Tecniche di Specifica e di Verifica

Branching Time Temporal Logics I

Outline

- CTL (Computation Tree Logic)
 - Branching Time
 - Unwindings --- computation trees
 - Syntax and semantics of CTL.

Branching Time Structures

• Linear Time:

- A computation at its first state satisfies a property.
- Property ---- LTL formula

Branching Time

- The *computation tree* at its root satisfies a property.
- Property: CTL (CTL*, μ-calculus) formula.
- Computation Tree
 - All *computations* starting from a state *glued together* (to form a tree structure).
- In branching time, *the decisions* taken during a run are taken into account.

The TV Example

For every path π and every state s on that path, there is a path π ' starting from s and a state s' on π ' which is green.

Branching Time Temporal Logic

- $K = (S, S_0, R, AP, L)$
- $K, s \models \psi$ -- the computation tree rooted at s satisfies ψ .
- $K \models \psi$ iff $K, s_0 \models \psi$ for every $s_0 \in S_0$.
- Branching Time Temporal Logics:
 - -CTL
 - **CTL***
 - (The modal) μ-calculus

Unwinding

- $K = (S, S_0, R, AP, L)$ $S_0 \in S$
- $TR(K, s_0)$ --- The computation tree rooted at s_0 .
- $TR(K, s_0) = (S_{s0}, (s_0, \varepsilon), \mathcal{R}_{s0}, AP, \mathcal{L}_{s0})$ $-(s_0, \varepsilon) \in S_{s0};$ $-If (s_1, \sigma) \in S_{s0} \text{ and } R(s_1, s_2) \text{ then}$ • $(s_2, \sigma.s_1) \in S_{s0} \text{ and}$ • $\mathcal{R}_{s0}((s_1, \sigma), (s_2, \sigma.s_1));$ • $\mathcal{L}((s_1, \sigma)) = L(s_1).$

Therefore, for all $(s, \sigma) \in S_{s0}$, $s \in S$ and $\sigma = s_0 s_1 \dots s_n$ is a path in **K** from s_0 to s_n and $R(s_n, s)$ (hence, σ .s is a path in **K** from s_0 to s)

Unwinding

- TR(K, s) is almost a Kripke structure.
 - S_s will tipically be infinite.
 - But \mathcal{R}_{s} is *tree-like*.
 - The "graph" of TR(K, s) is a tree rooted at (s, ε) .
- TR(K, s) is the computation tree rooted of K at s.

Linear time Vs Branching time

- There are properties that can be expressed in LTL but which can not be expressed in CTL.
- There are *properties* that can be *expressed in* CTL but *not in* LTL.
- The LTL model checking problem can be converted into a restricted kind of a CTL* model checking problem.

CTL

• Syntax

- $-\mathbf{AP}$ a finite set of *atomic propositions*.
- $-\mathbf{p} \in \mathbf{AP}$ is a formula.
- If ψ and ψ ' are formulas then so are $\neg \psi$ and $\psi \vee \psi$ '.
- If ψ is a formula then so is $\mathbf{E}\mathbf{X}\psi$
- If ψ_1 and ψ_2 are formulas then so are $EU(\psi_1, \psi_2)$ and $AU(\psi_1, \psi_2)$.

Formulas

• $\mathbf{EX}(\mathbf{p} \vee \mathbf{EU}(\neg \mathbf{r}, \mathbf{AU}(\mathbf{p}, \mathbf{r})))$

- $K = (S, S_0, R, AP, L)$ - $L : S \longrightarrow 2^{AP}$
- ψ a CTL formula and $s \in S$
- K, s ⊧ ψ
- ψ (holds) is satisfied at s.
- FACT:

K,
$$s \models \psi$$
 iff $TR(K, s)$, $(s, \varepsilon) \models \psi$.

• CTL ::= $\mathbf{p} \mid \neg \psi \mid \psi_1 \vee \psi_2 \mid \mathbf{EX}(\psi) \mid$ $| EU(\psi_1, \psi_2) | AU(\psi_1, \psi_2)$ • $K = (S, S_0, R, AP, L)$; $L: S \longrightarrow 2^{AP}$; $s \in S$ • $K, s \models p$ iff $p \in L(s)$. • K, $s \models \neg \psi$ iff not K, $s \models \psi$ • K, $S \models \psi_1 \lor \psi_2$ iff $K, s \models \psi_1 \text{ or } K, s \models \psi_2.$

$$\mathbf{AP} = \{\mathbf{n}, \mathbf{h}, \mathbf{uh}\}$$

$$K, b \models EX(uh)$$
? $K, b \models EX(\neg uh)$?

$$K, g \models EX(uh)$$
?

$$K, r \models EX(h)$$
?

- $K = (S, S_0, R, AP, L)$; $L: S \longrightarrow 2^{AP}$; $S \in S$
- A path from s is a (infinite) sequence of states $\pi = s_0, s_1, s_2, ..., s_i, s_{i+1}, ...$ s.t:
 - $-\mathbf{S} = \mathbf{S_0}$
 - $-\mathbf{s_i} \longrightarrow \mathbf{s_{i+1}}$ (i.e. $\mathbf{R}(\mathbf{s_i}, \mathbf{s_{i+1}})$) for every i.
- $\pi(i) = s_i$ the i-th element of π .

- CTL ::= $p \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid EX(\psi) \mid$ $\mid EU(\psi_1, \psi_2) \mid AU(\psi_1, \psi_2)$
- $K = (S, S_0, R, AP, L)$; $L: S \longrightarrow 2^{AP}$; $S \in S$
- $K, s \models EU(\psi_1, \psi_2)$ iff there exists a path $\pi = s_0, s_1, \dots$ from s (i.e. $s_0 = s$) and $k \ge 0$ such that:
 - \mathbf{K} , $\pi(\mathbf{k}) \models \psi_2$
 - \mathbf{K} , $\pi(\mathbf{j}) \models \psi_1$, for all $0 \le \mathbf{j} < \mathbf{k}$.

- CTL ::= $\mathbf{p} \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid \mathbf{EX}(\psi) \mid$ $\mid \mathbf{EU}(\psi_1, \psi_2) \mid \mathbf{AU}(\psi_1, \psi_2)$
- $K = (S, S_0, R, AP, L)$; $L: S \longrightarrow 2^{AP}$; $S \in S$
- $K, s \models AU(\psi_1, \psi_2)$ iff for every path $\pi = s_0, s_1, \dots$ from s there exists $k \ge 0$ such that:
 - \mathbf{K} , $\pi(\mathbf{k}) \models \psi_2$
 - \mathbf{K} , $\pi(\mathbf{j}) \models \psi_1$, for all $0 \le \mathbf{j} < \mathbf{k}$.

 $M, 0 \models EU(T, p_1)$?

M, $0 \models AU(T, p_1)$?

 $M, 0 \models AU(T, p_1 \lor p_2)$?

M, $0 \models AU(T, EU(T, p_1))$?

From s_0 , all the computations will reach a point, where it is **possible** for 1 to print eventually.

M, $0 \models AU(T, EU(T, p_1))$?

Derived Operators

- $AX(\psi) = \neg EX(\neg \psi)$
 - It is not the case there exists a next state at which ψ does not hold, equivalent to
 - -For every next state ψ holds.

Derived Operators

- $K, s \models EF(\psi)$
- $\mathbf{EF}(\mathbf{\psi}) = \mathbf{EU}(\mathsf{T}, \mathbf{\psi})$
 - There exists a path π (from s) and $k \ge 0$ such that:
 - K, $\pi(k) \models \psi$.

Derived Operators

- $K, s \models AG(\psi)$
- $\mathbf{AG}(\mathbf{\psi}) = \neg \mathbf{EF}(\neg \mathbf{\psi})$
 - It is *not* the case *there exists a path* π (from s) and $k \ge 0$ such that:
 - K, $\pi(k) \models \neg \psi$
 - For every path π (from s) and every k ≥ 0:
 - \mathbf{K} , $\pi(\mathbf{k}) \models \psi$

Derived Operators

- $K, s \models AF(\psi)$
- $AF(\psi) = AU(T, \psi)$
 - For every path π from s, there exists $k \ge 0$ such that:
 - K, $\pi(k) \models \psi$.

Derived Oparators

- $K, s \models EG(\psi)$
- $\mathbf{EG}(\mathbf{\psi}) = \neg \mathbf{AF}(\neg \mathbf{\psi})$
 - It is **not** the case that *for every path* π from **s** there is a $k \ge 0$ such that K, $\pi(k) \models \neg \psi$.
 - There exists a path π from s such that, for every $k \ge 0$:
 - K, $\pi(k) \models \psi$.

- NCTL ::= $\mathbf{p} \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid \mathbf{EX}(\psi) \mid$ $\mid \mathbf{EU}(\psi_1, \psi_2) \mid \mathbf{EG}(\psi)$
- CTL ::= $\mathbf{p} \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid \mathbf{EX}(\psi) \mid$ $\mid \mathbf{EU}(\psi_1, \psi_2) \mid \mathbf{AU}(\psi_1, \psi_2)$
- NCTL is more convenient for model checking!
- Clearly **NCTL** can be defined in terms of **CTL**.

- NCTL ::= $p \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid EX(\psi) \mid$ $\mid EU(\psi_1, \psi_2) \mid EG(\psi)$
- CTL ::= $p \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid EX(\psi) \mid$ $\mid EU(\psi_1, \psi_2) \mid AU(\psi_1, \psi_2)$
- CTL can be defined in terms of NCTL!
- The semantics of **NCTL** is given in the obvious way.

- NCTL ::= $\mathbf{p} \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid \mathbf{EX}(\psi) \mid$ $\mid \mathbf{EU}(\psi_1, \psi_2) \mid \mathbf{EG}(\psi)$
- **K**, $s \models EG(\psi)$ iff there exists a path π from **s** such that for every $k \ge 0$:
 - \mathbf{K} , $\pi(\mathbf{k}) \models \mathbf{\psi}$

• NCTL ::= $\mathbf{p} \mid \neg \psi \mid \psi_1 \vee \psi_2 \mid \mathbf{EX}(\psi) \mid$ $|\mathbf{EU}(\psi_1, \psi_2)| \mathbf{EG}(\psi)$ • CTL ::= $\mathbf{p} \mid \neg \psi \mid \psi_1 \vee \psi_2 \mid \mathbf{EX}(\psi) \mid$ $|\mathbf{EU}(\psi_1, \psi_2)| \mathbf{AU}(\psi_1, \psi_2)$ • $AU(\psi_1, \psi_2) = \neg EU(\neg \psi_2, (\neg \psi_1 \land \neg \psi_2)) \land \neg EG(\neg \psi_2)$ i.e., along any path: ψ_2 must hold eventually and $(\neg \psi_1 \land \neg \psi_2)$ can only happen after ψ_2 (recall the

before operator of LTL)

 ψ_1 cannot become false, while ψ_2 stays false!

 ψ_2 cannot remain false forever! (i.e. ψ_2 will eventually become true along any path).

$$\mathbf{AU}(\psi_1, \psi_2) = \neg \mathbf{EU}(\neg \psi_2, (\neg \psi_1 \land \neg \psi_2)) \land \neg \mathbf{EG}(\neg \psi_2)$$

- \Rightarrow Assume K, s \models AU(ψ_1, ψ_2)
 - Let π be a path from s. Then there exists $k \ge 0$ with:
 - K, s $\models \psi_2$
 - Hence, **not** K, $s \models EG(\neg \psi_2)$
 - Equivalent to **K**, $s \models \neg EG(\neg \psi_2)$

- $\mathbf{AU}(\psi_1, \psi_2) = \mathbf{NewAU}(\psi_1, \psi_2) =$ $\neg \mathbf{EU}(\neg \psi_2, (\neg \psi_1 \land \neg \psi_2)) \land \neg \mathbf{EG}(\neg \psi_2)$
- Clearly K, $s \models AU(\psi_1, \psi_2)$ implies K, $s \models \neg EG(\neg \psi_2)$
- Let K, $s \models AU(\psi_1, \psi_2)$
 - -Suppose now **K**, $s \models EU(\neg \psi_2, \neg \psi_1 \land \neg \psi_2)$
 - Let π be any path from s witnessing the above:
 - Let now k be the least integer such that:
 - \mathbf{K} , $\pi(\mathbf{k}) \models \neg \psi_1 \land \neg \psi_2$
 - K, $\pi(j) \models \neg \psi_2$ for $0 \le j < k$.

- Suppose K, $\pi(m) \models \psi_2$, required by K, $s \models AU(\psi_1, \psi_2)$
- Take m to be the least such number.
- Then k < m, since $K, s \models EU(\neg \psi_2, \neg \psi_1 \land \neg \psi_2)$
- This implies that K, $\pi(k) \models \neg \psi_1$, for some $0 \le k < m$
- Hence not K, $s \models AU(\psi_1, \psi_2)$. Contradiction!
- Thus K, $s \models AU(\psi_1, \psi_2)$ also implies:

$$-\mathbf{K}, \mathbf{s} \models \neg \mathbf{EU}(\neg \psi_2, \neg \psi_1 \land \neg \psi_2)$$

• So K, s \models AU(ψ_1 , ψ_2) implies K, s \models NewAU(ψ_1 , ψ_2)

• In a similar way we can argue that:

```
if K, s \models newAU(\psi_1, \psi_2)
then K, s \models AU(\psi_1, \psi_2).
```

• Hence *CTL* can be expressed in terms of *NCTL*.

- NCTL ::= $\mathbf{p} \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid \mathbf{EX}(\psi) \mid$ $\mid \mathbf{EU}(\psi_1, \psi_2) \mid \mathbf{EG}(\psi)$
- CTL ::= p $|\neg \psi| \psi_1 \lor \psi_2 | EX(\psi) |$ $|EU(\psi_1, \psi_2)| AU(\psi_1, \psi_2)$
- $AU(\psi_1, \psi_2) = NewAU(\psi_1, \psi_2) =$ $-(EU(-\psi_2, (-\psi_1 \land -\psi_2)) \land AF(\psi_2)$
- NewAU₁ = \neg EU($\neg \psi_2$, ($\neg \psi_1 \land \neg \psi_2$)
- NewAU₂ = $AF\psi_2$

- Let $K = (S, S_0, R, AP, L)$ and $s \in S$.
- We need to argue:
 - K, $s \models AU(\psi_1, \psi_2)$ iff K, $s \models NewAU_1 \land NewAU_2$
- We already argued that:
 - If $K, s \models AU(\psi_1, \psi_2)$ then $K, s \models NewAU_1 \land NewAU_2$

$$\mathbf{AU}(\psi_1, \psi_2) = \neg \mathbf{EU}(\neg \psi_2, (\neg \psi_1 \land \neg \psi_2)) \land \neg \mathbf{EG}(\neg \psi_2)$$

- ← We need to argue that:
 - If K, $s \models NewAU_1 \land NewAU_2$ then K, $s \models AU(\psi_1, \psi_2)$
- So assume K, $s \models NewAU_1 \land NewAU_2$.
- NewAU₁ = \neg EU($\neg \psi_2$, ($\neg \psi_1 \land \neg \psi_2$)).
- NewAU₂ = $\neg EG \neg \psi_2 = AF\psi_2$

- Let π be some path from s.
- We need to show that there exists $k \ge 0$ such that:
 - $-\mathbf{K}, \pi(\mathbf{k}) \models \psi_2$
 - -K, $\pi(j) \models \psi_1$ if $0 \leq j < k$.
- But K, $s \models AF \psi_2$ implies that along any path (and also along π) there exists $k \ge 0$ such that:
 - $-\mathbf{K}, \pi(\mathbf{k}) \models \psi_2$
- Assume k is the *least* such number along π .

Now consider an arbitrary \mathbf{m} with $0 \le \mathbf{m} < \mathbf{k}$.

```
CLAIM: K, \sigma(m) \models \psi_1
```

- If the **CLAIM** is true then we are done.
- Suppose instead that \mathbf{K} , $\sigma(\mathbf{m}) \models \neg \psi_1$.
 - Then K, $\sigma(\mathbf{m}) \models \neg \psi_1 \land \neg \psi_2 \ (\mathbf{m} < \mathbf{k}) \ WHY???$
 - and **K**, $\sigma(j) \models \neg \psi_2$ if $0 \le j < m$, since j < m < k
 - Hence K, $\sigma(0) \models EU(\neg \psi_2, \neg \psi_1 \land \neg \psi_2)$
 - Therefore, not K, s ⊨ NewAU₁ which is a contradiction!

CTL Model Checking

- $\mathbf{K} \models \psi$ *iff* $\mathbf{K}, \mathbf{s}_0 \models \psi \text{ for every } \mathbf{s}_0 \in \mathbf{S}_0.$
- The CTL model checking problem.
 - $-K = (S, S_0, R, AP, L)$ (system model)
 - $-\psi$ a *CTL* formula (spec. of the property)
- Given **K** and ψ determine whether or not **K** $\models \psi$

CTL Model Checking

- The actual model checking problem:
 - Given $\mathbf{K} = (\mathbf{S}, \mathbf{S}_0, \mathbf{R}, \mathbf{AP}, \mathbf{L})$
 - $-Given s \in S$
 - Given ψ , an NCTL formula.
 - Determine whether:

$$K, s \models \psi$$

The Sub-formulas of ψ

- $SF(\psi)$ is the *least set of formulas* satisfying:
 - $\psi \in \mathbf{SF}(\psi)$
 - $-\operatorname{If} \neg \alpha \in \operatorname{SF}(\psi) \text{ then } \alpha \in \operatorname{SF}(\psi).$
 - If $\alpha \vee \beta \in SF(\psi)$ then $\alpha, \beta \in SF(\psi)$
 - If $\mathbf{EX}\alpha \in \mathbf{SF}(\psi)$ then $\alpha \in \mathbf{SF}(\psi)$.
 - $-\operatorname{If} \mathbf{EU}(\alpha, \beta) \in \mathbf{SF}(\psi) \text{ then } \alpha, \beta \in \mathbf{SF}(\psi)$
 - If $\mathbf{EG}\alpha \in \mathbf{SF}(\psi)$ then $\alpha \in \mathbf{SF}(\psi)$.
- $SF(\psi)$ ---- The set of sub-formulas of ψ .

The Labeling Procedure.

- $K = (S, S_0, R, AP, L)$
 - $-s \in S$
 - $-\psi$ a *NCTL* formula (built out of **AP**).
- Strategy:
 - Construct Labels: $S \longrightarrow 2^{SF(\psi)}$
 - $-2^{SF(\psi)}$, the set of subsets of $SF(\psi)$.
 - Each state of **K** is assigned a subset of a $SF(\psi)$ by the Labels function.
- K, $s \models \psi$ iff $\psi \in Labels(s)$.

The Labels function

- Stage 0: consider the atomic propositions only
 - For every \mathbf{t} ∈ \mathbf{S} :
 - Labels(t) = L(t) $(K = (S, S_0, R, AP, L))$

•

Assume we have done up to stage i (all subfomrulae of length i already processed)

- Stage i +1: consider subfomrulae α of length i+1
 - For every \mathbf{t} ∈ \mathbf{S} :
 - If $\alpha = \neg \beta$ then $\alpha \in \text{Labels}(t)$ iff $\beta \notin \text{Labels}(t)$.

The Labels function

- Stage i +1: consider subfomrulae α of length i+1
 - For every \mathbf{t} ∈ \mathbf{S} :
 - If $\alpha = \beta_1 \vee \beta_2$ then $\alpha \in \text{Labels}(t)$ iff $\beta_1 \in \text{Labels}(t)$ or $\beta_2 \in \text{Labels}(t)$
 - If $\alpha = \mathbf{E} \mathbf{X} \boldsymbol{\beta}$ then $\alpha \in \mathbf{Labels}(t)$ iff there exists $\mathbf{s} \in \mathbf{S}$ such that $\beta \in \mathbf{Labels}(\mathbf{s})$ and $\mathbf{R}(t, \mathbf{s})$ [i.e. $t \to \mathbf{s}$]

The Labels Function

Computing the labeling for $EX(\beta)$

Complexity: O(|M|)Algorithm Check_EX(β) $T := \{s \mid \beta \in Labels(s)\};$ while $T \neq \emptyset$ do choose $s \in T$; $T := T \setminus \{s\};$ for each $t \in S$ such that $t \to s$ do Labels(t) := Labels(t) \cup {EX β };

The Labels Function

- Stage i +1: consider subfomrulae α of length i+1
 - For every \mathbf{t} ∈ \mathbf{S} :
 - If $\alpha = EU(\beta_1, \beta_2)$ then $\alpha \in Labels(t)$ iff
 - $-\beta_2 \in Labels(t)$ or
 - $-\beta_1 \in Labels(t)$ and $EU(\beta_1,\beta_2) \in Labels(s)$ for some s with $t \rightarrow s$.

The Labels Function

- Collect in T all the states satisfying β_2
 - all these states do also satisfy $EU(\beta_1,\beta_2)$.
- Traverse backward \rightarrow from states in T and label with $EU(\beta_1,\beta_2)$ all the states t satisfying β_1 and reaching at least a state s labeled with $EU(\beta_1,\beta_2)$.

If
$$s \in T$$
, t with $t \to s$ and $\beta_1 \in Labels(t)$ then
$$EU(\beta_1, \beta_2) \in Labels(t)$$

Recall that: $\mathbf{EU}(\beta_1, \beta_2) = (\beta_2 \vee (\beta_1 \wedge \mathbf{EXEU}(\beta_1, \beta_2)))$

Computing the labeling for $EU(\beta_1, \beta_2)$

```
Algorithm Check_EU(\beta_1,\beta_2)
                                                         Complexity: O(|M|)
    T := \{s \mid \beta_2 \in Labels(s)\};
    for each s \in T do
            Labels(s) := Labels(s) \cup {EU(\beta_1,\beta_2)};
    while T \neq \emptyset do
            chose s \in T;
            T := T \setminus \{s\};
            for each t \in S with t \rightarrow s do
                 if EU(\beta_1,\beta_2) \notin Labels(t) and \beta_1 \in Labels(t) then
                        Labels(t) := Labels(t) \cup {EU(\beta_1, \beta_2)};
                        \mathbf{T} := \mathbf{T} \cup \{\mathbf{t}\};
```

The Labels Function

- Stage i +1: consider subfomrulae α of length i+1
 - For every \mathbf{t} ∈ \mathbf{S} :
 - If $\alpha = \mathbf{EG}(\beta)$ then $\alpha \in \mathbf{Labels}(t)$ iff
 - $-\beta \in Labels(t)$ and $EG(\beta) \in Labels(s)$ for some s with $t \rightarrow s$.

Property of $EG(\beta)$

Let M' = (S',R',L') be the sub-graph of M where

- $S' = \{ s \mid M, s \models \beta \}$
- $\mathbf{R'} = \mathbf{R}|_{\mathbf{S'} \times \mathbf{S'}}$ (the restriction of **R** to **S'**)
- $\mathbf{L'} = \mathbf{L}|_{\mathbf{S'}}$ (the restriction of \mathbf{L} to $\mathbf{S'}$)

Lemma: M,s \models EG(β) *iff*

- 1. $s \in S'$ and
- 2. there exists a path in M' leading from s to a non-trivial strongly connected component C of the graph (S',R').

The Labels Function

- Compute the subgraph S' whose states satisfy β
- Take non-trivial strongly connected components of S'
 - all the states in these components do satisfy $EG(\beta)$.
- Traverse backward \rightarrow ' and label with $EG(\beta)$ the states t reaching at least a state s labeled with $EG(\beta)$ (note that both t and s belong to S').

If $t \in S'$ and R(t,s) then $EG(\beta) \in Labels(t)$

Recall that: **EG** $\beta = \beta \land \textbf{EXEG} \beta$

Computing the labeling for $EG(\beta)$

```
Algorithm Check_EG(β)
                                                   Complexity: O(|M|)
   S' := \{s \mid \beta \in Labels(s)\};
    SCC := {C | C is a non trivial SCC of S'};
   T := \bigcup_{C \in SCC} \{ s \mid s \in C \};
   for each s \in T do Labels(s) := Labels(s) \cup \{EG(\beta)\};
    while T \neq \emptyset do
           chose s \in T;
           T := T \setminus \{s\};
           for each t \in S' with t \rightarrow s do
               if EG(\beta) \not\in Lables(t) then
                     Labels(t) := Labels(t) \cup {EG(\beta)};
                     T := T \cup \{t\};
```

CTL model checking

The algorithms just presented show that the model checking problem for CTL can be solved in time linear in the size of System M and the size of the Property φ, namely:

in time $O(|M| \cdot |\phi|)$

where $|\mathbf{M}|$ is the *size of the graph* underlying \mathbf{M} and $|\phi|$ is the *number of subformulae* of ϕ .

Fixed point characterization

- We will redefine the labeling function in terms of *fixed point computation*.
- This is a *nice* and *elegant* algorithmic account.
- It will be used when *efficient symbolic* approach will be introduced.

Partial Orders

- A binary relation
 □ on a set A is a partial
 order iff □ is reflexive, anti-symmetric and
 transitive.
- The pair $\langle A, \sqsubseteq \rangle$ is called a *partially* ordered set (or poset).
- Example: If S is any set and \subseteq is the ordinary subset relation, then $\langle 2^S, \subseteq \rangle$ is a partially ordered set.

Upper Bounds

Given $\langle A, \sqsubseteq \rangle$ and $A' \subseteq A$

- $a \in A$ is an *upper bound* of A' iff $\forall a' \in A'$, $a' \sqsubseteq a$
- $a \in A$ is a *least upper bound* (*lub*) of A, written $\sqcup A$, iff
 - a is an upper bound of A' and
 - $\forall a' \in A$, if a' is an *upper bound* of A', then $a \sqsubseteq a'$

Lower Bounds

Given $\langle A, \sqsubseteq \rangle$ and $A' \subseteq A$

- $a \in A$ is a *lower bound* of A' iff $\forall a' \in A'$, $a \sqsubseteq a'$
- $a \in A$ is a *greatest lower bound* (*glb*) of A, written $\sqcap A$, iff
 - a is a *lower bound* of A' and
 - $\forall a' \in A$, if a' is a *lower bound* of A', then a' $\sqsubseteq a$

Complete Lattice

A poset <A, ⊆> is a complete lattice if, for each A' ⊆ A, the greatest lower bound □A' and the least upper bound □A' do exist.

A complete lattice $\langle A, \sqsubseteq \rangle$ has a unique greatest element $\sqcup A = \top$ and also a unique least element $\sqcap A = \bot$.

Complete Lattice

The *poset* $<2^{S}$, $\subseteq>$ is a *complete lattice* where *intersection* \cap and *union* \cup correspond to \sqcap and \sqcup , respectively.

Any two subset of **S** have a *least upper* and a *greatest lower bound*.

Example: $S=\{a,b,c,d\}$. For $\{a,c\}$ and $\{b,c\}$ the *glb* is $\{c\}$, while the *lub* is $\{a,b,c\}$.

There is a unique greatest element $\bigcirc 2^S = S$ and a unique least element $\bigcirc 2^S = \emptyset$.

Example of a complete lattice

The complete lattice $<2^S, \subseteq>$ when S is the set $\{p,q,r\}$.

Monotonic functions

- A function $F: A \longrightarrow A$ is *monotonic* if for each $a,b \in A$, $a \sqsubseteq b$ implies $F(a) \sqsubseteq F(b)$.
- In other words, a function \mathbf{F} is monotonic if it *preserves the ordering* \sqsubseteq .

Fixed points

- Given a function $\mathbf{F}: \mathbf{A} \longrightarrow \mathbf{A}$, an element $\mathbf{a} \in \mathbf{A}$ is a *fixed point* of \mathbf{F} if $\mathbf{F}(\mathbf{a}) = \mathbf{a}$.
- $\mathbf{a} \in \mathbf{A}$ is called the *least fixed point* of \mathbf{F} ($\mu \mathbf{x}.\mathbf{F}(\mathbf{x})$), if for all $\mathbf{a}' \in \mathbf{A}$ such that $\mathbf{F}(\mathbf{a}') = \mathbf{a}'$, then $\mathbf{a} \sqsubseteq \mathbf{a}'$.
- $\mathbf{a} \in \mathbf{A}$ is called the *greatest fixed point* of \mathbf{F} ($\mathbf{vx}.\mathbf{F}(\mathbf{x})$), if for all $\mathbf{a}' \in \mathbf{A}$ such that $\mathbf{F}(\mathbf{a}') = \mathbf{a}'$, then $\mathbf{a}' \sqsubseteq \mathbf{a}$.

Tarski's Fixed Point theorem

THEOREM: Let $\langle A, \sqsubseteq \rangle$ be a *complete lattice*, and $F: A \longrightarrow A$ a monotonic function. Then F has a *least* and a *greatest fixed point* given, respectively, by:

- $\mu x.F(x) = \Pi\{x \in A \mid F(x) \sqsubseteq x\}$
- $\forall x.F(x) = \sqcup \{x \in A \mid x \sqsubseteq F(x)\}$

Fixed point in finite lattices

Let $\langle A, \sqsubseteq \rangle$ be a *finite complete lattice*, and $F: A \to A$ be a monotonic function. The *least element* of A

Then the *least fixed point* for **F** is obtained as

$$\mu x \cdot F(x) = F^m(\bot)$$

for some m, where $\mathbf{F}^0(\bot) = \bot$, and $\mathbf{F}^{n+1}(\bot) = \mathbf{F}(\mathbf{F}^n(\bot))$.

Moreover, the *greatest fixed point* for **F** is obtained as

$$vx.F(x) = F^k(T)$$

for some k, where $\mathbf{F}^0(\mathsf{T}) = \mathsf{T}$, and $\mathbf{F}^{n+1}(\mathsf{T}) = \mathbf{F}(\mathbf{F}^n(\mathsf{T}))$.

The greatest element of A

Generic fixed point algorithm

```
Algorithm Compute_Ifp(F:function)
     X_0 := \bot;
     \mathbf{X}_1 := \mathbf{F}(\mathbf{X}_0);
    i=1;
     while X_i \neq X_{i-1}
           j := j+1;
          X_i := F(X_{i-1});
     return X;
```

CTL and complete lattices

- Given a Kripke structure $M=\langle S,S_0,R,L,AP\rangle$. We will then consider the *poset* $\langle 2^S,\subseteq \rangle$.
- $<2^{S}, \subseteq>$ is clearly a *complete lattice* (with respect to intersection and union).
- We will identify a *CTL formula* with the *set* of states which satisfy it.
- In this way we can define *temporal operators* as *functions* on the *complete lattice* $<2^{S},\subseteq>$.

Denotation of a CTL formula

Given a formula φ, let us define its *denotation* (in M), in symbols |[φ]|, as the set of states satisfying the formula:

$$|[\phi]| = \{ s \mid M, s \models \phi \}$$

• We could then define the cpo $\langle CTL, \sqsubseteq \rangle$ by:

$$\phi \sqsubseteq \psi \quad iff \quad |[\phi]| \subseteq |[\psi]|$$

Denotation of a CTL formula

• Given the *denotation* of a formula

$$|[\phi]| = \{ s \mid M, s \models \phi \}$$

• We could then define the cpo $\langle CTL, \sqsubseteq \rangle$ by:

$$\phi \sqsubseteq \psi \quad iff \quad |[\phi]| \subseteq |[\psi]|$$

- Then $|[\bot]| = \emptyset$; $|[\top]| = S$;
- $|[p]| = \{ s \mid p \in L(s) \};$
- $|[\neg \phi]| = S \setminus |[\phi]|$;
- $|[\phi \lor \psi]| = |[\phi]| \cup |[\psi]|$;
- $|[\phi \wedge \psi]| = |[\phi]| \cap |[\psi]|$;

CTL is closed under **conjunction** and **disjunction**, therefore for any pair of formulae the **upper** and **lower bound** do exist.

Denotation of a CTL formula

Given a formula φ, let us define its *denotation* (in M), in symbols |[φ]|, as the set of states satisfying the formula:

$$|[\phi]| = \{ s \mid M, s \models \phi \}$$

- •
- $|[\mathbf{EX}\phi]| = \{ \mathbf{s} \mid \exists \mathbf{t}. (\mathbf{t} \in |[\phi]| \cap \mathbf{R}(\mathbf{s})) \}$
- for the other **temporal operators** we would need to use **fixed points....**

Fixed point characterization of $EU(\beta_1,\beta_2)$

- $EU(\beta_1,\beta_2) \equiv \beta_2 \vee (\beta_1 \wedge EX EU(\beta_1,\beta_2))$
- $|[EU(\beta_1,\beta_2)]| = \mu Z.(|[\beta_2]| \cup (|[\beta_1]| \cap |[EX Z]|))$
- $|[\mathbf{EU}(\beta_1,\beta_2)]| =$

$$\mu \mathbf{Z}.(|[\beta_2]| \cup (|[\beta_1]| \cap \{ \mathbf{s} \mid \exists \mathbf{t} \in \mathbf{Z} \cap \mathbf{R}(\mathbf{s}) \}))$$

Fixed point characterization of $EU(\beta_1,\beta_2)$

Lemma: Let

$$F(Z) = (|[\beta_2]| \cup (|[\beta_1]| \cap \{ s \mid \exists t \in Z \cap R(s) \}))$$

then F is a monotonic function, i.e.

$$Z_1 \subseteq Z_2$$
 implies $F(Z_1) \subseteq F(Z_2)$

Fixed point characterization of $EU(\beta_1,\beta_2)$

Theorem:

```
\begin{split} |[\mathbf{E}\mathbf{U}(\beta_1, \beta_2)]| &= \mu \mathbf{Z}.(|[\beta_2]| \cup (|[\beta_1]| \cap \{ \ \mathbf{s} \ | \ \exists \mathbf{t} \in \mathbf{Z} \cap \mathbf{R}(\mathbf{s}) \ \})) \\ &\text{in other words:} \\ &\mu \mathbf{Z}.(|[\beta_2]| \cup (|[\beta_1]| \cap \{ \ \mathbf{s} \ | \ \exists \mathbf{t} \in \mathbf{Z} \cap \mathbf{R}(\mathbf{s}) \})) \subseteq |[\mathbf{E}\mathbf{U}(\beta_1, \beta_2)]| \\ &\text{and} \\ &|[\mathbf{E}\mathbf{U}(\beta_1, \beta_2)]| \subseteq \mu \mathbf{Z}.(|[\beta_2]| \cup (|[\beta_1]| \cap \{ \ \mathbf{s} \ | \ \exists \mathbf{t} \in \mathbf{Z} \cap \mathbf{R}(\mathbf{s}) \})) \end{split}
```

Computing fixed point for $EU(\beta_1,\beta_2)$

```
Algorithm Compute_EU(\beta_1,\beta_2)
      X_0 := |[\bot]|; /* i.e. X_0 := \emptyset */
      X_1 := |[\beta_2]| \cup (|[\beta_1]| \cap X_0); /* i.e. X_1 := |[\beta_2]| */
     j=1;
                                                                                     This computes
      while X_i \neq X_{i-1}
                                                                                     X = EX X_{i-1}
             \mathbf{j} := \mathbf{j+1}; \ \mathbf{T} := \mathbf{X_{i-1}}; \ \mathbf{X} := \emptyset
              while T \neq \emptyset do
                      chose s \in T;
                     T := T \setminus \{s\};
                      for all t such that s \in \mathbf{R}(t) do
                                   \mathbf{X} := \mathbf{X} \cup \{\mathbf{t}\};
               \mathbf{X_i} := |[\beta_2]| \cup (|[\beta_1]| \cap \mathbf{X})
```

Computing fixed point for $EU(\beta_1,\beta_2)$

To compute $|[\mathbf{EU}(\beta_1, \beta_2)]|$ we can *construct* inductively the set of states \mathbf{X}_j as follows:

- $-\mathbf{X}_1=|[\boldsymbol{\beta}_2]|.$
- $-X_{j+1} = X_j \cup \{ s \mid s \in |[\beta_1]| \text{ and } R(s,t) \text{ for some } t \in X_j \}$

 $|[\mathbf{EU}(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2)]|$ is then the set \mathbf{X} such that $\mathbf{X} = \mathbf{X}_n$ for \mathbf{n} such that $\mathbf{X}_{n+1} = \mathbf{X}_n$.

Notice that n must exist by Tarski's Theorem since $X_i \subseteq X_{i+1} \subseteq S$ (and S is finite!)

From X_0 to X_1

From X_j to X_{j+1}

 $EU(\beta_1, \beta_2)$

Computing fixed point for $EU(\beta_1,\beta_2)$

```
Algorithm Compute_EU(\beta_1,\beta_2)
     X_1 := |[\beta_2]|;
     j=1;
      repeat
              j := j+1; T := X := X_{i-1};
              while T \neq \emptyset do
                   chose s \in T;
                   T := T \setminus \{s\};
                   for all t such that s \in \mathbf{R}(t) do
                       if \mathbf{t} \in |[\beta_1]| then /* \mathbf{t} \in |[\beta_1]| \cap \mathbf{EX} \mathbf{X_{i-1}}*/
                            \mathbf{X} := \mathbf{X} \cup \{\mathbf{t}\};
              X_i = X;
      until X_{i-1} = X_i
```

Fixed point characterization of EG(β)

- $EG(\beta) \equiv \beta \land EX EG(\beta)$
- $|[\mathbf{EG}(\beta)]| = \nu \mathbf{Z} \cdot (|[\beta]| \cap |[\mathbf{EX} \ \mathbf{Z}]|)$
- $|[EG(\beta)]| =$

$$vZ.(|[\beta]| \cap \{ s \mid \exists t \in Z \cap R(s) \})$$

Computing the fixed point for $EG(\beta)$

```
Algorithm Compute_EG(β)
     X_0 := |[T]|; /* i.e. X_0 := S */
     X_1 := |[\beta]| \cap X_0; /* i.e. X_1 := |[\beta]| */
     i=1;
     while X_i \neq X_{i-1}
                                                                        X = EX X_{i-1}
             \mathbf{j} := \mathbf{j+1}; \mathbf{T} := \mathbf{X_{i-1}}; \mathbf{X} := \emptyset;
             while T \neq \emptyset do
                    chose s \in T;
                   T := T \setminus \{s\};
                    for all t such that s \in R(t)
                                \mathbf{X_i} := \mathbf{X_i} \cup \{\mathbf{t}\};
```

The Labels function

• To compute $|[\mathbf{EG}\beta]|$ we can *construct* inductively the set of states \mathbf{X}_i as follows:

```
-X_1 = |[\beta]|. -X_{j+1} = X_j - \{ s \mid s \in X_j \text{ and }   \text{there does not exist } t \in X_j  such that R(s,t)}
```

- $|[\mathbf{E}\mathbf{G}\boldsymbol{\beta}]|$ is then the set \mathbf{X} such that $\mathbf{X} = \mathbf{X}_{\mathbf{n}}$ for \mathbf{m} such that $\mathbf{X}_{\mathbf{m+1}} = \mathbf{X}_{\mathbf{m}}$.
- Notice that m must exists by Tarski's Theorem since $\emptyset \subseteq X_{j+1} \subseteq X_j$

From Y_0 to Y_1

$\mathbf{E}\mathbf{G}\boldsymbol{\beta}$

From Y_j to Y_{j+1}

EGβ

Computing the fixed point for $EG(\beta)$

```
Algorithm Compute_EG(β)
     X_1 := |[\beta]|;
     j=1;
     repeat
             j := j+1; T := X_i := X_{i-1};
             while T \neq \emptyset do
                    chose s \in T;
                   T := T \setminus \{s\};
                    if for all t \in \mathbf{R}(\mathbf{s}), t \notin \mathbf{X}_{i-1} then
                                \mathbf{X_i} := \mathbf{X_i} - \{\mathbf{s}\};
      until X_i = X_{i-1};
```