Introduction to SMV

New Symbolic Model Verifier

Originally, SMV by Ken McMillan, Symbolic Model Checking:
An Approach to the State Explosion Problem, 1993.

NuSMV: Re-implementation at FBK-IRST (Trento).
You can get source & binary at:

http://nusmv.fbk.eu/
Finite-state Systems specified in a specialized language
Specifications given as LTL or CTL formulas + Fairness
Internal representation using BDDs.

Automatically checks specification or gives a
counterexample

Language Characteristics

= Allows description of synchronous and
asynchronous systems

= Modular and hierarchical descriptions

= Finite data types: Boolean, bounded
integers, scalars (enumerations), arrays.

= Nondeterminism

A Sample NuSMV Program

MODULE main
VAR
request: boolean;
state: {ready, busy};
ASSIGN
init(state) := ready;
next(state) :=
case

state=ready & request: busy;
TRUE: {ready, busy};

esac;

LTLSPEC G(request -> F (state = busy))

Variable Assignments

= Assignment to initial state:
init(value) := O;
s Assignment to next state (transition relation)

next(value) := value + carry_in mod 2;

s Assignment to current state (invariant)
carry_out := value & carry_in;

= Use either init-next or invariant - never both
= NuSMV is a parallel assignment language

The Case Expression

= Case Is an expression, not a statement
= Guards are evaluated sequentially.

= The first one that is true determines the
resulting value

= If none of the guards are true, an arbitrary
valid value is returned

= Always use an else guard!

Nondeterminism

s Completely unassigned variable can model
unconstrained input.

= {val_1, ..., val_n} is an expression taking on any of
the given values nondeterministically.

= Use union when you have expressions rather than
values

= Nondeterministic choice can be used to:
= Model an implementation that has not been refined yet
= Abstract behavior

Types
= Boolean
= 1is true and O is false
m InTeger
= Integers typically range from -232+1 to 232-1

= Enumeration

= VAR

a : {red, blue, green};
b:{1,2,3};
c:{1,5,7};

ASSIGN

next(b) := case
<— b<3 : b+1;

TRUE 11;
esac;

s Numerical operations must be properly guarded

Types

s Bit-vector

« word[] e.g., bv : word[4] declared a vector of 4 bits.

= Bit selection operators on word[] type: e.qg.,
Ob6_011001[4:1] gives constant Ob4_1100

« Shifting operators on word[] type: e.q.
Ob6 _011001<<2 results in the constant Ob6_100100

= Logical, relational and arithmetic operators can be applied
to the word[] type

= Array
« a: array 0..3 of boolean;
=« b: array 10..20 of {OK, vy, z};
= C:array 1..8 of array -1..2 of word[4];
= Limited use in expressions e.g.: c[3][-1] & 0b4_1100

ASSIGN and DEFINE

= VAR a: boolean;
ASSIGN a :=b | c;
= declares a new state variable a
= becomes part of invariant relation

s« DEFINE d:=Db | c;
= is effectively a macro definition, each occurrence of d
is replaced by b | ¢
= nho extra BDD variable is generated for d

= the BDD for b | ¢ becomes part of each expression
using d

10

Next (transition relation)

= Expressions can refer to the value of a variable in
the next state

= Examples:

= VAR a,b : boolean;
ASSIGN
next(b) := 'b;
a := next(b);

= ASSIGN next(a) := 'next(b)
(a is the negation of b, except for the initial state)

Disclaimer: different (Nu)SMV versions differ on this

11

Circular definitions

= ... are not allowed!
s This is illegal:

= a := next(b);

next(b) := c;
cC:=a;
= Thisis o.k.

« init(a) := 0;
next(a) := !'b;
init(b) :=1;
next(b) := la;
init(c) := 0;

next(c) := a & next(b);

12

Modules and Hierarchy

Modules can be instantiated many times, each
instantiation creates a copy of the local variables

Each program has a module main

Scoping
= Variables declared outside a module can be passed as
parameters

= Internal variables of a module can be used in enclosing modules
(referred to with the complex identifier submodel.varname).

= The full identifier is the complex identifier of a module's
variable as seen from the MAIN module

Parameters are passed by reference.

13

Scoping

MODULE main
VAR
a : boolean;
b : foo;
C : Mmoo;
MODULE foo
VAR q : boolean;
e : moo;
MODULE moo

DEFINE f :=0< 1;

MODULE not_used
VAR
h : boolean;
t : used;

MODULE used
VAR
k : boolean;
Variable Full Identifier

a a
q b.q
e b.e
f b.e.f, c.f
nt k NONE

14

MODULE main

VAR
bit0 : counter_cell(1);

bitl : counter_cell(bitO.carry_out);
bit2 : counter_cell(bitl.carry_out);

LTLSPEC G (F bit2.carry_out)
LTLSPEC G (F !'bit2.carry_out)

MODULE counter_cell(carry_in)
VAR value : boolean;

ASSIGN
init(value) := 0;
next(value) := (value + carry_in) mod 2;

DEFINE carry_out := value & carry_in;

15

Module Composition

= Synchronous composition

= All assignments are executed in parallel and
synchronously.

= A single step of the resulting model corresponds to a
step in each of the components.

= Asynchronous composition (inteleaving)

= A step of the composition is a step by exactly one
process.

= Variables, not assigned in that process, are left
unchanged.

16

Asynchronous Composition

MODULE main

VAR
gatel: process inverter(gate3.output);

gate2: process inverter(gatel.output);
gate3: process inverter(gate2.output);

LTLSPEC G (F gatel.output)
LTLSPEC G (F !'gatel.output)

MODULE inverter(input)
VAR output: boolean;

ASSIGN
init(output) := FALSE;
next(output) := linput;

17

Counterexamples

-- specification G (F !gatel.output) is false

-- as demonstrated by the following execution
state 2.1:

gatel.output = FALSE

gate2.output = FALSE

gate3.output = FALSE

state 2.2:
[executing process gatel]

-- loop starts here --
state 2.3:
gatel.output = TRUE
[stuttering]

18

Fairness

s FAIRNESS formulae [JUSTUCE formulae]
= Assumed to be true infinitely often

= Model checker only explores paths satisfying
fairness constraint

= Each fairness constraint must be true infinitely
often

s If there are no fair paths
= All existential formulas are false
= All universal formulas are true

s FAIRNESS running

running is an implicit boolean variable of every
process instance of a module. It is true when the
module instance is scheduled for execution.

19

Counter Revisited

MODULE main

VAR
count_enable: boolean;
bit0 : counter_cell(count_enable);
bitl : counter_cell(bitO.carry_out);
bit2 : counter_cell(bitl.carry_out);

SPEC G (F bit2.carry_out)

FAIRNESS count_enable
[...]

20

Example: Client & Server

MODULE client (ack)

VAR
state : {idle, requesting};
req : boolean;

ASSIGN

init(state) := idle;

next(state) :=

case
state =idle : {idle, requesting};
state =requesting & ack : idle;
TRUE : state;

esac;

req := (state=requesting);

21

Example: Client & Server

MODULE server (req)

VAR
state : {idle, pending, acking};
ack : boolean;

ASSIGN

next(state) :=

case
state=idle & req : pending;
state=pending : {pending, acking};
state=acking & req : pending;
state=acking & 'req : idle;
TRUE : state;

esac;

ack := (state = acking);

22

Is the specification true?

MODULE main
VAR
c : client(s.ack);
s : server(c.req);

LTLSPEC G (c.req — F s.ack)

= Need fairness constraint:

= Suggestion:
FAIRNESS s.ack

= Why is this bad?

= Solution:
FAIRNESS !(state=pending)

INn server spec.

23

Running NuSMV (interactively)
= NuSMV -int

= Runs NuSMYV in interactive mode

= read model -i <filename>
= Reads a system spec. from file

lgo

= Builds the internal representation of the model

o ChCCk_me
s Checks whether the transition relation is total

24

NuSMV Options

= compute_reachable
= computes set of reachable states first

= the model checking algorithm traverses only the
set of reachable states instead of complete state
space.

= useful if reachable state space is a small fraction
of total state space

= print reachable states
= prints out the number of reachable states
n checl_l[tlspec [checl_ctlspec]

= checks all the LTL properties [CTL properties]
included in the file spec. of the system

25

Variable Reordering

Variable reordering is crucial for small BDD sizes
and speed.

Generally, variables which are related need to be
close in the ordering.

encode_variables -i <filename>
= Input BDD variable ordering from a given file.

write_roder -o <filename>
= Output BDD variable ordering to a given file.

dynamic_var_ordering [-e sift] [-d]
= Enable/disable automatic variable reordering

26

