Tecniche di Specifica e di
Verifica

Branching Time Temporal Logics |

Outline

« CTL (Computation Tree Logic)
— Branching Time
— Unwindings --- computation trees
— Syntax and semantics of CTL.

Branching Time Structures

* Linear Time:
— A computation at its first state satisfies a property.
— Property ---- LTL formula

* Branching Time
— The computation tree at its root satisfies a property.
— Property: CTL (CTL", p-calculus) formula.
— Computation Tree

= All computations starting from a state glued
together (to form a tree structure).

* In branching time, the decisions taken during a
run are taken into account.

off

Zap

The TV Example

' Zap

A Modified Example

For every path 7t and every state s on that path,
there Is a path =’ starting from s and a state s’
on ©’ which Is green.

10

Branching Time Temporal Logic

K=(S, S, R,AP, L)

K, S

Ey -- the computation tree rooted at s

satisfies .

Kewy Iff K,s;Ewyforeverys, e S,

Branching Time Temporal Logics:

— CT
— CT

L
|

_(T

ne modal) p-calculus

11

Unwinding

c K=(5,5,R,AP, L) s,€S
+ TR(K, sy) --- The computation tree rooted at s,,.

* TR(K1 SO) = (SSO’ (SO’S)’ RSO’ AP’ LSO)
- (SO’ 8) = SsO;
— If (s, o) € S, and R(s;, S,) then
" (s,,0.5) €S, and

" Ry ((S1, ©) (Sp, 6.51)) ;
= L((s3, 6)) = L(sp).

Therefore, for all (s, o) € S, seSand o =5;5; ...
s, IS a path in K from s, to s, and R(s,, s) (hence,
c.s Is a path in K from s, to s)

12

Unwinding

 TR(K, s) Is almost a Kripke structure.
— S, will tipically be infinite.
— But R, Is tree-like.
— The “graph” of TR(K, s) Is a tree rooted at (s, €).
 TR(K, s) Is the computation tree rooted of K
at s.

13

A Modified Example

14

Linear time Vs Branching time

* There are properties that can be expressed Iin
LTL but which can not be expressed in
CTL.

* There are properties that can be expressed Iin
CTL butnotin LTL.

» The LTL model checking problem can be
converted into a restricted kind of a CTL"
model checking problem.

15

CTL

o Syntax
— AP — a finite set of atomic propositions.
—p € AP Is a formula.
— If y and y’ are formulas then so are —y and
AR
— Ity Is a formula then so 1s EXy

—If vy, and v, are formulas then so are
EU(y,, w,) and AU(yy, ;).

16

Formulas

« EX(p v EU(—r, AU(p,)))

17

Semantics

K=(S,S,, R, AP, L)

—L:S— 24P

v aCTLformula and se S

K,SEWy

v (holds) is satisfied at s.

FACT:
K,SEWy

Iff TR(K,s), (s, €) E y.

18

Semantics

CTL:=p[—v]|wy; Vv, |EX(v)
| EU(wy, wy) | AU(v;, w))

K=(, S, RRAPL) ; L:S—247;s€S

K,sep Iff pelL(s)

K,seE—y Iff notK,sEvy

K,SEwy, vy, Iff
K,SEwy,0r K,sEy,.

19

Semantics

» CTL=p| =y v vy, | EX(y)
| EU(wy, wy) |AU(yy,)
« K=(5,5,, R,APL) ; L:S—247; se S
» K, sk EX(y) Iff there exists s’ such that:
—Ss— s’ (1.e.R(s,8’)) and K,s’ky
s has a successor state s’ at which y holds.

20

AP ={n, h, uh}

K, b EEX(Uh) ? K,bEEX(=uh)?

K, g E EX(uh) ?

K, r E EX(h) ?

21

Semantics

+ K=(S5,S, RAPL) ; LiS— 22 : s S

« A path from s is a (infinite) sequence of states
T = Sgy S5 Sy eeesSiy Sis1s oo S.L

—S =5,
—S; — S, (1.e. R(s;, Si,q)) for every i.
e 7(i) =s; the i-th element of .

22

23

Semantics

* CTL::=p |y |y, vy, | EX(y)
| EU(y1, wy) | AU(y 4, w))
« K=(5,5,,R,AP, L) ; L:S— 24" ; seS

* K,skE EU(y,, v,) Iff there exists a path
T = Sg, S15 ... frOm s (1.e. s,=s) and k = 0 such
that:

" K, n(K) £y,
K, () ey, , forall 0 < <k.

24

25

Semantics

« CTL:=p |y |y, vy, | EX(y)
EU(y;, v,) | AU(y4, \

5,

+ K=(S,S,, R,AP,L) ; L:S— 22 : seS

K, seAU(y,,y,) Iff for every path
T =Sy, Sy, ... from s there exists k = 0 such that:

" K, (k) £y,
" K, () ey, forall 0 <j <k

26

27

Retl ° 'a Ret2
Grt R Reql Grt2

2000
I
Req? ﬁ t \G\ Reql

M, 0 E EU(T, p,) ?

28

Retl ° 'a Ret2
Grt R Reql Grt2

o200
I
Req? ﬁ t \G\ Reql

M, 0 E AU(T, p,) ?

29

M, 0 EAU(T, p,vp,) ?

30

Reql u\@g
Ret2

Ret1 Q °
?‘/ R q 1 \Grt2

o o (5
rt
Req2 ﬁ rtl \ Aql

M, 0 EAU(T, EU(T, py)) ?
From s,, all the computations

will reach a point, where it Is
possible for 1 to print eventually.

M, 0 E AU(T, EU(T, p,)) ?

Retl

32

Derived Operators

o AX(y) = =EX(—vy)

— It Is not the case there exists a next state
at which v does not hold, equivalent to

— For every next state y holds.

@ ~Ax(v)
§®%

33

Derived Operators

. K, s E EF(y)
« EF(y) = EU(T, y)

— There exists a path « (from s) and k > 0
such that:

K, 1(K) E .

34

35

Derived Operators

* K, sEAG(y)

— It I1s not the case there exists a path & (from s)
and k > 0 such that:

K, m(K) E=wy
— For every path & (from s) and every k > 0:
" K, m(K) Ey

36

Derived Operators

. K, s EAF(y)
« AF(y) =AU(T, y)

— For every path & from s, there exists k > 0 such
that:

= K, (k) E .

38

39

Derived Oparators

« K,skEEG(y)

— It I1s not the case that for every path from s
there is a k > 0 such that K, (K) E — .

— There exists a path = from s such that, for
every k > 0:

« K, (k) E w.

40

41

A more convenient CTL

NCTL::=p |-y |y, vy, | EX(y) |
| EU(wy, vs,) | EG(w)
CTL::=p|=y |y, vV, | EX(y)

| EU(yq, wy) | AU(y4, w))

NCTL i1s more convenient for model
checking!

Clearly NCTL can be defined in terms of
CTL.

42

A more convenient CTL

NCTL :=p|=y |y, vy, | EX(y) |
| EU(yy, vy) | EG(w)
CTL:=p|—y |y Vv, | EX(y) |

| EU(yy, vy) | AU(y,, W))
CTL can be defined in terms of NCTL.!

The semantics of NCTL Is given In the
obvious way.

43

A more convenient CTL

* NCTL::=p|—=y |y, Vv vy, | EX(y) |

| EU(yy, v,) [EG(w)

« K, sk EG(y) Iff thereexists apath «
from s such that for every k > 0:

K, t(K) E vy

44

A more convenient CTL

* NCTL:=p|—y |y, vy, | EX(y) |

| EU(v1, wy) | EG(w)
« CTL:=p |y |y, vy, | EX(y) |
| EU(y1, ws) | AU(y;, W)
* AU(yy, yp) = =EU(—vy,, (B A —y,)) A mEG(-y))

l.e., along any path: y, must hold eventually and

(—=wy, A —y,) can only happen after y, (recall the
before operator of LTL)

45

A more convenient CTL

Vv, cannot become

false, while
stays false!

L)

Y, cannot remain
false forever! (i.e.
v, will eventually
become true along
any path).

46

A more convenient CTL

AU(y4, v,) = =EU(=wy,, (=Y A =y,)) A =EG(—wy,)
— Assume K, s E AU(y,, v,)

— Let 7t be a path from s. Then there exists k > 0
with:

K, SE VY,
— Hence, not K, s E EG(—v,)
— Equivalent to K, s E =EG(—v,)

47

A more convenient CTL

* AU(yy, v,) = NewAU(yy, v,) =
—IEU(—I\VZ, (—l\fl N\ —|\|12)) AN —IEG(—I\VZ)

« Clearly K, s E AU(y,, v,) implies K, s E =EG(—w,)

e LetK,sEAU(y,, v,)
— Suppose now K, s k EU(—wy,, v A —y))
— Let 7t be any path from s witnessing the above:
— Let now k be the least integer such that:
= K, Tl:(k) F =Y, AV,
K, () E—-y, for0<j <k.

48

Suppose K, t(m) E v, required by K, s E AU(y,,v,)

‘ake m to be the least such number.

"hen k < m, since K, s E EU(—wy,, =y, A —y,)
This implies that K, n(k) E —y,, forsome0 <k <m

Hence not K, s E AU(y, y,). Contradiction!
Thus K, s E AU(y,, v,) also implies:
So K, s E AU(y,, v,) Implies K, s E NewAU (v, v,)

From CTLto NCTL

 In a similar way we can argue that:

if K,sEnewAU(y,, v,)
then K, s e AU(y,, v.).

* Hence CTL can be expressed in terms of
NCTL.

A more convenient CTL

NCTL ::==p | =y |y, v, | EX(vy) |
| EU(wy, wy) | EG(w)
CTL:=p |~y |y, vy, | EX(vy) |
| EU(y, w,) | AU(y4, v,)
AU(y,, v,) = NewAU(y,, y,) =
(EU(Y,, (v A=) A AR(yy)

NewAU, = — EU(—y, (—y; A =y,
NewAU, = AFy, - AFy
- 2

—|EG—|\|12

o1

From CTLto NCTL

e LetK=(S, S, R,AP, L) ands € S.

* \We need to argue:
- K, sEAU(y,, v,) Iff
K, s E NewAU,; A NewAU,
« We already argued that:
—If K, sEAU(y,, y,) then
K, S E NewAU; A NewAU,

52

From CTLto NCTL

AU(y,, y,) = =EU(—vy,, (v A =y,)) A =EG(—wy,)

< We need to argue that:
—If K, s E NewAU,; A NewAU, then

K, s EAU(y,)
« So assume K, s E NewAU, A NewAU.,.

- NewAU, = ~EG—y, = AFy,

53

From CTLto NCTL

 Let be some path from s.

 \We need to show that there exists k > 0 such
that:

- K, (k) E y,
-K,n()) Ey, 1f0 < < k.

« But K, s E AF v, Implies that along any path
(and also along 7t) there exists k > 0 such that:

~K, n(K) E y,
« Assume K Is the least such number along 7.

54

From CTLto NCTL

Now consider an arbitrary m with 0 <m < k.

CLAIM: K, o(m) E vy,

 |f the CLAIM is true then we are done.

e Suppose instead that K, o(m) E —,.
—Then K, o(m) E —y; A =y, (M < k) WHY???
—and K, o(J) E—=w, If0<j<m,since j<m<Kk
—Hence K, o(0) E EU(—w,, =y, A —y,)

— Therefore, not K, s E NewAU, whichis a
contradiction!

55

CTL Model Checking

- KEy Iff
K, sq E v forevery s, e S,
« The CTL model checking problem.

~-K=(S, Sy, R, AP, L) (system model)
— v aCTL formula (spec. of the property)

» Given K and y determine whether or not KE vy

56

CTL Model Checking

« The actual model checking problem:
—Given K= (S, Sy, R, AP, L)
—Glvens e S
— Given y, an NCTL formula.

— Determine whether:

K,SEWY

57

The Sub-formulas of v

« SF(y) Is the least set of formulas satisfying:
— Y € SF(y)
— If —a € SF(y) then a € SF(vy) .
—Ifav P e SF(y) then a, B € SF(y)
— If EXa € SF(y) then a € SF(vy) .
— If EU(a, B) € SF(w) then a, B € SF(v)
— If EGa € SF(y) then o € SF(y) .

» SF(y) ---- The set of sub-formulas of .

58

The Labeling Procedure.

« K=(S, Sy, R,AP, L)
— S€eS
— v a NCTL formula (built out of AP).

o Strategy:

— Construct Labels: S — 25F(v)
— 25F() the set of subsets of SF(vy).

— Each state of K iIs assigned a subset of a SF(y) by
the Labels function.

« K,skEy Iff y e Labels(s).

59

The Labels function

 Stage 0: consider the atomic propositions only

— Forevery t € S:
— Labels(t) = L(t) (K=(S, S, R, AP, L))

Assume we have done up to stage 1 (all subfomrulae
of length 1 already processed)

 Stage 1 +1: consider subfomrulae o of length 1+1
— Forevery t € S:
— If a=—=p then
o € Labels(t) iff [& Labels(t).

60

The Labels function

 Stage 1 +1: consider subfomrulae a of length 1+1
— Forevery t e S:
— Ifa =, v, then
a € Labels(t) iff B,eLabels(t) or B, € Labels(t)

— Ifa=EXB then
o, € Labels(t) iff there existss € S such that
B € Labels(s) and R(t, s) [i.e.t—>s]

61

The Labels Function

o = EX(B)

62

Computing the labeling for EX(J3)

Complexity: O(|M|)

Algorithm Check EX(B)
T :={s| P e Labels(s)};
while T = @ do

choose s € T;

T:=T \{s},

for each t € S such that t — S do
Labels(t) := Labels(t) u {EX B};

63

The Labels Function

 Stage I +1: consider subfomrulae a of length 1+1
— Forevery t e S:

— Ifa = EU(B,,,) then
o € Labels(t) Iff
— B, € Labels(t) or

— B, € Labels(t) and EU(,,8,) € Labels(s)
for some s with t — s.

64

The Labels Function

Collect In T all the states satisfying 3,
— all these states do also satisfy EU(B,,,).

e Traverse backward — from states in T and label

with EU(B,,B,) all the states t satisfying B, and
reaching at least a state s labeled with EU(B,,$3,).

If s e T, twitht —» s and 3, € Labels(t) then
EU(B,,B,) € Labels(t)

Recall that: EU(B,.B,) = (B, Vv (B, AEXEU(B,,B,)))

65

.......

.......

Br .

70

Computing the labeling for EU(B,,B,)

Algorithm Check _EU(B,,B,)
T :={s| P, e Labels(s)}; Complexity: O(|M])

foreach s € T do
Labels(s) := Labels(s) U {EU(B,B,)}:
while T = @ do
choses e T;
T =T \{s};
foreach t e Switht — Sdo
If EU(B,,B,) ¢ Labels(t) and B, eLabels(t) then
Labels(t) := Labels(t) U {EU(B,5,)};
T:=T U {t};

The Labels Function

 Stage I +1: consider subfomrulae a of length 1+1
— Forevery t e S:

— Ifa=EG(B) then
o € Labels(t) Iff

~ B € Labels(t) and EG(B) € Labels(s) for
some switht — s.

72

Property of EG()

Let M’ = (S°,R’,I”) be the sub-graph of M where
- S’={s|M sep}
— R’=R|g, s (therestriction of Rto S’)
— I’=L[s, (the restriction of L to S’)

Lemma: M,s E EG(B) iff

1. se S’ and

2. there exists a path in M’ leading from s to a
non-trivial strongly connected component C
of the graph (S’,R’).

73

The Labels Function

« Compute the subgraph S’ whose states satisfy 8

« Take non-trivial strongly connected components
of S’

— all the states in these components do satisfy EG(p).

« Traverse backward —’ and label with EG(B) the
states t reaching at least a state s labeled with
EG(B) (note that both t and s belong to S°).

If t € S” and R(t,s) then EG(B) € Labels(t)

Recall that: EG B =BAEXEG B "

EGp)

Computing the labeling for EG(]3)

Algorithm Check EG(j)
S’ :={s| B e Labels(s)};

Complexity: O(|M|)

SCC :={C | Cisanontrivial SCC of S’};

T:=Ucesccds|s € C}

for each s € T do Labels(s) := Labels(s) u {EG(B)};

while T # @ do

choses e T;

T :=T\{s};

foreach t € S withT — S do
If EG() ¢ Lables(t) then

Labels(t) := Labels(t) u {EG(B)};

T:=T v {t};

CTL model checking

« The algorithms just presented show that the
model checking problem for CTL can be
solved in time linear in the size of System M
and the size of the Property ¢, namely:

In time O(|M|-||)

where |M| Is the size of the grap

N underlying

M and |¢| Is the number of subformulae of ¢.

Fixed point characterization

« We will redefine the labeling function In
terms of fixed point computation.

 This 1s a nice and elegant algorithmic
account.

« It will be used when efficient symbolic
approach will be introduced.

83

Partial Orders

« A binary relation C on a set A Is a partial
order Iff C Is reflexive, anti-symmetric and
transitive.

« The pair <A, > Is called a partially
ordered set (or poset).

 Example: If S Is any set and < Is the
ordinary subset relation, then <2°,c> is a
partially ordered set.

84

Upper Bounds

Given<A,C>and A’c A
« acA s an upper bound of A’ Iff Va’eA’, a’ca

* acA Is a least upper bound (lub) of A’, written
LA’ Iff
— aIs an upper bound of A’ and
—Va’eA, if a’ Is an upper bound of A’, thena C a’

85

L_ower Bounds

Given<A,C>and A’c A
e aeA s alower bound of A’ Iff Va’eA’, aC a’

 acA Is a greatest lower bound (glb) of A’
written NA’, Iff

—als alower bound of A’ and
—Va’eA, iIf a’ i1s a lower bound of A’, then a’C a

86

Complete Lattice

A poset <A, C>Isa complete lattice If, for each
A’ < A, the greatest lower bound nA’ and the
least upper bound LA’ do exist.

A complete lattice <A, C> has a unique greatest

element UA=T and also a unique least element
NA= 1.

87

Complete Lattice

The poset <2°,c> is a complete lattice where
Intersection N and union W correspond to n and
LI, respectively.

Any two subset of S have a least upper and a
greatest lower bound.

Example: S={a,b,c,d}. For {a,c} and {b,c} the glb
Is {c}, while the lub I1s {a,b,c}.

There is a unique greatest element U2°> = S and a
unigue least element N2° = &,

88

Example of a complete lattice

The complete lattice <25, > T={pqr}

when S is the set {p,q,r}.

{pq}ﬂ

{p}

89

Monotonic functions

e A function F: A — A I1s monotonic if for
each a,b € A, aCc b implies F(a) C F(b).

e |n other words, a function F 1s monotonic If
It preserves the ordering C.

90

Fixed points

 Given afunction F: A— A, anelementa € A
Is a fixed point of F If F(a) = a.

- a € A Is called the least fixed point of F
(ux.F(x)), If for all a> € A such that F(a’) = a’,
thenarC a’.

 a € A s called the greatest fixed point of F
(vx.F(x)), If for all a> € A such that F(a’) = a’,
then a’C a.

91

Tarski’s Fixed Point theorem

THEOREM: Let <A, C> be a complete lattice,
and F: A — A a monotonic function. Then F
has a least and a greatest fixed point given,
respectively, by:

o uX.F(X) =n{x € A| F(xX) E x}
o VX.F(X) = U{X € A| X E F(X)}

92

Fixed point in finite lattices

Let <A, C> be a finite complete lattice, and F: A— A
be a monotonic function. The least element of A |

Then the least fixed point for F Is gbtained as
ux.F(x) = FM(L)
for some m, where F°(L) = L, and F"**(L) = F(F"(.L)).

Moreover, the greatest fixed point for F Is obtained as
vX.F(X) = FK(T)
for some k, where F(T) = T, and /!/:”+1(T) = F(F(T)).

The greatest element of A

93

Generic fixed point algorithm

Algorithm Compute Ifp(F:function)
XO -
Xy = F(Xo)
=1
while X;# X; 4
)=+
X = F(Xj.1);
return X,

94

CTL and complete lattices

Given a Kripke structure M=<S,S,,R,L,AP>.
We will then consider the poset <2°,&>.

<2°,c> Is clearly a complete lattice (with
respect to intersection and union).

We will identify a CTL formula with the set
of states which satisfy It.

In this way we can define temporal operators
as functions on the complete lattice <2°,&>.

95

Denotation of a CTL formula

« Glven a formula ¢, let us define Its denotation
(in M), In symbols [[¢]|, as the set of states
satisfying the formula:

o]l =1s|MsE¢}

» We could then define the cpo <CTL, C > by:
¢Sy 1t |[¢]l < Ilw]

96

Denotation of a CTL formula

Given the denotation of a formula

[9]l={s|MsE¢}
We could then define the cpo <CTL, C > by:

oy 1t |[o]l clwli

Then [[L]| =S |[T]| =S
[Pll=1s[peL()};

[=¢11 =S\ [o]] ;

[0 v vl = [l¢]
[o A wll = [l¢]

U
M

(vl ;
(vl ;

CTL is closed under
conjunction and disjunction,
therefore for any pair of
formulae the upper and
lower bound do exist.

97

Denotation of a CTL formula

« Glven a formula ¢, let us define Its denotation
(in M), In symbols [[¢]|, as the set of states
satisfying the formula:

o]l =1s|MsE¢}

* [[EX¢]| ={s |3t (t € |[¢]| " R(s)) }
» for the other temporal operators we would
need to use fixed points....

98

Fixed point characterization of

EU(B1.B,)

* EU(B1.B) =B,V (BAEXEU, B,))

* [[EU(B..B)]
* [[EU(B..B,)]
nZ.(|[B]

= pZ(|[Bdlw (IIBII N [[EX Z]]))

V([B.dIn{s[Ite ZNR(S)}))

99

Fixed point characterization of

EU(B1.B,)

Lemma: Let

F(Z) = ([[BAlV (BN {s|dte ZNR(s) }))
then F I1s a monotonic function, I.e.

Z,c Z, implies F(Z,) c F(Z,)

100

Fixed point characterization of

Theorem:
[EU(B..B,)]

EU(B1.B,)

= pZ.(BA U (Blln{s]3te ZARE) D)

INn other woro

5

RZ(|[Bll v ([[BudIn1s |3t e ZnR(s)})) < [EU(BLB)]

and

[EUB..BIIl € ZA[Bll W ([[BdIn{s|Ite ZNR(S))))

101

Computing fixed point for EU(B,.5,)

This computes
X=EX Xj_l

Algorithm Compute_EU(B,[3,)
Xo = |[L]]; /*i.e. X, = */
Xy =Bl W (Bl n Xo); /= 1e. Xy = [[B,]] */
=1,
while X;# X; 4
j=)+1; T = Xjq; X = % __—
while T # @ do
chose s € T;
T =T \{s};
forall tsuchthats € R(t) do
X :=Xu{t};
X; = |[B.]] w (I[B4]] M X)

102

Computing fixed point for EU(B,,B,)

To compute |[EU(B,,B,)]] we can construct
Inductively the set of states X; as follows:

— X, =Bl
— X = X; U {s|s e |[B,]| and R(s,t) for some teX;}

IIEU(B,,B,)]| 1s then the set X such that X = X
for n such that X ,, = X,.

Notice that n must exist by Tarski’s Theorem
since Xic X, €5 (and S Is finite!)

103

From X, to X,

104

From X; to X,

EU(B. Bo)

105

Computing fixed point for EU(f3;,53,)

Algorithm Compute_EU(3,,53,)
X1 = [Bll;
=1
repeat
)=+t T =X =X ;
while T = @ do
choses e T;
T :=T \{s},
forall t such that s € R(t) do
ift € [[B,]| then /*te|[B,]| " EX X ™
X =X u{t};
Xj =X;
until X; ; = X

[l06

Fixed point characterization of EG()

« EG(B)=B AEXEG(B)

* [[EG(B)]I = vZ.([BIIN [[EX Z]]))
* [[EG(B)]I =
vZ([[Blln1s[3te ZNR(S) })

107

Computing the fixed point for EG(B)

Algorithm Compute EG(pB)
Xo=|[Tll; [I*ie X,:=S*/
X, =Bl N Xq; /*i.e. Xy :=|[B]] */
i=1;

while X;#X; ;
j=jt, T =X ; X =&,
while T = @ do
choses e T;
T =T \{s};
forall t such that s € R(t)
X; = X; U A{t};

Xi =Bl X

X = EX X4

1108

The Labels function

« To compute |[[EGP]] we can construct
Inductively the set of states X as follows:

- Xy =B

— Xy = X; — {s|s e X and
there does not exist t e Xj
such that R(s, t)}

I[EGJ]| is then the set X such that X = X, for m
such that X _,, = X,..

 Notice that m must exists by Tarski’s Theorem
since J < Xj,; < X,

109

FromY,to Y,

EGP

110

From Y;to Y,

111

Computing the fixed point for EG(f)

Algorithm Compute EG(B)
Xy = [Bl;
=
repeat
J=1+1T =X = X 4;
while T = @ do
choses e T;
T :=T \{s},
If forall t € R(s), t ¢ X;, then
X =X - {s};
until X; = X, ;;

112

