \varphi.
```

```
Proof of \mathbf{F}\varphi \equiv (\mathsf{T} \, \mathsf{U} \, \varphi)
\sigma(\mathbf{i}) \models (\mathsf{T} \, \mathsf{U} \, \varphi) \quad iff
\exists \, j \geq i, \, \sigma(\mathbf{j}) \models \varphi \quad and \, \forall i \leq k < j, \, \sigma(\mathbf{k}) \models \mathsf{T} \quad iff
\exists \, j \geq i, \, \sigma(\mathbf{j}) \models \varphi \quad iff
\sigma(\mathbf{i}) \models \mathsf{F}\varphi
```

- LTL ::= $p \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid X \varphi \mid \varphi_1 U \varphi_2$
- $\mathbf{F} \mathbf{\phi} \equiv (\mathsf{T} \mathbf{U} \mathbf{\phi})$
- $\mathbf{G}\mathbf{\phi} \equiv \neg \mathbf{F} \neg \mathbf{\phi}$ (invariant; box: \square)

We gave the following semantics :

$$-\sigma(i) \models G \varphi \quad iff \quad for every k \ge i$$
,
 $\sigma(k) \models \varphi$.

• LTL ::=
$$p \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid X \varphi \mid \varphi_1 U \varphi_2$$

•
$$(\psi R \phi) \equiv \neg (\neg \psi U \neg \phi)$$
 (Releases)

• $\mathbf{G} \mathbf{\varphi} \equiv (\mathbf{\perp} \mathbf{R} \mathbf{\varphi})$

$$-\sigma(i) \models (\psi R \varphi) \text{ iff}$$

$$\text{for each } k \geq i \text{ (if for each } i \leq j < k$$

$$\sigma(j) \not\models \psi \text{ then } \sigma(k) \models \varphi)$$

• LTL ::=
$$p \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid X \varphi \mid \varphi_1 U \varphi_2$$

•
$$(\psi R \phi) \equiv \neg (\neg \psi U \neg \phi)$$
 (Releases)

• $\mathbf{G} \mathbf{\varphi} \equiv (\perp \mathbf{R} \mathbf{\varphi})$

$$-\sigma(i) \models (\psi R \varphi) \text{ iff}$$

$$\text{for each } k \geq i \text{ (for some } i \leq j < k$$

$$\sigma(j) \models \psi \text{ or } \sigma(k) \models \varphi)$$

• LTL ::=
$$p \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid X \varphi \mid \varphi_1 U \varphi_2$$

• $(\psi \mathbf{W} \phi)$ (Unless)

Give the semantics according to the following intuition:

• (ψ W φ): if ψ must be true unless φ occurs (notice that φ may never occur).

Show that: $(\psi \mathbf{W} \phi) \equiv \mathbf{G} \psi \vee (\psi \mathbf{U} \phi)$

Show that: $\neg(\psi U \phi) \equiv ((\neg \phi \land \psi) W (\neg \psi \land \neg \phi))$

- LTL ::= $p \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \mathbf{X} \varphi \mid \varphi_1 \lor \varphi_2$
- $(\psi \mathbf{B} \phi)$ (Before)

Give the semantics according to the following intuition:

• (ψ **B** ϕ): if ϕ ever occurs, then ψ must occur before ϕ .

Show that: $(\psi \mathbf{B} \varphi) \equiv \neg (\neg \psi \mathbf{U} \varphi)$

Some important validities

•
$$(\psi U \varphi) \equiv \varphi \lor (\psi \land X (\psi U \varphi))$$

•
$$(\psi R \phi) \equiv \phi \land (\psi \lor X (\psi R \phi)) \equiv$$

 $\equiv (\phi \land \psi) \lor (\phi \land X (\psi R \phi))$

- $\mathbf{F}\mathbf{\phi} \equiv \mathbf{\phi} \vee \mathbf{X} \mathbf{F} \mathbf{\phi}$
- $\mathbf{G}\mathbf{\phi} \equiv \mathbf{\phi} \wedge \mathbf{X} \mathbf{G} \mathbf{\phi}$

LTL: Some examples

 Safety: "it never happens that both A and B are printing at the same time"

$$G(\neg (P_A \land P_B))$$

 Liveness: "whenever A is waiting, it will eventually print in the future"

$$G(W_A \supset F P_A)$$

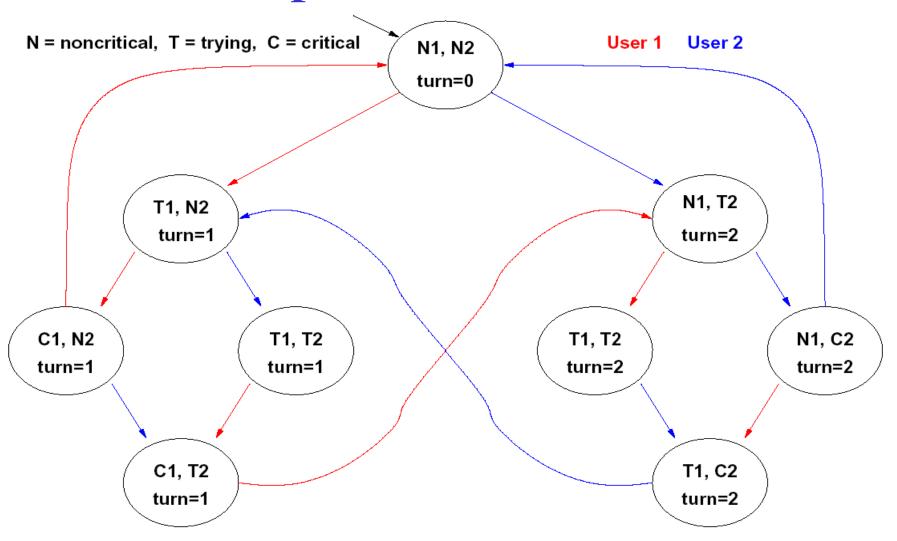
Fairness: "A is infinitely often idle"

$$GFR_A$$

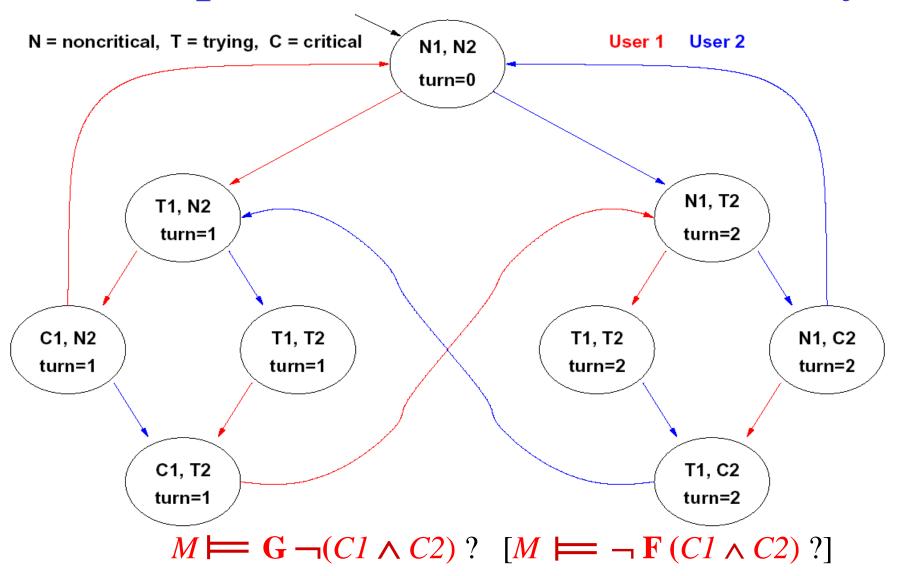
 Strong fairness: "if A is infinitely often waiting, then it will infinitely often printing"

$$\mathsf{GF} \; \mathsf{W}_{\mathsf{A}} \supset \mathsf{GF} \; \mathsf{P}_{\mathsf{A}}$$

Example: mutual esclusion

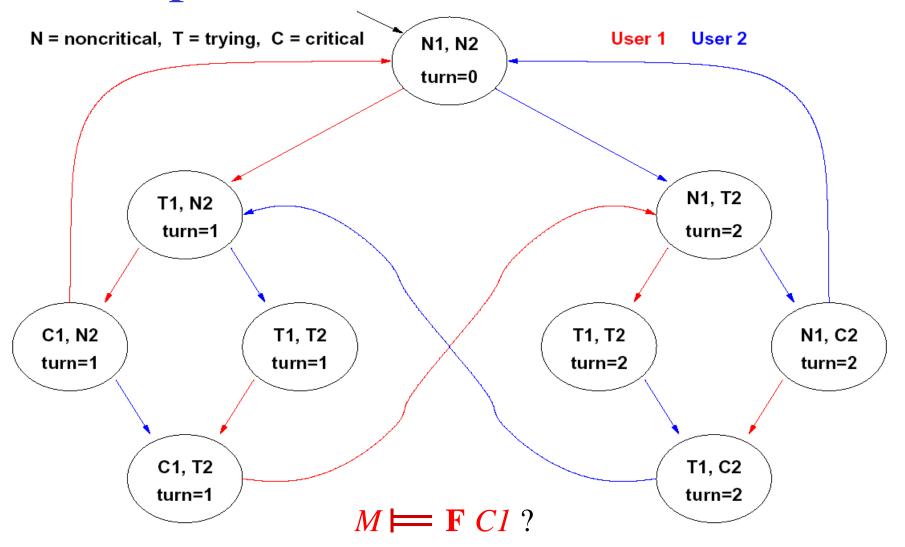


Example: mutual esclusion (safety)



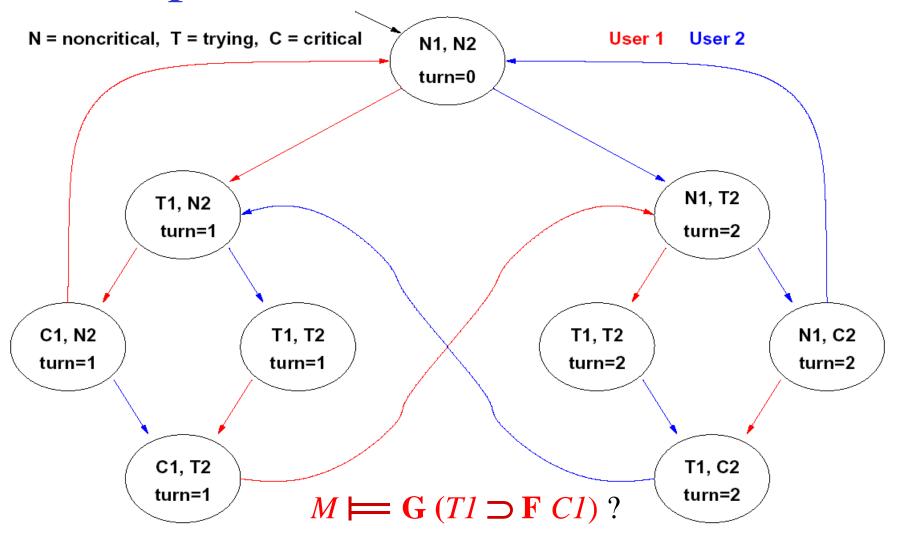
YES: There is no reachable state in which both C1 and C2 hold!

Example: mutual exclusion (liveness)



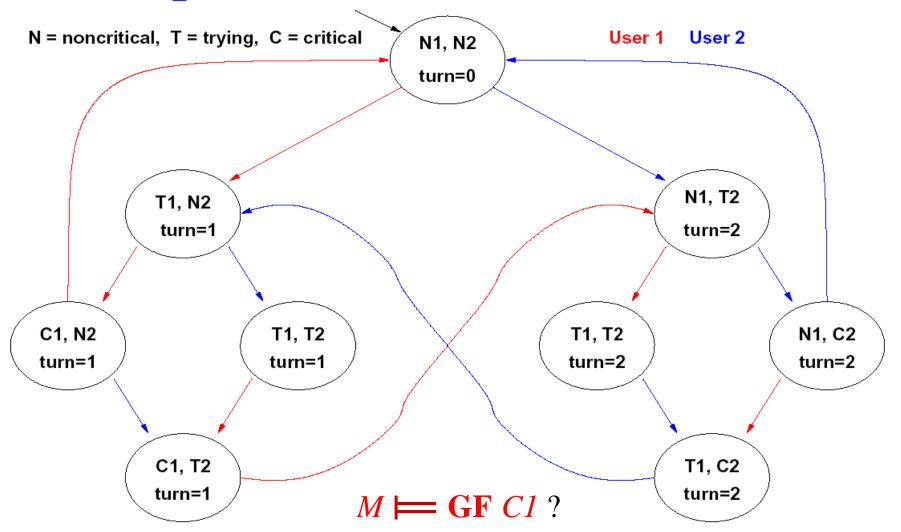
NO: there is an infinite (cyclic) solution in which C1 never holds!

Example: mutual exclusion (liveness)



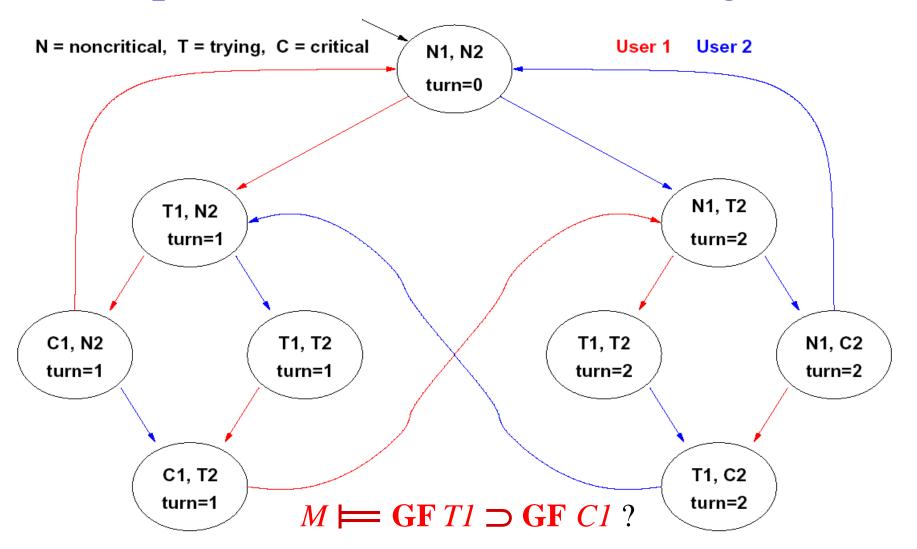
YES: every path starting from each state where *T1* holds passes through a state where *C1* holds!

Example: mutual exclusion (fairness)



NO: e.g., in the initial state, there is an infinite (cyclic) solution in which *C1* never holds!

Example: mutual exclusion (strong fairness)



YES: every path which visits *T1* infinitely often also visits *C1* infinitely often (see liveness prop. in previous example)!

Model Checking

- $K = (S, S_0, R, AP, L)$ (the system)
- φ, an LTL formula. (the property)
- $\mathbf{K} \models \boldsymbol{\varphi}$ iff every AP-computation of \mathbf{K} is a model of $\boldsymbol{\varphi}$.
- Determining this is the *model checking problem*.
- A solution to this problem can be automated!