
1

Tecniche di Specifica e di

Verifica

Model Checking under Fairness

2

Fairness

• K =(S, S0, R, AP, L)

• K may not be able to capture exactly the

desired executions.

– Too generous.

• Use fairness constraints to rule out

undesired executions.

3

s1

s2 g1

s3 g2

Req1 Req2

Grt1
Grt2

Grt1 Grt2

Req2 Req1

Req2 Req1

Ret1

Ret2

Ret2

Ret1

a computation in which s1 or s2 or s3 is visited infinitely

often but g1 and g2 are visited only finitely often is

unfair.

4

s0

s1

s2 g1

s3 g2

Req1 Req2

Grt1
Grt2

Grt1 Grt2

Req2 Req1

Req2 Req1

Ret1

Ret2

Ret2

Ret1

K, s0 AG (req2 → AF grt2)

5

n,n

w,n n,w

w,wc,n n,c

c,w w,c

Req1 Req2

Grt1 Grt2

Grt1
Grt2

Req2 Req1

Req2 Req1

Ret1

Ret2

Ret2

Ret1
e1

e1 e2

e2

A computation in which (c,n) or (c,w) is visited infinitely

often but (n,n) and (n,w) are visited only finitely often.

6

n1,n2

w1,n2 n1,w2

w1,w2c1,n2 n1,c2

c1,w2 w1,c2

Req1 Req2

Grt1
Grt2

Grt1
Grt2

Req2 Req1

Req2 Req1

Ret1

Ret2

Ret2

Ret1
e1

e1 e2

e2

s0

K, s0  EF EG c1 !

7

Fairness

• The first kind of unfairness has to do with a

bad scheduling policy.

– Find a better allocation scheme.

➢Turn-based.

• The second kind of unfairness is unavoidable.

• Solution:

– Consider only fair computations.

8

Fairness

• Fair Kripke Structures.

• First Attempt:

– K = (S, S0, R, AP, L, F)

– F µ S (fairness constraint)

• p is a fair computation iff:

– It is a computation.

– inf(p)  F  

– inf(p) = {s : s appears infinitely often in p}

9

Fairness

• Fair Kripke Structures.

• K = (S, S0, R, AP, L, F1, F2,..,Fn)

– Fi µ S (fairness constraints)

• p is a fair computation iff:

– It is a computation.

– inf(p)  Fi   for each i = 1, 2,..,n

– inf(p) = {s : s appears infinitely often in p}

10

g1

K, s0 AG(req2 → AF grt2) with above

fairness constraint !

s1

s2

s3 g2

Req1 Req2

Grt1
Grt2

Grt1 Grt2

Req2 Req1

Req2 Req1

Ret1

Ret2

Ret2

Ret1

s0

11

K, s0 AG(req2 → AF grt2)

F ---- req2  grt2

(notice that s1,s2,s3 satisfy req2 and g1,g2 satisfy grt2)

g1

s1

s2

s3 g2

Req1 Req2

Grt1
Grt2

Grt1 Grt2

Req2 Req1

Req2 Req1

Ret1

Ret2

Ret2

Ret1

s0

12

K, s0  EF(EGc1  EGc2) with the above

fairness constraint !

n1,n2

w1,n2 n1,w2

c1,n2 n1,c2

c1,w2 w1,c2

Req1 Req2

Grt1 Grt2

Grt1
Grt2

Req2 Req1

Req2 Req1

Ret1

Ret2

Ret2

Ret1
e1

e1 e2

e2

s0

w1,w2

13

n1,n2

w1,n2 n1,w2

w1,w2c1,n2 n1,c2

c1,w2 w1,c2

Req1 Req2

Grt1 Grt2

Grt1
Grt2

Req2 Req1

Req2 Req1

Ret1

Ret2

Ret2

Ret1
e1

e1 e2

e2

s0

K, s0  EF (EG c1  EG c2) with the above fairness

constraint !

F ---- c1  c2

14

NuSMV Fairness

• Can’t always use sets of states to specify
fairness.

– State space is often defined implicitly.

• Use formulas!

• f ---- Property f is true infinitely often.

• Model check along only fair computation
paths.

15

Model Checking CTL with Fairness

• C = {P1, P2,…, Pn}

– Fairness constraints.

• K = (S, S0, R, AP, L, C)

• s0 s1 s2 ….. is a fair computation iff:

– It is a computation.

– For each i, there are infinitely many j such
that

K, sj  Pi

16

Model Checking with Fairness.

• C = {P1, P2,…, Pn}

– Fairness constraints.

• K = (S, S0, R, AP, L, C)

K, s C y is defined as follows:

• K, s C p iff p  L(s)

• K, s C y iff K, s C y

• K, s C y1  y2 iff K, s C y1 and K, s C y2

17

Model Checking with Fairness.

• K,sCEXy iff there exists a fair path from s

and there exists s’ along that path

with R(s, s’) and K, s’Cy.

• K,sCEU(y1,y2) iff there exists a fair path from

s which satisfies y2 at some

state and y1 at all previous
states.

• K,sCEGy iff there exists a fair path from s

which satisfies y at every state
along this fair path.

18

Model Checking with Fairness.

• C = {P1, P2,…, Pn}

– Fairness constraints.

• K = (S, S0, R, AP, L, C)

• It is possible to adapt the NuSMV model

checking procedure for the problem

– K,s  y

to the problem

– K,s C y.

19

Fair Strongly Connected Comp.

A non-trivial strongly connected component

C of K is fair with respect to the fair set C
= {P1, P2,…, Pn} iff for each Pi  C there is

a state s  C such that

K, s  Pi

20

M. C. with Fairness: EG(b)

Let K’ = (S’,R’,L’, C) be the sub-graph of K where

– S’ = { s | K, s C b }

– R’ = R|S’ S’ (the restriction of R to S’)

– L’ = L|S’ (the restriction of L to S’)

Lemma: K, s C EG(b) iff

1. s  S’ = { s’ | K, s’ C b } and

2. there exists a path in K’ leading from s to a

non-trivial fair strongly connected component C

of the graph (S’,R’) w.r.t. C.

21

Computing the labeling for EG(b)

Algorithm Check_Fair_EG(b)

S’ := {s | b  LabelsC(s)};

SCC := {X | X is a fair non trivial SCC of S’};

T := XSCC{s | s  X};

for each s  T do LabelsC(s) := LabelsC(s)  {EG(b)};

while T   do

chose s  T;

T := T \{s};

for each t  S’ with t → s do

if EG(b)  LablesC(t) then

LabelsC(t) := LabelsC(t)  {EG(b)};

T := T  {t};

Complexity: O(|K||C|)

22

Let fair be a new atomic proposition and let us

use the algorithm Check_Fair_EG(true) to

label K with this new proposition (i.e. fair =

EG true where true  LabelsC(s), for all s)

Then

– K, s C p iff K, s  p

– K, s C f iff K, s C f

– K, s C EXf iff K, s  EX (f  fair)

– K, s C EU(y, f) iff K, s  EU(y, f  fair)

The Labels function

23

Symbolic MC for EGf f

Let us start by noting that

EG f  f  EX EG f  f  EX EU (f,EG f)

Therefore

EG f = nZ. f  EX EU(f, Z)

The fixpoint Z is then the largest set of states with the
following two properties:

1. all the states in Z satisfy f, and

2. for all states s  Z

➢ there is a non-empty sequence of states (a path) from s
leading to a state in Z, and

➢ all states in this sequence satisfy the formula f.

24

Symbolic MC for EGf f

Let us generalize the previous result, and consider Z the

largest set of states with the following two properties:

1. all the states in Z satisfy f, and

2. for all Pk  C and all states s  Z

➢ there is a non-empty sequence of states (a path)

from s leading to a state in Z satisfying Pk, and

➢ all states in this sequence satisfy the formula f.

It can be shown that:

• each state in Z is the beginning of a path along which f
is always true, and

• every formula in C holds infinitely often along this path.

25

Symbolic MC for EGf f

It follows that EGf f can be expressed as a greatest

fixed point of the following function:

EGf f = nZ. f  k=1…n EX EU(f, Z  Pk)

This equation can be used to compute the set of

states that satisfy EGf f according to the fair

semantics.

26

Symbolic MC for EXf f and EUf (f,y)

All other temporal operators can be computed by
combining EGf and the standard semantics of
non-fair operators.

Let us define the set of all states that are the starting
state of some fair computation as the set of states
satisfying a new proposition fair such that:

fair = EGf true

Hence,

EXf f = EX(f  fair);

EUf(f, y) = EU(f, y  fair)

27

Counter-example/Witness Generation

• A formula with a universal path quantifier has a
counter-example consisting of one trace (path)

• A formula with an existential path quantifier has a
witness consisting of one trace

• Due to the dualities in CTL, we only have to consider
witnesses for existential formulae. That is:
– a two states trace witnessing EX f (this is trivial)

– a finite trace p witnessing EU(f,y)

– an infinite trace p witnessing EG f

– for finite systems, the latter must be a lasso, that is p is a path
consisting of a (finite) prefix  and a (finite) loop , such that
p = 

• For fair counter examples we need that the loop which
contains a state from each fairness constraint.

28

Witness for EU(f,y)

Recall that:
EU(f,y) = mQ. y  (f  EX Q)

Unfolding the recursion, we get:
Q0 = False

Q1 = y  (f  EX False) = y
Q2 = y  (f  EX y)

Q3 = y  (f  EX (y  (f  EX y)))

• The fixed point computation follows a process of
backward reachability.

• Each Qi contains the states that can reach y in at most
i-1 steps (transitions), while f holds in between.

• We can generate a witness (path) by performing a
forward reachability within the sequence of Qi’s.

29

Witness for EU(f,y)
• Assume the initial state s0 ² EU(f,y)

• To find a minimal witness from state s0, we start in the

smallest n such that s0  Qn.

• The desired witness is a path of the form

p = s0→ s1 →... →sn

such that si  Qn-i  R(si-1) and sn  Q1 = y (where

R(si-1) denotes the set {s | R(si-1,s)})

• Notice that this path is guaranteed to exist since s0 

Qn, Qn-i contains states reachable in one step from

some state in Qn-i+1, and each such state satisfies f.

• Then p is a path (i.e. (si,si+1)  R for 0  i  n-1) such
that sn² y and si² f, for each 0  i < n.

30

Witness for EU(f,y)
This can easily be implemented symbolically using

BDDs as follows:

• Given s0 the BDD representation of state s0.

• For i {1,...,n}, we can pick any state si as any

assignment which makes true the following function:

Qn-i(v’)  R(si-1,v’)

(v’ denotes the vector of primed vars and si-1 the

assignment to the current vars for state si-1)

• Any si is the BDD representation of a state si that:

– can reach y (with f true in between) in at most n-i steps and

– is a successor of a state si-1 that can reach y (with f true in

between) in at most n-i+1 steps ..., and so on.

31

Witness for EGf f
• We want an path from an intial state s0 to a cycle

on which each fairness constraint P1, P2 , ... , Pn

occurs.

EGf f = nZ. f  k=1…n EX EU(f, Z  Pk)

• Unfolding the recursion we obtain:

Z0 = True

Z1 = f  k=1…n EX EU(f, True  Pk)

…

Zm = f  k=1…n EX EU(f, Zm-1  Pk)

• Let Ž = Zm = Zm-1 = EGf f be the fixpoint.

32

Witness for EGf f
• Let Ž = Zm = Zm-1 = EGf f be the fixpoint.

• While computing Ž in the last iteration, it was also
computed, for each k{1,…,n}, the set of states

satisfying EU(f, Ž  Pk).

• This amounts to computing, for each k{1,…,n},

the following sequence of sets, using backward

reachability:

Qk
0  Qk

1  Qk
2  …  Qk

jk

– where each Qk
i is an (under) approximation of the set of

states satisfying EU(f, Ž  Pk)

– and each state in Qk
i can reach Ž  Pk with no more

than i steps (transitions).

33

Witness for EGf f
Let the sequences of approximantions

Qk
0  Qk

1  Qk
2  …  Qk

jk

be given for each k{1,…,n} (we can save them during
the last iteration of the outer fixpoint of EGf f)

• Assume now that the initial state s0 ² EGf f

• We can first construct a path

s0→
* s1 →*... →*sn

(where →* is the transitive closure of R), such that:

– the formula f holds invariantly, and

– for each k{1,…,n}, sk  Ž  Pk

• The path above is then guaraneed to exist and to pass
through each fairness constraint, while holding f true.

34

Witness for EGf f
To build the path we start setting k=1 and then:

1. determine the minimal z such that sk-1 has a

successor tk
0  Qk

z

2. using the witness procedure for EU, construct a

witness for EU(f,Ž  Pk), namely a path of the

form:

sk-1→ tk
0 → tk

1
... → tk

mk
 Ž  Pk

3. finally set sk = tk
mk

and proceed to build the path

for Pk+1 going back to step 1 (until k = n).

Notice that, each tk
j (with j  1) will be found in Qk

z-j,

and will satisfy f.

35

Building a fair path from s0

P2P1

s0

t1
0

t2
m2

=s2

Q1
z

t1
1Q1

z-1

t1
m1

= s1

Q1
z-m1

Q2
z’ Q2

z’-1
Q1

z’-m2

t2
0

t2
1

Let us assume that the only

fairness constraint are P1 and

P2.

36

Witness for EGf f
Once we have generated the path

s0→
* s1 →*... →*sn

we need to check if sn can reach (non trivially) s1 while
holding f true, i.e. check whether

sn  EX EU(f, {s1})

If this is the case, then we have found a (non trivial)
cycle from s1 back to s1 passing through all the
fairness constraints and which invariantly satisfies f.

This means that s1, s2 …, sn all belong to the same SCC
satisfying f and reachable from s0.

Therefore, the prefix going from s0 to s1 () in s0→
* s1

concatenated with the cycle from s1 to s1 () forms
the desired witness p = .

37

Witness contained in the first SCC

P2

P1

s0

t1
0

s1

SCC1

s2 ² EX EU(f,{s1})
s2

Let us assume that the

only fairness constraint

are P1 and P2.

t1
1

t1
1

38

Witness for EGf f
If, in the other hand,

sn  EX EU(f, {s1})

then s1 and sn do not belong to the same SCC and the

cycle cannot be closed.

This means that s1, s2 …, sn belong to the prefix  of the

desired witness p.

In this case, we can restart the process starting from sn as

we have already done from s0, building another

seuqence

sn→
* s’1 →*... →*s’n

passing through all the fairness constraints and then

check if s’n  EX EU(f, {s’1}), i.e. another SCC.

39

Witness over multiple SCCs

P2

P1

s0

t’1
0

P2

t1
0

P1

s2

SCC1

SCC2

SCC3

s1

s’2

s’1

s2 ² EX EU(f,{s1})

s’2 ² EX EU(f,{s’1})

Let us assume that the

only fairness constraint

are P1 and P2.

t2
0

t2
1

t’1
1

40

Witness for EGf f

The process above must terminate since:

1. the Kripke structure is finite, therefore so is also
the number of SCCs.

2. the algorithm, while looking for the fair cycle,
essentially moves from one SCC to another
within the graph of th SCCs, following non
trivial paths.

3. the graph of the SCCs is always acyclic.

Therefore, if the witness p =  is not found earlier,
then  must be contained in some terminal
SCC, i.e. one which has no outgoing arc to some
other SCC.

41

The graph of the SCCs

terminal SCCs

