Introduction to SMV



New Symbolic Model Verifier

Originally, SMV by Ken McMillan, Symbolic Model Checking:
An Approach to the State Explosion Problem, 1993.

NuSMV: Re-implementation at FBK-IRST (Trento).
You can get source & binary at:

http://nusmv.fbk.eu/
Finite-state Systems specified in a specialized language
Specifications given as LTL or CTL formulas + Fairness
Internal representation using BDDs.

Automatically  checks  specification or gives a
counterexample



Language Characteristics

= Allows description of synchronous and
asynchronous systems

= Modular and hierarchical descriptions

= Finite data types: Boolean, bounded
integers, scalars (enumerations), arrays.

= Nondeterminism



A Sample NuSMV Program

MODULE main
VAR
request: boolean;
state: {ready, busy};
ASSIGN
init(state) := ready;
next(state) :=
case

state=ready & request: busy;
TRUE: {ready, busy};

esac;

LTLSPEC G(request -> F (state = busy))



Variable Assignments

= Assignment to initial state:
init(value) := O;
s Assignment to next state (transition relation)

next(value) := value + carry_in mod 2;

s Assignment to current state (invariant)
carry_out := value & carry_in;

= Use either init-next or invariant - never both
= NuSMV is a parallel assignment language




The Case Expression

= Case Is an expression, not a statement
= Guards are evaluated sequentially.

= The first one that is true determines the
resulting value

= If none of the guards are true, an arbitrary
valid value is returned

= Always use an else guard!



Nondeterminism

s Completely unassigned variable can model
unconstrained input.

= {val_1, ..., val_n} is an expression taking on any of
the given values nondeterministically.

= Use union when you have expressions rather than
values

= Nondeterministic choice can be used to:
= Model an implementation that has not been refined yet
= Abstract behavior



Types
= Boolean
= 1is true and O is false
m InTeger
= Integers typically range from -232+1 to 232-1

= Enumeration

= VAR

a : {red, blue, green};
b:{1,2,3};
c:{1,5,7};

ASSIGN

next(b) := case
<— b<3 : b+1;

TRUE 11;
esac;

s Numerical operations must be properly guarded



Types

s Bit-vector

« word[] e.g., bv : word[4] declared a vector of 4 bits.

= Bit selection operators on word[] type: e.qg.,
Ob6_011001[4:1] gives constant Ob4_1100

« Shifting operators on word[] type: e.q.
Ob6 _011001<<2 results in the constant Ob6_100100

= Logical, relational and arithmetic operators can be applied
to the word[] type

= Array
« a: array 0..3 of boolean;
=« b: array 10..20 of {OK, vy, z};
= C:array 1..8 of array -1..2 of word[4];
= Limited use in expressions e.g.: c[3][-1] & 0b4_1100



ASSIGN and DEFINE

= VAR a: boolean;
ASSIGN a :=b | c;
= declares a new state variable a
= becomes part of invariant relation

s« DEFINE d:=Db | c;
= is effectively a macro definition, each occurrence of d
is replaced by b | ¢
= nho extra BDD variable is generated for d

= the BDD for b | ¢ becomes part of each expression
using d
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Next (transition relation)

= Expressions can refer to the value of a variable in
the next state

= Examples:

= VAR a,b : boolean;
ASSIGN
next(b) := 'b;
a := next(b);

= ASSIGN next(a) := 'next(b)
(a is the negation of b, except for the initial state)

Disclaimer: different (Nu)SMV versions differ on this
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Circular definitions

= ... are not allowed!
s This is illegal:

= a := next(b);

next(b) := c;
cC:=a;
= Thisis o.k.

« init(a) := 0;
next(a) := !'b;
init(b) :=1;
next(b) := la;
init(c) := 0;

next(c) := a & next(b);
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Modules and Hierarchy

Modules can be instantiated many times, each
instantiation creates a copy of the local variables

Each program has a module main

Scoping
= Variables declared outside a module can be passed as
parameters

= Internal variables of a module can be used in enclosing modules
(referred to with the complex identifier submodel.varname).

= The full identifier is the complex identifier of a module's
variable as seen from the MAIN module

Parameters are passed by reference.
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Scoping

MODULE main
VAR
a : boolean;
b : foo;
C : Mmoo;
MODULE foo
VAR q : boolean;
e : moo;
MODULE moo

DEFINE f :=0< 1;

MODULE not_used
VAR
h : boolean;
t : used;

MODULE used
VAR
k : boolean;
Variable Full Identifier

a a
q b.q
e b.e
f b.e.f, c.f
nt k NONE
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MODULE main

VAR
bit0 : counter_cell(1);

bitl : counter_cell(bitO.carry_out);
bit2 : counter_cell(bitl.carry_out);

LTLSPEC G (F bit2.carry_out)
LTLSPEC G (F !'bit2.carry_out)

MODULE counter_cell(carry_in)
VAR value : boolean;

ASSIGN
init(value) := 0;
next(value) := (value + carry_in) mod 2;

DEFINE carry_out := value & carry_in;
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Module Composition

= Synchronous composition

= All assignments are executed in parallel and
synchronously.

= A single step of the resulting model corresponds to a
step in each of the components.

= Asynchronous composition (inteleaving)

= A step of the composition is a step by exactly one
process.

= Variables, not assigned in that process, are left
unchanged.

16



Asynchronous Composition

MODULE main

VAR
gatel: process inverter(gate3.output);

gate2: process inverter(gatel.output);
gate3: process inverter(gate2.output);

LTLSPEC G (F gatel.output)
LTLSPEC G (F !'gatel.output)

MODULE inverter(input)
VAR output: boolean;

ASSIGN
init(output) := FALSE;
next(output) := linput;
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Counterexamples

-- specification G (F !gatel.output) is false

-- as demonstrated by the following execution
state 2.1:

gatel.output = FALSE

gate2.output = FALSE

gate3.output = FALSE

state 2.2:
[executing process gatel]

-- loop starts here --
state 2.3:
gatel.output = TRUE
[stuttering]
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Fairness

s FAIRNESS formulae [JUSTUCE formulae]
= Assumed to be true infinitely often

= Model checker only explores paths satisfying
fairness constraint

= Each fairness constraint must be true infinitely
often

s If there are no fair paths
= All existential formulas are false
= All universal formulas are true

s FAIRNESS running

running is an implicit boolean variable of every
process instance of a module. It is true when the
module instance is scheduled for execution.
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Counter Revisited

MODULE main

VAR
count_enable: boolean;
bit0 : counter_cell(count_enable);
bitl : counter_cell(bitO.carry_out);
bit2 : counter_cell(bitl.carry_out);

SPEC G (F bit2.carry_out)

FAIRNESS count_enable
[...]
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Example: Client & Server

MODULE client (ack)

VAR
state : {idle, requesting};
req : boolean;

ASSIGN

init(state) := idle;

next(state) :=

case
state =idle : {idle, requesting};
state =requesting & ack : idle;
TRUE : state;

esac;

req := (state=requesting);
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Example: Client & Server

MODULE server (req)

VAR
state : {idle, pending, acking};
ack : boolean;

ASSIGN

next(state) :=

case
state=idle & req : pending;
state=pending : {pending, acking};
state=acking & req : pending;
state=acking & 'req : idle;
TRUE : state;

esac;

ack := (state = acking);
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Is the specification true?

MODULE main
VAR
c : client(s.ack);
s : server(c.req);

LTLSPEC G (c.req — F s.ack)

= Need fairness constraint:

= Suggestion:
FAIRNESS s.ack

= Why is this bad?

= Solution:
FAIRNESS !(state=pending)

INn server spec.
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Running NuSMV (interactively)
= NuSMV -int

= Runs NuSMYV in interactive mode

= read model -i <filename>
= Reads a system spec. from file

lgo

= Builds the internal representation of the model

o ChCCk_me
s Checks whether the transition relation is total

24



NuSMV Options

= compute_reachable
= computes set of reachable states first

= the model checking algorithm traverses only the
set of reachable states instead of complete state
space.

= useful if reachable state space is a small fraction
of total state space

= print reachable states
= prints out the number of reachable states
n checl_l[tlspec [checl_ctlspec]

= checks all the LTL properties [CTL properties]
included in the file spec. of the system
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Variable Reordering

Variable reordering is crucial for small BDD sizes
and speed.

Generally, variables which are related need to be
close in the ordering.

encode_variables -i <filename>
= Input BDD variable ordering from a given file.

write_roder -o <filename>
= Output BDD variable ordering to a given file.

dynamic_var_ordering [-e sift] [-d]
= Enable/disable automatic variable reordering
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