Tecniche di Specifica e di
Verifica

Linear Time Temporal Logic



Temporal Logics: The context

 Kripke Structures model systems.

« Temporal logics model the dynamic
behavioral properties of systems.
— Linear Time
— Branching Time

» Model checking can be used to determine if
a system has the desired behavioral

property.



Properties of computations: local
properties

Refer to immediate successors or predecessors of the current state.

Examples:

Some/every immediate successor state satises the property ¢:
« The system may enable the process | at the next state.

 |f the light was red at the previous state and iIs orange now, it must
turn green at the next state.

Some/every immediate predecessor satises the property ¢ (usually
expressed as conditionals):

 |f the process i is currently enabled, the scheduler must have disabled
the process j at the previous state.

« |If train Is entering the tunnel now, the semaphore must have been
switched red on the other end at the previous moment.

Local properties can be iterated a fixed number of times, but not
Indefinitely.



Universal properties of computations:
Invariance, safety

Invariance properties are properties that must always hold along the
computation, while safety properties describe events that must never
happen along the computation.

Invariance:

« The greatest common divisor of X and Y remains the same throughout
the execution.

Safety:
» No deadlock will ever occur.
» At least one process will be enabled at any moment of time.

« Not more than one process will ever be In its critical section (e.g., not
more than one train will ever be in the tunnel) at the same time.

« A resource will never be available to two or more processes
simultaneously.

Also, partial correctness properties:

« |f a pre-condition P holds at all initial states, then a post-condition Q
will/must hold at all accepting (terminating) states.



Existential properties of computations:
eventualities, liveness

Eventuality, liveness properties: those that will (must) happen sometime
during the computation.

Examples:

» The execution of the program will terminate.

« |f the train has entered the tunnel, it will eventually leave it.

« Once a printing job is activated, eventually it will be completed.
 |If a message Is sent, eventually it will be delivered.

Also, total correctness properties:

 |If a pre-condition P holds at the initial state, then the computation will
reach an accepting (terminating) state, where the post-condition Q will
hold.



Properties of computations: fairness,
precedence

Fairness properties: All processes will be treated “fairly” by the

operating system (the scheduler, etc.)

Examples:

Weak fairness: Every continuous request is eventually
granted.

Strong fairness: If a request is repeated infinitely often then
It Is eventually granted.

Impartiality: Every process Is scheduled infinitely often.

Precedence: The event a will occur before the event £, which
may or may not occur at all.

— If the train has entered the tunnel, it will eventually leave it
(before any other train has entered it).



Reachability properties In transition
systems

All Important properties of computations can be expressed iIn
terms of reachability or non-reachability of states with specic
atomic properties.

For instance, eventuality Is just reachability of a “good state”,
while safety Is non-reachability of “bad states”, fairness
corresponds to repeated reachability, etc.

More generally, we may interested in reachability of a state or a
set of states along some or all paths starting from a given state
(or, set of states); this is called forward reachability.

Likewise we may be interested in the states from which a state
(or a set of states) iIs reachable; this i1s calles backward
reachability.



Linear time temporal logics.

 LTL (Linear Time Temporal Logic)
— Syntax
— Semantics
— The Model Checking Problem.
— Its solution.



The Application

* Model a system to be verified as a Kripke
structure:

— Transition System TS = (S, Sy, R)

— AP = A finite set of atomic propositions.
= Basic assertions about the system

— L :S—2A” = The set of subsets of AP.
—p € L(s) ---- p Istrue at s.
—p & L(S) ---- p IS not true at s.

- K=(S, S,, R, AP, L) ---- Kripke Structure



The Application

The computations of the Kripke structure K

will be t
The pro

ne models for LTL formulas.

nerty to be verified is captured as an

LTL formula .

The modeled system K has the property ¢
ITf every computation of K is a model of .

We need to verify (model check) whether:

K =

¢
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PR2

An Example

Reg-1

Grt-1
Req-2

Grt-2

Arbiter

—@

Resource
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PR1

PR2

Reg-1

A set of Atomic Propositions

Grt-1 _ ‘O
Arbiter

Req-2

Grt-2

Resource

R1 —Process 1is idle
W1- Process 1 is waiting
P1 — Process 1 is using the resource.
AP={R1, W1, P1, R2, W2, P2}
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The context

* Model a system to be verified as a Kripke
structure:

— Transition system TS = (S, S, R)

— AP = A finite set of atomic propositions.
= Basic assertions about the system

—L:S —— 2AP = The set of subsets of AP.

—p eL(s)----pistrueats
—p & L(S) ---- p Is not true at s.

« K=(S, S,, R, AP, L) ---- Kripke structure
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L(so) ={r1, r2}

sO

Reql Req2
Ret2

Ret1 ° Q
Grtl ’ '
/ Req eq1 Grt2

Q et @ Ret?
2
Req? ﬁtl A M

L(s5) = ? L(s2) ={r1, p2}
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L(so) ={rl, r2}

Retl

L(s2) ={r1, p2}

L(s5) = {wl,w2

20



sO s3 s4 sO sl s2 sO s3 ...
{rl, r2} {wil, r2} {ul,r2} {rl, r2} {riw2} {rl,p2} {ri,r2}{wi,r2}..
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Assertions about a computation

sO s3 s4 s( s1 S2 s( s3 ...
(r1, r2} {wi, r2} {p1,r2} {r1, r2} {riw2} {rip2} {ri,r2} {wir2}.

» |f at some stage Process 1 Is waiting then at some later
stage It Is printing (i.e. using the resource).

« At no stage are both processes using the resource.

If a process Is waiting then it does so until it starts to use
the resource.

There Is a stage at which both processes are waiting.
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The Application

K=(S, Sy R, AP, L)

Every computation (sequence of states) can
be viewed as a sequence of subsets of AP.

Sg Sy Sp «eee === L(Sp) L(Sy) L(S,) ....
These AP-computations will be the models
for the formulas of LTL.

Verification :
— Every AP-computation of K is a model of ¢
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Linear Time Temporal Logic

(LTL)
e Syntax :

— AP ={py, Py, ---pPn}, @ Finite set of Atomic Propositions.

« Formulas:
— Every p;iIn AP isa LTL formula.
— If @ 1s a formula then — @ isa LTL formula.

— If ¢, and @, are formulas then (p,v @,) Isa LTL
formula.

— If @ Isaformulathen X, Fpand G are LTL
formulae (Next, Eventually, Always).

— If @, and @, are formulas then (¢, U @,) Isa LTL
formula (Until).
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Formulas

L L:::p\—.(p\(plv (pZ‘X(p‘F(P‘G(P‘(mU(Pz

*p ;pvq ; (=pvQq)v=(rva)
« Xq ; X(pva) ; X((=pvQq)v X=(rvqg))
* (pvq)U(Xrv (=qU (X=p)))
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(pva)U(Xqv(rU=p))

/\
/\ /\
PN
:



Semantics

AP = A finite set of atomic propositions.
>, = 2AP  =The set of subsets of AP

AP={p,q,r}
X={¢,{p} 1a}. {r}. {p.a}, {p.r}, {q.r}, {p.q.r} }

>® = The set of Iinfinite sequences over X.
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Semantics

« AP={p,q,r} X=24°

* XZ={,{p}{q}...s{pqyr}}

o {pl,r}{o}?{p,cll,r}{{}..-
path: 0 >1—2 -3 -4 ...

« At stage O of o, p and r are true but not q;
at stage 2 of o no member of AP is true....
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Semantics

>® = The set of Infinite sequences over .
cex® ---Amodel
o(l) ---- I-th position of

{I‘J} {q‘,r}? {r,‘ qQ {p, (‘1, o SO

0 1 2 3 4 e,
c(0)={p} o(2)=J o(3)=7
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Semantics

AP X =2AP

>® =The set of infinite sequences over .
cexX? ---Amodel

o(l) ---- I-th position of o

@, a formula.

o(l) =0

— o(1) satisfies ¢
— @ Is true In the i-th position of o
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Semantics

L L:::p\—.(p\(plv (pz‘X(p‘F(P‘G(P‘(mU(Pz
co=I, I, I,....T;, T\ .occnnnio.
 Each Fj IS a subset of AP.

clo(D=p Iff peT;
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Semantics

LTL ::=p \ — @ \ O JAVAN O ‘X(p ‘ Fo ‘ Go ‘ ¢, U o,
* AP={p, q, r}

 oc={p.q} {r} S{q,r} {p,q,r}.....
0 1 2 3 4

« o(0) satisfies g
* o(1) satisfies r
* o(2) does not satisfy q !




Semantics

LTL:=p | =0 | ¢.v 0, [ X0 | Fo | Go | o, Ug,
6= TyT; Ty e Ty Tipyooonrn.

Each [; IS a subset of AP.
s o(i)E—0o iff o(i)F~e@




Semantics

LTL:=p | =0 | o,v o, X0 |Fo | Go | o Ug,
o= I IZ T, ce.... T} Thipqonnnnnn,
Each Fj IS a subset of AP.

*lo() E@ve, Iff of)E=e, OR
o(i) = o,




Semantics

L L:::p\—.(p \ O JAVAN O ‘X(p‘F(P‘G(P‘(mU(Pz
AP={p, q, r}

c={p,.q} {rt9{q,r} {p,q,r}....
0 12 3 4

» o(0) satisfies —r ; o(0) does not satisfy r
» o(1) satisfiesp v r; o(1) satisfies r
* o(2) satisfies=(pv r) ?
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Semantics

LTL:=p| =0 | o,v o, | Xo | Fol Go | o, Uo,
AP={p, q, r}

c=1{p,.q} {r} D{q,r} {p,q,r}....
0 1 2 3 4

* o(2) satisfies=(p v r) ? Yes!
* o(2) does notsatisfypv r
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OG:

Semantics

I I
Xp ¢

L L:::p\—.(p\(plvcpz‘X(p‘F(P‘G(P‘%U(Pz
Iy, Iy I,....1; I

e o(l)

I

o(i1+1)

37



Semantics

LTL:=p | =0 | o;,v @, [Xo | Fo | Go| e, Uo,
AP={p, q, r}

c={p,a} {r} G {q.r} {p,q,r}-....
o 1 2 3 4
» o(2) satisfies X r ; o(3) satisfies r
« o(0) satisfies X(p v r) ; o(1) satisfies r
* o(1) does not satisfy X(p v 1)
—o(2) does not satisfyp v r
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Semantics
LTL:=p | =0 ‘ OV O ‘X(p ‘ Fo ‘ Go ‘ ¢, U o,
AP ={p, q, r}

c=1{p.a} {r} 9 {q.r} {p.qr}....
0 1 2 3 4

* o(1) satisfies X(X = p) Iff
—o(2) satisfies X—=p Iff
—o(3) satisfies = p Iff

—o(3) does not satisfy p
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Semantics

L L:::p\—.(p\(plv (pz‘X(p‘F(P‘G(P‘<P1U(Pz

+0=Ty Iy DT T T

Fo ¢

c o(l)FFoe Iff o()=¢ forsome j=i




Semantics

LTLz=p | =9l o,v o, |Xe | FolGolg U,
AP ={p, q, r}
c={p.a} {r} 9 {qr} {p.qri}....
o 1 2 3 4
« o(0) satisfies F(X p) this Is true since
—o(3) satisfies X p 1ii
—o(4) satisfies p IS true since
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Semantics

L L::=p\ﬁ<p\<p1V<pz\X<p\Fcp\ch\an(pz
+6=Ty I} Tpenl T |

G ¢ «..@Q.ceec @ ......

co(D)FEGeoe Iff o()=¢ forallj=




Semantics

L L:::p\—.(p\(plv (pz‘X(p‘F(P‘G(P‘(mU(Pz

c=I, I;... 1"} I“iﬂ....l"‘k_l ll"k
Ppeece @1 e @ Py

* o(D)E=0o, U@, Iff thereexistskz>1s.t.

—o(K) = o,
—o())=0, forevery 1)<k




LTL ::=p

Semantics

~olo,ve,|XelFolGolo Ug,

 k could be arbitrarily greater than i.

« K=1IS

allowed and thereisno 1< <k

* o()= o, U@, Iff thereexistsk=>1s.t.

—o(K)
-o())

— P,

— @, forevery 1<)<Kk
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sO s3 s4 sO sl s2 sO s3 ...
{r1,r2} {wl,r2} {p1,r2} {ri,r2} {riw2} {ri1,p2} {ri,r2} {wl,r2}..
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An Example

AP ={rl,wil, pl, r2, w2, p2}

{r1,r2} {wi,r2} {pl,r2} {r1,r2} {riw2} {ri,p2} {ri,r2} {wi,r2}..

0 1 2 3 4

« (1) satisfies (r2 U w2) ;
" 5(4) satisfies w2 and

" 5(1), 6(2), o(3) satisfy r2.

5

6

v
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An Example

AP ={rl,wil, pl, r2, w2, p2}

{r1,r2} {wi,r2} {pl,r2} {r1,r2} {riw2} {ri,p2} {ri,r2} {wi,r2}..

0 1 2 3 4

5

 5(1) does not satisfy (r2 U p2) ;
= 5(b) satisfies p2 and
" 5(1), o(2), o(3) satisfy r2.
» but o(4) does not satisfy r2 |

6

v
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An Example

AP ={rl,wil, pl, r2, w2, p2}

{r1,r2} {wi,r2} {pl,r2} {r1,r2} {riw2} {ri,p2} {ri,r2} {wi,r2}..

0 1 2 3 4 5 6

* 5(1) does satisfy ((r2 vw2) U p2) ,
»g(b) satisfies p2 and
"o(1), o(2), o(3) satisfy r2, hence also (r2 v w2).

»g(4) satisfies w2, hence also (r2 v w2) !

v
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Models

AP YAP =2
>® = The set of Infinite sequences over .
cex®

@ an L TL formula.

A path o iIsamodel of ¢ (o= ) Iff
—o0(0) = o




Validity in LTL

AP  TAP=2

>® = The set of Infinite sequences over .

o e Xx?®

@ an L TL formula.

o is LTL-valid (
~GE=¢

= ) Iff foreveryoc € X°
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Basic LTL Language
We will use the reduced LTL language

LTL:=p |—o | o,ve, [Xo | ¢, Uo,

* PLAQ, - = (=P —0,) (and)
* Q1D Py - PV P, (implies)
*c 0=, - (91D P,) A (P D Py) (1ff)

* AP ={p;, Py «-osPp}
* T ---—-pyv—p, (true)

» Fact: In every model o, at every I,
—-o()ET
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Derived Operators

e LTL ::=p
e Fo = (T U

-9 |l ove, [ Xo | o Ugp,
o) (future ; diamond: <)

* \We gave the following semantics :
—o(l) = Fe Iff thereexists k > 1such

that o(k)

52



Derived Operators

» \We gave the following semantics :
Iff there exists kK > 1 such

—o(l)

that o(k)

o (1)

o(l)

Proof of Fo=(TU o)
—(TUgo) Iff
3j=i,0(])

— ¢ and Vi <k <j, o(Kk)

3j=i,0(])

=¢ |Iff

=T Iff

53



Derived Operators

+ LTL::=p |=o | o;ve, [Xo | 0, U,
* Fo = (TU o)

« Go = —F= ¢ (invariant; box: )

* \We gave the following semantics :

—o(l)
o(K)

— G ¢ Iff foreveryk=>1,
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Derived Operators

c LTL:=p |~ | v, [Xo | ¢, Uo,

* (WRo@) = = (—=yU—0)

* Go = (LRo)

(Releases)

—o(l) =

(vRo@) Iff

foreach k>1(ifforeachi<j <k

()

# y then o(k)

= )




Derived Operators

+ LTL:=p |=o | o;v e, [Xo | 9, Ug,

e (WR @) = - (—y U-—0) (Releases)

c Gop = (LR)

—o(l) =

(vRo@) Iff

foreach k>1 (forsomei<j <Kk

()

— y or o(k)

= Q)




Derived Operators

 LTL:=p |~ | v, [Xo | ¢, U0,
« (WWge@) (Unless)

Give the semantics according to the following
Intuition:

* (v W o): If y must be true unless ¢ occurs (notice
that @ may never occur).

Show that: (W W o) = Gy v (y U o)
Show that: =(y U @) = (@AY W (wwy A—0))
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Derived Operators

+ LTL:=p |=0 | o,ve, [ Xo | 9, Ug,
* (v B o) (Before)

Glve the semantics according to the following
Intuition:

* (v B @) If ¢ ever occurs, then y must occur
before .

Showthat: (wB o) = - (—yv Uge)

58



Some important validities

c(WUog)=ov(yaX(yUog))

*(WRo)=oA(YVX(yR9))=
=(@eAyY)V(oAX(yRo))

sFop =0oVv XFo
G =0AXGo
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LTL: Some examples

Safety: “it never happens that both A and B are
printing at the same time”

G(— (Pan Pg))

Liveness: “whenever A is waiting, it will eventually
print in the future”

G(W,>o F P,)

Fairness: “Ais infinitely often idle”
GF R,

Strong fairness: “if Ais infinitely often waiting, then
it will infinitely often printing”
GF W,> GF P,
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Example: mutual esclusion
N = noncritical, T =trying, C = critical\‘m User1 User2
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Example: mutual esclusion (safety)
N = noncritical, T =trying, C = critical\‘m User1 User2

ME= G—=(CI1AC2)? [ME= -F(C1AC2)7]
YES: There Is no reachable state in which both C1 and C2 hold! o



Example: mutual exclusion (liveness)
N = noncritical, T = trying, C =critical\~m User1 User2

M FC1?

NO: there is an infinite (cyclic) solution in which C1 never holds!
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Example: mutual exclusion (liveness)
N = noncritical, T = trying, C =critical\~m User1 User2

ME= G (TLDF C1)?

YES: every path starting from each state where T1 holds
passes through a state where C1 holds!
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Example: mutual exclusion (fairness)
N = noncritical, T = trying, C =critical\“m User1 User2

M= GFC17?

NO: e.g., In the Initial state, there is an infinite (cyclic) solution
iIn which C1 never holds! .



Example: mutual exclusion (strong fairness)

N = noncritical, T = trying, C = critical\~ N1, N2 User1 User2

/Pgﬂl/\

/TN

N/

ME=GFTI1DGFCL?

YES: every path which visits T1 infinitely often also visits C1
Infinitely often (see liveness prop. in previous example)!



Model Checking

K=(S, S, R, AP, L) (the system)
@, an LTL formula. (the property)

K = o Iff every AP-computation of K Is a
model of .

Determining this I1s the model checking
problem.

A solution to this problem can be automated!
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