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Tecniche di Specifica e di 

Verifica

Linear Time Temporal Logic
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Temporal Logics: The context

• Kripke Structures model systems.

• Temporal logics model the dynamic
behavioral properties of systems.

– Linear Time

– Branching Time

• Model checking can be used to determine if
a system has the desired behavioral
property.
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Properties of computations: local 

properties
Refer to immediate successors or predecessors of the current state.

Examples:

Some/every immediate successor state satises the property φ:

• The system may enable the process i at the next state.

• If the light was red at the previous state and is orange now, it must
turn green at the next state.

Some/every immediate predecessor satises the property φ (usually
expressed as conditionals):

• If the process i is currently enabled, the scheduler must have disabled
the process j at the previous state.

• If train is entering the tunnel now, the semaphore must have been
switched red on the other end at the previous moment.

Local properties can be iterated a fixed number of times, but not
indefinitely.
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Universal properties of computations: 

invariance, safety
Invariance properties are properties that must always hold along the

computation, while safety properties describe events that must never
happen along the computation.

Invariance:

• The greatest common divisor of X and Y remains the same throughout
the execution.

Safety:

• No deadlock will ever occur.

• At least one process will be enabled at any moment of time.

• Not more than one process will ever be in its critical section (e.g., not
more than one train will ever be in the tunnel) at the same time.

• A resource will never be available to two or more processes
simultaneously.

Also, partial correctness properties:

• If a pre-condition P holds at all initial states, then a post-condition Q
will/must hold at all accepting (terminating) states.
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Existential properties of computations: 

eventualities, liveness
Eventuality, liveness properties: those that will (must) happen sometime

during the computation. 

Examples:

• The execution of the program will terminate.

• If the train has entered the tunnel, it will eventually leave it.

• Once a printing job is activated, eventually it will be completed.

• If a message is sent, eventually it will be delivered.

Also, total correctness properties:

• If a pre-condition P holds at the initial state, then the computation will 

reach an accepting (terminating) state, where the post-condition Q will 

hold.
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Properties of computations: fairness, 

precedence

Fairness properties: All processes will be treated “fairly” by the
operating system (the scheduler, etc.)

Examples:

• Weak fairness: Every continuous request is eventually
granted.

• Strong fairness: If a request is repeated infinitely often then
it is eventually granted.

• Impartiality: Every process is scheduled infinitely often.

• Precedence: The event α will occur before the event β, which
may or may not occur at all.

– If the train has entered the tunnel, it will eventually leave it
(before any other train has entered it).
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Reachability properties in transition 

systems

• All important properties of computations can be expressed in

terms of reachability or non-reachability of states with specic

atomic properties.

• For instance, eventuality is just reachability of a “good state”,

while safety is non-reachability of “bad states”, fairness

corresponds to repeated reachability, etc.

• More generally, we may interested in reachability of a state or a

set of states along some or all paths starting from a given state

(or, set of states); this is called forward reachability.

• Likewise we may be interested in the states from which a state

(or a set of states) is reachable; this is calles backward

reachability.
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Linear time temporal logics.

• LTL (Linear Time Temporal Logic)

– Syntax

– Semantics

– The Model Checking Problem.

– Its solution.
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The Application

• Model a system to be verified as a Kripke 

structure:

– Transition System TS = (S, S0, R)

– AP = A finite set of atomic propositions.

▪ Basic assertions about the system

– L : S  2AP =  The set of subsets of  AP.

– p  L(s) ---- p is true at s.

– p  L(s) ---- p is not true at s.

• K = (S, S0, R, AP, L) ---- Kripke Structure
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The Application

• The computations of the Kripke structure K
will be the models for LTL formulas.

• The property to be verified is captured as an 
LTL formula .

• The modeled system K has the property 
iff every computation of  K is a model of .

• We need to verify (model check) whether:

– K        
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An Example

Arbiter

Req-1

Grt-1

Req-2

Grt-2

Resource

PR1

PR2
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A set of Atomic Propositions

Arbiter

Req-1

Grt-1

Req-2

Grt-2

Resource

PR1

PR2

R1 – Process 1 is idle

W1– Process 1 is waiting

P1 – Process 1 is using the resource.

AP = { R1, W1, P1, R2, W2, P2}
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The context

• Model a system to be verified as a Kripke 

structure:

– Transition system TS = (S, S0, R)

– AP = A finite set of atomic propositions.

▪ Basic assertions about the system

– L : S             2AP =  The set of subsets of  AP.

– p  L(s) ---- p is true at s

– p  L(s) ---- p is not true at s.

• K = (S, S0, R, AP, L) ---- Kripke structure
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s0

s3

s5s4

Req1

Grt1

Grt1
Grt2

Req2 Req1

Req2 Req1

Ret1

Ret2Ret1

L(so) = {r1, r2}

L(s2) ={r1, p2}
L(s5) = ?

s1

s2

Req2

Grt2

Ret2
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s0

s3 s1

s5s4 s2

Req1 Req2

Grt1 Grt2

Grt1
Grt2

Req2 Req1

Req2 Req1

Ret1

Ret2Ret1

L(so) = {r1, r2}

L(s2) ={r1, p2}

L(s5) = {w1,w2}

Ret2
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s0

s3 s1

s4 s2

Req1

Grt1

Ret1

s0            s3          s4          s0          s1           s2           s0           s3 …

{r1, r2}  {w1, r2}  {u1,r2}  {r1, r2}  {r1,w2}   {r1,p2}   {r1,r2} {w1,r2}...

Req2

Grt2

Ret2
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s0            s3          s4          s0          s1              s2           s0           s3 …

{r1, r2}  {w1, r2}  {p1,r2}  {r1, r2}  {r1,w2}   {r1,p2}   {r1,r2}   {w1,r2}...

Assertions about a computation

• If at some stage Process 1 is waiting then at some later 

stage it is printing (i.e. using the resource).

• At no stage are both processes using the resource.

• If a process is waiting then it does so until it starts to use 

the resource.

• There is a stage at which both processes are  waiting.
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The Application

• K = (S, S0, R, AP, L)

• Every computation (sequence of states) can 
be viewed as a sequence of subsets of  AP.

• s0 s1 s2 …. ---- L(s0) L(s1) L(s2) ….

• These AP-computations will be the models 
for the formulas of LTL.

• Verification :

– Every AP-computation of K is a model of 
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Linear Time Temporal Logic 

(LTL)
• Syntax :

– AP = {p0, p1, …pn}, a finite set of Atomic Propositions.

• Formulas :

– Every pi in AP is a LTL formula.

– If  is a formula then   is a LTL formula.

– If 1 and 2 are formulas then (1 2) is a LTL
formula.

– If  is a formula then X , F  and G  are LTL
formulae (Next, Eventually, Always).

– If 1 and 2 are formulas then (1 U 2) is a LTL
formula (Until).
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Formulas

LTL ::= p     1  2 X   F   G   1 U 2

• p    ;  p  q   ;  ( p  q)   (r  q) 

• X q  ;  X(p  q)  ;  X ((p  q)  X(r  q))

• (p  q) U (X r  (q U (X p) ) )
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(p  q) U (X q  (r U p))

q r 

U

 

p q X U

p
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Semantics

• AP = A finite set of atomic propositions.

•  = 2AP = The set of subsets of AP

• AP = { p, q, r }

•  = { , {p}, {q}, {r}, {p,q}, {p,r}, {q,r}, {p,q,r} }

•  = The set of infinite sequences over .
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Semantics

• AP = {p, q, r}    = 2AP

•  = {, { p }, { q }, ….,{ p, q, r } }

 :       { p,r }  { q }   { p, q, r }  { r }…

path:       0         1     2          3          4  …

• At stage 0 of , p and r are true but not q;  

at stage 2 of  no member of AP is true….
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Semantics

•  = The set of infinite sequences over .

•    --- A model 

• (i) ---- i-th position of 

• {p}  {q,r}  {r, q}   {p, q, r}…………..

• 0        1      2       3               4             …………

• (0) = {p}   (2) =  (3) = ?
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Semantics

• AP      = 2AP

•  = The set of infinite sequences over .

•    --- A model 

• (i) ---- i-th position of 

• , a formula.

• (i)     

– (i) satisfies 

–  is true in the i-th position of 
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Semantics

LTL ::= p     1  2 X   F   G   1 U 2

•  =  0 1 2 ….. i i+1 ……….. 

• Each  j is a subset of AP.

• (i)     p  iff  p  i
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LTL ::= p     1  2 X   F   G   1 U 2

• AP = {p, q, r}

•  = {p,q}    {r}   {q, r}  {p, q, r} …..

0         1     2      3           4

• (0) satisfies q

• (1) satisfies r

• (2) does not satisfy q !

Semantics
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LTL ::= p     1  2 X   F   G   1 U 2

 =     0 1 2 ….. i i+1 ……….. 

Each  j is a subset of AP.

• (i)       iff (i)     

Semantics
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LTL ::= p     1  2 X   F   G   1 U 2

 =     0 1 2 ….. i i+1 ……….. 

Each  j is a subset of AP.

• (i)      1  2 iff    (i)     1 OR

(i)     2

Semantics
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LTL ::= p     1  2 X   F   G   1 U 2

AP = {p, q, r}

 = {p, q}  {r}  {q, r}  {p, q, r} ….

0        1   2     3           4

• (0) satisfies r ; (0) does not satisfy r

• (1) satisfies p  r ; (1) satisfies r

• (2) satisfies (p  r) ?

Semantics
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LTL ::= p     1  2 X   F   G   1 U 2

AP = {p, q, r}

 = {p, q}  {r}   {q, r}  {p, q, r} …..

0        1    2     3           4

• (2) satisfies (p  r ) ? Yes!

• (2) does not satisfy p  r

Semantics
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LTL ::= p     1  2 X   F   G   1 U 2

•  =  0 1 2 ….. i i+1 ………..

X 

• (i)     X  iff       (i+1)     

Semantics
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LTL ::= p     1  2 X   F   G   1 U 2

AP = {p, q, r}

 = {p,q}   {r}   {q,r}    {p,q,r} …..

0       1     2      3           4

• (2) satisfies X r ; (3) satisfies r

• (0) satisfies X(p  r) ; (1) satisfies r

• (1) does not satisfy X(p  r)

– (2) does not satisfy p  r

Semantics
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LTL ::= p     1  2 X   F   G   1 U 2

AP = {p, q, r}

 = {p,q}   {r}   {q,r}    {p,q,r} …..

0       1     2      3           4

• (1) satisfies X(X  p) iff

– (2) satisfies X  p iff

– (3) satisfies  p iff

– (3) does not satisfy  p

Semantics
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Semantics

LTL ::= p     1  2 X   F   G   1 U 2

•  =  0 1 2 ….. i ….. j-1 j ……..

F 

• (i)     F  iff       (j)      for some ji
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Semantics

LTL ::= p     1  2 X   F   G   1 U 2

AP = {p, q, r}

 = {p,q}   {r}   {q,r}    {p,q,r} …..

0       1     2      3           4

• (0) satisfies F(X p) this is true since

– (3) satisfies X p iff

– (4) satisfies p         is true since
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Semantics

LTL ::= p     1  2 X   F   G   1 U 2

•  =  0 1 2 ….. i i+1 ……….. j ……

G  …  …..  ……

• (i)     G  iff       (j)      for all ji



43

LTL ::= p     1  2 X   F   G   1 U 2

 = 0 1 …  i i+1 …. k-1 k …

1…  1     … 1 2

• (i)     1 U 2 iff    there exists k  i s.t.

– (k)     2

– (j) 1 for every i  j  k

Semantics
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LTL ::= p     1  2 X   F   G   1 U 2

• k could be arbitrarily greater than i.

• k = i is allowed and there is no i  j  k

• (i)     1 U 2 iff    there exists k  i s.t.

– (k)     2

– (j) 1 for every i  j  k

Semantics
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s0

s3 s1

s4 s2

Req1

Grt1

Ret1

Req2

Grt2

Ret2

s0            s3          s4          s0          s1           s2           s0           s3 …

{r1,r2} {w1,r2}  {p1,r2}  {r1,r2}  {r1,w2}  {r1,p2}  {r1,r2}   {w1,r2}...
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{r1,r2}  {w1,r2}  {p1,r2}  {r1,r2}  {r1,w2}  {r1,p2}  {r1,r2}  {w1,r2}...

0            1             2           3            4              5            6             7

An Example

AP = {r1, w1, p1, r2, w2, p2}

• (1) satisfies (r2 U w2) ; 

▪ (4) satisfies w2 and 

▪ (1), (2), (3) satisfy r2.
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An Example

• (1) does not satisfy (r2 U p2) ; 

▪ (5) satisfies p2 and

▪ (1), (2), (3) satisfy r2.

▪ but (4) does not satisfy r2 !

{r1,r2}  {w1,r2}  {p1,r2}  {r1,r2}  {r1,w2}  {r1,p2}  {r1,r2}  {w1,r2}...

0            1             2           3            4              5            6             7

AP = {r1, w1, p1, r2, w2, p2}
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An Example

• (1) does satisfy ((r2  w2) U p2) ; 

▪(5) satisfies p2 and 

▪(1), (2), (3) satisfy r2, hence also (r2  w2).

▪(4) satisfies w2, hence also (r2  w2) !

{r1,r2}  {w1,r2}  {p1,r2}  {r1,r2}  {r1,w2}  {r1,p2}  {r1,r2}  {w1,r2}...

0            1             2           3            4              5            6             7

AP = {r1, w1, p1, r2, w2, p2}
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Models

• AP   AP = 2 

•  = The set of infinite sequences over .

•   

•  an LTL formula.

• A path  is a model of  (  ) iff

– (0)       
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Validity in LTL

• AP   AP = 2 

•  = The set of infinite sequences over .

•   

•  an LTL formula.

•  is LTL-valid (  ) iff for every   

–  
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Basic LTL Language

We will use the reduced LTL language

LTL ::= p    1  2 X   1 U 2

• 1  2 ---  (1 2)  (and) 

• 1  2 --- 1 2 (implies)

• 1  2 ---- (1  2)  (2  1) (iff)

• AP = {p1, p2, …,pn}

• T ---- p1 p1 (true)

• Fact : In every model , at every i,

– (i) T
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• LTL ::= p    1  2 X   1 U 2

• F  (T U ) (future ; diamond: )

• We gave the following semantics : 

– (i) F iff there exists k  i such 

that (k) .

Derived Operators
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• We gave the following semantics : 

– (i) F iff there exists k  i such 

that (k) .

Proof of  F  (T U )

(i)     (T U )    iff

 j  i, (j)     and i  k < j, (k)    T   iff

 j  i, (j)     iff

(i) F

Derived Operators
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• LTL ::= p    1  2 X   1 U 2

• F  (T U ) 

• G  F  (invariant; box:)

• We gave the following semantics : 

– (i) G  iff  for every k  i ,

(k)  .

Derived Operators
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• LTL ::= p    1  2 X   1 U 2

• (y R )   (y U ) (Releases)

• G   ( R )

– (i) (y R ) iff    

for each k  i (if for each i  j < k

(j) y then (k) ) 

Derived Operators
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• LTL ::= p    1  2 X   1 U 2

• (y R )   (y U ) (Releases)

• G   ( R )

– (i) (y R ) iff    

for each k  i (for some i  j < k

(j) y or (k) ) 

Derived Operators
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• LTL ::= p    1  2 X   1 U 2

• (y W )      (Unless)

Derived Operators

Give the semantics according to the following

intuition:

• (y W ): if y must be true unless  occurs (notice

that  may never occur).

Show that: (y W )  G y  (y U )

Show that: (y U )  ((   y) W ( y   ))
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• LTL ::= p    1  2 X   1 U 2

• (y B ) (Before)

Give the semantics according to the following 

intuition:

• (y B ): if  ever occurs, then y must occur

before .

Show that: (y B )   ( y U  )

Derived Operators
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Some important validities

 (y U )    ( y  X (y U ) )

 (y R )    ( y  X (y R ) ) 

 (  y)  (   X (y R ) )

 F    X F 

 G    X G 
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LTL: Some examples

• Safety: “it never happens that both A and B are 

printing at the same time”

G( (PA  PB))

• Liveness: “whenever A is waiting, it will eventually 

print in the future”

G(WA  F PA)

• Fairness: “A is infinitely often idle”

GF RA

• Strong fairness: “if A is infinitely often waiting, then 

it will infinitely often printing”

GF WA  GF PA
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Example: mutual esclusion
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Example: mutual esclusion (safety)

M G (C1  C2) ?   [M  F (C1  C2) ?]

YES: There is no reachable state in which both C1 and C2 hold!
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Example: mutual exclusion (liveness)

M F C1 ?

NO: there is an infinite (cyclic) solution in which C1 never holds!
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Example: mutual exclusion (liveness)

M G (T1  F C1) ?

YES: every path starting from each state where T1 holds

passes through a state where C1 holds!
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Example: mutual exclusion (fairness)

M GF C1 ?

NO: e.g., in the initial state, there is an infinite (cyclic) solution 

in which C1 never holds!
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Example: mutual exclusion (strong fairness)

M GF T1  GF C1 ?

YES: every path which visits T1 infinitely often also visits C1

infinitely often (see liveness prop. in previous example)!
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Model Checking

• K = (S, S0, R, AP, L) (the system)

• , an LTL formula. (the property)

• K  iff every AP-computation of K is a

model of .

• Determining this is the model checking

problem.

• A solution to this problem can be automated!


