
1

Tecniche di Specifica e di

Verifica

Branching Time Temporal Logics I

2

Outline

• CTL (Computation Tree Logic)

– Branching Time

– Unwindings --- computation trees

– Syntax and semantics of CTL.

3

Branching Time Structures

• Linear Time:

– A computation at its first state satisfies a property.

– Property ---- LTL formula

• Branching Time

– The computation tree at its root satisfies a property.

– Property: CTL (CTL*, m-calculus) formula.

– Computation Tree

▪ All computations starting from a state glued
together (to form a tree structure).

• In branching time, the decisions taken during a
run are taken into account.

4

on
on

?!

Zap
Zap

offoff

The TV Example

5

on
on

?!

Zap
Zap

offoff

6

on
on

?!

Zap
Zap

offoff

7

on
on

?!

Zap
Zap

offoff

8

on
on

?!

Zap
Zap

offoff

9

on
onoff

off

A Modified Example

10

For every path p and every state s on that path,

there is a path p’ starting from s and a state s’

on p’ which is green.

11

Branching Time Temporal Logic

• K = (S, S0, R, AP, L)

• K, s y -- the computation tree rooted at s

satisfies y.

• K y iff K, s0 y for every s0  S0.

• Branching Time Temporal Logics:

– CTL

– CTL*

– (The modal) m-calculus

12

Unwinding

• K = (S, S0, R, AP, L) s0  S

• TR(K, s0) --- The computation tree rooted at s0.

• TR(K, s0) = (Ss0, (s0,e), Rs0, AP, Ls0)

– (s0, e)  Ss0 ;

– If (s1, s)  Ss0 and R(s1, s2) then

▪ (s2, s.s1)  Ss0 and

▪ Rs0 ((s1, s), (s2, s.s1)) ;

▪ L((s1, s)) = L(s1).

Therefore, for all (s, s)  Ss0, sS and s = s0 s1 …
sn is a path in K from s0 to sn and R(sn, s) (hence,
s.s is a path in K from s0 to s)

13

Unwinding

• TR(K, s) is almost a Kripke structure.

– Ss will tipically be infinite.

– But Rs is tree-like.

– The “graph” of TR(K, s) is a tree rooted at (s, e).

• TR(K, s) is the computation tree rooted of K

at s.

14

on

A Modified Example

on
off

offb

g r

(b, e)

(b, b) (g, b) (r, b)

(r, bb)

(b, bgg)(?, ?)

15

Linear time Vs Branching time

• There are properties that can be expressed in

LTL but which can not be expressed in

CTL.

• There are properties that can be expressed in

CTL but not in LTL.

• The LTL model checking problem can be

converted into a restricted kind of a CTL*

model checking problem.

16

CTL

• Syntax

– AP – a finite set of atomic propositions.

– p  AP is a formula.

– If y and y’ are formulas then so are y and

y  y’.

– If y is a formula then so is EXy

– If y1 and y2 are formulas then so are

EU(y1, y2) and AU(y1, y2).

17

Formulas

• EX(p  EU(r, AU(p, r)))

EX



p EU



r

AU

p r

18

Semantics

• K = (S, S0, R, AP, L)

– L : S 2AP

• y a CTL formula and s  S

• K, s y

• y (holds) is satisfied at s.

• FACT:

K, s y iff TR(K, s), (s, e) y.

19

Semantics

• CTL ::= p  y  y1  y2  EX(y) 

 EU(y1, y2)  AU(y1, y2)

• K = (S, S0, R, AP, L) ; L: S 2AP ; s  S

• K, s p iff p  L(s).

• K, s y iff not K, s y

• K, s y1  y2 iff

K, s y1 or K, s y2.

20

Semantics

• CTL ::= p  y  y1  y2  EX(y) 

 EU(y1, y2)  AU(y1, y2)

• K = (S, S0, R, AP, L) ; L: S 2AP ; s  S

• K, s EX(y) iff there exists s’ such that:

– s s’ (i.e. R(s, s’)) and K, s’ y

s has a successor state s’ at which y holds.

21

on

off

on
off

AP = {n, h, uh}b

g r

K, b EX(uh) ? K, b EX(uh) ?

K, g EX(uh) ?

K, r EX(h) ?

22

Semantics

• K = (S, S0, R, AP, L) ; L: S 2AP ; s  S

• A path from s is a (infinite) sequence of states

p = s0, s1, s2, …,si, si+1, … s.t:

– s = s0

– si si+1 (i.e. R(si, si+1)) for every i.

• p(i) = si the i-th element of p.

23

on
onoff

off

p =

0 1 2 3 4 5

p(2)
p(3)

24

Semantics

• CTL ::= p  y  y1  y2  EX(y) 

 EU(y1, y2)  AU(y1, y2)

• K = (S, S0, R, AP, L) ; L: S 2AP ; s  S

• K, s EU(y1, y2) iff there exists a path

p = s0, s1, … from s (i.e. s0=s) and k  0 such

that:

▪ K, p(k) y2

▪ K, p(j) y1 , for all 0  j < k.

25

s

s1

sj

sk
y2

y1

y1

y1

26

Semantics

• CTL ::= p  y  y1  y2  EX(y) 

 EU(y1, y2)  AU(y1, y2)

• K = (S, S0, R, AP, L) ; L: S 2AP ; s  S

• K, s AU(y1, y2) iff for every path

p = s0, s1, … from s there exists k  0 such that:

▪ K, p(k) y2

▪ K, p(j) y1, for all 0  j < k.

27

s

s1

sj

sk
y2

y1

y1

y1

s’1

s’h

s’z

y1

y1

y2

28

0

1 3

5
2
p1 4

7
p1 6

Req1 Req2

Grt1 Grt2

Grt1 Grt2

Req2 Req1

Req2 Req1

Ret1

Ret2

Ret2

Ret1

M, 0 EU(T, p1) ?

29

0

1 3

5
2
p1 4

7
p1 6

Req1 Req2

Grt1 Grt2

Grt1 Grt2

Req2 Req1

Req2 Req1

Ret1

Ret2

Ret2

Ret1

M, 0 AU(T, p1) ?

30

0

1 3

5
2
p1

4
p2

7
p1

6
p2

Req1 Req2

Grt1 Grt2

Grt1 Grt2

Req2 Req1

Req2 Req1

Ret1

Ret2

Ret2

Ret1

M, 0 AU(T, p1  p2) ?

31

0

1 3

5
2
p1

4
p2

7
p1

6
p2

Req1 Req2

Grt1 Grt2

Grt1 Grt2

Req2 Req1

Req2 Req1

Ret1

Ret2

Ret2

Ret1

M, 0 AU(T, EU(T, p1)) ?
From s0, all the computations

will reach a point, where it is

possible for 1 to print eventually.

32

0

3

4

Req2

Grt2

M, 0 AU(T, EU(T, p1)) ?

0

Ret1

5

7
p1

Req1

Grt1

33

Derived Operators

• AX(y) = EX(y)

– It is not the case there exists a next state

at which y does not hold, equivalent to

– For every next state y holds.

AX(y)

y y y

34

Derived Operators

• K, s EF(y)

• EF(y) = EU(T, y)

– There exists a path p (from s) and k  0

such that:

▪K, p(k) y.

35

EF(y)

y

36

Derived Operators

• K, s AG(y)

• AG(y) = EF(y)

– It is not the case there exists a path p (from s)

and k  0 such that:

▪ K, p(k)  y

– For every path p (from s) and every k  0:

▪ K, p(k) y

37

AGy

y

y

y

y

y

y

y

38

Derived Operators

• K, s AF(y)

• AF(y) = AU(T, y)

– For every path p from s, there exists k  0 such

that:

▪ K, p(k) y.

39

AFy

y

y

y

y

y

40

Derived Oparators

• K, s EG(y)

• EG(y) = AF(y)

– It is not the case that for every path p from s

there is a k  0 such that K, p(k)  y.

– There exists a path p from s such that, for

every k  0:

▪ K, p(k) y.

41

EGy

y

y

y

y

y

42

A more convenient CTL

• NCTL ::= p  y  y1  y2  EX(y) 

 EU(y1, y2)  EG(y)

• CTL ::= p  y  y1  y2  EX(y) 

 EU(y1, y2)  AU(y1, y2)

• NCTL is more convenient for model
checking!

• Clearly NCTL can be defined in terms of
CTL.

43

A more convenient CTL

• NCTL ::= p  y  y1  y2  EX(y) 

 EU(y1, y2)  EG(y)

• CTL ::= p  y  y1  y2  EX(y) 

 EU(y1, y2)  AU(y1, y2)

• CTL can be defined in terms of NCTL!

• The semantics of NCTL is given in the

obvious way.

44

A more convenient CTL

• NCTL ::= p  y  y1  y2  EX(y) 

 EU(y1, y2)  EG(y)

• K, s EG(y) iff there exists a path p

from s such that for every k  0:

▪K, p(k) y

45

A more convenient CTL

• NCTL ::= p  y  y1  y2  EX(y) 

 EU(y1, y2)  EG(y)

• CTL ::= p | y | y1  y2 | EX(y) |

| EU(y1, y2) | AU(y1, y2)

• AU(y1, y2) = EU(y2, (y1  y2))  EG(y2)

i.e., along any path: y2 must hold eventually and

(y1  y2) can only happen after y2 (recall the

before operator of LTL)

46

A more convenient CTL

AU(y1, y2) = EU(y2, (y1  y2))  EG(y2)

y1 cannot become
false, while y2

stays false!

y2 cannot remain
false forever! (i.e.
y2 will eventually
become true along
any path).

47

A more convenient CTL

AU(y1, y2) = EU(y2, (y1  y2))  EG(y2)

 Assume K, s AU(y1, y2)

– Let p be a path from s. Then there exists k  0

with:

▪K, s y2

– Hence, not K, s EG(y2)

– Equivalent to K, s EG(y2)

48

A more convenient CTL

• AU(y1, y2) = NewAU(y1, y2) =

EU(y2, (y1  y2))  EG(y2)

• Clearly K, s AU(y1, y2) implies K, s EG(y2)

• Let K, s AU(y1, y2)

– Suppose now K, s EU(y2, y1  y2)

– Let p be any path from s witnessing the above:

– Let now k be the least integer such that:

▪K, p(k) y1  y2

▪K, p(j) y2 for 0  j < k.

49

s sk

y2 y2y2
y1 Æ y2

• Suppose K, p(m) y2, required by K, s AU(y1,y2)

• Take m to be the least such number.

• Then k < m, since K, s EU(y2, y1  y2)

• This implies that K, p(k) y1, for some 0  k < m

• Hence not K, s AU(y1, y2). Contradiction!

• Thus K, s AU(y1, y2) also implies:

– K, s EU(y2, y1  y2)

• So K, s AU(y1, y2) implies K, s NewAU(y1, y2)

sm

y2

50

From CTL to NCTL

• In a similar way we can argue that:

if K, s newAU(y1, y2)

then K, s AU(y1, y2).

• Hence CTL can be expressed in terms of

NCTL.

51
EGy2 = AFy2

A more convenient CTL

• NCTL ::= p | y | y1  y2 | EX(y) |

| EU(y1, y2) | EG(y)

• CTL ::= p | y | y1  y2 | EX(y) |

| EU(y1, y2) | AU(y1, y2)

• AU(y1, y2) = NewAU(y1, y2) =

(EU(y2, (y1  y2))  AF(y2)

• NewAU1 =  EU(y2, (y1  y2)

• NewAU2 = AFy2

52

From CTL to NCTL

• Let K = (S, S0, R, AP, L) and s  S.

• We need to argue:

– K, s AU(y1, y2) iff

K, s NewAU1  NewAU2

• We already argued that:

– If K, s AU(y1, y2) then

K, s NewAU1  NewAU2

53

From CTL to NCTL

AU(y1, y2) = EU(y2, (y1  y2))  EG(y2)

 We need to argue that:

– If K, s NewAU1  NewAU2 then

K, s AU(y1, y2)

• So assume K, s NewAU1  NewAU2.

• NewAU1 = EU(y2, (y1  y2)).

• NewAU2 = EGy2 = AFy2

54

From CTL to NCTL

• Let p be some path from s.

• We need to show that there exists k  0 such
that:

– K, p(k) y2

– K, p(j) y1 if 0  j < k.

• But K, s AF y2 implies that along any path

(and also along p) there exists k  0 such that:

– K, p(k) y2

• Assume k is the least such number along p.

55

From CTL to NCTL

Now consider an arbitrary m with 0  m < k.

CLAIM: K, s(m) y1

• If the CLAIM is true then we are done.

• Suppose instead that K, s(m) y1.

– Then K, s(m) y1  y2 (m < k) WHY???

– and K, s(j) y2 if 0  j < m, since j < m < k

– Hence K, s(0) EU(y2, y1  y2)

– Therefore, not K, s NewAU1 which is a

contradiction!

56

CTL Model Checking

• K y iff

K, s0 y for every s0  S0.

• The CTL model checking problem.

– K = (S, S0, R, AP, L) (system model)

– y a CTL formula (spec. of the property)

• Given K and y determine whether or not K y

57

CTL Model Checking

• The actual model checking problem:

– Given K = (S, S0, R, AP, L)

– Given s  S

– Given y, an NCTL formula.

– Determine whether:

K, s y

58

The Sub-formulas of y

• SF(y) is the least set of formulas satisfying:

– y  SF(y)

– If a  SF(y) then a  SF(y) .

– If a  b  SF(y) then a, b  SF(y)

– If EXa  SF(y) then a  SF(y) .

– If EU(a, b)  SF(y) then a, b  SF(y)

– If EGa  SF(y) then a  SF(y) .

• SF(y) ---- The set of sub-formulas of y.

59

The Labeling Procedure.

• K = (S, S0, R, AP, L)

– s  S

– y a NCTL formula (built out of AP).

• Strategy:

– Construct Labels: S 2SF(y)

– 2SF(y), the set of subsets of SF(y).

– Each state of K is assigned a subset of a SF(y) by

the Labels function.

• K, s y iff y  Labels(s).

60

The Labels function

• Stage 0: consider the atomic propositions only

– For every t  S:

– Labels(t) = L(t) (K =(S, S0, R, AP, L))

• ….

Assume we have done up to stage i (all subfomrulae
of length i already processed)

• Stage i +1: consider subfomrulae a of length i+1

– For every t  S:

– If a = b then

a  Labels(t) iff b  Labels(t).

61

The Labels function

• Stage i +1: consider subfomrulae a of length i+1

– For every t  S:

– If a = b1  b2 then

a  Labels(t) iff b1Labels(t) or b2  Labels(t)

– If a = EXb then

a  Labels(t) iff there exists s  S such that

b  Labels(s) and R(t, s) [i.e. t → s]

62

The Labels Function

b

a = EX(b)

S

63

Computing the labeling for EX(b)

Algorithm Check_EX(b)

T = {s | b  Labels(s)};

while T   do

choose s  T;

T = T \{s};

for each t  S such that t → s do

Labels(t) = Labels(t)  {EX b};

Complexity: O(|M|)

64

The Labels Function

• Stage i +1: consider subfomrulae a of length i+1

– For every t  S:

– If a = EU(b1,b2) then

a  Labels(t) iff

− b2  Labels(t) or

− b1  Labels(t) and EU(b1,b2)  Labels(s)

for some s with t → s.

65

The Labels Function

• Collect in T all the states satisfying b2

– all these states do also satisfy EU(b1,b2).

• Traverse backward → from states in T and label

with EU(b1,b2) all the states t satisfying b1 and

reaching at least a state s labeled with EU(b1,b2).

If s  T, t with t → s and b1  Labels(t) then

EU(b1,b2)  Labels(t)

Recall that: EU(b1,b2) = (b2  (b1  EXEU(b1,b2)))

66

b1

b1

b1

b2

b1

b1

b1
b2

b2

S

b1

b1

b1

b2

b1

b1

b1
b2

b2

T

67

b1

b1

b1

b2

b1

b1

b1
b2

b2

S

b1

b1

b1

Eb1Ub2

b1

b1

b1
b2

Eb1Ub2

T

68

b1

b1

b1

b2

b1

b1

b1
b2

b2

S

b1

b1

Eb1Ub2

b1

Eb1Ub2

Eb1Ub2

b1

b1

b1
b2

Eb1Ub2

T

69

b1

b1

b1

b2

b1

b1

b1
b2

b2

S

Eb1Ub2

b1

Eb1Ub2

b1

Eb1Ub2

b1

Eb1Ub2

Eb1Ub2

b1

Eb1Ub2

b1

b1
b2

Eb1Ub2

T

70

S
Eb1Ub2

b1

Eb1Ub2

b1

Eb1Ub2

b1

Eb1Ub2

b2

Eb1Ub2

b1

Eb1Ub2

b1

b1
b2

Eb1Ub2

b2

71

Computing the labeling for EU(b1,b2)

Algorithm Check_EU(b1,b2)

T = {s | b2  Labels(s)};

for each s  T do

Labels(s) = Labels(s)  {EU(b1,b2)};

while T   do

chose s  T;

T = T \{s};

for each t  S with t → s do

if EU(b1,b2)  Labels(t) and b1Labels(t) then

Labels(t) = Labels(t)  {EU(b1,b2)};

T = T  {t};

Complexity: O(|M|)

72

• Stage i +1: consider subfomrulae a of length i+1

– For every t  S:

– If a = EG(b) then

a  Labels(t) iff

– b  Labels(t) and EG(b)  Labels(s) for

some s with t → s.

The Labels Function

73

Let M’ = (S’,R’,L’) be the sub-graph of M where

– S’ = { s | M ,s b }

– R’ = R|S’ S’ (the restriction of R to S’)

– L’ = L|S’ (the restriction of L to S’)

Lemma: M,s EG(b) iff

1. s  S’ and

2. there exists a path in M’ leading from s to a

non-trivial strongly connected component C

of the graph (S’,R’).

Property of EG(b)

74

The Labels Function
• Compute the subgraph S’ whose states satisfy b

• Take non-trivial strongly connected components

of S’

– all the states in these components do satisfy EG(b).

• Traverse backward →’ and label with EG(b) the

states t reaching at least a state s labeled with

EG(b) (note that both t and s belong to S’).

If t  S’ and R(t,s) then EG(b)  Labels(t)

Recall that: EG b = b  EXEG b

75

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

S’

S

76

T

b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

S’

S

77

b

b

b

b

b

EGb

EGb

EGb

b

b

T

b
b

b

b
b

b

S’

S

78

T

b

b

b

b

b

EGb

EGb

EGb

b

EGb

b
b

b

b
b

b

S’

S

79

b

b

b

b

b

EGb

EGb

EGb

EGb

EGb

b
b

b

b
b

b

T
S’

S

80

EGb

EGb

EGb

EGb

EGb

b
b

b

EGb

EGb

EGb

b

EGb

EGb

b

b

S

S’

81

Computing the labeling for EG(b)

Algorithm Check_EG(b)

S’ = {s | b  Labels(s)};

SCC = {C | C is a non trivial SCC of S’};

T = CSCC{s | s  C};

for each s  T do Labels(s) = Labels(s)  {EG(b)};

while T   do

chose s  T;

T = T \{s};

for each t  S’ with t → s do

if EG(b)  Lables(t) then

Labels(t) = Labels(t)  {EG(b)};

T = T  {t};

Complexity: O(|M|)

82

CTL model checking

• The algorithms just presented show that the

model checking problem for CTL can be

solved in time linear in the size of System M

and the size of the Property f, namely:

in time O(|M||f|)

where |M| is the size of the graph underlying

M and |f| is the number of subformulae of f.

83

Fixed point characterization

• We will redefine the labeling function in

terms of fixed point computation.

• This is a nice and elegant algorithmic

account.

• It will be used when efficient symbolic

approach will be introduced.

84

Partial Orders

• A binary relation on a set A is a partial

order iff is reflexive, anti-symmetric and

transitive.

• The pair <A, > is called a partially

ordered set (or poset).

• Example: If S is any set and  is the

ordinary subset relation, then <2S,> is a

partially ordered set.

85

Upper Bounds

Given <A, > and A’  A

• aA is an upper bound of A’ iff a’A’, a’ a

• aA is a least upper bound (lub) of A’, written

A’, iff

– a is an upper bound of A’ and

– a’A, if a’ is an upper bound of A’, then a a’

86

Lower Bounds

Given <A, > and A’  A

• aA is a lower bound of A’ iff a’A’, a a’

• aA is a greatest lower bound (glb) of A’,

written A’, iff

– a is a lower bound of A’ and

– a’A, if a’ is a lower bound of A’, then a’ a

87

Complete Lattice

A poset <A, > is a complete lattice if, for each

A’  A, the greatest lower bound A’ and the

least upper bound A’ do exist.

A complete lattice <A, > has a unique greatest

element A=T and also a unique least element

A = ⊥.

88

Complete Lattice

The poset <2S,> is a complete lattice where

intersection  and union  correspond to and

, respectively.

Any two subset of S have a least upper and a

greatest lower bound.

Example: S={a,b,c,d}. For {a,c} and {b,c} the glb

is {c}, while the lub is {a,b,c}.

There is a unique greatest element 2S = S and a

unique least element 2S = .

89

Example of a complete lattice

{p} {r}{q}

⊥=

T={pqr}

{pq} {pr} {qr}

The complete lattice <2S, >

when S is the set {p,q,r}.

90

Monotonic functions

• A function F: A A is monotonic if for

each a,b  A, a b implies F(a) F(b).

• In other words, a function F is monotonic if

it preserves the ordering .

91

Fixed points

• Given a function F: A A, an element a  A

is a fixed point of F if F(a) = a.

• a  A is called the least fixed point of F

(mx.F(x)), if for all a’  A such that F(a’) = a’,

then a a’.

• a  A is called the greatest fixed point of F

(nx.F(x)), if for all a’  A such that F(a’) = a’,

then a’ a.

92

Tarski’s Fixed Point theorem

THEOREM: Let <A, > be a complete lattice,

and F: A A a monotonic function. Then F

has a least and a greatest fixed point given,

respectively, by:

• mx.F(x) = {x  A | F(x) x}

• nx.F(x) = {x  A| x F(x)}

93

Fixed point in finite lattices

Let <A, > be a finite complete lattice, and F: A!A

be a monotonic function.

Then the least fixed point for F is obtained as

mx.F(x) = Fm(⊥)

for some m, where F0(⊥) = ⊥, and Fn+1(⊥) = F(Fn(⊥)).

Moreover, the greatest fixed point for F is obtained as

nx.F(x) = Fk(T)

for some k, where F0(T) = T, and Fn+1(T) = F(Fn(T)).

The greatest element of A

The least element of A

94

Generic fixed point algorithm

Algorithm Compute_lfp(F:function)

X0 = ⊥;

X1 = F(X0);

j=1;

while Xj  Xj-1

j = j+1;

Xj = F(Xj-1);

return Xj

95

CTL and complete lattices

• Given a Kripke structure M=<S,S0,R,L,AP>.

We will then consider the poset <2S,>.

• <2S ,> is clearly a complete lattice (with

respect to intersection and union).

• We will identify a CTL formula with the set

of states which satisfy it.

• In this way we can define temporal operators

as functions on the complete lattice <2S,>.

96

Denotation of a CTL formula

• Given a formula f, let us define its denotation

(in M), in symbols |[f]|, as the set of states

satisfying the formula:

|[f]| = { s | M,s f }

• We could then define the cpo <CTL, > by:

f y iff |[f]|  |[y]|

97

CTL is closed under

conjunction and disjunction,

therefore for any pair of

formulae the upper and

lower bound do exist.

Denotation of a CTL formula

• Given the denotation of a formula

|[f]| = { s | M,s f }

• We could then define the cpo <CTL, > by:

f y iff |[f]|  |[y]|

• Then |[⊥]| =  ; |[T]| = S ;

• |[p]| = { s | p  L(s) } ;

• |[f]| = S \ |[f]| ;

• |[f  y]| = |[f]|  |[y]| ;

• |[f  y]| = |[f]|  |[y]| ;

98

Denotation of a CTL formula

• Given a formula f, let us define its denotation

(in M), in symbols |[f]|, as the set of states

satisfying the formula:

|[f]| = { s | M,s f }

• ….

• |[EXf]| = { s | t. (t  |[f]|  R(s)) }

• for the other temporal operators we would

need to use fixed points….

99

Fixed point characterization of

EU(b1,b2)

• EU(b1,b2)  b2  (b1 EX EU(b1, b2))

• |[EU(b1,b2)]| = mZ.(|[b2]|  (|[b1]|  |[EX Z]|))

• |[EU(b1,b2)]| =

mZ.(|[b2]|  (|[b1]|  { s | t  Z  R(s) }))

100

Fixed point characterization of

EU(b1,b2)

Lemma: Let

F(Z) = (|[b2]|  (|[b1]|  { s | t  Z  R(s) }))

then F is a monotonic function, i.e.

Z1  Z2 implies F(Z1)  F(Z2)

101

Fixed point characterization of

EU(b1,b2)

Theorem:

|[EU(b1,b2)]| = mZ.(|[b2]|  (|[b1]|  { s | t  Z  R(s) }))

in other words:

mZ.(|[b2]|  (|[b1]|  { s | t  Z  R(s)}))  |[EU(b1,b2)]|

and

|[EU(b1,b2)]|  mZ.(|[b2]|  (|[b1]|  { s | t  Z  R(s)}))

102

Algorithm Compute_EU(b1,b2)

X0 = |[⊥]|; /* i.e. X0 =  */

X1 = |[b2]|  (|[b1]|  X0); /* i.e. X1 = |[b2]| */

j=1;

while Xj  Xj-1

j = j+1; T = Xj-1; X = 

while T   do

chose s  T;

T = T \{s};

forall t such that s  R(t) do

X = X  {t};

Xj = |[b2]|  (|[b1]|  X)

Computing fixed point for EU(b1,b2)

This computes

X = EX Xj-1

103

Computing fixed point for EU(b1,b2)

To compute |[EU(b1,b2)]| we can construct

inductively the set of states Xj as follows:

– X1 = |[b2]|.

– Xj+1 = Xj  { s  s  |[b1]| and R(s,t) for some tXj}

|[EU(b1,b2)]| is then the set X such that X = Xn

for n such that Xn+1 = Xn.

Notice that n must exist by Tarski’s Theorem

since Xj  Xj+1  S (and S is finite!)

104

From X0 to X1

X1

b2

X0

EU(b1, b2)

b1

S

105

From Xj to Xj+1

Xj+1

EU(b1, b2)

Xj

Xj-1

Xj-2

S

b1

106

Computing fixed point for EU(b1,b2)

Algorithm Compute_EU(b1,b2)

X1 = |[b2]|;

j=1;

repeat

j = j+1; T = X = Xj-1;

while T   do

chose s  T;

T = T \{s};

forall t such that s  R(t) do

if t  |[b1]| then /* t|[b1]|  EX Xj-1*/

X = X  {t};

Xj = X ;

until Xj-1 = Xj

107

Fixed point characterization of EG(b)

• EG(b)  b  EX EG(b)

• |[EG(b)]| = nZ.(|[b]|  |[EX Z]|))

• |[EG(b)]| =

nZ.(|[b]|  { s | t  Z  R(s) })

108

Computing the fixed point for EG(b)

Algorithm Compute_EG(b)

X0 = |[T]|; /* i.e. X0 = S */

X1 = |[b]|  X0; /* i.e. X1 = |[b]| */

j=1;

while Xj Xj-1

j = j+1; T = Xj-1; X = ;

while T   do

chose s  T;

T = T \{s};

forall t such that s  R(t)

Xj = Xj  {t};

Xj = |[b]|  Xj

X = EX Xj-1

109

The Labels function
• To compute |[EGb]| we can construct

inductively the set of states Xj as follows:

– X1 = |[b]|.

– Xj+1 = Xj − { s  s  Xj and

there does not exist t  Xj

such that R(s, t)}

|[EGb]| is then the set X such that X = Xn for m
such that Xm+1 = Xm.

• Notice that m must exists by Tarski’s Theorem
since   Xj+1  Xj

110

From Y0 to Y1

EGb

Y0

Y1

b

S

111

From Yj to Yj+1

EGb

S
Yj-2

Yj-1

Yj

Yj+1
b

112

Computing the fixed point for EG(b)

Algorithm Compute_EG(b)

X1 = |[b]|;

j=1;

repeat

j = j+1; T = Xj = Xj-1;

while T   do

chose s  T;

T = T \{s};

if for all t  R(s), t  Xj-1 then

Xj = Xj - {s};

until Xj = Xj-1;

