Tecniche di Specifica e di Verifica

CTL*, CTL and LTL

CTL* language I

Syntax Let AP a finite set of atomic propositions. We define by mutual induction the following set of formulae:

(state formulae)

- 0 If $p \in AP$, then p is a *state* formula.
- 1 If ϕ and ϕ ' are *state* formulae, then so are $\neg \phi$ and $\phi \lor \phi$ ', $\phi \land \phi$ '.
- 2 If ψ is a *path* formula, then $\mathbf{E}\psi$ and $\mathbf{A}\psi$ are *state* formulae.

CTL* language I

Syntax ...

(path formulae)

- 3 if ϕ is a *state* formula, then ϕ is a *path* formula.
- 4 if ψ and ψ ' are *path* formulae, then so are $\neg \psi$ and $\psi \lor \psi$ ', $\psi \land \psi$ '.
- 5 if ψ and ψ ' are *path* formulae, then so are $X\psi$ and $\psi U\psi$ '.

CTL* semantics I

Semantics Given the standard definitions

```
K = (S, S_0, R, AP, L), s \in S, L: S \rightarrow 2^{AP} and 
path of K: \pi = s_0 s_1 s_2 \dots where (s_i s_{i+1}) \in R:
```

- 0 K, $s \models p$ iff $p \in L(s)$.
- 1 for propositional formulae
 - $-K, s \models \neg \phi \text{ iff } not K, s \models \phi$
 - K, $s \models \phi_1 \lor \phi_2$ iff K, $s \models \phi_1$ or K, $s \models \phi_2$.
 - K, $s \models \phi_1 \land \phi_2$ iff K, $s \models \phi_1$ and K, $s \models \phi_2$.
- 2 **K,s** \models **E** ϕ (**K,s** \models **A** ϕ) iff for some (for all) path $\pi = s s_1 s_2 \dots$, it holds that **K,** $\pi \models \phi$

CTL* semantics II

Semantics ...

- 3 K, $\pi \models p$ iff K, $s_0 \models p$.
- 4 for propositional combination of path formulae
 - $-\mathbf{K}, \pi \models \neg \psi \text{ iff } not \mathbf{K}, \pi \models \psi$
 - $-\mathbf{K}, \pi \models \psi_1 \vee \psi_2 \text{ iff } \mathbf{K}, \pi \models \psi_1 \text{ or } \mathbf{K}, \pi \models \psi_2.$
 - \mathbf{K} , $\pi \models \psi_1 \land \psi_2$ iff \mathbf{K} , $\pi \models \psi_1$ and \mathbf{K} , $\pi \models \psi_2$.
- 5 temporal operators
 - $-\mathbf{K},\pi \models \mathbf{X}\psi \text{ iff } \mathbf{K},\pi^1 \models \psi$
 - $\mathbf{K}, \pi \models \psi_1 \mathbf{U} \psi_2$ iff for some $\mathbf{j}, \mathbf{K}, \pi^{\mathbf{j}} \models \psi_2$, and for all $\mathbf{k} < \mathbf{j}$, $\mathbf{K}, \pi^{\mathbf{k}} \models \psi_1$

CTL language definition

- **CTL** can be defined as the *sub-labguage* of **CTL*** by replacing items 3-5 of the above definition, by the following:
- 3' if ϕ and ϕ ' are *state* formulae, then $X\phi$ and $\phi U\phi$ ' are *path* formulae.
 - 0 If $p \in AP$, then p is a *state* formula.
 - 1 If ϕ and ϕ ' are *state* formulae, then so are $\neg \phi$ and $\phi \lor \phi$ ', $\phi \land \phi$ '.
 - 2 If ψ is a *path* formula, then $\mathbf{E}\psi$ and $\mathbf{A}\psi$ are *state* formulae.

LTL, CTL and CTL*

```
LTL (state): \varphi ::= \mathbf{A} \psi
           (path): \psi := p \mid \neg \psi \mid \psi_1 \vee \psi_2 \mid \mathbf{X} \psi \mid \psi_1 \cup \psi_2
CTL (state): \varphi := p \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \mathbf{E} \psi
           (path): \psi ::= \mathbf{X} \phi \mid \phi_1 \cup \phi_2
CTL* (state): \varphi := p \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid E \psi
              (path): \psi := \phi \mid \neg \psi \mid \psi_1 \vee \psi_2 \mid \mathbf{X} \psi \mid \psi_1 \cup \psi_2
```

LTL and CTL*

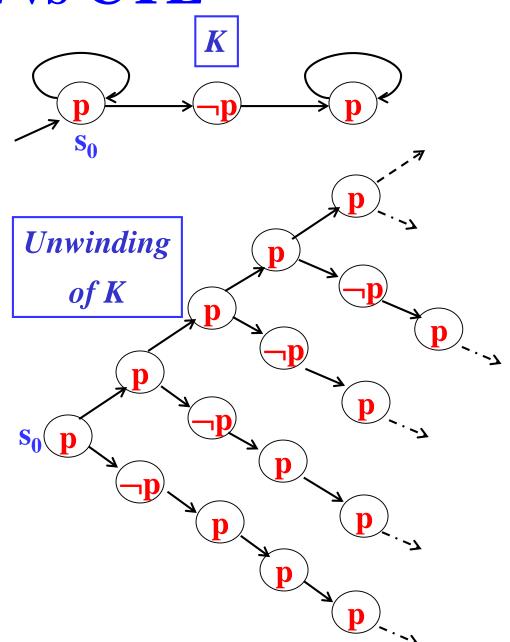
Theorem: [Clarke] For every CTL* formula ψ , an equivalent LTL (it it exists) must be of the form $Af(\psi)$ where $f(\psi)$ is equal to ψ with all the path quantifiers eliminated.

In LTL, we could write:

A FG p, which means "on all paths, there is some state from which p will forever hold" (i.e. $\neg p$ holds finitely often).

There is no equivalent of this LTL formula in CTL.

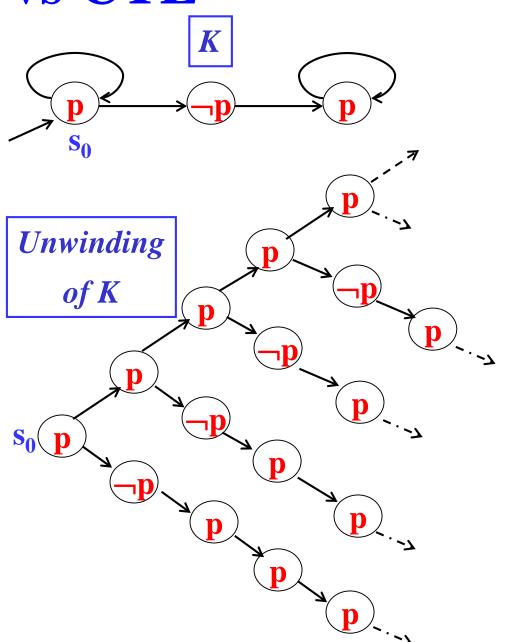
For example, in the following model, **A FG** *p* holds, but the formula **AF AG** *p* does not.



Similarly the LTL formula $\mathbf{AF}(p \wedge \mathbf{X} p)$ has no equivalent in CTL. Two attempts are:

$AF(p \wedge AX p)$

But in the model on the right, the LTL formula is true while the CTL formula is false



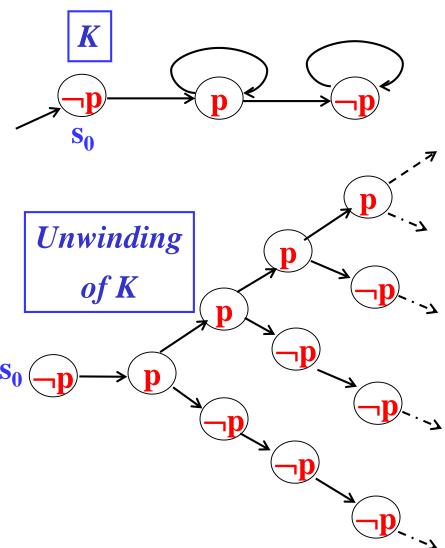
Similarly the LTL formula $\mathbf{AF}(p \wedge \mathbf{X} p)$ has no equivalent in CTL. Two attempts are:

 $\mathbf{AF}(p \wedge \mathbf{AX} p)$

and

$AF(p \wedge EX p)$

But in the model on the right, the LTL formula is false while the second CTL formula is true.



The LTL formula **A GF p** means "on all paths and for all states, a state is reachable where **p** holds" (i.e. **p** holds infinitely often).

There is an equivalent CTL formula for this LTL formula.

The equivalent CTL formula is $\mathbf{AGAF} p$ which holds in all and only the models where $\mathbf{A} \mathbf{GF} p$ holds.

Proof: It suffices to show that for any kripke structure K, $K \models AGAF p$ iff $K \models AGF p$.

The LTL formula $\varphi = A(GFp \rightarrow Fq)$ (meaning that Fq holds on all fair paths satisfying p infinitely often) cannot be expressed in CTL.

Proof: It suffices to show that for any candidate CTL formula ψ , there is at least a kripke structure K, with either

$$K \models \varphi$$
 and $K \not\models \psi$

or

$$K \not\models \varphi$$
 and $K \models \psi$.

$$\mathbf{\varphi} = \mathbf{A}(\mathbf{GF}p \to Fq)$$

$$\psi = \mathbf{AGAF} \ \mathbf{p} \to \mathbf{AFq}$$

$$\psi = \mathbf{AG}(\mathbf{AF} \ \mathbf{p} \to \mathbf{AFq})$$

$$K \models \varphi \text{ and } K \models \psi$$

$$\mathbf{F} = \mathbf{AGAF} \ (\mathbf{p} \to \mathbf{AFq})$$

 $K \nvDash \varphi$ and $K \models \psi$

CTL vs LTL

Let us consider the CTL formula $\mathbf{AGEF} \alpha$. Clearly:

$$K \models AG(EF \alpha)$$

Suppose β is a LTL formula which is equivalent to AGEF α . If this where true, then:

$$K \models \beta$$

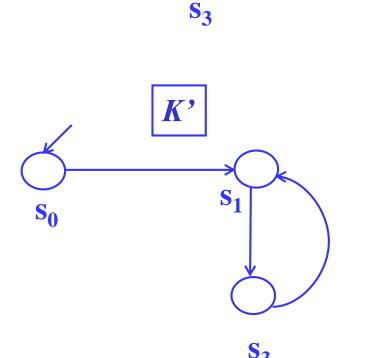
But $K \models \beta$ if and only if for every path π of K

$$K,\pi \models \beta$$

Since any path π in K' is also in K, this would imply that for every path π of K'

$$K',\pi \models \beta$$

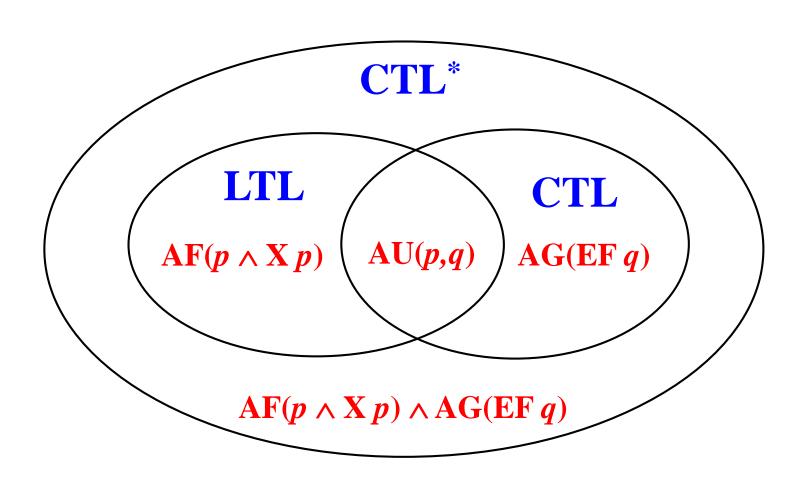
But $K' \models AG(EF \alpha)$, therefore the LTL formula β cannot be equivalent to $AGEF \alpha$.



K

 S_1

LTL vs CTL vs CTL*



LTL vs CTL vs CTL*

- A GF ϕ is a LTL formula which can be expressed in CTL by the equivalent formula AG AF ϕ .
- For any ϕ and ψ the LTL formula $A(GF \phi \rightarrow \psi)$ is not expressible in CTL, in particular it is not equivalent to $((AGAF \phi) \rightarrow \psi)$.
- In other words, fairness constraints cannot be expressed directly in CTL.