
1

Tecniche di Specifica e di 

Verifica

Linear Time Temporal Logic



2

Temporal Logics: The context

• Kripke Structures model systems.

• Temporal logics model the dynamic
behavioral properties of systems.

– Linear Time

– Branching Time

• Model checking can be used to determine if
a system has the desired behavioral
property.



3

Properties of computations: local 

properties
Refer to immediate successors or predecessors of the current state.

Examples:

Some/every immediate successor state satises the property φ:

• The system may enable the process i at the next state.

• If the light was red at the previous state and is orange now, it must
turn green at the next state.

Some/every immediate predecessor satises the property φ (usually
expressed as conditionals):

• If the process i is currently enabled, the scheduler must have disabled
the process j at the previous state.

• If train is entering the tunnel now, the semaphore must have been
switched red on the other end at the previous moment.

Local properties can be iterated a fixed number of times, but not
indefinitely.



4

Universal properties of computations: 

invariance, safety
Invariance properties are properties that must always hold along the

computation, while safety properties describe events that must never
happen along the computation.

Invariance:

• The greatest common divisor of X and Y remains the same throughout
the execution.

Safety:

• No deadlock will ever occur.

• At least one process will be enabled at any moment of time.

• Not more than one process will ever be in its critical section (e.g., not
more than one train will ever be in the tunnel) at the same time.

• A resource will never be available to two or more processes
simultaneously.

Also, partial correctness properties:

• If a pre-condition P holds at all initial states, then a post-condition Q
will/must hold at all accepting (terminating) states.



5

Existential properties of computations: 

eventualities, liveness
Eventuality, liveness properties: those that will (must) happen sometime

during the computation. 

Examples:

• The execution of the program will terminate.

• If the train has entered the tunnel, it will eventually leave it.

• Once a printing job is activated, eventually it will be completed.

• If a message is sent, eventually it will be delivered.

Also, total correctness properties:

• If a pre-condition P holds at the initial state, then the computation will 

reach an accepting (terminating) state, where the post-condition Q will 

hold.



6

Properties of computations: fairness, 

precedence

Fairness properties: All processes will be treated “fairly” by the
operating system (the scheduler, etc.)

Examples:

• Weak fairness: Every continuous request is eventually
granted.

• Strong fairness: If a request is repeated infinitely often then
it is eventually granted.

• Impartiality: Every process is scheduled infinitely often.

• Precedence: The event α will occur before the event β, which
may or may not occur at all.

– If the train has entered the tunnel, it will eventually leave it
(before any other train has entered it).



7

Reachability properties in transition 

systems

• All important properties of computations can be expressed in

terms of reachability or non-reachability of states with specic

atomic properties.

• For instance, eventuality is just reachability of a “good state”,

while safety is non-reachability of “bad states”, fairness

corresponds to repeated reachability, etc.

• More generally, we may interested in reachability of a state or a

set of states along some or all paths starting from a given state

(or, set of states); this is called forward reachability.

• Likewise we may be interested in the states from which a state

(or a set of states) is reachable; this is calles backward

reachability.



8

Linear time temporal logics.

• LTL (Linear Time Temporal Logic)

– Syntax

– Semantics

– The Model Checking Problem.

– Its solution.



9

The Application

• Model a system to be verified as a Kripke 

structure:

– Transition System TS = (S, S0, R)

– AP = A finite set of atomic propositions.

▪ Basic assertions about the system

– L : S  2AP =  The set of subsets of  AP.

– p  L(s) ---- p is true at s.

– p  L(s) ---- p is not true at s.

• K = (S, S0, R, AP, L) ---- Kripke Structure



10

The Application

• The computations of the Kripke structure K
will be the models for LTL formulas.

• The property to be verified is captured as an 
LTL formula .

• The modeled system K has the property 
iff every computation of  K is a model of .

• We need to verify (model check) whether:

– K        



11

An Example

Arbiter

Req-1

Grt-1

Req-2

Grt-2

Resource

PR1

PR2



12

Req1

Grt1

Req2 Req1

Ret1

Grt2

Req2

Ret2

Grt1

Req1

Ret1

Req2

Grt2

Ret2



13

Req1

Grt1

Ret1

Req2

Grt2

Ret2



14

Req1

Grt1

Ret1

Req2

Grt2

Ret2

Grt2

Req2

Ret2



15

Req1

Grt1

Grt1

Ret1

Ret1

Req2

Grt2

Ret2

Grt2

Req2

Ret2

Req1



16

Req1

Grt1

Grt1

Req1

Req2 Req1

Ret1

Ret1

Req2

Grt2

Ret2

Grt2

Req2

Ret2



17

A set of Atomic Propositions

Arbiter

Req-1

Grt-1

Req-2

Grt-2

Resource

PR1

PR2

R1 – Process 1 is idle

W1– Process 1 is waiting

P1 – Process 1 is using the resource.

AP = { R1, W1, P1, R2, W2, P2}



18

The context

• Model a system to be verified as a Kripke 

structure:

– Transition system TS = (S, S0, R)

– AP = A finite set of atomic propositions.

▪ Basic assertions about the system

– L : S             2AP =  The set of subsets of  AP.

– p  L(s) ---- p is true at s

– p  L(s) ---- p is not true at s.

• K = (S, S0, R, AP, L) ---- Kripke structure



19

s0

s3

s5s4

Req1

Grt1

Grt1
Grt2

Req2 Req1

Req2 Req1

Ret1

Ret2Ret1

L(so) = {r1, r2}

L(s2) ={r1, p2}
L(s5) = ?

s1

s2

Req2

Grt2

Ret2



20

s0

s3 s1

s5s4 s2

Req1 Req2

Grt1 Grt2

Grt1
Grt2

Req2 Req1

Req2 Req1

Ret1

Ret2Ret1

L(so) = {r1, r2}

L(s2) ={r1, p2}

L(s5) = {w1,w2}

Ret2



21

s0

s3 s1

s4 s2

Req1

Grt1

Ret1

s0            s3          s4          s0          s1           s2           s0           s3 …

{r1, r2}  {w1, r2}  {u1,r2}  {r1, r2}  {r1,w2}   {r1,p2}   {r1,r2} {w1,r2}...

Req2

Grt2

Ret2



22

s0            s3          s4          s0          s1              s2           s0           s3 …

{r1, r2}  {w1, r2}  {p1,r2}  {r1, r2}  {r1,w2}   {r1,p2}   {r1,r2}   {w1,r2}...

Assertions about a computation

• If at some stage Process 1 is waiting then at some later 

stage it is printing (i.e. using the resource).

• At no stage are both processes using the resource.

• If a process is waiting then it does so until it starts to use 

the resource.

• There is a stage at which both processes are  waiting.



23

The Application

• K = (S, S0, R, AP, L)

• Every computation (sequence of states) can 
be viewed as a sequence of subsets of  AP.

• s0 s1 s2 …. ---- L(s0) L(s1) L(s2) ….

• These AP-computations will be the models 
for the formulas of LTL.

• Verification :

– Every AP-computation of K is a model of 



24

Linear Time Temporal Logic 

(LTL)
• Syntax :

– AP = {p0, p1, …pn}, a finite set of Atomic Propositions.

• Formulas :

– Every pi in AP is a LTL formula.

– If  is a formula then   is a LTL formula.

– If 1 and 2 are formulas then (1 2) is a LTL
formula.

– If  is a formula then X , F  and G  are LTL
formulae (Next, Eventually, Always).

– If 1 and 2 are formulas then (1 U 2) is a LTL
formula (Until).



25

Formulas

LTL ::= p     1  2 X   F   G   1 U 2

• p    ;  p  q   ;  ( p  q)   (r  q) 

• X q  ;  X(p  q)  ;  X ((p  q)  X(r  q))

• (p  q) U (X r  (q U (X p) ) )



26

(p  q) U (X q  (r U p))

q r 

U

 

p q X U

p



27

Semantics

• AP = A finite set of atomic propositions.

•  = 2AP = The set of subsets of AP

• AP = { p, q, r }

•  = { , {p}, {q}, {r}, {p,q}, {p,r}, {q,r}, {p,q,r} }

•  = The set of infinite sequences over .



28

Semantics

• AP = {p, q, r}    = 2AP

•  = {, { p }, { q }, ….,{ p, q, r } }

 :       { p,r }  { q }   { p, q, r }  { r }…

path:       0         1     2          3          4  …

• At stage 0 of , p and r are true but not q;  

at stage 2 of  no member of AP is true….



29

Semantics

•  = The set of infinite sequences over .

•    --- A model 

• (i) ---- i-th position of 

• {p}  {q,r}  {r, q}   {p, q, r}…………..

• 0        1      2       3               4             …………

• (0) = {p}   (2) =  (3) = ?



30

Semantics

• AP      = 2AP

•  = The set of infinite sequences over .

•    --- A model 

• (i) ---- i-th position of 

• , a formula.

• (i)     

– (i) satisfies 

–  is true in the i-th position of 



31

Semantics

LTL ::= p     1  2 X   F   G   1 U 2

•  =  0 1 2 ….. i i+1 ……….. 

• Each  j is a subset of AP.

• (i)     p  iff  p  i



32

LTL ::= p     1  2 X   F   G   1 U 2

• AP = {p, q, r}

•  = {p,q}    {r}   {q, r}  {p, q, r} …..

0         1     2      3           4

• (0) satisfies q

• (1) satisfies r

• (2) does not satisfy q !

Semantics



33

LTL ::= p     1  2 X   F   G   1 U 2

 =     0 1 2 ….. i i+1 ……….. 

Each  j is a subset of AP.

• (i)       iff (i)     

Semantics



34

LTL ::= p     1  2 X   F   G   1 U 2

 =     0 1 2 ….. i i+1 ……….. 

Each  j is a subset of AP.

• (i)      1  2 iff    (i)     1 OR

(i)     2

Semantics



35

LTL ::= p     1  2 X   F   G   1 U 2

AP = {p, q, r}

 = {p, q}  {r}  {q, r}  {p, q, r} ….

0        1   2     3           4

• (0) satisfies r ; (0) does not satisfy r

• (1) satisfies p  r ; (1) satisfies r

• (2) satisfies (p  r) ?

Semantics



36

LTL ::= p     1  2 X   F   G   1 U 2

AP = {p, q, r}

 = {p, q}  {r}   {q, r}  {p, q, r} …..

0        1    2     3           4

• (2) satisfies (p  r ) ? Yes!

• (2) does not satisfy p  r

Semantics



37

LTL ::= p     1  2 X   F   G   1 U 2

•  =  0 1 2 ….. i i+1 ………..

X 

• (i)     X  iff       (i+1)     

Semantics



38

LTL ::= p     1  2 X   F   G   1 U 2

AP = {p, q, r}

 = {p,q}   {r}   {q,r}    {p,q,r} …..

0       1     2      3           4

• (2) satisfies X r ; (3) satisfies r

• (0) satisfies X(p  r) ; (1) satisfies r

• (1) does not satisfy X(p  r)

– (2) does not satisfy p  r

Semantics



39

LTL ::= p     1  2 X   F   G   1 U 2

AP = {p, q, r}

 = {p,q}   {r}   {q,r}    {p,q,r} …..

0       1     2      3           4

• (1) satisfies X(X  p) iff

– (2) satisfies X  p iff

– (3) satisfies  p iff

– (3) does not satisfy  p

Semantics



40

Semantics

LTL ::= p     1  2 X   F   G   1 U 2

•  =  0 1 2 ….. i ….. j-1 j ……..

F 

• (i)     F  iff       (j)      for some ji



41

Semantics

LTL ::= p     1  2 X   F   G   1 U 2

AP = {p, q, r}

 = {p,q}   {r}   {q,r}    {p,q,r} …..

0       1     2      3           4

• (0) satisfies F(X p) this is true since

– (3) satisfies X p iff

– (4) satisfies p         is true since



42

Semantics

LTL ::= p     1  2 X   F   G   1 U 2

•  =  0 1 2 ….. i i+1 ……….. j ……

G  …  …..  ……

• (i)     G  iff       (j)      for all ji



43

LTL ::= p     1  2 X   F   G   1 U 2

 = 0 1 …  i i+1 …. k-1 k …

1…  1     … 1 2

• (i)     1 U 2 iff    there exists k  i s.t.

– (k)     2

– (j) 1 for every i  j  k

Semantics



44

LTL ::= p     1  2 X   F   G   1 U 2

• k could be arbitrarily greater than i.

• k = i is allowed and there is no i  j  k

• (i)     1 U 2 iff    there exists k  i s.t.

– (k)     2

– (j) 1 for every i  j  k

Semantics



45

s0

s3 s1

s4 s2

Req1

Grt1

Ret1

Req2

Grt2

Ret2

s0            s3          s4          s0          s1           s2           s0           s3 …

{r1,r2} {w1,r2}  {p1,r2}  {r1,r2}  {r1,w2}  {r1,p2}  {r1,r2}   {w1,r2}...



46

{r1,r2}  {w1,r2}  {p1,r2}  {r1,r2}  {r1,w2}  {r1,p2}  {r1,r2}  {w1,r2}...

0            1             2           3            4              5            6             7

An Example

AP = {r1, w1, p1, r2, w2, p2}

• (1) satisfies (r2 U w2) ; 

▪ (4) satisfies w2 and 

▪ (1), (2), (3) satisfy r2.



47

An Example

• (1) does not satisfy (r2 U p2) ; 

▪ (5) satisfies p2 and

▪ (1), (2), (3) satisfy r2.

▪ but (4) does not satisfy r2 !

{r1,r2}  {w1,r2}  {p1,r2}  {r1,r2}  {r1,w2}  {r1,p2}  {r1,r2}  {w1,r2}...

0            1             2           3            4              5            6             7

AP = {r1, w1, p1, r2, w2, p2}



48

An Example

• (1) does satisfy ((r2  w2) U p2) ; 

▪(5) satisfies p2 and 

▪(1), (2), (3) satisfy r2, hence also (r2  w2).

▪(4) satisfies w2, hence also (r2  w2) !

{r1,r2}  {w1,r2}  {p1,r2}  {r1,r2}  {r1,w2}  {r1,p2}  {r1,r2}  {w1,r2}...

0            1             2           3            4              5            6             7

AP = {r1, w1, p1, r2, w2, p2}



49

Models

• AP   AP = 2 

•  = The set of infinite sequences over .

•   

•  an LTL formula.

• A path  is a model of  (  ) iff

– (0)       



50

Validity in LTL

• AP   AP = 2 

•  = The set of infinite sequences over .

•   

•  an LTL formula.

•  is LTL-valid (  ) iff for every   

–  



51

Basic LTL Language

We will use the reduced LTL language

LTL ::= p    1  2 X   1 U 2

• 1  2 ---  (1 2)  (and) 

• 1  2 --- 1 2 (implies)

• 1  2 ---- (1  2)  (2  1) (iff)

• AP = {p1, p2, …,pn}

• T ---- p1 p1 (true)

• Fact : In every model , at every i,

– (i) T



52

• LTL ::= p    1  2 X   1 U 2

• F  (T U ) (future ; diamond: )

• We gave the following semantics : 

– (i) F iff there exists k  i such 

that (k) .

Derived Operators



53

• We gave the following semantics : 

– (i) F iff there exists k  i such 

that (k) .

Proof of  F  (T U )

(i)     (T U )    iff

 j  i, (j)     and i  k < j, (k)    T   iff

 j  i, (j)     iff

(i) F

Derived Operators



54

• LTL ::= p    1  2 X   1 U 2

• F  (T U ) 

• G  F  (invariant; box:)

• We gave the following semantics : 

– (i) G  iff  for every k  i ,

(k)  .

Derived Operators



55

• LTL ::= p    1  2 X   1 U 2

• (y R )   (y U ) (Releases)

• G   ( R )

– (i) (y R ) iff    

for each k  i (if for each i  j < k

(j) y then (k) ) 

Derived Operators



56

• LTL ::= p    1  2 X   1 U 2

• (y R )   (y U ) (Releases)

• G   ( R )

– (i) (y R ) iff    

for each k  i (for some i  j < k

(j) y or (k) ) 

Derived Operators



57

• LTL ::= p    1  2 X   1 U 2

• (y W )      (Unless)

Derived Operators

Give the semantics according to the following

intuition:

• (y W ): if y must be true unless  occurs (notice

that  may never occur).

Show that: (y W )  G y  (y U )

Show that: (y U )  ((   y) W ( y   ))



58

• LTL ::= p    1  2 X   1 U 2

• (y B ) (Before)

Give the semantics according to the following 

intuition:

• (y B ): if  ever occurs, then y must occur

before .

Show that: (y B )   ( y U  )

Derived Operators



59

Some important validities

 (y U )    ( y  X (y U ) )

 (y R )    ( y  X (y R ) ) 

 (  y)  (   X (y R ) )

 F    X F 

 G    X G 



60

LTL: Some examples

• Safety: “it never happens that both A and B are 

printing at the same time”

G( (PA  PB))

• Liveness: “whenever A is waiting, it will eventually 

print in the future”

G(WA  F PA)

• Fairness: “A is infinitely often idle”

GF RA

• Strong fairness: “if A is infinitely often waiting, then 

it will infinitely often printing”

GF WA  GF PA



61

Example: mutual esclusion



62

Example: mutual esclusion (safety)

M G (C1  C2) ?   [M  F (C1  C2) ?]

YES: There is no reachable state in which both C1 and C2 hold!



63

Example: mutual exclusion (liveness)

M F C1 ?

NO: there is an infinite (cyclic) solution in which C1 never holds!



64

Example: mutual exclusion (liveness)

M G (T1  F C1) ?

YES: every path starting from each state where T1 holds

passes through a state where C1 holds!



65

Example: mutual exclusion (fairness)

M GF C1 ?

NO: e.g., in the initial state, there is an infinite (cyclic) solution 

in which C1 never holds!



66

Example: mutual exclusion (strong fairness)

M GF T1  GF C1 ?

YES: every path which visits T1 infinitely often also visits C1

infinitely often (see liveness prop. in previous example)!



67

Model Checking

• K = (S, S0, R, AP, L) (the system)

• , an LTL formula. (the property)

• K  iff every AP-computation of K is a

model of .

• Determining this is the model checking

problem.

• A solution to this problem can be automated!


