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Introduction to SMV
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New Symbolic Model Verifier

◼ Originally, SMV by Ken McMillan, Symbolic Model Checking:
An Approach to the State Explosion Problem, 1993.

◼ NuSMV: Re-implementation at FBK-IRST (Trento).

◼ You can get source & binary at:

http://nusmv.fbk.eu/

◼ Finite-state Systems specified in a specialized language

◼ Specifications given as LTL or CTL formulas + Fairness

◼ Internal representation using BDDs.

◼ Automatically checks specification or gives a
counterexample
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Language Characteristics

◼ Allows description of synchronous and 
asynchronous systems

◼ Modular and hierarchical descriptions

◼ Finite data types: Boolean, bounded 
integers, scalars (enumerations), arrays.

◼ Nondeterminism
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A Sample NuSMV Program

MODULE main

VAR

request: boolean;

state: {ready, busy};

ASSIGN

init(state) := ready;

next(state) := 
case

state=ready & request: busy;

TRUE: {ready, busy};

esac;

LTLSPEC G(request -> F (state = busy))
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Variable Assignments

◼ Assignment to initial state:

init(value) := 0;

◼ Assignment to next state (transition relation)

next(value)  :=  value + carry_in mod 2;

◼ Assignment to current state (invariant)

carry_out := value & carry_in;

◼ Use either init-next or invariant - never both

◼ NuSMV is a parallel assignment language
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The Case Expression

◼ case is an expression, not a statement

◼ Guards are evaluated sequentially.

◼ The first one that is true determines the 
resulting value

◼ If none of the guards are true, an arbitrary
valid value is returned
◼ Always use an else guard!
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Nondeterminism

◼ Completely unassigned variable can model 
unconstrained input.

◼ {val_1, …, val_n} is an expression taking on any of 
the given values nondeterministically.
◼ Use union when you have expressions rather than 

values

◼ Nondeterministic choice can be used to:
◼ Model an implementation that has not been refined yet
◼ Abstract behavior
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Types
◼ Boolean

◼ 1 is true and 0 is false

◼ Integer
◼ Integers typically range from –232+1 to 232-1

◼ Enumeration
◼ VAR

a : {red, blue, green};
b : {1, 2, 3};
c : {1, 5, 7};

ASSIGN
next(b) := case

b<3 : b+1;
TRUE : 1;

esac;

◼ Numerical operations must be properly guarded 
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Types
◼ Bit-vector

◼ word[] e.g., bv : word[4] declared a vector of 4 bits.

◼ Bit selection operators on word[] type: e.g., 
0b6_011001[4:1] gives constant 0b4_1100

◼ Shifting operators on word[] type: e.g. 

0b6_011001<<2 results in the constant 0b6_100100

◼ Logical, relational and arithmetic operators can be applied 
to the word[] type

◼ Array

◼ a: array 0..3 of boolean;

◼ b: array 10..20 of {OK, y, z};

◼ c : array 1..8 of array -1..2 of word[4];

◼ Limited use in expressions e.g.: c[3][-1] & 0b4_1100
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ASSIGN and DEFINE

◼ VAR a: boolean;
ASSIGN a := b | c;

◼ declares a new state variable a

◼ becomes part of invariant relation

◼ DEFINE d:= b | c;

◼ is effectively a macro definition, each occurrence of d
is replaced by b | c

◼ no extra BDD variable is generated for d

◼ the BDD for b | c becomes part of each expression 
using d
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Next (transition relation)

◼ Expressions can refer to the value of a variable in 
the next state

◼ Examples:
◼ VAR a,b : boolean;

ASSIGN

next(b) := !b;

a := next(b);

◼ ASSIGN next(a) := !next(b)

(a is the negation of b, except for the initial state)

◼ Disclaimer: different (Nu)SMV versions differ on this
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Circular definitions

◼ … are not allowed!
◼ This is illegal:

◼ a := next(b);
next(b) := c;
c := a;

◼ This is o.k.
◼ init(a) := 0;

next(a) := !b;

init(b) := 1;
next(b) := !a;

init(c) := 0;
next(c)  := a & next(b);
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Modules and Hierarchy

◼ Modules can be instantiated many times, each 
instantiation creates a copy of the local variables

◼ Each program has a module main

◼ Scoping
◼ Variables declared outside a module can be passed as 

parameters

◼ Internal variables of a module can be used in enclosing modules 
(referred to with the complex identifier submodel.varname).

◼ The full identifier is the complex identifier of a module’s 
variable as seen from the MAIN module

◼ Parameters are passed by reference.
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Scoping
MODULE main                             MODULE used

VAR VAR
a : boolean;                                k : boolean;
b : foo;
c : moo;

MODULE foo
VAR q : boolean;

e : moo;

MODULE moo
DEFINE f := 0 < 1;

MODULE not_used
VAR 

n : boolean;
t : used;

Variable       Full Identifier
a                  a
q                  b.q
e                  b.e
f                  b.e.f, c.f
n,t,k             NONE
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MODULE main

VAR
bit0 : counter_cell(1);

bit1 : counter_cell(bit0.carry_out);

bit2 : counter_cell(bit1.carry_out);

LTLSPEC  G (F bit2.carry_out)

LTLSPEC  G (F !bit2.carry_out)

MODULE counter_cell(carry_in)

VAR value : boolean;

ASSIGN

init(value) := 0;

next(value) := (value + carry_in) mod 2;

DEFINE carry_out := value & carry_in;
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Module Composition

◼ Synchronous composition
◼ All assignments are executed in parallel and 

synchronously.

◼ A single step of the resulting model corresponds to a 
step in each of the components.

◼ Asynchronous composition (inteleaving)
◼ A step of the composition is a step by exactly one 

process.

◼ Variables, not assigned in that process, are left 
unchanged.
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Asynchronous Composition
MODULE main

VAR
gate1: process inverter(gate3.output);

gate2: process inverter(gate1.output);

gate3: process inverter(gate2.output);

LTLSPEC G (F gate1.output)

LTLSPEC  G (F !gate1.output)

MODULE inverter(input)

VAR output: boolean;

ASSIGN

init(output) := FALSE;

next(output) := !input;
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Counterexamples
-- specification G (F !gate1.output) is false
-- as demonstrated by the following execution
state 2.1:
gate1.output = FALSE 
gate2.output = FALSE
gate3.output = FALSE

state 2.2:
[executing process gate1]

-- loop starts here --
state 2.3:
gate1.output = TRUE
[stuttering]
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Fairness
◼ FAIRNESS formulae  [JUSTUCE formulae]

◼ Assumed to be true infinitely often
◼ Model checker only explores paths satisfying 

fairness constraint
◼ Each fairness constraint must be true infinitely 

often

◼ If there are no fair paths
◼ All existential formulas are false
◼ All universal formulas are true

◼ FAIRNESS running
running is an implicit boolean variable of every 
process instance of a module. It is true when the 
module instance is scheduled for execution.
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Counter Revisited

MODULE main

VAR

count_enable: boolean;

bit0 : counter_cell(count_enable);

bit1 : counter_cell(bit0.carry_out);

bit2 : counter_cell(bit1.carry_out);

SPEC G (F bit2.carry_out)

FAIRNESS count_enable

[…]
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Example: Client & Server

MODULE client (ack)

VAR

state : {idle, requesting};

req : boolean;

ASSIGN

init(state) := idle;

next(state) :=

case

state =idle : {idle, requesting};

state =requesting & ack : idle;

TRUE : state;

esac;

req := (state=requesting);
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Example: Client & Server
MODULE server (req)

VAR

state : {idle, pending, acking};

ack : boolean;

ASSIGN

next(state) :=

case

state=idle & req : pending;

state=pending : {pending, acking};

state=acking & req : pending;

state=acking & !req : idle;

TRUE : state;

esac;

ack := (state = acking);
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Is the specification true?
MODULE main

VAR

c : client(s.ack);

s : server(c.req);

LTLSPEC G (c.req → F s.ack)

◼ Need fairness constraint:
◼ Suggestion:

FAIRNESS s.ack

◼ Why is this bad?
◼ Solution:

FAIRNESS !(state=pending)

in server spec.
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Running NuSMV (interactively)

◼ NuSMV -int 
◼ Runs NuSMV in interactive mode

◼ read_model –i <filename>
◼ Reads a system spec. from file

◼ go
◼ Builds the internal representation of the model

◼ check_fsm
◼ Checks whether the transition relation is total
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NuSMV Options

◼ compute_reachable
◼ computes set of reachable states first
◼ the model checking algorithm traverses only the 

set of reachable states instead of complete state 
space.

◼ useful if reachable state space is a small fraction 
of total state space

◼ print reachable states
◼ prints out the number of reachable states

◼ checl_ltlspec [checl_ctlspec]
◼ checks all the LTL properties [CTL properties] 

included in the file spec. of the system
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Variable Reordering

◼ Variable reordering is crucial for small BDD sizes 
and speed.

◼ Generally, variables which are related need to be 
close in the ordering.

◼ encode_variables –i <filename>
◼ Input BDD variable ordering from a given file.

◼ write_roder –o <filename>
◼ Output BDD variable ordering to a given file.

◼ dynamic_var_ordering [-e sift] [-d]
◼ Enable/disable automatic variable reordering


