Verifica di Sistemi

Automata-based
L TL Model-Checking

Finite state automata

A finite state automaton is a tuple A = (2,S,5,,R,F)

« 2 set of input symbols

 S:setof states -- S : set of initial states (S, S)

« R:S x X — 25 :the transition relation.

» [F: set of accepting states (F< S)

« Arunronw=a,...,a, Is asequence s,,...,S, such that
Sy €S, and s, eR(s;,a;) for 0<i<n.

A run r 1Is accepting If s,eF, while a word w Is
accepted by A If there Is an accepting run of A on w.

The language L(A) accepted by A Is the set of finite
words accepted by A.

Finite state automata: union

Given automata A, and A,, there Is an automaton A
accepting L(A) = L(A,) U L(A,)

A = (2S,5,R,F) Is an automaton which just runs non-
deterministically either A, or A, on the input word.

S=S,US,

F=F UF,

So = So1 Y Sy

(R,(s,a) ifs e S,

R(s,a) = _
Ry(s,a) Ifse S,

Finite state automata: union

A2
b l a l a
Cer_, 1 :
L(A,) = (b+ab)™a L(A,) = a(atba)”
A, UA, L(A)=L(A,) U L(A)

a

Finite state automata: intersection

Given automata A, and A,, there Is an automaton A
accepting L(A) = L(A;)) N L(A,)

A = (2,S,Sy,R,F) runs simultaneously both automata A,
and A, on the input word.

S=5;%x35,
F=F, xF,
S = Sgy X S

R((s,t),a) = Ry(s,a) x R,(t,a)

Finite state automata: intersection

AZ
b l d l a
somi ol e c's]
L(A,) = (b + ab)™a L(A,)=a(a+ba)”

(02 (03)
A, A, \ LA)=LA,) A L(A,)

Finite state automata: complementation

If the automaton Is deterministic, then It just
sufficestoset Fc=S\ F.

This doesn’t work, though, for non-deterministic
automata.

Solution:
1. Determinize the automaton using the subset construction.
2. Complement the resulting deterministic automaton

The complexity of this process is exponential in the
size of the original automaton.

The number of states of the final automaton is 25/,
IN the worst case.

Finite state automata: complementation

l

AD

e
O NN

L(AP)= (a+ab)™a

L(A%)=L(A)

Bluchi automata (BA)

A Buchi automaton is a tuple A = (2)S,S,,R,F)

>.. set of input symbols

S: set of states -- S : set of initial states (S, S)
R:S xX — 25 : the transition relation.

: set of accepting states (F< S)

A run r on w=a,,a,,... IS an infinite sequence s,,s,...
such that s, €S, and s;,; eR(s;,a;) for i=0.

A run r Is accepting If some accepting state in F occurs
In r infinitely often.

A word w Is accepted by A If there Is an accepting run
of A on w, and the language L (A) accepted by A is the
set of (infinite) m-words accepted by A.

9

Blchi automata (BA)

A Buchi automaton is a tuple A = (2)S,S,,R,F)

« Arunronw=a;a,,... IS an infinite sequence s;,S;,...
such that s, €S, and s;,; eR(s;,a;) for i1=0.

Let Lim(r) ={s|s=s; for infinitely many I }
A run r is accepting If

Lim(r'nF#J

« A word w Is accepted by A If there Is an accepting
run of A on w.

« The language L (A) accepted by A Is the set of
(infinite) o-words accepted by A.

10

Blichi automata: union

Given Buchi automata A; and A,, there Is an Buchi
automaton A accepting L (A) = L (A U L, (A,).

The construction is the same as for ordinary automata.

A = (2,5,5,,R,F) 1s an automaton which just runs non-
deterministically either A, or A, on the input word.

S=S5,US,

F=F,UF,

Sg = So1 Y S

(R,(s,a) ifs e S,

R(s,a) =9 _
(Ry(s,a) Ifs € S,

Blchi automata: intersection

 The intersection construction for automata does not work
for Buchi automata.

 Instead, the Intersection for Blchi automata can be
defined as follows:

A=(2,S,5,,R,F) Intuitively runs simultaneously both
automata A,=(2,S,,S.,R,,F,) and A,=(2'S,,S,,,R,,F,) on

the input word.
S=95;xS,x{1,2}

F=F, xS,x {1}

So = Sp1 X Sz % {1}
[(s°,t°,2) ifs’eR,(s,a), ’eR,(t,a),s € F,and i=1
R((s,t,i),a) =¢ (s,t,1) ifs’eR,(s,a), t’eR,(s,a), t € F,and i=2
L (s5,%1) 1f s’eRy(s,a), eRy(t,a) "

Blchi automata: intersection

A = (2)5,5,,R,F) runs simultaneously both automata A; and
A, on the input word.

S=S5;,xS,x{1,2}

F=F xS,x {1}

So = Sg1 X Spp % {1}
((s°,t,2) Ifs’eR,(s,a), ’eR,(t,a),seF,and i=1
R((s,t,i),a) =¢ (st 1) 1fs’eR,(s,a), ' eR,(t,a), teF,and 1=2
(57,0, Ifs’eRy(s,a), eR,(t,a)
The automaton remembers(2 tracks, one for each automaton,

and points to one of the tracks.|As soon as It goes through
an accepting state on the current track, it changes track.

The accepting condition and the transition relation ensure
that this change of track must happens infinitely often.

Blchi automata: intersection

A = (2S,S,,R,F) runs simultaneously both automata A, and
A, on the input word.

R((s,t,1),a) =4

AS soon as It v

S=5;xS5,x{1,2}

F=F,xS,x {1}

So = So1 X Sgp % {1}
((s°,t,2) Ifs’eR,(s,a), ’eR,(t,a),seF,and i=1
(s’,t’,1) ifs’eR,(s,a), ’eR,(t,a), teF,and i=2

(5%t Ifs’eRy(s,a), eR,(t,a)
ISIts an accepting state In track 1, it switches to

track 2 and then to track 1 again but only after visiting an
accepting state in the track 2.

Therefore, to

visit infinitely often a state in F (F,), the

automaton must also visit infinitely often some state of F,. 1

BlUchi automata: complementation

It’s a complicated construction -- the standard subset
construction for determinizing automata does not work
as non-deterministic automata are more powerful than

deterministic ones (e.g. L,=(0+1)"1®) L0\ oy
1

Solution (resorts to another kind of automaton):

« Transform the (non-deterministic) Blchi automaton into a
(non-deterministic) Rabin automaton (a more general kind
of w-automaton).

» Determinize and then complement the Rabin automaton.
« Transform the Rabin automaton into a Blichi automaton.

« Therefore, also Buchi automata are closed under
complementation. 15

Rabin automata

« A Rabin automaton iIs like a Buchi automaton,

except that the accepting condition Is defined
differently.

« A=(2)S,Sy,R,F), where F=((G,,B,),...,(G,,,B,,)).

 and the acceptance condition for a run r = s,,S;,... IS
as follows: for somei € {1,...,m}

« Lim(r) N G; # O [astate in G, occurs infinitely often] and
« Lim(r) N B, =@ [all states in B; occur finitely many times]
In other words, there Is a pair (G;,B;) such that the
“good” set (G;) is visited infinitely often, while the

“pbad” set (B;) i1s visited only finitely many times.

16

Rabin versus Bluchi automata

1,0 The Blichi automaton
O@/ ‘Q 1 forl, = (0+1)1°
1

/ 1 The Rabin automaton
0 — 1 f B ‘1o
ay orL,=(0+1)"1
0

The Rabin automaton has F=(({t},{s}))
Note that the Rabin automaton Is deterministic.

17

Language emptiness for Blchi automata

The emptiness problem for Blchi automata is the problem
of deciding whether the language accepted by a Bichi
automaton A is empty, i.e. if L(A)=.

Theorem: The emptiness problem for Blchi automata is
decidable In linear time, I.e. in time O(|A]).

Fact: L(A) = @ Iff in the Blchi automaton there is no
reachable cycle A containing a state in F.

18

Language emptiness for Blchi automata

In other words, L(A) # @ iff there is a cycle containing an
accepting state, which is also reachable from some
Initial state of the automaton.

We need to find whether there is such a reachable cycle

We could simply compute the SCCs of A wusing the
standard DFS algorithm, and check if there exists a
reachable (nontrivial) SCC containing a state in F.

But this is usually too inefficient in practice. We will
therefore use a more efficient nested DFS (more
efficient in the average-case).

19

Efficient language emptiness for BA

Input: A
Initialize: Stack,:=d, Stack,:= &
Table,:= &, Table,:= &
Algorithm Main()
foreach s e Init
If s ¢ Table, then
DFS1(s);
output(“empty”);
return;

Algorithm DFS1(s)
push(s,Stack,);
hash(s, Table,);
foreach t e Succ(s)

If t ¢ Table, then
DFS1(t);
If s e Fthen
DFS2(s,s);
pop(Stack,);

Algorithm DFS2(s,s’)
push(s,Stack.);
hash(s, Table,) ;
foreach t € Succ (s) do
If t ¢ Table, then
DFS2(t,s’)
else ift=¢’
output(“not empty”);
output(Stack,,Stack,,t);
return;
pop(Stack,);

Note: upon finding a bad cycle,
Stack,+Stack,+t, determines

a counterexample: a bad cycle

reached from an init state.
20

Generalized Bluchi automata (GBA)

Generalized Buchi automaton: A = (2',S,S, ,R,(Fgy,--,F.1))
« Arunronw=a,a,,... IS an infinite sequence s,,S;,... such
that s, €S, and s;,; eR(s;,a;) for j=0.
o LetLim(r) ={s|s=s,for infinitely many k }
« Arunrisaccepting if foreachO0<i<m
Lim(nNnF,#3

Any Generalized Bulchi automaton can be easily
transformed into a Buchi automaton as follows:

L(A) = (M L(<XSS,,RF>)

ic0,...,m-1}

This transformation is not very efficient, though.

21

From GBA to BA efficiently
Generalized Buchi automaton: A = (2',S,S,,R,(Fgy,--,Fr.1))

A Generalized Buchi automaton A can be efficiently
transformed into a Buchi automaton A’ = (2 §7,8°,, R’,
F’) as follows:

§’=8 x {0,...,m-1}
F’=F;x{i}forsome0<i<m
S’y =S5, x {I} forsome 0<i1<m

(s’, (i+1 mod m)) If s’eR(s,a) and seF;

R, b J b - -
(0,0) { (s’,i) If s’eR (s,a) and s¢F;
Notice that the transformation above expands the

automaton size by a factor of m (compare with Buchi
Intersection).

22

LTL and Blchi automata: example

« The following Bulchi automaton
recognizes the models of the LTL
formula p U g

» |Indeed, all these models have the form:
p g AP®

where by AP® we mean any infinite

sequence of atomic propositions in AP.

23

LTL and Buchi automata: example

« The following Bichi automaton
recognizes the models of the LTL
formulap U g

» Indeed, all these models have the form: D

P q AP®
where by AP® we mean any Iinfinite
sequence of atomic propositions in AP. @

Notice that for convenience, we shall

assoclate symbols to states instead of arcs '
(the general mapping between the two
versions of Blchi automata can be easily

defined).

24

LTL-semantics and Bluchi automata

« A formula vy expresses a property of w-words, I.e., an
o-language L(y) < 2,0%.

« For @-word ¢ = 6,, 6,,0,,.....€Z,:,°, let ' = 6, 0,,4,
Ci...... De the suffix of o starting at position i. We
defined the “satisfies” relation, |=, inductively:

* o' |=p; Iff p;eo; (forp; e AP).

¢ o=y iff noto'|=vy

¢ Gi — \I’l V \I]Z Iff Gi |: \I]l or Gi |: \I’z

¢ o |= Xy iff ol |=wy

¢ o=y, Uy, iff Jk>i. (6 |=y,and V0L j< k. ¢! |=)
- o=y, Ry, iff Vk2i. (c¥|=y,0r 30<j< k. o |=)

» We can then define the language L(y) ={c| o’ |=v },

Relation with Kripke structures

We extend our definition of “satisfies” to transition
systems, or Kripke structures, as follows:

e givenarunm = S,—S;—...—S,—... of K,p, let
L(m) = L(Sy) L(Sy) ... L(Sy) --.
notice that L(x) € Z,,°

 Then K, |= v Iff for all computations (runs) n of
Kap: L(7) |= .
In other words:

o setting L(K,p) = {L(n) | ® Is an infinite path in K,}
Kap = ¥ < L(Kpp) = L(y).

26

LTL Model Checking: explanation

KaplF¥ o LK) € L(w)
S LKp)NEp \Ly) =T
< LK) N L(—y) = O
< L(Kgp) NLA,) = %,

27

Relation with Kripke structures

We can transform any Kripke structure into a Blchi
automaton as follows:

where every state Is accepting!

LTL Model Checking

System Model

LTL
property

v

Model Checker

Check that K |=y

— | by checking that
L(K)NL(A_,) =D
I

ﬂ

Convert —y toa
Blchi automaton
A_,,, so that

L(=y) = L(A_,)

“counterexample”

29

The algorithmic tasks to perform

We have reduced LTL model checking to two tasks:

1 Convert an LTL formula @ (i.e. —y) Into a Buchi
automaton A, such that L(@) = L(A,).

2 Check whether K, |= vy, by checking whether the
Intersection of languages L(K,p) N L(A_,,) Is empty.
It is actually unwise to first construct all of K,,, because
K p Can be far too big (state explosion).

 |Instead, it is possible to perform the check by constructing
states of K, only as needed.

30

LTL to BA translation

 First, let’s put LTL formulas ¢ in normal form where:
* —‘s have been “pushed In”, applying only to propositions.
 the only propositional operators are —, A, V.
 the only temporal operators are X, U and its dual R.

* We can use the following rules:
* p—>q=-p Vg (definition);
* —(pvg)=-pA-—0q(DeMorgans low);
* —(pAag)=—-pv-—0q(DeMorgans low);
 — — p=p (double negation low);
* =a(pUQ)=(=p)R(=0) ;
* =(PRY=(=pU=0);
e Fp=TUp ;Gp=LRp;
e = X p=X-=p (linearity)

31

LTL to BA translation

 First, let’s put LTL formulas ¢ in normal form

* — ‘s have been “pushed In”, applying only to propositions.
* \We use the following rules:

* p—>q==pvqg;=(Ppva==pA-q;;(PAg==p

* = (pUQ)=(=p)R(=0q) ;=(PRa=(=p) U(=Qq)
e Fp=TUp ;Gp=LRp ;= Xp=X=ap;

Examples:

(PUQ) > FN==(pUagvFr=—pUagv(TUn=

(—|3R—|Q)V(Tur)

GFp>Fre(LR(Fp)—=>(TUP)=(LR(TUP)—>(TUI=

—(LR(MUP)V(TUN=(TU=(TUpP)v(TUN=
(TULR=p)V(TUD

32

LTL to BA translation: intuition

States of A, will be sets of subformulas of ¢, thus if ¢ =
p,U—p,, a state is given by I'c{p4,p,,—P,, P;U—P,}-.

Consider aword ¢ = 6, G;,G5,...€X,p" SUCh that & |= o,
where, e.g., ¢ = y,U v, .

Mark each position i with the set of subformulas I'; of @
that hold true there:

Gy 010y «evnvennnn..
Clearly, o € I',. But then, by consistency, either:
« y,eland e I'y, oOr

¢ \l’z c FO .
The consistency rules dictate our states and transitions.

LTL to BA translation

Let sub(p) denote the set of subformulas of .
We define A, = (Q, Z, R, L, Init, F) as follows.
First, the state set:

« Q={I'c sub(e) |s.t.T" Is locally consistent }.
» ForT to be locally consistent we should have:

e 1lgT

eifyvyel,thenyeTor yer.

e Ifyanyel,thenyeTandy eT.

Ifp,el'then—p;g I',and If = p, e ' then p;g T..

e ifyUyelI,then(y el or yel).

« IfyRyeTl,theny eT.

34

LTL to BA translation

Now, labeling the states of A,
e ThelabelingL: Q> ZisL(I") ={l e sub(op)nZ |1l eI7}.

* Now, aword 6 = 6,0, ... € (Zpp)® IS INn L(A,) Iff there
sarunt=I> T > I,>..0f A, st, Vi=0, we
have that o; “satisfies” L(I';), I.e., o; IS a “satisfying
assignment” for L(I;) .

 This constitutes a slight redefinition of Blchi automata,

where labeling iIs on the states instead of on the edges.
This facilitates a much more compact A,

35

LTL to BA translation

Now, the transition relation, and the rest of A(P'
Based on the following LTL rules:
* (yUp=yv(yaX(yUy))
* (WRY)=yAWVXYRY)=(YAY) V(I AX(YRY))
and on the semantics of X, we define:
- Rc QxQ,where (I'T’) € RIff:

e if(yUy)eT'thenyeTI',or(yweI'and (y Uy) eI™).
e if(WRy)eT'then yeT',and (y eT"or (y Ry) eI™).
c If Xy eI, theny eI”.

36

LTL to BA translation: example

ole

Consider the following formula: Fp=TUp
sub(TUp)={TUp,p}
Init={T esub(TUpP)|TUp eI}

37

LTL to BA translation: example

Consider the following formula: TU p
(TUp)=pv X(TUp)

38

LTL to BA translation: example
Consider the following formula: TU p
(TUp)=pv X(TUp)

39

LTL to BA translation: example

\
ol 0¥
C

Consider the following formula: TU p
(TUp)=pv X(TUp)

40

LTL to BA translation: example

\
D
80 (

Consider the following formula: TU p
(TUp)=pv X(TUp)

41

LTL to BA translation: example

\
D)
80 (

In this automaton are runs, e.g. [T U p]®, where p
never occurs. These run must not be accepting!

42

LTL to BA translation

Int={'e Q |p eI}

For each (v U y) € sub(g), there is a set F; € F, such
that:

c F={TeQ|(yUy)gToryeI}

e (orequivalently F,={I' e Q|if(yUy) eI, theny eI'})

* (notice that If there are no (y U y) € sub(g), then the
acceptance condition is the trivial one: all states are accepting)

Lemma: L(Q) = L(Aq)) .

But A(P IS now a generalized Buchi automaton ...

43

LTL to BA translation: example

_///

following form: TUp
sub(TUp)={TUp, p}
F={Fyp}={Tesub(TUp)|(TUp)eTorperl} .,

Consider

LTL to BA translation: example

®C

Consider the following formula: Gp=_1LRp
Sub(LRp)={LRp, p}
Int={C esub(LRp)|LRpeTI}

45

LTL to BA translation: example
) G0

Consider the following formula: Gp=L1LRp
sub(LRp)={LRp,p}
(LRp)=pAX(LRpP)

46

LTL to BA translation: example

The trivial
acceptance condition

Consider the following formula: Gp=L1LRp
sub(LRp)={LRp,p}
There are no eventualities, hence F={ Q }

LTL to BA translation: example
pUq

Consider the following formula: p U g

sub(pUq)={pUq,p,q}
Init={T esub(pUp)|pUqgel}

48

LTL to BA translation: example

olelojo

Consider the following formula: p U g

sub(pUq)={pUq,p,q}
Init={T esub(pUp)|pUqgeTl}

49

LTL to BA translation: example

Consider the following formula: p U g

sub(pUaqg)={pUq,p,aq}
PUd=qgv(paX(pUaqg)

50

LTL to BA translation: example

Consider the following formula: p U g

sub(pUq)={pUq,p,q}
F={F,uq}={C esub(pUaq)|(pUQg)eglorqerl} ,

On-the-fly translation algorithm

There Is another more efficient way to build the Buchi
automaton corresponding to a LTL formula.

* The algorithm proposed by Vardi and his colleagues,
IS based on the idea of refining states only as needed.

* It only record the necessary information (what must
hold) at a state, instead of recording the complete
Information about each state (both what must hold
and what might or might-not hold).

* In a way what “might or might-not hold” iIs treated as
‘don’t care’ information (which can be filled in, but
whose value has no relevant effect).

52

Algorithm data structure: node

Name: A string identifying the current node.
Father: The name of the father node of current node.

Incoming: List of fully expanded nodes with edges to the
current node.

Old: A set of temporal formulae which must hold and In
the current node have been processed already.

New: A set of temporal formulae which must hold but in
the current node have not been processed yet.

Next: A set of temporal formulae which should hold in
the next node (Immediate successor) of the current
node.

Fully Expanded nodes (i.e. States of the Automaton) are
those nodes having the New field empty.

53

Name: Nodel
Father: Nodel
Incoming: Init
NODE > New: {p Uq}
Next: {}
Old: {} '
\ Fully Expanded
Name: Node2 \ Name: Node3 /
Father: Nodel Father: Nodel
Incoming: Init Incoming: Init
New: {p} New: {}
Next: {pUq} Next: {}
Old: {pUq} Old: {9.pUaq} | .

gorithm to build set of fully expanded nodes

function create graph(¢)
return(expand([Name«Father<<=new name(),
Incoming<{Init}, New<{¢},
Old<=d, Next<=J], D)

Fully Expanded Nodes

function expand (Node, Nodes_Set) _—
if New(Node)= then
If AINDeNodes_Set with Old(ND)=0lIld(Node) and
and Next(ND) = Next(Node) then
Incoming(ND) := Incoming(ND) w Incoming(Node);
return(Nodes_Set);
else return(expand([Name <« Father < new name(),
Incoming <= {Name(Node)},
New < Next(Node), Old < &, Next < J],

Nodes_Set U {Node});
else >

Example: case of a fully expanded node

..

Nodes Set

4 1LRp;p

Name: Node8
Father: Nodeb6

Incoming: 4
New: {}
Next: {1L R p}

Old: {LRp;p}

Example: case of a fully expanded node

-

Nodes Set
4 p Ulq ;P
9 puUq;q

Name: Node9
Father: Node7

Incoming: 4
New: {}
Next: {}

Old: {pUq;a}

57

function expand (Node, Nodes_Set)

If New(Node)=& then{preceding block} Expansion for literals
else —
let n € New; Contradiction found

New(Node) := New(Node) \ {n};
case n of /
N =p;or—=p;or Tor.L :
retur - [* Discard current node */

else Old(Node) := Old(Node) U {n}:
return(expand(Node, Nodes Set));

n=pUyorpRyorpvy:...

58

Nodel
Nodel

{pva}

Name: Node3
Father: Nodel
Incoming: Init
New: {q}
Next: {}

Splitting a node|Name:
for Disjunction |Father:
Incoming: Init
New:
Next: {}
Old: {3
‘/split\)
Name: Node?2
Father: Nodel
Incoming: Init
New: {p}
Next: {3
Old: {pva}

Old: {pva}

59

for Until op.

Splitting a node|(Name: ~ Nodel

Father: Nodel

Incoming: Init

New: {p Uq}

Next: {}

Old: {}

</Sp|it\,

Name: Node?2 Name: Node3
Father: Nodel Father: Nodel
Incoming: Init Incoming: Init
New: {p} New: {q}
Next: {p U q} Next: {}
Old: {p Uq} Old: {p Uq}

60

Splitting a node|(Name: ~ Nodel
for Release op. |Father: Nodel
Incoming: Init
New: {p R q}
Next: {}
Old: {}
</Sp|it\,
Name: Node?2 Name: Node3
Father: Nodel Father: Nodel
Incoming: Init Incoming: Init
New: {q} New: {p,q}
Next: {pRq} Next: {}
Old: {p R q} Old: {p Rq}

61

Additional functions
The function Neg() 1s applied only to literals:
Neg(p;) =—p; Neg(T) =1
Neg(—=p)=p; Neg(l)=T

The functions New1(), New2() and Next1(), used

for splitting nodes, are applied to temporal
formulae and defined as follows:

n Newl(n) Nextl(n) New2(n)
pUwy {u} {nU vy} {v}
LRy {v} {LR v} {n,v}
TRV {n} % {v}

62

function expand (Node, Nodes_Set)
If New(Node)=& then {preceding block}

else
let ne New;
New(Node) := New(Node) \ {n}; Splitting the node
case n of
n =p;or—=p;or T or L: {preceding block} /

splitting

n=pUwyoruRy orpvy:

Nodel:=[Name < new name(), Father < Name(Node),
Incoming < Incoming(Node),
New < New(Node) U ({Newl(n)} \ Old(Node)),
Old < Old(Node) U {n},
Next <= Next(Node) U {Nextl(n)}];
Node2:=[Name < new name(), Father < Name(Node),
Incoming < Incoming(Node),
New <= New(Node) U ({New2(n)} \ Old(Node)),
Old <= Old(Node) U {n}, Next <= Next(Node)];
return(expand(Node2, expand(Nodel, Nodes Set)));

N=UAVY: ... 03

function expand (Node, Nodes_Set)
If New(Node)=& then {preceding block}
else
let ne New;
New(Node):=New(Node) \ {n};
case n of
n = p;or —p; or T or L: {preceding block}

Expansion for conjunction

n=pUwyorpRwyorpvy: {preceding block} /

N=HAY:

Nodes_Set);

return(expand([Name < Name(Node),
Father < Father(Node),
Incoming < Incoming(Node),
New < (New(Node) U {u ,yw } \ Old(Node)),
Old «<=0Old(Node) U {n}, Next = Next(Node)],

n=Xv:...

64

Expanding a node

Name: Nodel
Father: Nodel

Incoming: Init

New: {p A Q,...}
Next: {.}
Old: {.}

l expand

Name: Node2
Father: Nodel
Incoming: Init
New: {p,q,...}
Next: {..}
Old: {....p AQ} 65

function expand (Node, Nodes_Set)
If New(Node)=J then {preceding block}

else
let ne New;
New(Node):=New(Node) \ {n}; Expansion for Next operator
case n of
m = p;or —p; or T or L: {preceding block}
n=pUwyorpRwyorpvy: {preceding block}
n=pnAWy: {preceding block} J
nN=Xvy:
return(expand(
[Name < Name(Node),Father <= Father(Node),
Incoming < Incoming(Node), New < New(Node),
Old <= Old(Node) U {n}, Next = Next(Node) U {wy}],
Nodes_Set);
esac;

end expand,;

66

Expanding a node

Name: Nodel
Father: Nodel
Incoming: Init
New: {Xp,...}
Next: {.}
Old: {.}

l expand
Name: Nodel
Father: Nodel
Incoming: Init
New: {...}
Next: {....p}
Old: {..., X p}

67

The need for accepting conditions

« IMPORTANT: Remember that not every maximal
path w=5,5,5,... In the graph determines a model
of the formula: the construction above allows
some node to contain p Uy while none of the
successor nodes contain .

« This is solved again by imposing the generalized
Blchi acceptance conditions :
 for each subformula of ¢ of the form p U y , there

Is a set F, € F, including the nodes s € Q, such that
either p U y ¢ OId(s), or y € OIld(s).

68

Complexity of the construction

THEOREM: For any LTL formula ¢ a Bduchi
automaton A, can be constructed which accepts all
an only the m—sequences satisfying ¢.

THEOREM: Given a LTL formula ¢, the Bduchi
automaton for ¢ whose states are O(21%) (in the
worst-case). [|¢| I1s the number of subformulae of ¢].

THEOREM: Given a LTL formula ¢ and a Kripke
structure K the, the LTL model checking
problem can be solved in time O(|K|-2).
[actually it 1Is PSPACE-complete].

69

LTL to BA: example

« Consider the following formula:

Gp
« where p Is an atomic formula.
* Its negation-normal form is
1Rp

70

LTL to BA: example

Current node 1s Node 1
Incoming = [Init]

CN)'d:[. - (LRpP) =(pAL)V
ew=[LRDp
Next =[] (P AX(LRDP))

New(node) not empty, removing n = L R p, node split into 2, 3,
about to expand them n

LTL to BA: example

Current node is Node 2
Incoming = [Init]
Old=[L R p]

New = [p]

Next = [L R p]

New(node) not empty, removing m = p, node replaced by 4
about to expand them

72

LTL to BA: example

Current node is Node 4
Incoming = [Init]
Old=[LRp;p]

New =[]

Next = [L R p]

New(node) empty, no equivalent nodes. About to add,
timeshift and expand.

73

LTL to BA: example

Current node 1s Node 5

-

A

LRp;p

Incoming = [4]

Old=[
New =

L Rp]

Next =

I

LRp)=(PADvV
(P A X(L R p))

New(node) not empty, removing n = L R p, node split into 6,

about to expand them

74

LTL to BA: example

-

4 1Rp;p

Current node is Node 6
Incoming = [4]

Old =[L R p]

New = [p]

Next =[L R p]

New(node) not empty, removing n = p, hode replaced by 8,
about to expand it

LTL to BA: example

Init
4 1Rp;p
Current node 1S Node 8
Incoming = [4]
Old=[LRp;p]
New =[]
Next =[L R p]

New(node) empty, found equivalent old node in Node Set (4).
Returning it instead. 76

LTL to BA: example

From the split
of Node 5
4 1Rp;p D

Current node is Node 7
Incoming = [4]
Old=[L R p]

New = [L ; p]

Next =[]

New(node) not empty, removing n = L, inconsistent node
deleted - dead end!.

LTL to BA: example

From the split
of Node 1

Current node 1s Node 3
Incoming = [Init]

Old =[L R p]
New = [L ; p]
Next =[]

New(node) not empty, removing m = L, inconsistent node
deleted - dead end!. &

LTL to BA: examp

-

le

LRp;p

Final graphfor Gp=_L R p

79

LTL to BA: example 2

Consider the following formula:

pUq
where p and g are atomic formulae.

80

LTL to BA: example 2

Current node I1s Node 1
Incoming = [Init]

Old =[]
New =

pUq]

Next =

]

(PUQ) =qv(pAX(pUaq))

New(node) not empty, removing n = p U g node split into 3, 2,

about to expand them

81

LTL to BA: example 2

Current node Is Node 2
Incoming = [Init]

Old =[p Uq]

New = [p]

Next = [p U q]

New(node) not empty, removing 1 = p node replaced by 4, about
to expand them

82

LTL to BA: example 2

Current node i1s Node 4
Incoming = [Init]
Old=[pUq;p]

New =[]

Next=[p U q]

New(node) empty, no equivalent nodes. Add, timeshift and
expand.

83

LTL to BA: example 2

Current node is Node 5
Incoming = [4]

Old =[]
New =

-

puUqg;p

pUq]

Next =

]

(PUQ =qvPAX(pPUa)

New(node) not empty, removing n =p U g, node splitinto 6, 7,

about to expand.

84

LTL to BA: example 2

puUqg;p

Current node is Node 6
Incoming = [4]
Old=[pUq]

New = [p]

Next = [p U q]

New(node) not empty, removing n = p, node replaced by 8, about

to expand it

85

LTL to BA: example 2

Init

l

4 puq,;p

Current node is Node 8
Incoming = [4]
Old=[pUq;p]

New =[]

Next = [p U q]

New(node) empty. Found equivalent old note (4) in Node_Set.
Returning it instead.

LTL to BA: example 2

From the split

of Node 5
4 puUG;p P,

Current node is Node 7
Incoming = [4]
Old=[pUq]

New = [q]

Next =[]

New(node) not empty, removing n = ¢, node replaced by 9, about
to expand it

87

LTL to BA: example 2

Init

l

puq,;p

Current node is Node 9
Incoming = [4]
Old=[pUq;q]

New =[]

Next =[]

New(node) empty, no equivalent node found. Add timeshift and

expand

88

LTL to BA: example 2

Init
4 pug;p
Current node is Node 10 l
Incoming = [9] _
old=[9 puQqg;Qg
New =[]
Next =[]

New(node) empty, no equivalent node found. Add timeshift and
expand

LTL to BA: example 2

Init
4 pUug;p
Current node Is Node 11 l
Incoming = [10]
old =[9 pUQq;q
New = [] |
Next =[]

10

New(node) empty. Found equivalent old node in Node_Set (10).
Returning it instead.

LTL to BA: example 2

From the split

of Node 1 Init
4 pUuqg;p
Current node 1s Node 3 l
Incoming = [Init] :
Old=[puUq L2 PL a0
New = [q] l

Next = [] 10 f)

New(node) not empty, node replaced by 12, about to expand.

LTL to BA: example 2

Init
4 puq;p
Current node 1s Node 12 l
Incoming = [Init] _
Old=[pUq:q] |9 pUQq;Q
New = [] |

Next =[] 10 D

New(node) empty. Found equivalent old node (4) in Node_Set.
Returning it instead.

LTL to BA: example 2

.

Final graph for p U g

4 pUlq;p
9 pUQg;q
!

10

93

Comparison of the two algorithms

The graphs for p U g obtained from the two algorithms

Notes on the algorithm

Notice that nodes do not necessarily assign truth
value to all atomic propositions (in AP)!

Indeed the labeling to be associated to a node can
be any element of 2APwhich agrees with the literals
(AP or negations of AP) in Old(Node).

Let Pos(q) = Old(g) n AP
Let Neg(q) = {n € AP| —n € Old(q)}

L(g) = { X< AP | X 2 Pos(q) A (X N Neg(q)) = I}

95

Notes on the algorithm

@ L(q) = {{p}.{p.q}}
@ L(q) = {{qa}.{p.q}}

@

L(a) = {{}.{r}.{1a}.{P.0}}

Composing Ay s and A,

* In general what we need to do Is to compute the
Intersection of the languages recognized by the
two automata A, ;and A, and check for emptiness.

We have already seen (slide 12) how this can be
done.

When the System does not need to satisfy
FAIRNESS conditions (A, has the trivial
acceptance condition, 1.e. all the states are
accepting) there is a more efficient construction...

97

Efficient composition of A, and A,

* When A have the ftrivial acceptance condition, I.e.

all the states are accepting there Is a more efficient
construction.

 In this case we can just compute:
Agys MAG= <X, Sqyex Sgs R?5 SpgyeX Spr S
* where
(<s,t>,a,<s%1’>)eR’ Iff (s,a,8°) eRy and (t,a,”)eR,

xF¢>

Sys

98

Efficient composition of A, and A,

Notice that in our case both automata have labels In
the states (instead of on the transitions).

This can be dealt with by simply restricting the set of
states of the Intersection automaton to those which
agree on the labeling on both automata.

Therefore we define
A mA(I) =< 2, S’ , R’, (SOsny SO¢)m S’, Ssysx F¢ >

A
where

S’ = {(Sat) € Ssys>< S¢| Lsys(S)lAP(q)):Lq)(t)} and
(<s,><s%’>)eR’ Iff (ss7)eRy, and (t,2))eR,

Sys

99

