FUNZIONE DI TRASFERIMENTO

Definizione e proprietà

Rappresentazioni e parametri della funzione di trasferimento

Risposta allo scalino

DEFINIZIONE E PROPRIETÀ

Definizione e interpretazioni

• Sistema lineare e stazionario ($u \in \mathbb{R}^m$, $x \in \mathbb{R}^n$, $y \in \mathbb{R}^p$)

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

• Trasformazione di Laplace

$$sX(s) - x(0) = AX(s) + BU(s)$$
$$Y(s) = CX(s) + DU(s)$$
$$\downarrow \downarrow$$

$$X(s) = (sI - A)^{-1}BU(s) + (sI - A)^{-1}x(0)$$

$$Y(s) = (C(sI - A)^{-1}B + D)U(s) + C(sI - A)^{-1}x(0)$$

• Funzione di trasferimento

$$G(s) = C(sI - A)^{-1}B + D$$

★ rappresentazione ingresso-uscita (esterna)

$$Y(s) = G(s)U(s)$$

antitrasformata \Rightarrow movimento forzato y_f

• Funzione di trasferimento e risposta all'impulso

$$\star u(t) = \operatorname{imp}(t) \Rightarrow U(s) = 1$$

$$y(t) = \int_0^t g_y(t - \tau)u(\tau)d\tau$$
$$\mathcal{L}[y(t)] = Y(s) = G(s)$$

funzione di trasferimento = trasformata di Laplace della risposta all'impulso

Struttura della funzione di trasferimento

- Elementi di $(sI A)^{-1}$: funzioni razionali in s
 - \star denominatore di grado n di $\varphi(s)$
 - $\star\,$ numeratore dell'elemento (j,i): polinomio di grado al più n-1
 - \star combinazione lineare attraverso C e B; if $D \neq 0$ then numeratore di grado n
 - \star eventuali cancellazioni \Rightarrow funzione razionale con denominatore di grado $\nu < n$
- Sistemi SISO ($\alpha_{\nu} = 1$)

$$G(s) = \frac{N_G(s)}{D_G(s)} = \frac{\beta_{\nu} s^{\nu} + \beta_{\nu-1} s^{\nu-1} + \dots + \beta_1 s + \beta_0}{\alpha_{\nu} s^{\nu} + \alpha_{\nu-1} s^{\nu-1} + \dots + \alpha_1 s + \alpha_0}$$

- \star grado relativo = grado(den) grado(num)
- \star iff grado(num) > grado(den) then sistema improprio
- Poli e zeri (reali o complessi coniugati a coppie)
 - $\star \hat{s}$ zero: $N_G(\hat{s}) = 0$
 - $\star \hat{s}$ polo: $D_G(\hat{s}) = 0 \ (\Rightarrow \text{ autovalore di } A)$
 - \star sistemi MIMO: \hat{s} polo se annulla il denominatore di almeno una delle funzioni razionali

Invarianza della funzione di trasferimento

• Trasformazione di stato

$$\begin{split} \dot{\hat{x}}(t) &= \hat{A}\hat{x}(t) + \hat{B}u(t) \\ y(t) &= \hat{C}\hat{x}(t) + \hat{D}u(t) \\ \hat{A} &= TAT^{-1} \quad \hat{B} = TB \quad \hat{C} = CT^{-1} \quad \hat{D} = D \end{split}$$

$$\hat{G}(s) = \hat{C}(sI - \hat{A})^{-1}\hat{B} + \hat{D} = CT^{-1}\left(sI - TAT^{-1}\right)^{-1}TB + D$$

$$= C\left(sT^{-1}IT - T^{-1}TAT^{-1}T\right)^{-1}B + D = C(sI - A)^{-1}B$$

$$= G(s)$$

RAPPRESENTAZIONI E PARAMETRI DELLA FUNZIONE DI TRASFERIMENTO

• Forme fattorizzate

$$G(s) = \frac{\rho \prod_{i} (s + z_{i}) \prod_{i} (s^{2} + 2\zeta_{i}\alpha_{ni}s + \alpha_{ni}^{2})}{s^{g} \prod_{i} (s + p_{i}) \prod_{i} (s^{2} + 2\xi_{i}\omega_{ni}s + \omega_{ni}^{2})}$$

$$G(s) = \frac{\mu \prod_{i} (1 + \tau_{i} s) \prod_{i} (1 + 2\zeta_{i} s / \alpha_{ni} + s^{2} / \alpha_{ni}^{2})}{s^{g} \prod_{i} (1 + T_{i} s) \prod_{i} (1 + 2\xi_{i} s / \omega_{ni} + s^{2} / \omega_{ni})}$$

- $\star \rho$: costante di trasferimento
- \star g: tipo
- $\star -z_i \neq 0$: zeri reali
- $\star -p_i \neq 0$: poli reali
- $\star \alpha_{ni} > 0$: pulsazioni naturali delle coppie di zeri complessi coniugati
- $\star \omega_{ni} > 0$: pulsazioni naturali delle coppie di poli complessi coniugati
- \star ζ_i ($|\zeta_i|$ < 1) smorzamenti delle coppie di zeri complessi coniugati
- \star ξ_i ($|\xi_i|<1$) smorzamenti delle coppie di poli complessi coniugati
- $\star \mu$: guadagno
- $\star \ \tau_i \neq 0$: costanti di tempo degli zeri reali
- $\star T_i \neq 0$: costanti di tempo dei poli reali

$$\mu = \frac{\rho \prod_{i} z_{i} \prod_{i} \alpha_{ni}^{2}}{\prod_{i} p_{i} \prod_{i} \omega_{ni}^{2}} \qquad \rho = \frac{\mu \prod_{i} \tau_{i} \prod_{i} \omega_{ni}^{2}}{\prod_{i} T_{i} \prod_{i} \alpha_{ni}^{2}}$$
$$\tau_{i} = \frac{1}{z_{i}} \qquad T_{i} = \frac{1}{p_{i}}$$

Guadagno

- Sistema as intoticamente stabile: G(s) $(g = 0, T_i > 0, \xi_i > 0)$
 - \star ingresso costante $\bar{u} \Rightarrow U(s) = \bar{u}/s$

$$\bar{y} = \lim_{t \to \infty} y(t) = \lim_{s \to 0} sG(s) \frac{\bar{u}}{s}$$
$$= \lim_{s \to 0} s \left(C(sI - A)^{-1}B + D \right) \frac{\bar{u}}{s}$$
$$= G(0)\bar{u} = (-CA^{-1}B + D)\bar{u}$$

$$\star \mu = G(0) = \bar{y}/\bar{u}$$
 (guadagno statico)

• Guadagno generalizzato

$$\mu = \lim_{s \to 0} s^g G(s)$$

Derivatore ideale

- g < 0 (asintotica stabilità) $\Rightarrow \bar{y} = 0$
 - $\star G(s) = s$: derivatore ideale

Integratore

•
$$G(s) = \frac{1}{s} \Rightarrow A = 0, CB = 1$$

$$\dot{x}(t) = u(t)$$

$$y(t) = x(t)$$

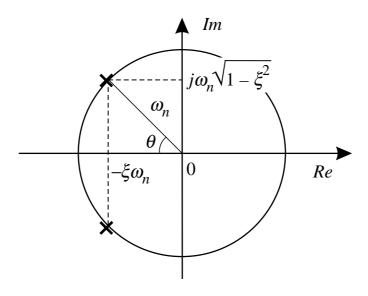
Costanti di tempo

- Poli reali $-p_i = -1/T_i$, ingresso impulsivo \Rightarrow uscita = combinazione lineare dei modi $t^j e^{-t/T_i}$, $j = 0, 1, \ldots, \nu_i 1$ (ν_i : molteplicità)
 - * i modi si estinguono tanto più velocemente quanto più i poli sono lontani dall'origine del piano complesso (costanti di tempo piccole)

Pulsazione naturale e smorzamento

• Coppia di poli complessi coniugati

$$a = -\xi \omega_n \qquad b = \omega_n \sqrt{1 - \xi^2}$$



 $\star \omega_n$: modulo dei poli

$$\star \ \xi = \cos(\theta) : \begin{cases} \xi = 1 \\ 0 < \xi < 1 \\ \xi = 0 \\ -1 < \xi < 0 \\ \xi = -1 \end{cases}$$

 $\star \ \xi = \cos{(\theta)} \colon \begin{cases} \xi = 1 & \text{reali e coincidenti nel punto } -\omega_n \\ 0 < \xi < 1 & \text{a parte reale negativa} \\ \xi = 0 & \text{a parte reale nulla} \\ -1 < \xi < 0 & \text{a parte reale positiva} \\ \xi = -1 & \text{reali e coincidenti nel punto } \omega_n \end{cases}$

 \star sistema con solo una coppia di poli complessi coniugati ($\mu=1$): risposta all'impulso

$$y(t) = \frac{\omega_n}{\sqrt{1-\xi^2}} e^{-\xi\omega_n t} \sin\left(\omega_n t \sqrt{1-\xi^2}\right)$$

modo si estingue tanto più velocemente quanto più è elevato il valore di $\xi\omega_n>0$

RISPOSTA ALLO SCALINO

- Sistemi dinamici sollecitati con segnali costanti per lunghi periodi di tempo
 - * scalino unitario (attenzione linearizzazione)
- Sistemi del primo e del secondo ordine
 - * funzione di trasferimento di un sistema di ordine qualunque = somma di funzioni di trasferimento di sistemi del primo o del secondo ordine
 - * risposta = buona approssimazione di quella di sistemi di ordine più elevato

Valore iniziale e finale

• Sistema asintoticamente stabile $(m \le n)$

$$G(s) = \frac{\beta_m s^m + \beta_{m-1} s^{m-1} + \dots + \beta_0}{\alpha_n s^n + \alpha_{n-1} s^{n-1} + \dots + \alpha_0}$$

* valore iniziale della risposta allo scalino

$$y(0) = \lim_{s \to \infty} s \frac{\beta_m s^m + \beta_{m-1} s^{m-1} + \dots + \beta_0}{\alpha_n s^n + \alpha_{n-1} s^{n-1} + \dots + \alpha_0} \frac{1}{s}$$

$$= \begin{cases} 0 & m < n \\ \frac{\beta_m}{\alpha_n} & m = n \end{cases}$$

$$\star m < n, y(0) = 0$$

$$\dot{y}(0) = \lim_{s \to \infty} s \left(sY(s) - y(0) \right)$$

$$= \lim_{s \to \infty} s^2 \frac{\beta_m s^m + \beta_{m-1} s^{m-1} + \dots + \beta_0}{\alpha_n s^n + \alpha_{n-1} s^{n-1} + \dots + \alpha_0} \frac{1}{s}$$

$$= \begin{cases} 0 & m < n-1 \\ \frac{\beta_m}{\alpha_n} & m = n-1 \end{cases}$$

Risposta ad altri segnali canonici

• Ingresso u(t): segnale canonico

$$\mathcal{L}[y(t)] = Y(s) = G(s)U(s) = G(s)\mathcal{L}[u(t)]$$

• Trasformata di Laplace dell'integrale

$$G(s)\mathcal{L}\left[\int_0^t u(\tau)d\tau\right] = G(s)\frac{U(s)}{s} = \frac{\mathcal{L}[y(t)]}{s} = \mathcal{L}\left[\int_0^t y(\tau)d\tau\right]$$

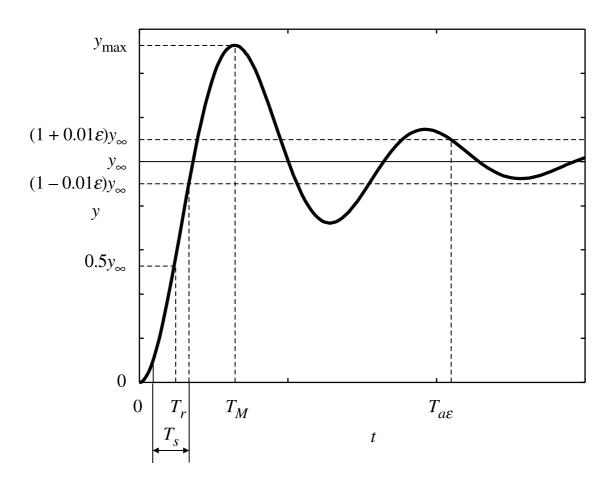
- * risposta alla rampa = integrazione della risposta allo scalino
- * risposta alla parabola = doppia integrazione della risposta allo scalino
- Trasformata di Laplace della derivata $(u(0^-) = 0, y(0^-) = 0)$

$$G(s)\mathcal{L}\left[\frac{du(t)}{dt}\right] = G(s)\left(sU(s) - u(0^{-})\right)$$
$$= s\mathcal{L}[y(t)] = \mathcal{L}\left[\frac{dy(t)}{dt}\right] + y(0^{-}) = \mathcal{L}\left[\frac{dy(t)}{dt}\right]$$

* risposta all'impulso = derivazione della risposta allo scalino

Caratteristiche della risposta allo scalino

ullet Parametri di sistema asintoticamente stabile ($\mu>0$)



 $\star\,$ valore di regime y_∞ : valore dell'uscita a transitorio esaurito

$$y_{\infty} = \begin{cases} \mu \\ 0 \end{cases} \qquad g < 0$$

 \star valore massimo y_{max} : massimo valore assunto dall'uscita

 \star sovraelongazione massima percentuale S%: ampiezza, in percentuale, della sovraelongazione massima rispetto al valore di regime

$$S\% = 100 \frac{y_{\text{max}} - y_{\infty}}{y_{\infty}}$$

- \star tempo di massima sovraelongazione T_M : primo istante in cui $y=y_{\max}$
- \star tempo di salita T_s : tempo richiesto perché l'uscita passi per la prima volta dal 10% al 90% del suo valore di regime
- \star tempo di ritardo T_r : tempo necessario perché l'uscita raggiunga la prima volta il valore $0.5y_{\infty}$
- * tempo di assestamento $T_{a\epsilon}$: tempo necessario perché la differenza tra l'uscita e il valore di regime y_{∞} rimanga definitivamente al di sotto di $\epsilon\%$, cioè l'uscita sia nell'intervallo $[(1-0.01\epsilon)y_{\infty}, (1+0.01\epsilon)y_{\infty}]$

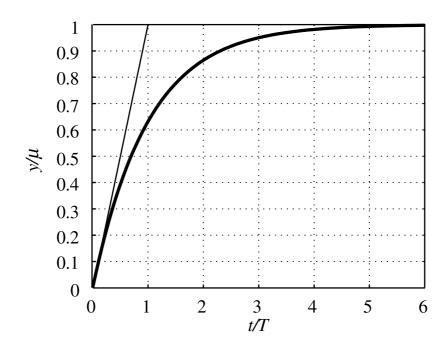
Sistemi del primo ordine

• Sistema strettamente proprio (T > 0)

$$G(s) = \frac{\mu}{1 + Ts}$$

* uscita

$$y(t) = \mu \left(1 - e^{-t/T}\right) \qquad t \ge 0$$



* parametri caratteristici

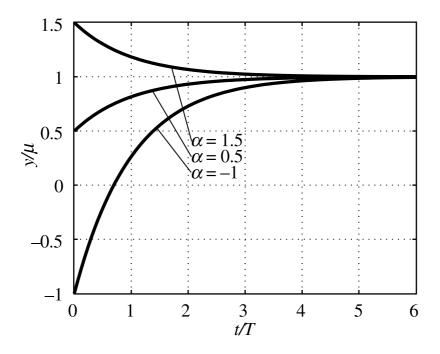
y_{∞}	T_s	T_r	T_{a5}	T_{a1}
μ	$\simeq 2.2T$	$\simeq 0.7T$	$\simeq 3T$	$\simeq 4.6T$

• Sistema proprio (T > 0)

$$G(s) = \frac{\mu(1+\tau s)}{1+Ts}$$

* uscita

$$y(t) = \mu \left(1 + (\alpha - 1)e^{-t/T} \right) \qquad t \ge 0$$



⋆ tempo di assestamento

$$T_{a\epsilon} = T \ln \frac{|1 - \alpha|}{0.01\epsilon}$$

Sistemi del secondo ordine

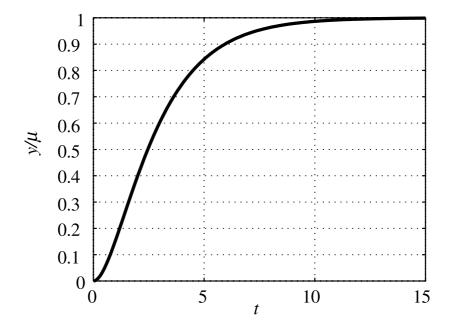
• Sistema con solo poli reali (poli distinti)

$$G(s) = \frac{\mu}{(1 + T_1 s)(1 + T_2 s)} \qquad T_1 > T_2 > 0$$

* risposta

$$y(t) = \mu \left(1 - \frac{T_1}{T_1 - T_2} e^{-t/T_1} + \frac{T_2}{T_1 - T_2} e^{-t/T_2} \right) \qquad t \ge 0$$

 \star risposta per $T_1 = 2, T_2 = 1$



* parametri caratteristici

y_{∞}	T_s	T_r	T_{a5}	T_{a1}
μ	$\simeq 3.36T$	$\simeq 1.68T$	$\simeq 4.74T$	$\simeq 6.64T$

$$\star T_1 \gg T_2 (t \simeq 4 \div 5T_2)$$

$$y(t) \simeq \mu(1 - e^{-t/T_1})$$

• Sistema con solo poli reali (poli coincidenti)

$$G(s) = \frac{\mu}{(1+Ts)^2} \qquad T > 0$$

* risposta

$$y(t) = \mu \left(1 - e^{-t/T} - \frac{t}{T} e^{-t/T} \right)$$
 $t \ge 0$

qualitativamente non diverso dal precedente (valori espliciti dei parametri)

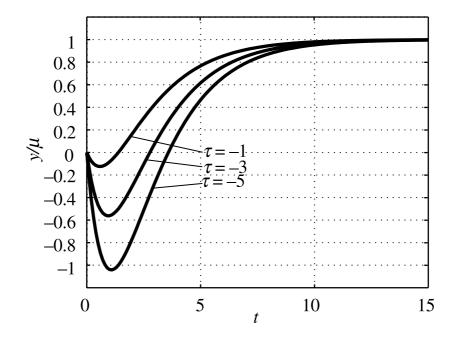
• Sistema con poli reali e uno zero

$$G(s) = \frac{\mu(1+\tau s)}{(1+T_1 s)(1+T_2 s)} \qquad T_1 \neq \tau, T_2 \neq \tau$$

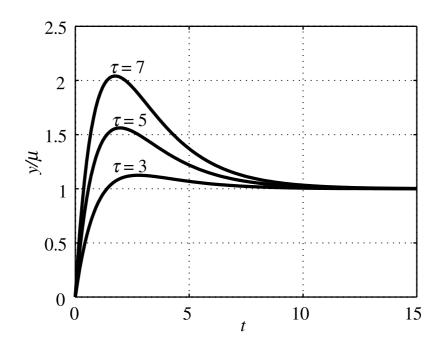
* risposta

$$y(t) = \mu \left(1 - \frac{T_1 - \tau}{T_1 - T_2} e^{-t/T_1} + \frac{T_2 - \tau}{T_1 - T_2} e^{-t/T_2} \right) \qquad t \ge 0$$

- $\star \tau < 0$ (sottoelongazione o risposta inversa)
- \star risposta per $T_1 = 2, T_2 = 1$



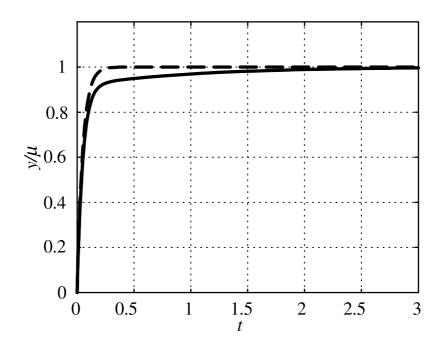
- $\star \tau \gg T_1 > T_2$
- \star risposta per $T_1 = 2, T_2 = 1$



$$\star \tau \simeq T_1 \gg T_2$$

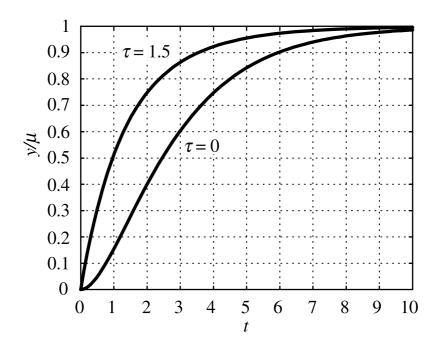
$$y(t) \simeq \mu \left(1 - e^{-t/T_2}\right)$$
 $t \ge 0$

 \star risposte per $T_1=1,\,T_2=0.05,\,\tau=0.92$ (linea continua: sistema esatto; linea tratteggiata: sistema approssimato)



$$\star T_1 > \tau > T_2$$

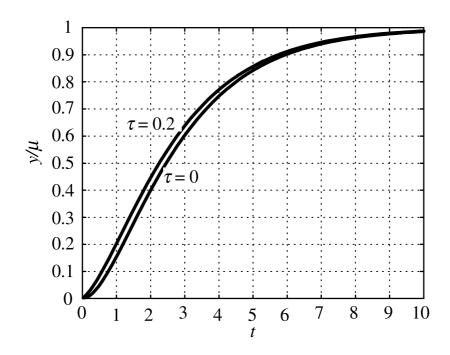
$$\star$$
 risposta per $T_1 = 2, T_2 = 1$



$$\star \tau \simeq T_2$$

$$y(t) \simeq \mu \left(1 - e^{-t/T_1}\right)$$
 $t \ge 0$

- $\star T_1 > T_2 > \tau > 0$
- \star risposta per $T_1 = 2, T_2 = 1$

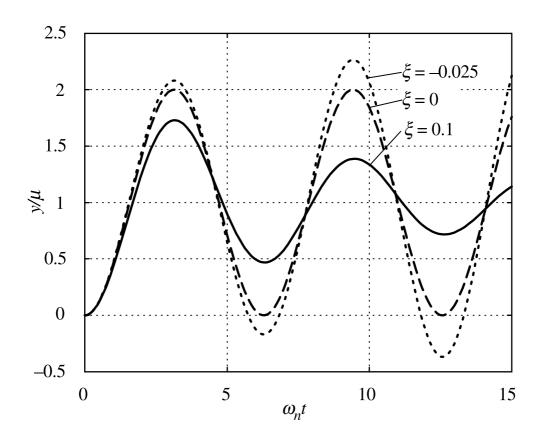


• Sistema con solo poli complessi coniugati

$$G(s) = \frac{\mu \omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2}$$
 $\omega_n > 0, |\xi| < 1$

* risposta

$$y(t) = \mu \left(1 - \frac{1}{\sqrt{1 - \xi^2}} e^{-\xi \omega_n t} \sin \left(\omega_n t \sqrt{1 - \xi^2} + \arccos(\xi) \right) \right)$$



\star istanti di stazionarietà (0 < ξ < 1)

$$\bar{t}_k = \frac{k\pi}{\omega_n \sqrt{1 - \xi^2}} \qquad k \in N_+$$

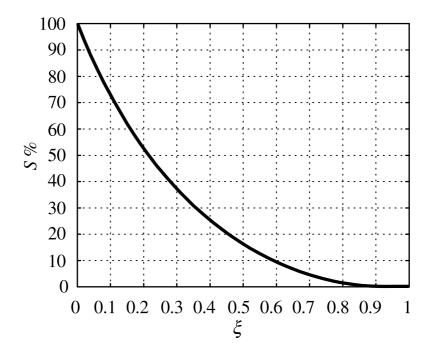
$$y(\bar{t}_k) = \mu \left(1 - (-1)^k e^{-\xi k\pi/\sqrt{1 - \xi^2}} \right)$$

$$\downarrow \qquad \qquad \downarrow$$

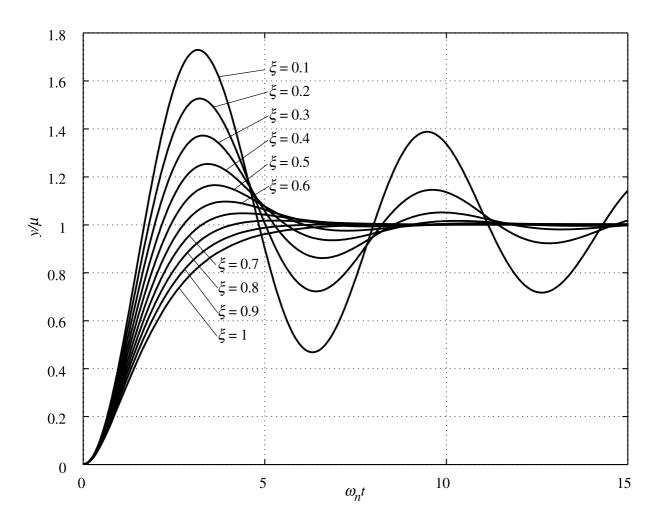
$$y_{\text{max}} = \mu \left(1 + e^{-\xi \pi/\sqrt{1 - \xi^2}} \right)$$

$$T_M = \frac{\pi}{\omega_n \sqrt{1 - \xi^2}}$$

$$S\% = 100e^{-\xi \pi/\sqrt{1 - \xi^2}}$$



* risposta



* parametri caratteristici

Į.	$J\infty$	S%	T_{M}	stima di $T_{a\epsilon}$
	μ	$100e^{-\xi\pi/\sqrt{1-\xi^2}}$	$rac{\pi}{\omega_n\sqrt{1-\xi^2}}$	$-\frac{1}{\xi\omega_n}\mathrm{ln}0.01\epsilon$

• Sistema con poli complessi coniugati e uno zero

$$G(s) = \frac{\mu \omega_n^2 (1 + \tau s)}{s^2 + 2\xi \omega_n s + \omega_n^2}$$
$$= \tilde{G}(s) + \tau s \tilde{G}(s)$$

 $\downarrow \downarrow$

$$y(t) = \mathcal{L}^{-1} \left[\frac{\tilde{G}(s)}{s} \right] + \tau \mathcal{L}^{-1} \left[s \frac{\tilde{G}(s)}{s} \right] = \tilde{y}(t) + \tau \frac{d\tilde{y}(t)}{dt}$$

