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Preface to the Second Edition

Since the first edition of the book was published, a great deal of new ma-
terial on principal component analysis (PCA) and related topics has been
published, and the time is now ripe for a new edition. Although the size of
the book has nearly doubled, there are only two additional chapters. All
the chapters in the first edition have been preserved, although two have
been renumbered. All have been updated, some extensively. In this updat-
ing process I have endeavoured to be as comprehensive as possible. This
is reflected in the number of new references, which substantially exceeds
those in the first edition. Given the range of areas in which PCA is used,
it is certain that I have missed some topics, and my coverage of others will
be too brief for the taste of some readers. The choice of which new topics
to emphasize is inevitably a personal one, reflecting my own interests and
biases. In particular, atmospheric science is a rich source of both applica-
tions and methodological developments, but its large contribution to the
new material is partly due to my long-standing links with the area, and not
because of a lack of interesting developments and examples in other fields.
For example, there are large literatures in psychometrics, chemometrics
and computer science that are only partially represented. Due to consid-
erations of space, not everything could be included. The main changes are
now described.

Chapters 1 to 4 describing the basic theory and providing a set of exam-
ples are the least changed. It would have been possible to substitute more
recent examples for those of Chapter 4, but as the present ones give nice
illustrations of the various aspects of PCA, there was no good reason to do
so. One of these examples has been moved to Chapter 1. One extra prop-
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erty (A6) has been added to Chapter 2, with Property A6 in Chapter 3
becoming A7.

Chapter 5 has been extended by further discussion of a number of ordina-
tion and scaling methods linked to PCA, in particular varieties of the biplot.
Chapter 6 has seen a major expansion. There are two parts of Chapter 6
concerned with deciding how many principal components (PCs) to retain
and with using PCA to choose a subset of variables. Both of these topics
have been the subject of considerable research in recent years, although a
regrettably high proportion of this research confuses PCA with factor anal-
ysis, the subject of Chapter 7. Neither Chapter 7 nor 8 have been expanded
as much as Chapter 6 or Chapters 9 and 10.

Chapter 9 in the first edition contained three sections describing the
use of PCA in conjunction with discriminant analysis, cluster analysis and
canonical correlation analysis (CCA). All three sections have been updated,
but the greatest expansion is in the third section, where a number of other
techniques have been included, which, like CCA, deal with relationships be-
tween two groups of variables. As elsewhere in the book, Chapter 9 includes
yet other interesting related methods not discussed in detail. In general,
the line is drawn between inclusion and exclusion once the link with PCA
becomes too tenuous.

Chapter 10 also included three sections in first edition on outlier de-
tection, influence and robustness. All have been the subject of substantial
research interest since the first edition; this is reflected in expanded cover-
age. A fourth section, on other types of stability and sensitivity, has been
added. Some of this material has been moved from Section 12.4 of the first
edition; other material is new.

The next two chapters are also new and reflect my own research interests
more closely than other parts of the book. An important aspect of PCA is
interpretation of the components once they have been obtained. This may
not be easy, and a number of approaches have been suggested for simplifying
PCs to aid interpretation. Chapter 11 discusses these, covering the well-
established idea of rotation as well recently developed techniques. These
techniques either replace PCA by alternative procedures that give simpler
results, or approximate the PCs once they have been obtained. A small
amount of this material comes from Section 12.4 of the first edition, but
the great majority is new. The chapter also includes a section on physical
interpretation of components.

My involvement in the developments described in Chapter 12 is less direct
than in Chapter 11, but a substantial part of the chapter describes method-
ology and applications in atmospheric science and reflects my long-standing
interest in that field. In the first edition, Section 11.2 was concerned with
‘non-independent and time series data.’ This section has been expanded
to a full chapter (Chapter 12). There have been major developments in
this area, including functional PCA for time series, and various techniques
appropriate for data involving spatial and temporal variation, such as (mul-



Preface to the Second Edition vii

tichannel) singular spectrum analysis, complex PCA, principal oscillation
pattern analysis, and extended empirical orthogonal functions (EOFs).
Many of these techniques were developed by atmospheric scientists and
are little known in many other disciplines.

The last two chapters of the first edition are greatly expanded and be-
come Chapters 13 and 14 in the new edition. There is some transfer of
material elsewhere, but also new sections. In Chapter 13 there are three
new sections, on size/shape data, on quality control and a final ‘odds-and-
ends’ section, which includes vector, directional and complex data, interval
data, species abundance data and large data sets. All other sections have
been expanded, that on common principal component analysis and related
topics especially so.

The first section of Chapter 14 deals with varieties of non-linear PCA.
This section has grown substantially compared to its counterpart (Sec-
tion 12.2) in the first edition. It includes material on the Gifi system of
multivariate analysis, principal curves, and neural networks. Section 14.2
on weights, metrics and centerings combines, and considerably expands,
the material of the first and third sections of the old Chapter 12. The
content of the old Section 12.4 has been transferred to an earlier part in
the book (Chapter 10), but the remaining old sections survive and are
updated. The section on non-normal data includes independent compo-
nent analysis (ICA), and the section on three-mode analysis also discusses
techniques for three or more groups of variables. The penultimate section
is new and contains material on sweep-out components, extended com-
ponents, subjective components, goodness-of-fit, and further discussion of
neural nets.

The appendix on numerical computation of PCs has been retained
and updated, but, the appendix on PCA in computer packages has
been dropped from this edition mainly because such material becomes
out-of-date very rapidly.

The preface to the first edition noted three general texts on multivariate
analysis. Since 1986 a number of excellent multivariate texts have appeared,
including Everitt and Dunn (2001), Krzanowski (2000), Krzanowski and
Marriott (1994) and Rencher (1995, 1998), to name just a few. Two large
specialist texts on principal component analysis have also been published.
Jackson (1991) gives a good, comprehensive, coverage of principal com-
ponent analysis from a somewhat different perspective than the present
book, although it, too, is aimed at a general audience of statisticians and
users of PCA. The other text, by Preisendorfer and Mobley (1988), con-
centrates on meteorology and oceanography. Because of this, the notation
in Preisendorfer and Mobley differs considerably from that used in main-
stream statistical sources. Nevertheless, as we shall see in later chapters,
especially Chapter 12, atmospheric science is a field where much devel-
opment of PCA and related topics has occurred, and Preisendorfer and
Mobley’s book brings together a great deal of relevant material.
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A much shorter book on PCA (Dunteman, 1989), which is targeted at
social scientists, has also appeared since 1986. Like the slim volume by
Daultrey (1976), written mainly for geographers, it contains little technical
material.

The preface to the first edition noted some variations in terminology.
Likewise, the notation used in the literature on PCA varies quite widely.
Appendix D of Jackson (1991) provides a useful table of notation for some of
the main quantities in PCA collected from 34 references (mainly textbooks
on multivariate analysis). Where possible, the current book uses notation
adopted by a majority of authors where a consensus exists.

To end this Preface, I include a slightly frivolous, but nevertheless in-
teresting, aside on both the increasing popularity of PCA and on its
terminology. It was noted in the preface to the first edition that both
terms ‘principal component analysis’ and ‘principal components analysis’
are widely used. I have always preferred the singular form as it is compati-
ble with ‘factor analysis,’ ‘cluster analysis,’ ‘canonical correlation analysis’
and so on, but had no clear idea whether the singular or plural form was
more frequently used. A search for references to the two forms in key words
or titles of articles using the Web of Science for the six years 1995–2000, re-
vealed that the number of singular to plural occurrences were, respectively,
1017 to 527 in 1995–1996; 1330 to 620 in 1997–1998; and 1634 to 635 in
1999–2000. Thus, there has been nearly a 50 percent increase in citations
of PCA in one form or another in that period, but most of that increase
has been in the singular form, which now accounts for 72% of occurrences.
Happily, it is not necessary to change the title of this book.

I. T. Jolliffe
April, 2002

Aberdeen, U. K.
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Principal component analysis is probably the oldest and best known of
the techniques of multivariate analysis. It was first introduced by Pear-
son (1901), and developed independently by Hotelling (1933). Like many
multivariate methods, it was not widely used until the advent of elec-
tronic computers, but it is now well entrenched in virtually every statistical
computer package.

The central idea of principal component analysis is to reduce the dimen-
sionality of a data set in which there are a large number of interrelated
variables, while retaining as much as possible of the variation present in
the data set. This reduction is achieved by transforming to a new set of
variables, the principal components, which are uncorrelated, and which are
ordered so that the first few retain most of the variation present in all of
the original variables. Computation of the principal components reduces to
the solution of an eigenvalue-eigenvector problem for a positive-semidefinite
symmetric matrix. Thus, the definition and computation of principal com-
ponents are straightforward but, as will be seen, this apparently simple
technique has a wide variety of different applications, as well as a num-
ber of different derivations. Any feelings that principal component analysis
is a narrow subject should soon be dispelled by the present book; indeed
some quite broad topics which are related to principal component analysis
receive no more than a brief mention in the final two chapters.

Although the term ‘principal component analysis’ is in common usage,
and is adopted in this book, other terminology may be encountered for the
same technique, particularly outside of the statistical literature. For exam-
ple, the phrase ‘empirical orthogonal functions’ is common in meteorology,
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and in other fields the term ‘factor analysis’ may be used when ‘princi-
pal component analysis’ is meant. References to ‘eigenvector analysis ’ or
‘latent vector analysis’ may also camouflage principal component analysis.
Finally, some authors refer to principal components analysis rather than
principal component analysis. To save space, the abbreviations PCA and
PC will be used frequently in the present text.

The book should be useful to readers with a wide variety of backgrounds.
Some knowledge of probability and statistics, and of matrix algebra, is
necessary, but this knowledge need not be extensive for much of the book.
It is expected, however, that most readers will have had some exposure to
multivariate analysis in general before specializing to PCA. Many textbooks
on multivariate analysis have a chapter or appendix on matrix algebra, e.g.
Mardia et al. (1979, Appendix A), Morrison (1976, Chapter 2), Press (1972,
Chapter 2), and knowledge of a similar amount of matrix algebra will be
useful in the present book.

After an introductory chapter which gives a definition and derivation of
PCA, together with a brief historical review, there are three main parts to
the book. The first part, comprising Chapters 2 and 3, is mainly theoretical
and some small parts of it require rather more knowledge of matrix algebra
and vector spaces than is typically given in standard texts on multivariate
analysis. However, it is not necessary to read all of these chapters in order
to understand the second, and largest, part of the book. Readers who are
mainly interested in applications could omit the more theoretical sections,
although Sections 2.3, 2.4, 3.3, 3.4 and 3.8 are likely to be valuable to
most readers; some knowledge of the singular value decomposition which
is discussed in Section 3.5 will also be useful in some of the subsequent
chapters.

This second part of the book is concerned with the various applications
of PCA, and consists of Chapters 4 to 10 inclusive. Several chapters in this
part refer to other statistical techniques, in particular from multivariate
analysis. Familiarity with at least the basic ideas of multivariate analysis
will therefore be useful, although each technique is explained briefly when
it is introduced.

The third part, comprising Chapters 11 and 12, is a mixture of theory and
potential applications. A number of extensions, generalizations and uses of
PCA in special circumstances are outlined. Many of the topics covered in
these chapters are relatively new, or outside the mainstream of statistics
and, for several, their practical usefulness has yet to be fully explored. For
these reasons they are covered much more briefly than the topics in earlier
chapters.

The book is completed by an Appendix which contains two sections.
The first section describes some numerical algorithms for finding PCs,
and the second section describes the current availability of routines
for performing PCA and related analyses in five well-known computer
packages.
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The coverage of individual chapters is now described in a little more
detail. A standard definition and derivation of PCs is given in Chapter 1,
but there are a number of alternative definitions and derivations, both ge-
ometric and algebraic, which also lead to PCs. In particular the PCs are
‘optimal’ linear functions of x with respect to several different criteria, and
these various optimality criteria are described in Chapter 2. Also included
in Chapter 2 are some other mathematical properties of PCs and a discus-
sion of the use of correlation matrices, as opposed to covariance matrices,
to derive PCs.

The derivation in Chapter 1, and all of the material of Chapter 2, is in
terms of the population properties of a random vector x. In practice, a sam-
ple of data is available, from which to estimate PCs, and Chapter 3 discusses
the properties of PCs derived from a sample. Many of these properties cor-
respond to population properties but some, for example those based on
the singular value decomposition, are defined only for samples. A certain
amount of distribution theory for sample PCs has been derived, almost
exclusively asymptotic, and a summary of some of these results, together
with related inference procedures, is also included in Chapter 3. Most of
the technical details are, however, omitted. In PCA, only the first few PCs
are conventionally deemed to be useful. However, some of the properties in
Chapters 2 and 3, and an example in Chapter 3, show the potential useful-
ness of the last few, as well as the first few, PCs. Further uses of the last few
PCs will be encountered in Chapters 6, 8 and 10. A final section of Chapter
3 discusses how PCs can sometimes be (approximately) deduced, without
calculation, from the patterns of the covariance or correlation matrix.

Although the purpose of PCA, namely to reduce the number of variables
from p to m(� p), is simple, the ways in which the PCs can actually be
used are quite varied. At the simplest level, if a few uncorrelated variables
(the first few PCs) reproduce most of the variation in all of the original
variables, and if, further, these variables are interpretable, then the PCs
give an alternative, much simpler, description of the data than the original
variables. Examples of this use are given in Chapter 4, while subsequent
chapters took at more specialized uses of the PCs.

Chapter 5 describes how PCs may be used to look at data graphically,
Other graphical representations based on principal coordinate analysis, bi-
plots and correspondence analysis, each of which have connections with
PCA, are also discussed.

A common question in PCA is how many PCs are needed to account for
‘most’ of the variation in the original variables. A large number of rules
has been proposed to answer this question, and Chapter 6 describes many
of them. When PCA replaces a large set of variables by a much smaller
set, the smaller set are new variables (the PCs) rather than a subset of the
original variables. However, if a subset of the original variables is preferred,
then the PCs can also be used to suggest suitable subsets. How this can be
done is also discussed in Chapter 6.
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In many texts on multivariate analysis, especially those written by non-
statisticians, PCA is treated as though it is part of the factor analysis.
Similarly, many computer packages give PCA as one of the options in a
factor analysis subroutine. Chapter 7 explains that, although factor analy-
sis and PCA have similar aims, they are, in fact, quite different techniques.
There are, however, some ways in which PCA can be used in factor analysis
and these are briefly described.

The use of PCA to ‘orthogonalize’ a regression problem, by replacing
a set of highly correlated regressor variables by their PCs, is fairly well
known. This technique, and several other related ways of using PCs in
regression are discussed in Chapter 8.

Principal component analysis is sometimes used as a preliminary to, or
in conjunction with, other statistical techniques, the obvious example being
in regression, as described in Chapter 8. Chapter 9 discusses the possible
uses of PCA in conjunction with three well-known multivariate techniques,
namely discriminant analysis, cluster analysis and canonical correlation
analysis.

It has been suggested that PCs, especially the last few, can be useful in
the detection of outliers in a data set. This idea is discussed in Chapter 10,
together with two different, but related, topics. One of these topics is the
robust estimation of PCs when it is suspected that outliers may be present
in the data, and the other is the evaluation, using influence functions, of
which individual observations have the greatest effect on the PCs.

The last two chapters, 11 and 12, are mostly concerned with modifica-
tions or generalizations of PCA. The implications for PCA of special types
of data are discussed in Chapter 11, with sections on discrete data, non-
independent and time series data, compositional data, data from designed
experiments, data with group structure, missing data and goodness-offit
statistics. Most of these topics are covered rather briefly, as are a number
of possible generalizations and adaptations of PCA which are described in
Chapter 12.

Throughout the monograph various other multivariate techniques are in-
troduced. For example, principal coordinate analysis and correspondence
analysis appear in Chapter 5, factor analysis in Chapter 7, cluster analy-
sis, discriminant analysis and canonical correlation analysis in Chapter 9,
and multivariate analysis of variance in Chapter 11. However, it has not
been the intention to give full coverage of multivariate methods or even to
cover all those methods which reduce to eigenvalue problems. The various
techniques have been introduced only where they are relevant to PCA and
its application, and the relatively large number of techniques which have
been mentioned is a direct result of the widely varied ways in which PCA
can be used.

Throughout the book, a substantial number of examples are given, using
data from a wide variety of areas of applications. However, no exercises have
been included, since most potential exercises would fall into two narrow
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categories. One type would ask for proofs or extensions of the theory given,
in particular, in Chapters 2, 3 and 12, and would be exercises mainly in
algebra rather than statistics. The second type would require PCAs to be
performed and interpreted for various data sets. This is certainly a useful
type of exercise, but many readers will find it most fruitful to analyse their
own data sets. Furthermore, although the numerous examples given in the
book should provide some guidance, there may not be a single ‘correct’
interpretation of a PCA.

I. T. Jolliffe
June, 1986

Kent, U. K.
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1
Introduction

The central idea of principal component analysis (PCA) is to reduce the
dimensionality of a data set consisting of a large number of interrelated
variables, while retaining as much as possible of the variation present in
the data set. This is achieved by transforming to a new set of variables,
the principal components (PCs), which are uncorrelated, and which are
ordered so that the first few retain most of the variation present in all of
the original variables.

The present introductory chapter is in two parts. In the first, PCA is
defined, and what has become the standard derivation of PCs, in terms of
eigenvectors of a covariance matrix, is presented. The second part gives a
brief historical review of the development of PCA.

1.1 Definition and Derivation of
Principal Components

Suppose that x is a vector of p random variables, and that the variances
of the p random variables and the structure of the covariances or corre-
lations between the p variables are of interest. Unless p is small, or the
structure is very simple, it will often not be very helpful to simply look
at the p variances and all of the 1

2p(p − 1) correlations or covariances. An
alternative approach is to look for a few (� p) derived variables that pre-
serve most of the information given by these variances and correlations or
covariances.
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Figure 1.1. Plot of 50 observations on two variables x1,x2.

Although PCA does not ignore covariances and correlations, it concen-
trates on variances. The first step is to look for a linear function α′

1x of
the elements of x having maximum variance, where α1 is a vector of p
constants α11, α12, . . . , α1p, and ′ denotes transpose, so that

α′
1x = α11x1 + α12x2 + · · · + α1pxp =

p∑

j=1

α1jxj .

Next, look for a linear function α′
2x, uncorrelated with α′

1x having max-
imum variance, and so on, so that at the kth stage a linear function α′

kx
is found that has maximum variance subject to being uncorrelated with
α′

1x, α′
2x, . . . ,α′

k−1x. The kth derived variable, α′
kx is the kth PC. Up to

p PCs could be found, but it is hoped, in general, that most of the vari-
ation in x will be accounted for by m PCs, where m � p. The reduction
in complexity achieved by transforming the original variables to PCs will
be demonstrated in many examples later in the book, but it will be useful
here to consider first the unrealistic, but simple, case where p = 2. The
advantage of p = 2 is, of course, that the data can be plotted exactly in
two dimensions.
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Figure 1.2. Plot of the 50 observations from Figure 1.1 with respect to their PCs
z1, z2.

Figure 1.1 gives a plot of 50 observations on two highly correlated vari-
ables x1, x2 . There is considerable variation in both variables, though
rather more in the direction of x2 than x1. If we transform to PCs z1, z2,
we obtain the plot given in Figure 1.2.

It is clear that there is greater variation in the direction of z1 than in
either of the original variables, but very little variation in the direction of
z2. More generally, if a set of p (> 2) variables has substantial correlations
among them, then the first few PCs will account for most of the variation
in the original variables. Conversely, the last few PCs identify directions
in which there is very little variation; that is, they identify near-constant
linear relationships among the original variables.

As a taster of the many examples to come later in the book, Figure 1.3
provides a plot of the values of the first two principal components in a
7-variable example. The data presented here consist of seven anatomical
measurements on 28 students, 11 women and 17 men. This data set and
similar ones for other groups of students are discussed in more detail in
Sections 4.1 and 5.1. The important thing to note here is that the first two
PCs account for 80 percent of the total variation in the data set, so that the
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Figure 1.3. Student anatomical measurements: plots of 28 students with respect
to their first two PCs. × denotes women; ◦ denotes men.

2-dimensional picture of the data given in Figure 1.3 is a reasonably faith-
ful representation of the positions of the 28 observations in 7-dimensional
space. It is also clear from the figure that the first PC, which, as we shall
see later, can be interpreted as a measure of the overall size of each student,
does a good job of separating the women and men in the sample.

Having defined PCs, we need to know how to find them. Consider, for the
moment, the case where the vector of random variables x has a known co-
variance matrix Σ. This is the matrix whose (i, j)th element is the (known)
covariance between the ith and jth elements of x when i �= j, and the vari-
ance of the jth element of x when i = j. The more realistic case, where Σ
is unknown, follows by replacing Σ by a sample covariance matrix S (see
Chapter 3). It turns out that for k = 1, 2, · · · , p, the kth PC is given by
zk = α′

kx where αk is an eigenvector of Σ corresponding to its kth largest
eigenvalue λk. Furthermore, if αk is chosen to have unit length (α′

kαk = 1),
then var(zk) = λk, where var(zk) denotes the variance of zk.

The following derivation of these results is the standard one given in
many multivariate textbooks; it may be skipped by readers who mainly
are interested in the applications of PCA. Such readers could also skip
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much of Chapters 2 and 3 and concentrate their attention on later chapters,
although Sections 2.3, 2.4, 3.3, 3.4, 3.8, and to a lesser extent 3.5, are likely
to be of interest to most readers.

To derive the form of the PCs, consider first α′
1x; the vector α1 max-

imizes var[α′
1x] = α′

1Σα1. It is clear that, as it stands, the maximum
will not be achieved for finite α1 so a normalization constraint must be
imposed. The constraint used in the derivation is α′

1α1 = 1, that is, the
sum of squares of elements of α1 equals 1. Other constraints, for example
Maxj |α1j | = 1, may more useful in other circumstances, and can easily be
substituted later on. However, the use of constraints other than α′

1α1 =
constant in the derivation leads to a more difficult optimization problem,
and it will produce a set of derived variables different from the PCs.

To maximize α′
1Σα1 subject to α′

1α1 = 1, the standard approach is to
use the technique of Lagrange multipliers. Maximize

α′
1Σα1 − λ(α′

1α1 − 1),

where λ is a Lagrange multiplier. Differentiation with respect to α1 gives

Σα1 − λα1 = 0,

or

(Σ − λIp)α1 = 0,

where Ip is the (p × p) identity matrix. Thus, λ is an eigenvalue of Σ and
α1 is the corresponding eigenvector. To decide which of the p eigenvectors
gives α′

1x with maximum variance, note that the quantity to be maximized
is

α′
1Σα1 = α′

1λα1 = λα′
1α1 = λ,

so λ must be as large as possible. Thus, α1 is the eigenvector corresponding
to the largest eigenvalue of Σ, and var(α′

1x) = α′
1Σα1 = λ1, the largest

eigenvalue.
In general, the kth PC of x is α′

kx and var(α′
kx) = λk, where λk is

the kth largest eigenvalue of Σ, and αk is the corresponding eigenvector.
This will now be proved for k = 2; the proof for k ≥ 3 is slightly more
complicated, but very similar.

The second PC, α′
2x, maximizes α′

2Σα2 subject to being uncorrelated
with α′

1x, or equivalently subject to cov[α′
1x,α′

2x] = 0, where cov(x, y)
denotes the covariance between the random variables x and y . But

cov [α′
1x,α′

2x] = α′
1Σα2 = α′

2Σα1 = α′
2λ1α

′
1 = λ1α

′
2α1 = λ1α

′
1α2.

Thus, any of the equations

α′
1Σα2 = 0, α′

2Σα1 = 0,
α′

1α2 = 0, α′
2α1 = 0
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could be used to specify zero correlation between α′
1x and α′

2x. Choosing
the last of these (an arbitrary choice), and noting that a normalization
constraint is again necessary, the quantity to be maximized is

α′
2Σα2 − λ(α′

2α2 − 1) − φα′
2α1,

where λ, φ are Lagrange multipliers. Differentiation with respect to α2

gives

Σα2 − λα2 − φα1 = 0

and multiplication of this equation on the left by α′
1 gives

α′
1Σα2 − λα′

1α2 − φα′
1α1 = 0,

which, since the first two terms are zero and α′
1α1 = 1, reduces to φ = 0.

Therefore, Σα2 − λα2 = 0, or equivalently (Σ − λIp)α2 = 0, so λ is once
more an eigenvalue of Σ, and α2 the corresponding eigenvector.

Again, λ = α′
2Σα2, so λ is to be as large as possible. Assuming that

Σ does not have repeated eigenvalues, a complication that is discussed in
Section 2.4, λ cannot equal λ1. If it did, it follows that α2 = α1, violating
the constraint α′

1α2 = 0. Hence λ is the second largest eigenvalue of Σ,
and α2 is the corresponding eigenvector.

As stated above, it can be shown that for the third, fourth, . . . , pth
PCs, the vectors of coefficients α3,α4, . . . ,αp are the eigenvectors of Σ
corresponding to λ3, λ4, . . . , λp, the third and fourth largest, . . . , and the
smallest eigenvalue, respectively. Furthermore,

var[α′
kx] = λk for k = 1, 2, . . . , p.

This derivation of the PC coefficients and variances as eigenvectors and
eigenvalues of a covariance matrix is standard, but Flury (1988, Section 2.2)
and Diamantaras and Kung (1996, Chapter 3) give alternative derivations
that do not involve differentiation.

It should be noted that sometimes the vectors αk are referred to
as ‘principal components.’ This usage, though sometimes defended (see
Dawkins (1990), Kuhfeld (1990) for some discussion), is confusing. It is
preferable to reserve the term ‘principal components’ for the derived vari-
ables α′

kx, and refer to αk as the vector of coefficients or loadings for the
kth PC. Some authors distinguish between the terms ‘loadings’ and ‘coef-
ficients,’ depending on the normalization constraint used, but they will be
used interchangeably in this book.

1.2 A Brief History of Principal Component
Analysis

The origins of statistical techniques are often difficult to trace. Preisendor-
fer and Mobley (1988) note that Beltrami (1873) and Jordan (1874)



1.2. A Brief History of Principal Component Analysis 7

independently derived the singular value decomposition (SVD) (see Sec-
tion 3.5) in a form that underlies PCA. Fisher and Mackenzie (1923) used
the SVD in the context of a two-way analysis of an agricultural trial. How-
ever, it is generally accepted that the earliest descriptions of the technique
now known as PCA were given by Pearson (1901) and Hotelling (1933).
Hotelling’s paper is in two parts. The first, most important, part, together
with Pearson’s paper, is among the collection of papers edited by Bryant
and Atchley (1975).

The two papers adopted different approaches, with the standard alge-
braic derivation given above being close to that introduced by Hotelling
(1933). Pearson (1901), on the other hand, was concerned with finding
lines and planes that best fit a set of points in p-dimensional space, and
the geometric optimization problems he considered also lead to PCs, as will
be explained in Section 3.2

Pearson’s comments regarding computation, given over 50 years before
the widespread availability of computers, are interesting. He states that his
methods ‘can be easily applied to numerical problems,’ and although he
says that the calculations become ‘cumbersome’ for four or more variables,
he suggests that they are still quite feasible.

In the 32 years between Pearson’s and Hotelling’s papers, very little
relevant material seems to have been published, although Rao (1964) in-
dicates that Frisch (1929) adopted a similar approach to that of Pearson.
Also, a footnote in Hotelling (1933) suggests that Thurstone (1931) was
working along similar lines to Hotelling, but the cited paper, which is
also in Bryant and Atchley (1975), is concerned with factor analysis (see
Chapter 7), rather than PCA.

Hotelling’s approach, too, starts from the ideas of factor analysis but, as
will be seen in Chapter 7, PCA, which Hotelling defines, is really rather
different in character from factor analysis.

Hotelling’s motivation is that there may be a smaller ‘fundamental set
of independent variables . . . which determine the values’ of the original p
variables. He notes that such variables have been called ‘factors’ in the
psychological literature, but introduces the alternative term ‘components’
to avoid confusion with other uses of the word ‘factor’ in mathematics.
Hotelling chooses his ‘components’ so as to maximize their successive con-
tributions to the total of the variances of the original variables, and calls
the components that are derived in this way the ‘principal components.’
The analysis that finds such components is then christened the ‘method of
principal components.’

Hotelling’s derivation of PCs is similar to that given above, using La-
grange multipliers and ending up with an eigenvalue/eigenvector problem,
but it differs in three respects. First, he works with a correlation, rather
than covariance, matrix (see Section 2.3); second, he looks at the original
variables expressed as linear functions of the components rather than com-
ponents expressed in terms of the original variables; and third, he does not
use matrix notation.
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After giving the derivation, Hotelling goes on to show how to find the
components using the power method (see Appendix A1). He also discusses
a different geometric interpretation from that given by Pearson, in terms of
ellipsoids of constant probability for multivariate normal distributions (see
Section 2.2). A fairly large proportion of his paper, especially the second
part, is, however, taken up with material that is not concerned with PCA
in its usual form, but rather with factor analysis (see Chapter 7).

A further paper by Hotelling (1936) gave an accelerated version of the
power method for finding PCs; in the same year, Girshick (1936) provided
some alternative derivations of PCs, and introduced the idea that sample
PCs were maximum likelihood estimates of underlying population PCs.

Girshick (1939) investigated the asymptotic sampling distributions of the
coefficients and variances of PCs, but there appears to have been only a
small amount of work on the development of different applications of PCA
during the 25 years immediately following publication of Hotelling’s paper.
Since then, however, an explosion of new applications and further theoret-
ical developments has occurred. This expansion reflects the general growth
of the statistical literature, but as PCA requires considerable computing
power, the expansion of its use coincided with the widespread introduction
of electronic computers. Despite Pearson’s optimistic comments, it is not re-
ally feasible to do PCA by hand, unless p is about four or less. But it is pre-
cisely for larger values of p that PCA is most useful, so that the full potential
of the technique could not be exploited until after the advent of computers.

Before ending this section, four papers will be mentioned; these appeared
towards the beginning of the expansion of interest in PCA and have become
important references within the subject. The first of these, by Anderson
(1963), is the most theoretical of the four. It discussed the asymptotic
sampling distributions of the coefficients and variances of the sample PCs,
building on the earlier work by Girshick (1939), and has been frequently
cited in subsequent theoretical developments.

Rao’s (1964) paper is remarkable for the large number of new ideas con-
cerning uses, interpretations and extensions of PCA that it introduced, and
which will be cited at numerous points in the book.

Gower (1966) discussed links between PCA and various other statistical
techniques, and also provided a number of important geometric insights.

Finally, Jeffers (1967) gave an impetus to the really practical side of the
subject by discussing two case studies in which the uses of PCA go beyond
that of a simple dimension-reducing tool.

To this list of important papers the book by Preisendorfer and Mobley
(1988) should be added. Although it is relatively unknown outside the
disciplines of meteorology and oceanography and is not an easy read, it
rivals Rao (1964) in its range of novel ideas relating to PCA, some of
which have yet to be fully explored. The bulk of the book was written by
Preisendorfer over a number of years, but following his untimely death the
manuscript was edited and brought to publication by Mobley.
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Despite the apparent simplicity of the technique, much research is still
being done in the general area of PCA, and it is very widely used. This is
clearly illustrated by the fact that the Web of Science identifies over 2000
articles published in the two years 1999–2000 that include the phrases ‘prin-
cipal component analysis’ or ‘principal components analysis’ in their titles,
abstracts or keywords. The references in this book also demonstrate the
wide variety of areas in which PCA has been applied. Books or articles
are cited that include applications in agriculture, biology, chemistry, clima-
tology, demography, ecology, economics, food research, genetics, geology,
meteorology, oceanography, psychology and quality control, and it would
be easy to add further to this list.



2
Mathematical and Statistical
Properties of Population Principal
Components

In this chapter many of the mathematical and statistical properties of PCs
are discussed, based on a known population covariance (or correlation)
matrix Σ. Further properties are included in Chapter 3 but in the context
of sample, rather than population, PCs. As well as being derived from a
statistical viewpoint, PCs can be found using purely mathematical argu-
ments; they are given by an orthogonal linear transformation of a set of
variables optimizing a certain algebraic criterion. In fact, the PCs optimize
several different algebraic criteria and these optimization properties, to-
gether with their statistical implications, are described in the first section
of the chapter.

In addition to the algebraic derivation given in Chapter 1, PCs can also be
looked at from a geometric viewpoint. The derivation given in the original
paper on PCA by Pearson (1901) is geometric but it is relevant to samples,
rather than populations, and will therefore be deferred until Section 3.2.
However, a number of other properties of population PCs are also geometric
in nature and these are discussed in the second section of this chapter.

The first two sections of the chapter concentrate on PCA based on a
covariance matrix but the third section describes how a correlation, rather
than a covariance, matrix may be used in the derivation of PCs. It also
discusses the problems associated with the choice between PCAs based on
covariance versus correlation matrices.

In most of this text it is assumed that none of the variances of the PCs are
equal; nor are they equal to zero. The final section of this chapter explains
briefly what happens in the case where there is equality between some of
the variances, or when some of the variances are zero.
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Most of the properties described in this chapter have sample counter-
parts. Some have greater relevance in the sample context, but it is more
convenient to introduce them here, rather than in Chapter 3.

2.1 Optimal Algebraic Properties of Population
Principal Components and Their Statistical
Implications

Consider again the derivation of PCs given in Chapter 1, and denote by
z the vector whose kth element is zk, the kth PC, k = 1, 2, . . . , p. (Unless
stated otherwise, the kth PC will be taken to mean the PC with the kth
largest variance, with corresponding interpretations for the ‘kth eigenvalue’
and ‘kth eigenvector.’) Then

z = A′x, (2.1.1)

where A is the orthogonal matrix whose kth column, αk, is the kth
eigenvector of Σ. Thus, the PCs are defined by an orthonormal linear
transformation of x. Furthermore, we have directly from the derivation
in Chapter 1 that

ΣA = AΛ, (2.1.2)

where Λ is the diagonal matrix whose kth diagonal element is λk, the kth
eigenvalue of Σ, and λk = var(α′

kx) = var(zk). Two alternative ways of
expressing (2.1.2) that follow because A is orthogonal will be useful later,
namely

A′ΣA = Λ (2.1.3)

and

Σ = AΛA′. (2.1.4)

The orthonormal linear transformation of x, (2.1.1), which defines z, has a
number of optimal properties, which are now discussed in turn.

Property A1. For any integer q, 1 ≤ q ≤ p, consider the orthonormal
linear transformation

y = B′x, (2.1.5)

where y is a q-element vector and B′ is a (q×p) matrix, and let Σy = B′ΣB
be the variance-covariance matrix for y. Then the trace of Σy, denoted
tr (Σy), is maximized by taking B = Aq, where Aq consists of the first q
columns of A.
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Proof. Let βk be the kth column of B; as the columns of A form a basis
for p-dimensional space, we have

βk =
p∑

j=1

cjkαj , k = 1, 2, . . . , q,

where cjk, j = 1, 2, . . . , p, k = 1, 2, . . . , q, are appropriately defined con-
stants. Thus B = AC, where C is the (p× q) matrix with (j, k)th element
cjk, and

B′ΣB = C′A′ΣAC = C′ΛC, using (2.1.3)

=
p∑

j=1

λjcjc′j

where c′j is the jth row of C. Therefore

tr(B′ΣB) =
p∑

j=1

λj tr(cjc′j)

=
p∑

j=1

λj tr(c′jcj)

=
p∑

j=1

λjc′jcj

=
p∑

j=1

q∑

k=1

λjc
2
jk. (2.1.6)

Now

C = A′B, so
C′C = B′AA′B = B′B = Iq,

because A is orthogonal, and the columns of B are orthonormal. Hence
p∑

j=1

q∑

k=1

c2
jk = q, (2.1.7)

and the columns of C are also orthonormal. The matrix C can be thought
of as the first q columns of a (p × p) orthogonal matrix, D, say. But the
rows of D are orthonormal and so satisfy d′

jdj = 1, j = 1, . . . , p. As the
rows of C consist of the first q elements of the rows of D, it follows that
c′jcj ≤ 1, j = 1, . . . , p, that is

q∑

k=1

c2
jk ≤ 1. (2.1.8)
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Now
∑q

k=1 c2
jk is the coefficient of λj in (2.1.6), the sum of these coefficients

is q from (2.1.7), and none of the coefficients can exceed 1, from (2.1.8).
Because λ1 > λ2 > · · · > λp, it is fairly clear that

∑p
j=1(
∑q

k=1 c2
jk)λj will

be maximized if we can find a set of cjk for which
q∑

k=1

c2
jk =

{
1, j = 1, . . . , q,
0, j = q + 1, . . . , p.

(2.1.9)

But if B′ = A′
q, then

cjk =
{

1, 1 ≤ j = k ≤ q,
0, elsewhere,

which satisfies (2.1.9). Thus tr(Σy) achieves its maximum value when B′ =
A′

q. �

Property A2. Consider again the orthonormal transformation

y = B′x,

with x, B, A and Σy defined as before. Then tr(Σy) is minimized by taking
B = A∗

q where A∗
q consists of the last q columns of A.

Proof. The derivation of PCs given in Chapter 1 can easily be turned
around for the purpose of looking for, successively, linear functions of x
whose variances are as small as possible, subject to being uncorrelated
with previous linear functions. The solution is again obtained by finding
eigenvectors of Σ, but this time in reverse order, starting with the smallest.
The argument that proved Property A1 can be similarly adapted to prove
Property A2. �

The statistical implication of Property A2 is that the last few PCs are
not simply unstructured left-overs after removing the important PCs. Be-
cause these last PCs have variances as small as possible they are useful in
their own right. They can help to detect unsuspected near-constant linear
relationships between the elements of x (see Section 3.4), and they may
also be useful in regression (Chapter 8), in selecting a subset of variables
from x (Section 6.3), and in outlier detection (Section 10.1).
Property A3. (the Spectral Decomposition of Σ)

Σ = λ1α1α
′
1 + λ2α2α

′
2 + · · · + λpαpα

′
p. (2.1.10)

Proof.

Σ = AΛA′ from (2.1.4),

and expanding the right-hand side matrix product shows that Σ equals
p∑

k=1

λkαkα′
k,

as required (see the derivation of (2.1.6)). �
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This result will prove to be useful later. Looking at diagonal elements,
we see that

var(xj) =
p∑

k=1

λkα2
kj .

However, perhaps the main statistical implication of the result is that not
only can we decompose the combined variances of all the elements of x
into decreasing contributions due to each PC, but we can also decompose
the whole covariance matrix into contributions λkαkα′

k from each PC. Al-
though not strictly decreasing, the elements of λkαkα′

k will tend to become
smaller as k increases, as λk decreases for increasing k, whereas the ele-
ments of αk tend to stay ‘about the same size’ because of the normalization
constraints

α′
kαk = 1, k = 1, 2, . . . , p.

Property Al emphasizes that the PCs explain, successively, as much as
possible of tr(Σ), but the current property shows, intuitively, that they
also do a good job of explaining the off-diagonal elements of Σ. This is
particularly true when the PCs are derived from a correlation matrix, and
is less valid when the covariance matrix is used and the variances of the
elements of x are widely different (see Section 2.3).

It is clear from (2.1.10) that the covariance (or correlation) matrix can
be constructed exactly, given the coefficients and variances of the first r
PCs, where r is the rank of the covariance matrix. Ten Berge and Kiers
(1999) discuss conditions under which the correlation matrix can be exactly
reconstructed from the coefficients and variances of the first q (< r) PCs.

A corollary of the spectral decomposition of Σ concerns the conditional
distribution of x, given the first q PCs, zq, q = 1, 2, . . . , (p − 1). It can
be shown that the linear combination of x that has maximum variance,
conditional on zq, is precisely the (q + 1)th PC. To see this, we use the
result that the conditional covariance matrix of x, given zq, is

Σ − ΣxzΣ−1
zz Σzx,

where Σzz is the covariance matrix for zq, Σxz is the (p × q) matrix
whose (j, k)th element is the covariance between xj and zk, and Σzx is
the transpose of Σxz (Mardia et al., 1979, Theorem 3.2.4).

It is seen in Section 2.3 that the kth column of Σxz is λkαk. The matrix
Σ−1

zz is diagonal, with kth diagonal element λ−1
k , so it follows that

ΣxzΣ−1
zz Σzx =

q∑

k=1

λkαkλ−1
k λkα′

k

=
q∑

k=1

λkαkα′
k,
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and, from (2.1.10),

Σ − ΣxzΣ−1
zz Σzx =

p∑

k=(q+1)

λkαkα′
k.

Finding a linear function of x having maximum conditional variance
reduces to finding the eigenvalues and eigenvectors of the conditional co-
variance matrix, and it easy to verify that these are simply (λ(q+1),α(q+1)),
(λ(q+2),α(q+2)), . . . , (λp,αp). The eigenvector associated with the largest
of these eigenvalues is α(q+1), so the required linear function is α′

(q+1)x,
namely the (q + 1)th PC.

Property A4. As in Properties A1, A2, consider the transformation
y = B′x. If det(Σy) denotes the determinant of the covariance matrix y,
then det(Σy) is maximized when B = Aq.

Proof. Consider any integer, k, between 1 and q, and let Sk =
the subspace of p-dimensional vectors orthogonal to α1, . . . ,αk−1. Then
dim(Sk) = p− k + 1, where dim(Sk) denotes the dimension of Sk. The kth
eigenvalue, λk, of Σ satisfies

λk = Sup
α∈Sk
α �=0

{
α′Σα

α′α

}
.

Suppose that µ1 > µ2 > · · · > µq, are the eigenvalues of B′ΣB and that
γ1, γ2, · · · ,γq, are the corresponding eigenvectors. Let Tk = the subspace
of q-dimensional vectors orthogonal to γk+1, · · · ,γq, with dim(Tk) = k.
Then, for any non-zero vector γ in Tk,

γ′B′ΣBγ

γ′γ
≥ µk.

Consider the subspace S̃k of p-dimensional vectors of the form Bγ for γ in
Tk.

dim(S̃k) = dim(Tk) = k (because B is one-to-one; in fact,
B preserves lengths of vectors).

From a general result concerning dimensions of two vector spaces, we have

dim(Sk ∩ S̃k) + dim(Sk + S̃k) = dim Sk + dim S̃k.

But

dim(Sk + S̃k) ≤ p, dim(Sk) = p − k + 1 and dim(S̃k) = k,

so

dim(Sk ∩ S̃k) ≥ 1.



16 2. Properties of Population Principal Components

There is therefore a non-zero vector α in Sk of the form α = Bγ for a
γ in Tk, and it follows that

µk ≤ γ′B′ΣBγ

γ′γ
=

γ′B′ΣBγ

γB′Bγ
=

α′Σα

α′α
≤ λk.

Thus the kth eigenvalue of B′ΣB ≤ kth eigenvalue of Σ for k = 1, · · · , q.
This means that

det(Σy) =
q∏

k=1

(kth eigenvalue of B′ΣB) ≤
q∏

k=1

λk.

But if B = Aq, then the eigenvalues of B′ΣB are

λ1, λ2, · · · , λq, so that det(Σy) =
q∏

k=1

λk

in this case, and therefore det(Σy) is maximized when B = Aq. �

The result can be extended to the case where the columns of B are not
necessarily orthonormal, but the diagonal elements of B′B are unity (see
Okamoto (1969)). A stronger, stepwise version of Property A4 is discussed
by O’Hagan (1984), who argues that it provides an alternative derivation of
PCs, and that this derivation can be helpful in motivating the use of PCA.
O’Hagan’s derivation is, in fact, equivalent to (though a stepwise version
of) Property A5, which is discussed next.

Note that Property A1 could also have been proved using similar reason-
ing to that just employed for Property A4, but some of the intermediate
results derived during the earlier proof of Al are useful elsewhere in the
chapter.

The statistical importance of the present result follows because the de-
terminant of a covariance matrix, which is called the generalized variance,
can be used as a single measure of spread for a multivariate random vari-
able (Press, 1972, p. 108). The square root of the generalized variance,
for a multivariate normal distribution is proportional to the ‘volume’ in
p-dimensional space that encloses a fixed proportion of the probability dis-
tribution of x. For multivariate normal x, the first q PCs are, therefore, as
a consequence of Property A4, q linear functions of x whose joint probabil-
ity distribution has contours of fixed probability enclosing the maximum
volume.

Property A5. Suppose that we wish to predict each random variable, xj

in x by a linear function of y, where y = B′x, as before. If σ2
j is the residual

variance in predicting xj from y, then Σp
j=1σ

2
j is minimized if B = Aq.

The statistical implication of this result is that if we wish to get the best
linear predictor of x in a q-dimensional subspace, in the sense of minimizing
the sum over elements of x of the residual variances, then this optimal
subspace is defined by the first q PCs.
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It follows that although Property A5 is stated as an algebraic property,
it can equally well be viewed geometrically. In fact, it is essentially the
population equivalent of sample Property G3, which is stated and proved
in Section 3.2. No proof of the population result A5 will be given here; Rao
(1973, p. 591) outlines a proof in which y is replaced by an equivalent set
of uncorrelated linear functions of x, and it is interesting to note that the
PCs are the only set of p linear functions of x that are uncorrelated and
have orthogonal vectors of coefficients. This last result is prominent in the
discussion of Chapter 11.

A special case of Property A5 was pointed out in Hotelling’s (1933)
original paper. He notes that the first PC derived from a correlation matrix
is the linear function of x that has greater mean square correlation with
the elements of x than does any other linear function. We return to this
interpretation of the property, and extend it, in Section 2.3.

A modification of Property A5 can be introduced by noting that if x is
predicted by a linear function of y = B′x, then it follows from standard
results from multivariate regression (see, for example, Mardia et al., 1979,
p. 160), that the residual covariance matrix for the best such predictor is

Σx − ΣxyΣ−1
y Σyx, (2.1.11)

where Σx = Σ,Σy = B′ΣB, as defined before, Σxy is the matrix whose
(j, k)th element is the covariance between the jth element of x and the
kth element of y, and Σyx is the transpose of Σxy. Now Σyx = B′Σ, and
Σxy = ΣB, so (2.1.11) becomes

Σ − ΣB(B′ΣB)−1B′Σ. (2.1.12)

The diagonal elements of (2.1.12) are σ2
j , j = 1, 2, . . . , p, so, from Property

A5, B = Aq minimizes

p∑

j=1

σ2
j = tr[Σ − ΣB(B′ΣB)−1B′Σ].

A derivation of this result in the sample case, and further discussion of it,
is provided by Jong and Kotz (1999).

An alternative criterion is ‖Σ−ΣB(B′ΣB)−1B′Σ‖, where ‖ · ‖ denotes
the Euclidean norm of a matrix and equals the square root of the sum of
squares of all the elements in the matrix. It can be shown (Rao, 1964) that
this alternative criterion is also minimized when B = Aq.

This section has dealt with PCs derived from covariance matrices. Many
of their properties are also relevant, in modified form, for PCs based on
correlation matrices, as discussed in Section 2.3. That section also contains
a further algebraic property which is specific to correlation matrix-based
PCA.
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2.2 Geometric Properties of Population Principal
Components

It was noted above that Property A5 can be interpreted geometrically, as
well as algebraically, and the discussion following Property A4 shows that
A4, too, has a geometric interpretation. We now look at two further, purely
geometric, properties.
Property G1. Consider the family of p-dimensional ellipsoids

x′Σ−1x = const. (2.2.1)

The PCs define the principal axes of these ellipsoids.

Proof. The PCs are defined by the transformation (2.1.1) z = A′x, and
since A is orthogonal, the inverse transformation is x = Az. Substituting
into (2.2.1) gives

(Az)′Σ−1(Az) = const = z′A′Σ−1Az.

It is well known that the eigenvectors of Σ−1 are the same as those of Σ,
and that the eigenvalues of Σ−1 are the reciprocals of those of Σ, assuming
that they are all strictly positive. It therefore follows, from a corresponding
result to (2.1.3), that AΣ−1A = Λ−1 and hence

z′Λ−1z = const.

This last equation can be rewritten
p∑

k=1

z2
k

λk
= const (2.2.2)

and (2.2.2) is the equation for an ellipsoid referred to its principal axes.
Equation (2.2.2) also implies that the half-lengths of the principal axes are
proportional to λ

1/2
1 , λ

1/2
2 , . . . , λ

1/2
p . �

This result is statistically important if the random vector x has a mul-
tivariate normal distribution. In this case, the ellipsoids given by (2.2.1)
define contours of constant probability for the distribution of x. The first
(largest) principal axis of such ellipsoids will then define the direction in
which statistical variation is greatest, which is another way of expressing
the algebraic definition of the first PC given in Section 1.1. The direction
of the first PC, defining the first principal axis of constant probability el-
lipsoids, is illustrated in Figures 2.1 and 2.2 in Section 2.3. The second
principal axis maximizes statistical variation, subject to being orthogonal
to the first, and so on, again corresponding to the algebraic definition. This
interpretation of PCs, as defining the principal axes of ellipsoids of constant
density, was mentioned by Hotelling (1933) in his original paper.

It would appear that this particular geometric property is only of direct
statistical relevance if the distribution of x is multivariate normal, whereas
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for most other properties of PCs no distributional assumptions are required.
However, the property will be discussed further in connection with Property
G5 in Section 3.2, where we see that it has some relevance even without
the assumption of multivariate normality. Property G5 looks at the sample
version of the ellipsoids x′Σx = const. Because Σ and Σ−1 share the same
eigenvectors, it follows that the principal axes of the ellipsoids x′Σx = const
are the same as those of x′Σ−1x = const, except that that their order is
reversed.

We digress slightly here to note that some authors imply, or even state
explicitly, as do Qian et al. (1994), that PCA needs multivariate normal-
ity. This text takes a very different view and considers PCA as a mainly
descriptive technique. It will become apparent that many of the properties
and applications of PCA and related techniques described in later chap-
ters, as well as the properties discussed in the present chapter, have no
need for explicit distributional assumptions. It cannot be disputed that
linearity and covariances/correlations, both of which play a central rôle in
PCA, have especial relevance when distributions are multivariate normal,
but this does not detract from the usefulness of PCA when data have other
forms. Qian et al. (1994) describe what might be considered an additional
property of PCA, based on minimum description length or stochastic com-
plexity (Rissanen and Yu, 2000), but as they use it to define a somewhat
different technique, we defer discussion to Section 14.4.

Property G2. Suppose that x1, x2 are independent random vectors, both
having the same probability distribution, and that x1, x2, are both subjected
to the same linear transformation

yi = B′xi, i = 1, 2.

If B is a (p × q) matrix with orthonormal columns chosen to maximize
E[(y1 − y2)′(y1 − y2)], then B = Aq, using the same notation as before.

Proof. This result could be viewed as a purely algebraic property, and,
indeed, the proof below is algebraic. The property is, however, included
in the present section because it has a geometric interpretation. This is
that the expected squared Euclidean distance, in a q-dimensional subspace,
between two vectors of p random variables with the same distribution, is
made as large as possible if the subspace is defined by the first q PCs.

To prove Property G2, first note that x1, x2 have the same mean µ and
covariance matrix Σ. Hence y1, y2 also have the same mean and covariance
matrix, B′µ, B′ΣB respectively.

E[(y1 − y2)′(y1 − y2)] = E{[(y1 − B′µ) − (y2 − (B′µ)]′[(y1 − B′µ)
− (y2 − B′µ)]}

= E[(y1 − B′µ)′(y1 − B′µ)]
+ E[(y2 − B′µ)′(y2 − B′µ)].
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The cross-product terms disappear because of the independence of x1, x2,
and hence of y1, y2.

Now, for i = 1, 2, we have

E[(yi − B′µ)′(yi − B′µ)] = E{tr[(yi − B′µ)′(yi − B′µ)]}
= E{tr[(yi − B′µ)(yi − B′µ)′]}
= tr{E[(yi − B′µ)(yi − B′µ)′]}
= tr(B′ΣB).

But tr(B′ΣB) is maximized when B = Aq, from Property A1, and the
present criterion has been shown above to be 2 tr(B′ΣB). Hence Property
G2 is proved. �

There is a closely related property whose geometric interpretation is more
tenuous, namely that with the same definitions as in Property G2,

det{E[(y1 − y2)(y1 − y2)′]}

is maximized when B = Aq (see McCabe (1984)). This property says that
B = Aq makes the generalized variance of (y1 − y2) as large as possible.
Generalized variance may be viewed as an alternative measure of distance
apart of y1 and y2 in q-dimensional space, though a less intuitively obvious
measure than expected squared Euclidean distance.

Finally, Property G2 can be reversed in the sense that if E[(y1−y2)′(y1−
y2)] or det{E[(y1 − y2)(y1 − y2)′]} is to be minimized, then this can be
achieved by taking B = A∗

q .
The properties given in this section and in the previous one show that

covariance matrix PCs satisfy several different optimality criteria, but the
list of criteria covered is by no means exhaustive; for example, Devijver
and Kittler (1982, Chapter 9) show that the first few PCs minimize rep-
resentation entropy and the last few PCs minimize population entropy.
Diamantaras and Kung (1996, Section 3.4) discuss PCA in terms of max-
imizing mutual information between x and y. Further optimality criteria
are given by Hudlet and Johnson (1982), McCabe (1984) and Okamoto
(1969). The geometry of PCs is discussed at length by Treasure (1986).

The property of self-consistency is useful in a non-linear extension of
PCA (see Section 14.1.2). For two p-variate random vectors x, y, the vector
y is self-consistent for x if E(x|y) = y. Flury (1997, Section 8.4) shows that
if x is a p-variate random vector with a multivariate normal or elliptical
distribution, and y is the orthogonal projection of x onto the q-dimensional
subspace spanned by the first q PCs for x, then y is self-consistent for x.
Tarpey (1999) uses self-consistency of principal components after linear
transformation of the variables to characterize elliptical distributions.
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2.3 Principal Components Using a Correlation
Matrix

The derivation and properties of PCs considered above are based on the
eigenvectors and eigenvalues of the covariance matrix. In practice, as will
be seen in much of the remainder of this text, it is more common to define
principal components as

z = A′x∗, (2.3.1)

where A now has columns consisting of the eigenvectors of the correlation
matrix, and x∗ consists of standardized variables. The goal in adopting
such an approach is to find the principal components of a standardized
version x∗ of x, where x∗ has jth element xj/σ

1/2
jj , j = 1, 2, . . . , p, xj is

the jth element of x, and σjj is the variance of xj . Then the covariance
matrix for x∗ is the correlation matrix of x, and the PCs of x∗ are given
by (2.3.1).

A third possibility, instead of using covariance or correlation matrices,
is to use covariances of xj/wj , where the weights wj are chosen to reflect
some a priori idea of the relative importance of the variables. The special
case wj = σ

1/2
jj leads to x∗, and to PCs based on the correlation matrix,

but various authors have argued that the choice of wj = σ
1/2
jj is somewhat

arbitrary, and that different values of wj might be better in some applica-
tions (see Section 14.2.1). In practice, however, it is relatively unusual that
a uniquely appropriate set of wj suggests itself.

All the properties of the previous two sections are still valid for corre-
lation matrices, or indeed for covariances based on other sets of weights,
except that we are now considering PCs of x∗ (or some other transformation
of x), instead of x.

It might seem that the PCs for a correlation matrix could be obtained
fairly easily from those for the corresponding covariance matrix, since x∗

is related to x by a very simple transformation. However, this is not the
case; the eigenvalues and eigenvectors of the correlation matrix have no
simple relationship with those of the corresponding covariance matrix. In
particular, if the PCs found from the correlation matrix are expressed in
terms of x by transforming back from x∗ to x, then these PCs are not
the same as the PCs found from Σ, except in very special circumstances
(Chatfield and Collins, 1989, Section 4.4). One way of explaining this is
that PCs are invariant under orthogonal transformations of x but not, in
general, under other transformations (von Storch and Zwiers, 1999, Section
13.1.10). The transformation from x to x∗ is not orthogonal. The PCs
for correlation and covariance matrices do not, therefore, give equivalent
information, nor can they be derived directly from each other. We now
discuss the relative merits of the two types of PC.
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A major argument for using correlation—rather than covariance—
matrices to define PCs is that the results of analyses for different sets
of random variables are more directly comparable than for analyses based
on covariance matrices. The big drawback of PCA based on covariance ma-
trices is the sensitivity of the PCs to the units of measurement used for
each element of x. If there are large differences between the variances of the
elements of x, then those variables whose variances are largest will tend
to dominate the first few PCs (see, for example, Section 3.3). This may
be entirely appropriate if all the elements of x are measured in the same
units, for example, if all elements of x are anatomical measurements on a
particular species of animal, all recorded in centimetres, say. Even in such
examples, arguments can be presented for the use of correlation matrices
(see Section 4.1). In practice, it often occurs that different elements of x are
completely different types of measurement. Some might be lengths, some
weights, some temperatures, some arbitrary scores on a five-point scale,
and so on. In such a case, the structure of the PCs will depend on the
choice of units of measurement, as is illustrated by the following artificial
example.

Suppose that we have just two variables, x1, x2, and that x1 is a length
variable which can equally well be measured in centimetres or in mil-
limetres. The variable x2 is not a length measurement—it might be a
weight, in grams, for example. The covariance matrices in the two cases
are, respectively,

Σ1 =
(

80 44
44 80

)
and Σ2 =

(
8000 440
440 80

)
.

The first PC is 0.707x1 + 0.707x2 for Σ1 and 0.998x1 + 0.055x2 for Σ2,
so a relatively minor change in one variable has the effect of changing a
PC that gives equal weight to x1 and x2 to a PC that is almost entirely
dominated by x1. Furthermore, the first PC accounts for 77.5 percent of
the total variation for Σ1, but 99.3 percent for Σ2.

Figures 2.1 and 2.2 provide another way of looking at the differences be-
tween PCs for the two scales of measurement in x1. The plots give contours
of constant probability, assuming multivariate normality for x for Σ1 and
Σ2, respectively. It is clear from these figures that, whereas with Σ1 both
variables have the same degree of variation, for Σ2 most of the variation is
in the direction of x1. This is reflected in the first PC, which, from Property
G1, is defined by the major axis of the ellipses of constant probability.

This example demonstrates the general behaviour of PCs for a covariance
matrix when the variances of the individual variables are widely different;
the same type of behaviour is illustrated again for samples in Section 3.3.
The first PC is dominated by the variable with the largest variance, the
second PC is dominated by the variable with the second largest variance,
and so on, with a substantial proportion of the total variation accounted
for by just two or three PCs. In other words, the PCs differ little from
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Figure 2.1. Contours of constant probability based on Σ1 =
(

80
44

44
80

)
.

Figure 2.2. Contours of constant probability based on Σ2 =
(

8000
440

440
80

)
.
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the original variables rearranged in decreasing order of the size of their
variances. Also, the first few PCs account for little of the off-diagonal ele-
ments of Σ in this case (see Property A3) above. In most circumstances,
such a transformation to PCs is of little value, and it will not occur if the
correlation, rather than covariance, matrix is used.

The example has shown that it is unwise to use PCs on a covariance
matrix when x consists of measurements of different types, unless there is a
strong conviction that the units of measurements chosen for each element of
x are the only ones that make sense. Even when this condition holds, using
the covariance matrix will not provide very informative PCs if the variables
have widely differing variances. Furthermore, with covariance matrices and
non-commensurable variables the PC scores are difficult to interpret—what
does it mean to add a temperature to a weight? For correlation matrices, the
standardized variates are all dimensionless and can be happily combined
to give PC scores (Legendre and Legendre, 1983, p. 129).

Another problem with the use of covariance matrices is that it is more
difficult than with correlation matrices to compare informally the results
from different analyses. Sizes of variances of PCs have the same implications
for different correlation matrices of the same dimension, but not for different
covariance matrices. Also, patterns of coefficients in PCs can be readily
compared for different correlation matrices to see if the two correlation
matrices are giving similar PCs, whereas informal comparisons are often
much trickier for covariance matrices. Formal methods for comparing PCs
from different covariance matrices are, however, available (see Section 13.5).

The use of covariance matrices does have one general advantage over
correlation matrices, and a particular advantage seen in a special case. The
general advantage is that statistical inference regarding population PCs
based on sample PCs is easier for covariance matrices than for correlation
matrices, as will be discussed in Section 3.7. This is relevant when PCA
is used in a context where statistical inference is important. However, in
practice, it is more common to use PCA as a descriptive, rather than an
inferential, tool, and then the potential advantage of covariance matrix
PCA is irrelevant.

The second advantage of covariance matrices holds in the special case
when all elements of x are measured in the same units. It can then be
argued that standardizing the elements of x to give correlations is equiv-
alent to making an arbitrary choice of measurement units. This argument
of arbitrariness can also be applied more generally to the use of correlation
matrices, but when the elements of x are measurements of different types,
the choice of measurement units leading to a covariance matrix is even
more arbitrary, so that the correlation matrix is again preferred.

Standardizing the variables may be thought of as an attempt to remove
the problem of scale dependence from PCA. Another way of doing this is
to compute PCs of the logarithms of the original data (Flury, 1997, Section
8.4), though this is only feasible and sensible for restricted types of data,
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as in allometry (Section 13.2) and for compositional data (Section 13.3).
We conclude this section by looking at three interesting properties which

hold for PCs derived from the correlation matrix. The first is that the
PCs depend not on the absolute values of correlations, but only on their
ratios. This follows because multiplication of all off-diagonal elements of
a correlation matrix by the same constant leaves the eigenvectors of the
matrix unchanged (Chatfield and Collins, 1989, p. 67).

The second property, which was noted by Hotelling (1933) in his original
paper, is that if, instead of the normalization α′

kαk = 1, we use

α̃′
kα̃k = λk, k = 1, 2, . . . , p, (2.3.2)

then, α̃kj the jth element of α̃k, is the correlation between the jth stan-
dardized variable x∗

j and the kth PC. To see this note that for k =
1, 2, . . . , p,

α̃k = λ
1/2
k αk, var(zk) = λk,

and the p-element vector Σαk has as its jth element the covariance between
x∗

j and zk. But Σαk = λkαk, so the covariance between x∗
j and zk is λkαkj .

Also var(x∗
j ) = 1, and the correlation between x∗

j and zk is therefore

λkαjk

[var(x∗
j ) var(zk)]1/2

= λ
1/2
k αkj

= α̃kj ,

as required.
Because of this property the normalization (2.3.2) is quite often used, in

particular in computer packages, but it has the disadvantage that it is less
easy to informally interpret and compare a set of PCs when each PC has a
different normalization on its coefficients. This remark is, of course, relevant
to sample, rather than population, PCs, but, as with some other parts of
the chapter, it is included here to avoid a possibly disjointed presentation.

Both of these properties that hold for correlation matrices can be
modified for covariance matrices, but the results are, in each case, less
straightforward.

The third property is sufficiently substantial to deserve a label. It is
included in this section because, at first sight, it is specific to correlation
matrix PCA although, as we will see, its implications are much wider.
Proofs of the result are available in the references cited below and will not
be reproduced here.
Property A6. For any integer q, 1 ≤ q ≤ p, consider the orthonormal
linear transformation

y = B′x, (2.3.3)

as defined in Property A1. Let R2
j:q be the squared multiple correlation be-

tween xj and the q variables y1, y2, . . . , yq, defined by the elements of y.
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The criterion

p∑

j=1

R2
j:q

is maximized when y1, y2, . . . , yq are the first q correlation matrix PCs.
The maximized value of the criterion is equal to the sum of the q largest
eigenvalues of the correlation matrix.

Because the principal components are uncorrelated, the criterion in
Property A6 reduces to

p∑

j=1

q∑

k=1

r2
jk

where r2
jk is the squared correlation between the jth variable and the

kth PC. The criterion will be maximized by any matrix B that gives
y spanning the same q-dimensional space as the first q PCs. How-
ever, the correlation matrix PCs are special, in that they successively
maximize the criterion for q = 1, 2, . . . , p. As noted following Prop-
erty A5, this result was given by Hotelling (1933) alongside his original
derivation of PCA, but it has subsequently been largely ignored. It is
closely related to Property A5. Meredith and Millsap (1985) derived
Property A6 independently and noted that optimizing the multiple cor-
relation criterion gives a scale invariant method (as does Property A5;
Cadima, 2000). One implication of this scale invariance is that it gives
added importance to correlation matrix PCA. The latter is not simply
a variance-maximizing technique for standardized variables; its derived
variables are also the result of optimizing a criterion which is scale
invariant, and hence is relevant whether or not the variables are stan-
dardized. Cadima (2000) discusses Property A6 in greater detail and
argues that optimization of its multiple correlation criterion is actually
a new technique, which happens to give the same results as correla-
tion matrix PCA, but is broader in its scope. He suggests that the
derived variables be called Most Correlated Components. Looked at from
another viewpoint, this broader relevance of correlation matrix PCA
gives another reason to prefer it over covariance matrix PCA in most
circumstances.

To conclude this discussion, we note that Property A6 can be easily
modified to give a new property for covariance matrix PCA. The first q
covariance marix PCs maximize, amongst all orthonormal linear transfor-
mations of x, the sum of squared covariances between x1, x2, . . . , xp and
the derived variables y1, y2, . . . , yq. Covariances, unlike correlations, are not
scale invariant, and hence neither is covariance matrix PCA.
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2.4 Principal Components with Equal and/or Zero
Variances

The final, short, section of this chapter discusses two problems that may
arise in theory, but are relatively uncommon in practice. In most of this
chapter it has been assumed, implicitly or explicitly, that the eigenvalues
of the covariance or correlation matrix are all different, and that none of
them is zero.

Equality of eigenvalues, and hence equality of variances of PCs, will occur
for certain patterned matrices. The effect of this occurrence is that for a
group of q equal eigenvalues, the corresponding q eigenvectors span a certain
unique q-dimensional space, but, within this space, they are, apart from
being orthogonal to one another, arbitrary. Geometrically (see Property
G1), what happens for q = 2 or 3 is that the principal axes of a circle or
sphere cannot be uniquely defined; a similar problem arises for hyperspheres
when q > 3. Thus individual PCs corresponding to eigenvalues in a group of
equal eigenvalues are not uniquely defined. A further problem with equal-
variance PCs is that statistical inference becomes more complicated (see
Section 3.7).

The other complication, variances equal to zero, occurs rather more fre-
quently, but is still fairly unusual. If q eigenvalues are zero, then the rank
of Σ is (p − q) rather than p, and this outcome necessitates modifications
to the proofs of some properties given in Section 2.1 above. Any PC with
zero variance defines an exactly constant linear relationship between the
elements of x. If such relationships exist, then they imply that one variable
is redundant for each relationship, as its value can be determined exactly
from the values of the other variables appearing in the relationship. We
could therefore reduce the number of variables from p to (p − q) without
losing any information. Ideally, exact linear relationships should be spotted
before doing a PCA, and the number of variables reduced accordingly. Al-
ternatively, any exact or near-exact linear relationships uncovered by the
last few PCs can be used to select a subset of variables that contain most
of the information available in all of the original variables. This and related
ideas are more relevant to samples than to populations and are discussed
further in Sections 3.4 and 6.3.

There will always be the same number of zero eigenvalues for a cor-
relation matrix as for the corresponding covariance matrix, since an exact
linear relationship between the elements of x clearly implies an exact linear
relationship between the standardized variables, and vice versa. There is
not the same equivalence, however, when it comes to considering equal vari-
ance PCs. Equality of some of the eigenvalues in a covariance (correlation)
matrix need not imply that any of the eigenvalues of the corresponding
correlation (covariance) matrix are equal. A simple example is when the p
variables all have equal correlations but unequal variances. If p > 2, then
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the last (p−1) eigenvalues of the correlation matrix are equal (see Morrison,
1976, Section 8.6), but this relationship will not hold, in general, for the
covariance matrix. Further discussion of patterns in covariance or correla-
tion matrices, and their implications for the structure of the corresponding
PCs, is given in Section 3.8.



3
Mathematical and Statistical
Properties of Sample Principal
Components

The first part of this chapter is similar in structure to Chapter 2, except
that it deals with properties of PCs obtained from a sample covariance
(or correlation) matrix, rather than from a population covariance (or cor-
relation) matrix. The first two sections of the chapter, as in Chapter 2,
describe, respectively, many of the algebraic and geometric properties of
PCs. Most of the properties discussed in Chapter 2 are almost the same for
samples as for populations. They will be mentioned again, but only briefly.
There are, in addition, some properties that are relevant only to sample
PCs, and these will be discussed more fully.

The third and fourth sections of the chapter again mirror those of Chap-
ter 2. The third section discusses, with an example, the choice between
correlation and covariance matrices, while the fourth section looks at the
implications of equal and/or zero variances among the PCs, and illustrates
the potential usefulness of the last few PCs in detecting near-constant
relationships between the variables.

The last five sections of the chapter cover material having no counterpart
in Chapter 2. Section 3.5 discusses the singular value decomposition, which
could have been included in Section 3.1 as an additional algebraic property.
However, the topic is sufficiently important to warrant its own section, as
it provides a useful alternative approach to some of the theory surrounding
PCs, and also gives an efficient practical method for actually computing
PCs.

The sixth section looks at the probability distributions of the coefficients
and variances of a set of sample PCs, in other words, the probability distri-
butions of the eigenvectors and eigenvalues of a sample covariance matrix.
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The seventh section then goes on to show how these distributions may be
used to make statistical inferences about the population PCs, based on
sample PCs.

Section 3.8 demonstrates how the approximate structure and variances
of PCs can sometimes be deduced from patterns in the covariance or cor-
relation matrix. Finally, in Section 3.9 we discuss models that have been
proposed for PCA. The material could equally well have been included in
Chapter 2, but because the idea of maximum likelihood estimation arises
in some of the models we include it in the present chapter.

3.1 Optimal Algebraic Properties of Sample
Principal Components

Before looking at the properties themselves, we need to establish some
notation. Suppose that we have n independent observations on the p-
element random vector x; denote these n observations by x1,x2, . . . ,xn.
Let z̃i1 = a′

1xi, i = 1, 2, . . . , n, and choose the vector of coefficients a′
1 to

maximize the sample variance

1
n − 1

n∑

i=1

(z̃i1 − z̄1)2

subject to the normalization constraint a′
1a1 = 1. Next let z̃i2 = a′

2xi, i =
1, 2, . . . , n, and choose a′

2 to maximize the sample variance of the z̃i2 subject
to the normalization constraint a′

2a2 = 1, and subject also to the z̃i2 being
uncorrelated with the z̃i1 in the sample. Continuing this process in an
obvious manner, we have a sample version of the definition of PCs given in
Section 1.1. Thus a′

kx is defined as the kth sample PC, k = 1, 2, . . . , p, and
z̃ik is the score for the ith observation on the kth PC. If the derivation in
Section 1.1 is followed through, but with sample variances and covariances
replacing population quantities, then it turns out that the sample variance
of the PC scores for the kth sample PC is lk, the kth largest eigenvalue of the
sample covariance matrix S for x1,x2, . . . ,xn, and ak is the corresponding
eigenvector for k = 1, 2, . . . , p.

Define the (n × p) matrices X̃ and Z̃ to have (i, k)th elements equal to
the value of the kth element x̃ik of xi, and to z̃ik, respectively. Then Z̃ and
X̃ are related by Z̃ = X̃A, where A is the (p×p) orthogonal matrix whose
kth column is ak.

If the mean of each element of x is known to be zero, then S = 1
nX̃′X̃.

It is far more usual for the mean of x to be unknown, and in this case the
(j, k)th element of S is

1
n − 1

n∑

i=1

(x̃ij − x̄j)(x̃ik − x̄k),
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where

x̄j =
1
n

n∑

i=1

x̃ij , j = 1, 2, . . . , p.

The matrix S can therefore be written as

S =
1

n − 1
X′X, (3.1.1)

where X is an (n × p) matrix with (i, j)th element (x̃ij − x̄j); the repre-
sentation (3.1.1) will be very useful in this and subsequent chapters. The
notation xij will be used to denote the (i, j)th element of X, so that xij is
the value of the jth variable measured about its mean x̄j for the ith obser-
vation. A final notational point is that it will be convenient to define the
matrix of PC scores as

Z = XA, (3.1.2)

rather than as it was in the earlier definition. These PC scores will have
exactly the same variances and covariances as those given by Z̃, but will
have zero means, rather than means z̄k, k = 1, 2, . . . , p.

Another point to note is that the eigenvectors of 1
n−1X

′X and X′X are
identical, and the eigenvalues of 1

n−1X
′X are simply 1

n−1 (the eigenvalues
of X′X). Because of these relationships it will be convenient in some places
below to work in terms of eigenvalues and eigenvectors of X′X, rather than
directly with those of S.

Turning to the algebraic properties A1–A5 listed in Section 2.1, define

yi = B′xi for i = 1, 2, . . . , n, (3.1.3)

where B, as in Properties A1, A2, A4, A5, is a (p×q) matrix whose columns
are orthonormal. Then Properties A1, A2, A4, A5, still hold, but with the
sample covariance matrix of the observations yi, i = 1, 2, . . . , n, replacing
Σy, and with the matrix A now defined as having kth column ak, with
Aq, A∗

q , respectively, representing its first and last q columns. Proofs in
all cases are similar to those for populations, after making appropriate
substitutions of sample quantities in place of population quantities, and
will not be repeated. Property A5 reappears as Property G3 in the next
section and a proof will be given there.

The spectral decomposition, Property A3, also holds for samples in the
form

S = l1a1a′
1 + l2a2a′

2 + · · · + lpapa′
p. (3.1.4)

The statistical implications of this expression, and the other algebraic prop-
erties, A1, A2, A4, A5, are virtually the same as for the corresponding
population properties in Section 2.1, except that they must now be viewed
in a sample context.
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In the case of sample correlation matrices, one further reason can be put
forward for interest in the last few PCs, as found by Property A2. Raveh
(1985) argues that the inverse R−1 of a correlation matrix is of greater
interest in some situations than R. It may then be more important to
approximate R−1 than R in a few dimensions. If this is done using the
spectral decomposition (Property A3) of R−1, then the first few terms will
correspond to the last few PCs, since eigenvectors of R and R−1 are the
same, except that their order is reversed. The rôle of the last few PCs will
be discussed further in Sections 3.4 and 3.7, and again in Sections 6.3, 8.4,
8.6 and 10.1.

One further property, which is concerned with the use of principal com-
ponents in regression, will now be discussed. Standard terminology from
regression is used and will not be explained in detail (see, for example,
Draper and Smith (1998)). An extensive discussion of the use of principal
components in regression is given in Chapter 8.

Property A7. Suppose now that X, defined as above, consists of n ob-
servations on p predictor variables x measured about their sample means,
and that the corresponding regression equation is

y = Xβ + ε, (3.1.5)

where y is the vector of n observations on the dependent variable, again
measured about the sample mean. (The notation y for the dependent vari-
able has no connection with the usage of y elsewhere in the chapter, but
is standard in regression.) Suppose that X is transformed by the equation
Z = XB, where B is a (p × p) orthogonal matrix. The regression equation
can then be rewritten as

y = Zγ + ε,

where γ = B−1β. The usual least squares estimator for γ is γ̂ =
(Z′Z)−1Z′y. Then the elements of γ̂ have, successively, the smallest possi-
ble variances if B = A, the matrix whose kth column is the kth eigenvector
of X′X, and hence the kth eigenvector of S. Thus Z consists of values of
the sample principal components for x.

Proof. From standard results in regression (Draper and Smith, 1998,
Section 5.2) the covariance matrix of the least squares estimator γ̂ is
proportional to

(Z′Z)−1 = (B′X′XB)−1

= B−1(X′X)−1(B′)−1

= B′(X′X)−1B,

as B is orthogonal. We require tr(B′
q(X

′X)−1Bq), q = 1, 2, . . . , p be min-
imized, where Bq consists of the first q columns of B. But, replacing Σy

by (X′X)−1 in Property A2 of Section 2.1 shows that Bq must consist of
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the last q columns of a matrix whose kth column is the kth eigenvector
of (X′X)−1. Furthermore, (X′X)−1 has the same eigenvectors as X′X, ex-
cept that their order is reversed, so that Bq must have columns equal to
the first q eigenvectors of X′X. As this holds for q = 1, 2, . . . , p, Property
A7 is proved. �

This property seems to imply that replacing the predictor variables in a
regression analysis by their first few PCs is an attractive idea, as those PCs
omitted have coefficients that are estimated with little precision. The flaw in
this argument is that nothing in Property A7 takes account of the strength
of the relationship between the dependent variable y and the elements of
x, or between y and the PCs. A large variance for γ̂k, the kth element of
γ, and hence an imprecise estimate of the degree of relationship between y
and the kth PC, zk, does not preclude a strong relationship between y and
zk (see Section 8.2). Further discussion of Property A7 is given by Fomby
et al. (1978).

There are a number of other properties of PCs specific to the sample
situation; most have geometric interpretations and are therefore dealt with
in the next section.

3.2 Geometric Properties of Sample Principal
Components

As with the algebraic properties, the geometric properties of Chapter 2
are also relevant for sample PCs, although with slight modifications to the
statistical implications. In addition to these properties, the present section
includes a proof of a sample version of Property A5, viewed geometrically,
and introduces two extra properties which are relevant to sample, but not
population, PCs.

Property G1 is still valid for samples if Σ is replaced by S. The ellipsoids
x′S−1x = const no longer have the interpretation of being contours of
constant probability, though they will provide estimates of such contours
if x1,x2, . . . ,xn are drawn from a multivariate normal distribution. Re-
introducing a non-zero mean, the ellipsoids

(x − x̄)′S−1(x − x̄) = const

give contours of equal Mahalanobis distance from the sample mean x̄.
Flury and Riedwyl (1988, Section 10.6) interpret PCA as successively find-
ing orthogonal directions for which the Mahalanobis distance from the
data set to a hypersphere enclosing all the data is minimized (see Sec-
tions 5.3, 9.1 and 10.1 for discussion of Mahalanobis distance in a variety
of forms).
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Property G2 may also be carried over from populations to samples as
follows. Suppose that the observations x1,x2, . . .xn are transformed by

yi = B′xi, i = 1, 2, . . . , n,

where B is a (p × q) matrix with orthonormal columns, so that
y1,y2, . . . ,yn, are projections of x1,x2, . . . ,xn onto a q-dimensional
subspace. Then

n∑

h=1

n∑

i=1

(yh − yi)′(yh − yi)

is maximized when B = Aq. Conversely, the same criterion is minimized
when B = A∗

q .
This property means that if the n observations are projected onto a

q-dimensional subspace, then the sum of squared Euclidean distances be-
tween all pairs of observations in the subspace is maximized when the
subspace is defined by the first q PCs, and minimized when it is defined
by the last q PCs. The proof that this property holds is again rather sim-
ilar to that for the corresponding population property and will not be
repeated.

The next property to be considered is equivalent to Property A5.
Both are concerned, one algebraically and one geometrically, with least
squares linear regression of each variable xj on the q variables contained
in y.

Property G3. As before, suppose that the observations x1,x2, . . . ,xn

are transformed by yi = B′xi, i = 1, 2, . . . , n, where B is a (p × q) ma-
trix with orthonormal columns, so that y1,y2, . . . ,yn are projections of
x1,x2, . . . ,xn onto a q-dimensional subspace. A measure of ‘goodness-of-
fit’ of this q-dimensional subspace to x1,x2, . . . ,xn can be defined as the
sum of squared perpendicular distances of x1,x2, . . . ,xn from the subspace.
This measure is minimized when B = Aq.

Proof. The vector yi is an orthogonal projection of xi onto a q-
dimensional subspace defined by the matrix B. Let mi denote the position
of yi in terms of the original coordinates, and ri = xi − mi. (See Fig-
ure 3.1 for the special case where p = 2, q = 1; in this case yi is a scalar,
whose value is the length of mi.) Because mi is an orthogonal projection
of xi onto a q-dimensional subspace, ri is orthogonal to the subspace, so
r′imi = 0. Furthermore, r′iri is the squared perpendicular distance of xi

from the subspace so that the sum of squared perpendicular distances of
x1,x2, . . . ,xn from the subspace is

n∑

i=1

r′iri.
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Figure 3.1. Orthogonal projection of a two-dimensional vector onto a one-dimen-
sional subspace.

Now

x′
ixi = (mi + ri)′(mi + ri)

= m′
imi + r′iri + 2r′imi

= m′
imi + r′iri.

Thus
n∑

i=1

r′iri =
n∑

i=1

x′
ixi −

n∑

i=1

m′
imi,

so that, for a given set of observations, minimization of the sum of squared
perpendicular distances is equivalent to maximization of

∑n
i=1 m′

imi. Dis-
tances are preserved under orthogonal transformations, so the squared
distance m′

imi of yi from the origin is the same in y coordinates as in
x coordinates. Therefore, the quantity to be maximized is

∑n
i=1 y′

iyi. But

n∑

i=1

y′
iyi =

n∑

i=1

x′
iBB′xi
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= tr
n∑

i=1

(x′
iBB′xi)

=
n∑

i=1

tr(x′
iBB′xi)

=
n∑

i=1

tr(B′xix′
iB)

= tr

[

B′
(

n∑

i=1

xix′
i

)

B

]

= tr[B′X′XB]
= (n − 1) tr(B′SB).

Finally, from Property A1, tr(B′SB) is maximized when B = Aq. �

Instead of treating this property (G3) as just another property of sample
PCs, it can also be viewed as an alternative derivation of the PCs. Rather
than adapting for samples the algebraic definition of population PCs given
in Chapter 1, there is an alternative geometric definition of sample PCs.
They are defined as the linear functions (projections) of x1,x2, . . . ,xn that
successively define subspaces of dimension 1, 2, . . . , q, . . . , (p− 1) for which
the sum of squared perpendicular distances of x1,x2, . . . ,xn from the sub-
space is minimized. This definition provides another way in which PCs can
be interpreted as accounting for as much as possible of the total variation
in the data, within a lower-dimensional space. In fact, this is essentially
the approach adopted by Pearson (1901), although he concentrated on the
two special cases, where q = 1 and q = (p − 1). Given a set of points in p-
dimensional space, Pearson found the ‘best-fitting line,’ and the ‘best-fitting
hyperplane,’ in the sense of minimizing the sum of squared deviations of
the points from the line or hyperplane. The best-fitting line determines the
first principal component, although Pearson did not use this terminology,
and the direction of the last PC is orthogonal to the best-fitting hyper-
plane. The scores for the last PC are simply the perpendicular distances of
the observations from this best-fitting hyperplane.

Property G4. Let X be the (n × p) matrix whose (i, j)th element is
x̃ij − x̄j, and consider the matrix XX′. The ith diagonal element of XX′

is
∑p

j=1(x̃ij − x̄j)2, which is the squared Euclidean distance of xi from the
centre of gravity x̄ of the points x1,x2, . . . ,xn, where x̄ = 1

n

∑n
i=1 xi. Also,

the (h, i)th element of XX′ is
∑p

j=1(x̃hj − x̄j)(x̃ij − x̄j), which measures
the cosine of the angle between the lines joining xh and xi to x̄, multiplied
by the distances of xh and xi from x̄. Thus XX′ contains information
about the configuration of x1,x2, . . . ,xn relative to x̄. Now suppose that
x1,x2, . . . ,xn are projected onto a q-dimensional subspace with the usual
orthogonal transformation yi = B′xi, i = 1, 2, . . . , n. Then the transfor-
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mation for which B = Aq minimizes the distortion in the configuration as
measured by ‖YY′ − XX′‖, where ‖ · ‖ denotes Euclidean norm and Y is
a matrix with (i, j)th element ỹij − ȳj.

Proof. Y = XB, so

YY′ = XBB′X and ‖YY′ − XX′‖ = ‖XBB′X′ − XX′‖.
A matrix result given by Rao (1973, p. 63) states that if F is a symmetric
matrix of rank p with spectral decomposition

F = f1φ1φ
′
1 + f2φ2φ

′
2 + · · · + fpφpφ

′
p,

and G is a matrix of rank q < p chosen to minimize ||F − G||, then

G = f1φ1φ
′
1 + f2φ2φ

′
2 + · · · + fqφqφ

′
q.

Assume that X has rank p, so that xi − x̄, i = 1, 2, . . . , n, span p-
dimensional space, and are not contained in any proper subspace. Then
XX′ also has rank p, and Rao’s result can be used with F = XX′, and
G = YY′.

Now, if lk, ak denote the kth eigenvalue and eigenvector, respectively, of
X′X, then the kth eigenvalue and eigenvector of XX′ are lk and l

−1/2
k Xak,

respectively, k = 1, 2, . . . , p. The remaining (n − p) eigenvalues of XX′ are
zero.

Using Rao’s result above, ‖YY′ − XX′‖ is minimized when

G = XBB′X′ = l−1
1 l1Xa1a′

1X
′ + l−1

2 l2Xa2a′
2X

′ + · · · + l−1
q lqXaqa′

qX
′,

or

XBB′X′ = Xa1a′
1X

′ + Xa2a′
2X

′ + · · · + Xaqa′
qX

′.

Multiplying both sides of this equation on the left by (X′X)−1X′ and on
the right by X(X′X)−1, gives

BB′ = a1a′
1 + a2a′

2 + · · · + aqa′
q,

from which it follows that the columns of B and the first q eigenvectors
of X′X, or equivalently of S, span the same q-dimensional subspace. In
other words, the transformation B = Aq provides the required optimal
subspace. �

Note that the result given by Rao (1973, p. 63) which was used in
the above proof implies that the sum of the first q terms in the spec-
tral decomposition of the sample covariance (or correlation) matrix S
provides the rank q matrix qS that minimizes ‖qS − S‖. Furthermore,
‖qS − S‖ =

∑p
k=q+1 lk, where lk now denotes the kth eigenvalue of S,

rather than that of X′X. The result follows because

‖qS − S‖ =

∥
∥
∥
∥
∥
∥

p∑

k=q+1

lkaka′
k

∥
∥
∥
∥
∥
∥
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=
p∑

k=q+1

lk ‖aka′
k‖

=
p∑

k=q+1

lk




p∑

i=1

p∑

j=1

(akiakj)2





1/2

=
p∑

k=q+1

lk




p∑

i=1

a2
ki

p∑

j=1

a2
kj





1/2

=
p∑

k=q+1

lk,

as a′
kak = 1, k = 1, 2, . . . , p.

Property G4 is very similar to another optimality property of PCs, dis-
cussed in terms of the so-called RV-coefficient by Robert and Escoufier
(1976). The RV-coefficient was introduced as a measure of the similarity
between two configurations of n data points, as described by XX′ and
YY′. The distance between the two configurations is defined by Robert
and Escoufier (1976) as

∥
∥
∥
∥

XX′

{tr(XX′)2}1/2
− YY′

{tr(YY′)2}1/2

∥
∥
∥
∥ , (3.2.1)

where the divisors of XX′, YY′ are introduced simply to standardize the
representation of each configuration in the sense that

∥
∥
∥
∥

XX′

{tr(XX′)2}1/2

∥
∥
∥
∥ =
∥
∥
∥
∥

YY′

{tr(YY′)2}1/2

∥
∥
∥
∥ = 1.

It can then be shown that (3.2.1) equals [2(1 − RV(X,Y))]1/2, where the
RV-coefficient is defined as

RV(X,Y) =
tr(XY′YX′)

{tr(XX′)2 tr(YY′)2}1/2
. (3.2.2)

Thus, minimizing the distance measure (3.2.1) which, apart from stan-
dardizations, is the same as the criterion of Property G4, is equivalent to
maximization of RV(X,Y). Robert and Escoufier (1976) show that several
multivariate techniques can be expressed in terms of maximizing RV(X,Y)
for some definition of X and Y. In particular, if Y is restricted to be of
the form Y = XB, where B is a (p × q) matrix such that the columns of
Y are uncorrelated, then maximization of RV(X,Y) leads to B = Aq, that
is Y consists of scores on the first q PCs. We will meet the RV-coefficient
again in Chapter 6 in the context of variable selection.
Property G5. The algebraic derivation of sample PCs reduces to find-
ing, successively, vectors ak, k = 1, 2, . . . , p, that maximize a′

kSak subject
to a′

kak = 1, and subject to a′
kal = 0 for l < k. This statement of the

problem can be viewed geometrically as follows (Stuart, 1982).
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Consider the first PC; this maximizes a′Sa subject to a′a = 1. But
a′Sa = const defines a family of ellipsoids and a′a = 1 defines a hyper-
sphere in p-dimensional space, both centred at the origin. The hypersphere
a′a = 1 will intersect more than one of the ellipsoids in the family a′Sa
(unless S is the identity matrix), and the points at which the hypersphere
intersects the ‘biggest’ such ellipsoid (so that a′Sa is maximized) lie on
the shortest principal axis of the ellipsoid. A simple diagram, as given by
Stuart (1982), readily verifies this result when p = 2. The argument can be
extended to show that the first q sample PCs are defined by the q shortest
principal axes of the family of ellipsoids a′Sa = const. Although Stuart
(1982) introduced this interpretation in terms of sample PCs, it is equally
valid for population PCs.

The earlier geometric property G1 was also concerned with ellipsoids but
in the context of multivariate normality, where the ellipsoids x′Σ−1x =
const define contours of constant probability and where the first (longest)
q principal axes of such ellipsoids define the first q population PCs. In light
of Property G5, it is clear that the validity of the Property G1 does not
really depend on the assumption of multivariate normality. Maximization of
a′Sa is equivalent to minimization of a′S−1a, and looking for the ‘smallest’
ellipsoids in the family a′S−1a = const that intersect the hypersphere a′a =
1 will lead to the largest principal axis of the family a′S−1a. Thus the PCs
define, successively, the principal axes of the ellipsoids a′S−1a = const.
Similar considerations hold for the population ellipsoids a′Σ−1a = const,
regardless of any assumption of multivariate normality. However, without
multivariate normality the ellipsoids lose their interpretation as contours
of equal probability, or as estimates of such contours in the sample case.

Further discussion of the geometry of sample PCs, together with con-
nections with other techniques such as principal coordinate analysis (see
Section 5.2) and special cases such as compositional data (Section 13.3), is
given by Gower (1967).

As with population properties, our discussion of sample properties of
PCA is not exhaustive. For example, Qian et al. (1994) consider the con-
cept of stochastic complexity or minimum description length, as described
by Rissanen and Yu (2000). They minimize the expected difference in com-
plexity between a p-dimensional data set and the projection of the data onto
a q-dimensional subspace. Qian et al. show that, if multivariate normality
is assumed, the subset spanned by the first q PCs is obtained.

3.3 Covariance and Correlation Matrices: An
Example

The arguments for and against using sample correlation matrices as op-
posed to covariance matrices are virtually identical to those given for
populations in Section 2.3. Furthermore, it is still the case that there is no
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Table 3.1. Correlations and standard deviations for eight blood chemistry
variables.

Correlation matrix (n = 72)

rblood plate wblood neut lymph bilir sodium potass

rblood 1.000
plate 0.290 1.000
wblood 0.202 0.415 1.000
neut −0.055 0.285 0.419 1.000
lymph −0.105 −0.376 −0.521 −0.877 1.000
bilir −0.252 −0.349 −0.441 −0.076 0.206 1.000
sodium −0.229 −0.164 −0.145 0.023 0.034 0.192 1.000
potass 0.058 −0.129 −0.076 −0.131 0.151 0.077 0.423 1.000

Standard 0.371 41.253 1.935 0.077 0.071 4.037 2.732 0.297
deviations

straightforward relationship between the PCs obtained from a correlation
matrix and those based on the corresponding covariance matrix. The main
purpose of the present section is to give an example illustrating some of the
properties of PCs based on sample covariance and correlation matrices.

The data for this example consist of measurements on 8 blood chemistry
variables for 72 patients in a clinical trial. The correlation matrix for these
data, together with the standard deviations of each of the eight variables,
is given in Table 3.1. Two main points emerge from Table 3.1. First, there
are considerable differences in the standard deviations, caused mainly by
differences in scale for the eight variables, and, second, none of the correla-
tions is particularly large in absolute value, apart from the value of −0.877
for NEUT and LYMPH.

The large differences in standard deviations give a warning that there
may be considerable differences between the PCs for the correlation and
covariance matrices. That this is indeed true can be seen in Tables 3.2
and 3.3, which give coefficients for the first four components, based on the
correlation and covariance matrices respectively. For ease of comparison,
the coefficients are rounded to the nearest 0.2. The effect of such severe
rounding is investigated for this example in Section 10.3.

Each of the first four PCs for the correlation matrix has moderate-sized
coefficients for several of the variables, whereas the first four PCs for the
covariance matrix are each dominated by a single variable. The first com-
ponent is a slight perturbation of the single variable PLATE, which has the
largest variance; the second component is almost the same as the variable
BILIR with the second highest variance; and so on. In fact, this pattern
continues for the fifth and sixth components, which are not shown in Ta-
ble 3.3. Also, the relative percentages of total variation accounted for by
each component closely mirror the variances of the corresponding variables.
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Table 3.2. Principal components based on the correlation matrix for eight blood
chemistry variables.

Component number 1 2 3 4
Coefficients

RBLOOD 0.2 −0.4 0.4 0.6
PLATE 0.4 −0.2 0.2 0.0
WBLOOD 0.4 0.0 0.2 −0.2
NEUT 0.4 0.4 −0.2 0.2
LYMPH −0.4 −0.4 0.0 −0.2
BILIR −0.4 0.4 −0.2 0.6
SODIUM −0.2 0.6 0.4 −0.2
POTASS −0.2 0.2 0.8 0.0

Percentage of total variation explained 34.9 19.1 15.6 9.7

Table 3.3. Principal components based on the covariance matrix for eight blood
chemistry variables.

Component number 1 2 3 4
Coefficients

RBLOOD 0.0 0.0 0.0 0.0
PLATE 1.0 0.0 0.0 0.0
WBLOOD 0.0 −0.2 0.0 1.0
NEUT 0.0 0.0 0.0 0.0
LYMPH 0.0 0.0 0.0 0.0
BILIR 0.0 1.0 −0.2 0.2
SODIUM 0.0 0.2 1.0 0.0
POTASS 0.0 0.0 0.0 0.0

Percentage of total variation explained 98.6 0.9 0.4 0.2
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Because variable PLATE has a variance 100 times larger than any other
variable, the first PC accounts for over 98 percent of the total variation.
Thus the first six components for the covariance matrix tell us almost noth-
ing apart from the order of sizes of variances of the original variables. By
contrast, the first few PCs for the correlation matrix show that certain
non-trivial linear functions of the (standardized) original variables account
for substantial, though not enormous, proportions of the total variation in
the standardized variables. In particular, a weighted contrast between the
first four and the last four variables is the linear function with the largest
variance.

This example illustrates the dangers in using a covariance matrix to find
PCs when the variables have widely differing variances; the first few PCs
will usually contain little information apart from the relative sizes of vari-
ances, information which is available without a PCA. There are, however,
circumstances in which it has been argued that using the covariance matrix
has some advantages; see, for example, Naik and Khattree (1996), although
these authors transform their data (track record times for Olympic events
are transformed to speeds) in order to avoid highly disparate variances.

Apart from the fact already mentioned in Section 2.3, namely, that it
is more difficult to base statistical inference regarding PCs on correlation
matrices, one other disadvantage of correlation matrix PCs is that they
give coefficients for standardized variables and are therefore less easy to in-
terpret directly. To interpret the PCs in terms of the original variables each
coefficient must be divided by the standard deviation of the corresponding
variable. An example which illustrates this is given in the next section.
It must not be forgotten, however, that correlation matrix PCs, when re-
expressed in terms of the original variables, are still linear functions of x
that maximize variance with respect to the standardized variables and not
with respect to the original variables.

An alternative to finding PCs for either covariance or correlation matrices
is to calculate the eigenvectors of X̃′X̃ rather than X′X, that is, measure
variables about zero, rather than about their sample means, when comput-
ing ‘covariances’ and ‘correlations.’ This idea was noted by Reyment and
Jöreskog (1993, Section 5.4) and will be discussed further in Section 14.2.3.
‘Principal component analysis’ based on measures of association of this
form, but for observations rather than variables, has been found useful for
certain types of geological data (Reyment and Jöreskog, 1993). Another
variant, in a way the opposite of that just mentioned, has been used by
Buckland and Anderson (1985), among others. Their idea, which is also
discussed further in Section 14.2.3, and which again is appropriate for a
particular type of data, is to ‘correct for the mean’ in both the rows and
columns of X̃. Further possibilities, such as the use of weights or metrics,
are described in Section 14.2.
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3.4 Principal Components with Equal and/or Zero
Variances

The problems that arise when some of the eigenvalues of a population
covariance matrix are zero and/or equal were discussed in Section 2.4;
similar considerations hold when dealing with a sample.

In practice, exactly equal non-zero eigenvalues are extremely rare. Even
if the underlying population covariance or correlation matrix has a pattern
that gives equal eigenvalues, sampling variation will almost always ensure
that the sample eigenvalues are unequal. It should be noted, however, that
nearly equal eigenvalues need careful attention. The subspace spanned by a
set of nearly equal eigenvalues that are well-separated from all other eigen-
values is well-defined and stable, but individual PC directions within that
subspace are unstable (see Section 10.3). This has implications for deciding
how many components to retain (Section 6.1), for assessing which observa-
tions are influential (Section 10.2) and for deciding which components to
rotate (Section 11.1).

With carefully selected variables, PCs with zero variances are a relatively
rare occurrence. When q zero eigenvalues do occur for a sample covariance
or correlation matrix, the implication is that the points x1,x2, . . . ,xn lie
in a (p− q)-dimensional subspace of p-dimensional space. This means that
there are q separate linear functions of the p original variables having con-
stant values for each of the observations x1,x2, . . . ,xn. Ideally, constant
relationships between the variables should be detected before doing a PCA,
and the number of variables reduced so as to avoid them. However, prior
detection will not always be possible, and the zero-variance PCs will enable
any unsuspected constant relationships to be detected. Similarly, PCs with
very small, but non-zero, variances will define near-constant linear rela-
tionships. Finding such near-constant relationships may be of considerable
interest. In addition, low-variance PCs have a number of more specific po-
tential uses, as will be discussed at the end of Section 3.7 and in Sections 6.3,
8.4, 8.6 and 10.1.

3.4.1 Example

Here we consider a second set of blood chemistry data, this time consisting
of 16 variables measured on 36 patients. In fact, these observations and
those discussed in the previous section are both subsets of the same larger
data set. In the present subset, four of the variables, x1, x2, x3, x4, sum to
1.00 for 35 patients and to 0.99 for the remaining patient, so that x1 +
x2 + x3 + x4 is nearly constant. The last (sixteenth) PC for the correlation
matrix has variance less than 0.001, much smaller than the fifteenth, and
is (rounding coefficients to the nearest 0.1) 0.7x∗

1 + 0.3x∗
2 + 0.7x∗

3 + 0.1x∗
4,

with all of the other 12 variables having negligible coefficients. Thus, the
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near-constant relationship has certainly been identified by the last PC, but
not in an easily interpretable form. However, a simple interpretation can be
restored if the standardized variables are replaced by the original variables
by setting x∗

j = xj/s
1/2
jj , where s

1/2
jj is the sample standard deviation of xj .

When this is done, the last PC becomes (rounding coefficients to the nearest
integer) 11x1 + 11x2 + 11x3 + 11x4. The correct near-constant relationship
has therefore been discovered exactly, to the degree of rounding used, by
the last PC.

3.5 The Singular Value Decomposition

This section describes a result from matrix theory, namely the singular
value decomposition (SVD), which is relevant to PCA in several respects.
Given an arbitrary matrix X of dimension (n× p), which for our purposes
will invariably be a matrix of n observations on p variables measured about
their means, X can be written

X = ULA′, (3.5.1)

where

(i) U, A are (n × r), (p × r) matrices, respectively, each of which has
orthonormal columns so that U′U = Ir,A′A = Ir;

(ii) L is an (r × r) diagonal matrix;

(iii) r is the rank of X.

To prove this result, consider the spectral decomposition of X′X. The last
(p − r) terms in (3.1.4) and in the corresponding expression for X′X are
zero, since the last (p − r) eigenvalues are zero if X, and hence X′X, has
rank r. Thus

(n − 1)S = X′X = l1a1a′
1 + l2a2a′

2 + · · · + lrara′
r.

[Note that in this section it is convenient to denote the eigenvalues of X′X,
rather than those of S, as lk, k = 1, 2, . . . , p.] Define A to be the (p × r)
matrix with kth column ak, define U as the (n × r) matrix whose kth
column is

uk = l
−1/2
k Xak, k = 1, 2, . . . , r,

and define L to be the (r × r) diagonal matrix with kth diagonal element
l
1/2
k . Then U, L, A satisfy conditions (i) and (ii) above, and we shall now
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show that X = ULA′.

ULA′ = U









l
1/2
1 a′

1

l
1/2
2 a′

2
...

l
1/2
r a′

r









=
r∑

k=1

l
−1/2
k Xakl

1/2
k a′

k =
r∑

k=1

Xaka′
k

=
p∑

k=1

Xaka′
k.

This last step follows because ak, k = (r+1), (r+2), . . . , p, are eigenvectors
of X′X corresponding to zero eigenvalues. The vector Xak is a vector of
scores on the kth PC; the column-centering of X and the zero variance of
the last (p−r) PCs together imply that Xak = 0, k = (r+1), (r+2), . . . , p.
Thus

ULA′ = X
p∑

k=1

aka′
k = X,

as required, because the (p × p) matrix whose kth column is ak, is
orthogonal, and so has orthonormal rows.

The importance of the SVD for PCA is twofold. First, it provides a
computationally efficient method of actually finding PCs (see Appendix
A1). It is clear that if we can find U, L, A satisfying (3.5.1), then A and
L will give us the eigenvectors and the square roots of the eigenvalues of
X′X, and hence the coefficients and standard deviations of the principal
components for the sample covariance matrix S. As a bonus we also get in
U scaled versions of PC scores. To see this multiply (3.5.1) on the right
by A to give XA = ULA′A = UL, as A′A = Ir. But XA is an (n × r)
matrix whose kth column consists of the PC scores for the kth PC (see
(3.1.2) for the case where r = p). The PC scores zik are therefore given by

zik = uikl
1/2
k , i = 1, 2, . . . , n, k = 1, 2, . . . , r,

or, in matrix form, Z = UL, or U = ZL−1. The variance of the scores
for the kth PC is lk

(n−1) , k = 1, 2, . . . , p. [Recall that lk here denotes the
kth eigenvalue of X′X, so that the kth eigenvalue of S is lk

(n−1) .] Therefore
the scores given by U are simply those given by Z, but scaled to have
variance 1

(n−1) . Note also that the columns of U are the eigenvectors of
XX′ corresponding to non-zero eigenvalues, and these eigenvectors are of
potential interest if the rôles of ‘variables’ and ‘observations’ are reversed.

A second virtue of the SVD is that it provides additional insight into
what a PCA actually does, and it gives useful means, both graphical and
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algebraic, of representing the results of a PCA. This has been recognized
in different contexts by Mandel (1972), Gabriel (1978), Rasmusson et al.
(1981) and Eastment and Krzanowski (1982), and will be discussed fur-
ther in connection with relevant applications in Sections 5.3, 6.1.5, 9.3,
13.4, 13.5 and 13.6. Furthermore, the SVD is useful in terms of both
computation and interpretation in PC regression (see Section 8.1 and Man-
del (1982)) and in examining the links between PCA and correspondence
analysis (Sections 13.1 and 14.2).

In the meantime, note that (3.5.1) can be written element by element as

xij =
r∑

k=1

uikl
1/2
k ajk, (3.5.2)

where uik, ajk are the (i, k)th, (j, k)th elements of U, A, respectively, and
l
1/2
k is the kth diagonal element of L. Thus xij can be split into parts

uikl
1/2
k ajk, k = 1, 2, . . . , r,

corresponding to each of the first r PCs. If only the first m PCs are retained,
then

mx̃ij =
m∑

k=1

uikl
1/2
k ajk (3.5.3)

provides an approximation to xij . In fact, it can be shown (Gabriel, 1978;
Householder and Young, 1938) that mx̃ij gives the best possible rank m
approximation to xij , in the sense of minimizing

n∑

i=1

p∑

j=1

(mxij − xij)2, (3.5.4)

where mxij is any rank m approximation to xij . Another way of express-
ing this result is that the (n × p) matrix whose (i, j)th element is mx̃ij

minimizes ‖mX−X‖ over all (n× p) matrices mX with rank m. Thus the
SVD provides a sequence of approximations to X of rank 1, 2, . . . , r, which
minimize the Euclidean norm of the difference between X and the approx-
imation mX. This result provides an interesting parallel to the result given
earlier (see the proof of Property G4 in Section 3.2): that the spectral de-
composition of X′X provides a similar optimal sequence of approximations
of rank 1, 2, . . . , r to the matrix X′X. Good (1969), in a paper extolling the
virtues of the SVD, remarks that Whittle (1952) presented PCA in terms
of minimizing (3.5.4).

Finally in this section we note that there is a useful generalization of the
SVD, which will be discussed in Chapter 14.
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3.6 Probability Distributions for Sample Principal
Components

A considerable amount of mathematical effort has been expended on deriv-
ing probability distributions, mostly asymptotic, for the coefficients in the
sample PCs and for the variances of sample PCs or, equivalently, finding
distributions for the eigenvectors and eigenvalues of a sample covariance
matrix. For example, the first issue of Journal of Multivariate Analysis in
1982 contained three papers, totalling 83 pages, on the topic. In recent
years there has probably been less theoretical work on probability distri-
butions directly connected to PCA; this may simply reflect the fact that
there is little remaining still to do. The distributional results that have
been derived suffer from three drawbacks:

(i) they usually involve complicated mathematics;

(ii) they are mostly asymptotic;

(iii) they are often based on the assumption that the original set of variables
has a multivariate normal distribution.

Despite these drawbacks, the distributional results are useful in some cir-
cumstances, and a selection of the main circumstances is given in this
section. Their use in inference about the population PCs, given sample
PCs, is discussed in the next section.

Assume that x ∼ N(µ,Σ), that is, x has a p-variate normal distribution
with mean µ and covariance matrix Σ. Although µ need not be given, Σ
is assumed known. Then

(n − 1)S ∼ Wp(Σ, n − 1),

that is (n − 1)S has the so-called Wishart distribution with parameters
Σ, (n−1) (see, for example, Mardia et al. (1979, Section 3.4)). Therefore, in-
vestigation of the sampling properties of the coefficients and variances of the
sample PCs is equivalent to looking at sampling properties of eigenvectors
and eigenvalues of Wishart random variables.

The density function of a matrix V that has the Wp(Σ, n−1) distribution
is

c|V|(n−p−2)/2 exp
{
−1

2
tr(Σ−1V)

}
,

where

c−1 = 2p(n−1)/2Πp(1−p)/4|Σ|(n−1)/2

p∏

j=1

Γ
(

n − j

2

)
,

and various properties of Wishart random variables have been thoroughly
investigated (see, for example, Srivastava and Khatri, 1979, Chapter 3).



48 3. Properties of Sample Principal Components

Let lk, ak, for k = 1, 2, . . . , p be the eigenvalues and eigenvectors of S,
respectively, and let λk, αk, for k = 1, 2, . . . , p, be the eigenvalues and
eigenvectors of Σ, respectively. Also, let l, λ be the p-element vectors con-
sisting of the lk and λk, respectively and let the jth elements of ak, αk be
akj , αkj , respectively. [The notation ajk was used for the jth element of ak

in the previous section, but it seems more natural to use akj in this and the
next, section. We also revert to using lk to denote the kth eigenvalue of S
rather than that of X′X.] The best known and simplest results concerning
the distribution of the lk and the ak assume, usually quite realistically, that
λ1 > λ2 > · · · > λp > 0; in other words all the population eigenvalues are
positive and distinct. Then the following results hold asymptotically:

(i) all of the lk are independent of all of the ak;

(ii) l and the ak are jointly normally distributed;

(iii)

E(l) = λ, E(ak) = αk, k = 1, 2, . . . , p; (3.6.1)

(iv)

cov(lk, lk′) =






2λ2
k

n − 1
k = k′,

0 k �= k′,
(3.6.2)

cov(akj , ak′j′) =






λk

(n − 1)

p∑

l=1
l �=k

λlαljαlj′

(λl − λk)2
k = k′,

− λkλk′αkjαk′j′

(n − 1)(λk − λk′)2
k �= k′.

(3.6.3)

An extension of the above results to the case where some of the λk may
be equal to each other, though still positive, is given by Anderson (1963),
and an alternative proof to that of Anderson can be found in Srivastava
and Khatri (1979, Section 9.4.1).

It should be stressed that the above results are asymptotic and there-
fore only approximate for finite samples. Exact results are available, but
only for a few special cases, such as when Σ = I (Srivastava and Khatri,
1979, p. 86) and more generally for l1, lp, the largest and smallest eigen-
values (Srivastava and Khatri, 1979, p. 205). In addition, better but more
complicated approximations can be found to the distributions of l and the
ak in the general case (see Srivastava and Khatri, 1979, Section 9.4; Jack-
son, 1991, Sections 4.2, 4.5; and the references cited in these sources). One
specific point regarding the better approximations is that E(l1) > λ1 and
E(lp) < λp. In general the larger eigenvalues tend to be overestimated and
the smaller ones underestimated. By expanding the bias of l as an esti-
mator of λ in terms of powers of n−1, ‘corrected’ estimates of λk can be
constructed (Jackson, 1991, Section 4.2.2).
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If a distribution other than the multivariate normal is assumed, distribu-
tional results for PCs will typically become less tractable. Jackson (1991,
Section 4.8) gives a number of references that examine the non-normal case.
In addition, for non-normal distributions a number of alternatives to PCs
can reasonably be suggested (see Sections 13.1, 13.3 and 14.4).

Another deviation from the assumptions underlying most of the distri-
butional results arises when the n observations are not independent. The
classic examples of this are when the observations correspond to adjacent
points in time (a time series) or in space. Another situation where non-
independence occurs is found in sample surveys, where survey designs are
often more complex than simple random sampling, and induce dependence
between observations (see Skinner et al. (1986)). PCA for non-independent
data, especially time series, is discussed in detail in Chapter 12.

As a complete contrast to the strict assumptions made in most work
on the distributions of PCs, Efron and Tibshirani (1993, Section 7.2) look
at the use of the ‘bootstrap’ in this context. The idea is, for a particular
sample of n observations x1, x2,. . . , xn, to take repeated random samples
of size n from the distribution that has P [x = xi] = 1

n , i = 1, 2, . . . , n,
calculate the PCs for each sample, and build up empirical distributions for
PC coefficients and variances. These distributions rely only on the structure
of the sample, and not on any predetermined assumptions. Care needs to
be taken in comparing PCs from different bootstrap samples because of
possible reordering and/or sign switching in the PCs from different samples.
Failure to account for these phenomena is likely to give misleadingly wide
distributions for PC coefficients, and distributions for PC variances that
may be too narrow.

3.7 Inference Based on Sample Principal
Components

The distributional results outlined in the previous section may be used
to make inferences about population PCs, given the sample PCs, provided
that the necessary assumptions are valid. The major assumption that x has
a multivariate normal distribution is often not satisfied and the practical
value of the results is therefore limited. It can be argued that PCA should
only ever be done for data that are, at least approximately, multivariate
normal, for it is only then that ‘proper’ inferences can be made regarding
the underlying population PCs. As already noted in Section 2.2, this is
a rather narrow view of what PCA can do, as it is a much more widely
applicable tool whose main use is descriptive rather than inferential. It
can provide valuable descriptive information for a wide variety of data,
whether the variables are continuous and normally distributed or not. The
majority of applications of PCA successfully treat the technique as a purely
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descriptive tool, although Mandel (1972) argued that retaining m PCs in
an analysis implicitly assumes a model for the data, based on (3.5.3). There
has recently been an upsurge of interest in models related to PCA; this is
discussed further in Section 3.9.

Although the purely inferential side of PCA is a very small part of the
overall picture, the ideas of inference can sometimes be useful and are
discussed briefly in the next three subsections.

3.7.1 Point Estimation

The maximum likelihood estimator (MLE) for Σ, the covariance matrix of
a multivariate normal distribution, is not S, but (n−1)

n S (see, for example,
Press (1972, Section 7.1) for a derivation). This result is hardly surprising,
given the corresponding result for the univariate normal. If λ, l, αk, ak and
related quantities are defined as in the previous section, then the MLEs of
λ and αk, k = 1, 2, . . . , p, can be derived from the MLE of Σ and are equal
to λ̂ = (n−1)

n l, and α̂k = ak, k = 1, 2, . . . , p, assuming that the elements of
λ are all positive and distinct. The MLEs are the same in this case as the
estimators derived by the method of moments. The MLE for λk is biased
but asymptotically unbiased, as is the MLE for Σ. As noted in the previous
section, l itself, as well as λ̂, is a biased estimator for λ, but ‘corrections’
can be made to reduce the bias.

In the case where some of the λk are equal, the MLE for their common
value is simply the average of the corresponding lk, multiplied by (n−1)/n.
The MLEs of the αk corresponding to equal λk are not unique; the (p× q)
matrix whose columns are MLEs of αk corresponding to equal λk can be
multiplied by any (q × q) orthogonal matrix, where q is the multiplicity of
the eigenvalues, to get another set of MLEs.

Most often, point estimates of λ, αk are simply given by l, ak, and they
are rarely accompanied by standard errors. An exception is Flury (1997,
Section 8.6). Jackson (1991, Sections 5.3, 7.5) goes further and gives ex-
amples that not only include estimated standard errors, but also estimates
of the correlations between elements of l and between elements of ak and
ak′ . The practical implications of these (sometimes large) correlations are
discussed in Jackson’s examples. Flury (1988, Sections 2.5, 2.6) gives a
thorough discussion of asymptotic inference for functions of the variances
and coefficients of covariance-based PCs.

If multivariate normality cannot be assumed, and if there is no obvious
alternative distributional assumption, then it may be desirable to use a
‘robust’ approach to the estimation of the PCs: this topic is discussed in
Section 10.4.
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3.7.2 Interval Estimation

The asymptotic marginal distributions of lk and akj given in the previous
section can be used to construct approximate confidence intervals for λk

and αkj , respectively. For lk, the marginal distribution is, from (3.6.1) and
(3.6.2), approximately

lk ∼ N(λk,
2λ2

k

n − 1
) (3.7.1)

so
lk − λk

λk[2/(n − 1)]1/2
∼ N(0, 1),

which leads to a confidence interval, with confidence coefficient (1− α) for
λk, of the form

lk
[1 + τzα/2]1/2

< λk <
lk

[1 − τzα/2]1/2
, (3.7.2)

where τ2 = 2/(n − 1), and zα/2 is the upper (100)α/2 percentile of the
standard normal distribution N(0, 1). In deriving this confidence interval
it is assumed that n is large enough so that τzα/2 < 1. As the distribu-
tional result is asymptotic, this is a realistic assumption. An alternative
approximate confidence interval is obtained by looking at the distribution
of ln(lk). Given (3.7.1) it follows that

ln(lk) ∼ N(ln(λk),
2

n − 1
) approximately,

thus removing the dependence of the variance on the unknown parameter
λk. An approximate confidence interval for ln(λk), with confidence coeffi-
cient (1 − α), is then ln(lk) ± τzα/2, and transforming back to λk gives an
approximate confidence interval of the form

lke−τzα/2 ≤ λk ≤ lkeτzα/2 . (3.7.3)

The lk are asymptotically independent, and joint confidence regions for
several of the λk are therefore obtained by simply combining intervals of the
form (3.7.2) or (3.7.3), choosing individual confidence coefficients so as to
achieve an overall desired confidence level. Approximate confidence inter-
vals for individual αkj can be obtained from the marginal distributions of
the akj whose means and variances are given in (3.6.1) and (3.6.3). The in-
tervals are constructed in a similar manner to those for the λk, although the
expressions involved are somewhat more complicated. Expressions become
still more complicated when looking at joint confidence regions for several
αkj , partly because of the non-independence of separate akj . Consider ak:
From (3.6.1), (3.6.3) it follows that, approximately,

ak ∼ N(αk,Tk),
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where

Tk =
λk

(n − 1)

p∑

l=1
l �=k

λl

(λl − λk)2
αlα

′
l.

The matrix Tk has rank (p − 1) as it has a single zero eigenvalue corre-
sponding to the eigenvector αk. This causes further complications, but it
can be shown (Mardia et al., 1979, p. 233) that, approximately,

(n − 1)(ak − αk)′(lkS−1 + l−1
k S − 2Ip)(ak − αk) ∼ χ2

(p−1). (3.7.4)

Because ak is an eigenvector of S with eigenvalue lk, it follows that
l−1
k Sak = l−1

k lkak = ak, lkS−1ak = lkl−1
k ak = ak, and

(lkS−1 + l−1
k S − 2Ip)ak = ak + ak − 2ak = 0,

so that the result (3.7.4) reduces to

(n − 1)α′
k(lkS−1 + l−1

k S − 2Ip)αk ∼ χ2
(p−1). (3.7.5)

From (3.7.5) an approximate confidence region for αk, with confidence
coefficient (1−α), has the form (n−1)α′

k(lkS−1+l−1
k S−2Ip)αk ≤ χ2

(p−1);α

with fairly obvious notation.
Moving away from assumptions of multivariate normality, the non-

parametric bootstrap of Efron and Tibshirani (1993), noted in Section 3.6,
can be used to find confidence intervals for various parameters. In their
Section 7.2, Efron and Tibshirani (1993) use bootstrap samples to esti-
mate standard errors of estimates for αkj , and for the proportion of total
variance accounted for by an individual PC. Assuming approximate nor-
mality and unbiasedness of the estimates, the standard errors can then be
used to find confidence intervals for the parameters of interest. Alterna-
tively, the ideas of Chapter 13 of Efron and Tibshirani (1993) can be used
to construct an interval for λk with confidence coefficient (1 − α), for ex-
ample, consisting of a proportion (1−α) of the values of lk arising from the
replicated bootstrap samples. Intervals for elements of αk can be found in
a similar manner. Milan and Whittaker (1995) describe a related but differ-
ent idea, the parametric bootstrap. Here, residuals from a model based on
the SVD, rather than the observations themselves, are bootstrapped. An
example of bivariate confidence intervals for (α1j , α2j) is given by Milan
and Whittaker.

Some theory underlying non-parametric bootstrap confidence intervals
for eigenvalues and eigenvectors of covariance matrices is given by Beran
and Srivastava (1985), while Romanazzi (1993) discusses estimation and
confidence intervals for eigenvalues of both covariance and correlation ma-
trices using another computationally intensive distribution-free procedure,
the jackknife. Romanazzi (1993) shows that standard errors of eigenvalue
estimators based on the jackknife can have substantial bias and are sen-
sitive to outlying observations. Bootstrapping and the jackknife have also
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been used to assess the stability of subspaces defined by a subset of the
PCs, and hence to choose how many PCs to retain. In these circumstances
there is more than one plausible way in which to conduct the bootstrap
(see Section 6.1.5).

3.7.3 Hypothesis Testing

The same results, obtained from (3.6.1)–(3.6.3), which were used above
to derive confidence intervals for individual lk and akj , are also useful for
constructing tests of hypotheses. For example, if it is required to test H0 :
λk = λk0 against H1 : λk �= λk0, then a suitable test statistic is

lk − λk0

τλk0
,

which has, approximately, an N(0, 1) distribution under H0, so that H0

would be rejected at significance level α if
∣
∣
∣
∣
lk − λk0

τλk0

∣
∣
∣
∣ ≥ zα/2.

Similarly, the result (3.7.5) can be used to test H0 : αk = αk0 vs. H1 :
αk �= αk0. A test of H0 against H1 will reject H0 at significance level α if

(n − 1)α′
k0(lkS

−1 + l−1
k S − 2Ip)αk0 ≥ χ2

(p−1);α.

This is, of course, an approximate test, although modifications can be made
to the test statistic to improve the χ2 approximation (Schott, 1987). Other
tests, some exact, assuming multivariate normality of x, are also available
(Srivastava and Khatri, 1979, Section 9.7; Jackson, 1991, Section 4.6). De-
tails will not be given here, partly because it is relatively unusual that a
particular pattern can be postulated for the coefficients of an individual
population PC, so that such tests are of limited practical use. An excep-
tion is the isometry hypothesis in the analysis of size and shape (Jolicoeur
(1984)). Size and shape data are discussed briefly in Section 4.1, and in
more detail in Section 13.2.

There are a number of tests concerning other types of patterns in Σ and
its eigenvalues and eigenvectors. The best known of these is the test of
H0q : λq+1 = λq+2 = · · · = λp, that is, the case where the last (p−q) eigen-
values are equal, against the alternative H1q, the case where at least two
of the last (p− q) eigenvalues are different. In his original paper, Hotelling
(1933) looked at the problem of testing the equality of two consecutive
eigenvalues, and tests of H0q have since been considered by a number of
authors, including Bartlett (1950), whose name is sometimes given to such
tests. The justification for wishing to test H0q is that the first q PCs may
each be measuring some substantial component of variation in x, but the
last (p− q) PCs are of equal variation and essentially just measure ‘noise.’
Geometrically, this means that the distribution of the last (p− q) PCs has
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spherical contours of equal probability, assuming multivariate normality,
and the last (p − q) PCs are therefore not individually uniquely defined.
By testing H0q for various values of q it can be decided how many PCs are
distinguishable from ‘noise’ and are therefore worth retaining. This idea
for deciding how many components to retain will be discussed critically in
Section 6.1.4. It is particularly relevant if a model similar to those described
in Section 3.9 is assumed for the data.

A test statistic for H0q against a general alternative H1q can be found by
assuming multivariate normality and constructing a likelihood ratio (LR)
test. The test statistic takes the form

Q =






p∏

k=q+1

lk

/


p∑

k=q+1

lk/(p − q)





p−q




n/2

.

The exact distribution of Q is complicated, but we can use the well-known
general result from statistical inference concerning LR tests, namely that
−2 ln(Q) has, approximately, a χ2 distribution with degrees of freedom
equal to the difference between the number of independently varying pa-
rameters under H0q∪H1q and under H0q. Calculating the number of degrees
of freedom is non-trivial (Mardia et al., 1979, p. 235), but it turns out to
be ν = 1

2 (p − q + 2)(p − q − 1), so that approximately, under H0q,

n



(p − q) ln(l̄) −
p∑

k=q+1

ln(lk)



 ∼ χ2
ν , (3.7.6)

where

l̄ =
p∑

k=q+1

lk
p − q

.

In fact, the approximation can be improved if n is replaced by n′ = n −
(2p + 11)/6, so H0q is rejected at significance level α if

n′



(p − q) ln(l̄) −
p∑

k=q+1

ln(lk)



 ≥ χ2
ν;α.

Another, more complicated, improvement to the approximation is given by
Srivastava and Khatri (1979, p. 294). The test is easily adapted so that
the null hypothesis defines equality of any subset of (p − q) consecutive
eigenvalues, not necessarily the smallest (Flury, 1997, Section 8.6). Another
modification is to test whether the last (p − q) eigenvalues follow a linear
trend (Bentler and Yuan, 1998). The relevance of this null hypothesis will
be discussed in Section 6.1.4.

A special case of the test of the null hypothesis H0q occurs when q = 0,
in which case H0q is equivalent to all the variables being independent and
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having equal variances, a very restrictive assumption. The test with q = 0
reduces to a test that all variables are independent, with no requirement
of equal variances, if we are dealing with a correlation matrix. However, it
should be noted that all the results in this and the previous section are for
covariance, not correlation, matrices, which restricts their usefulness still
further.

In general, inference concerning PCs of correlation matrices is more
complicated than for covariance matrices (Anderson, 1963; Jackson, 1991,
Section 4.7), as the off-diagonal elements of a correlation matrix are non-
trivial functions of the random variables which make up the elements of
a covariance matrix. For example, the asymptotic distribution of the test
statistic (3.7.6) is no longer χ2 for the correlation matrix, although Lawley
(1963) provides an alternative statistic, for a special case, which does have
a limiting χ2 distribution.

Another special case of the test based on (3.7.6) occurs when it is
necessary to test

H0 : Σ = σ2








1 ρ · · · ρ
ρ 1 · · · ρ
...

...
ρ ρ · · · 1








against a general alternative. The null hypothesis H0 states that all vari-
ables have the same variance σ2, and all pairs of variables have the same
correlation ρ, in which case

σ2[1 + (p − 1)ρ] = λ1 > λ2 = λ3 = · · · = λp = σ2(1 − ρ)

(Morrison, 1976, Section 8.6), so that the last (p−1) eigenvalues are equal.
If ρ, σ2 are unknown, then the earlier test is appropriate with q = 1, but if
ρ, σ2 are specified then a different test can be constructed, again based on
the LR criterion.

Further tests regarding λ and the ak can be constructed, such as the
test discussed by Mardia et al. (1979, Section 8.4.2) that the first q PCs
account for a given proportion of the total variation. However, as stated at
the beginning of this section, these tests are of relatively limited value in
practice. Not only are most of the tests asymptotic and/or approximate, but
they also rely on the assumption of multivariate normality. Furthermore, it
is arguable whether it is often possible to formulate a particular hypothesis
whose test is of interest. More usually, PCA is used to explore the data,
rather than to verify predetermined hypotheses.

To conclude this section on inference, we note that little has been done
with respect to PCA from a Bayesian viewpoint. Bishop (1999) is an ex-
ception. He introduces prior distributions for the parameters of a model
for PCA (see Section 3.9). His main motivation appears to be to provide
a means of deciding the dimensionality of the model (see Section 6.1.5).
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Lanterman (2000) and Wang and Staib (2000) each use principal com-
ponents in quantifying prior information in (different) image processing
contexts.

Another possible use of PCA when a Bayesian approach to inference is
adopted is as follows. Suppose that θ is a vector of parameters, and that
the posterior distribution for θ has covariance matrix Σ. If we find PCs
for θ, then the last few PCs provide information on which linear functions
of the elements of θ can be estimated with high precision (low variance).
Conversely, the first few PCs are linear functions of the elements of θ that
can only be estimated with low precision. In this context, then, it would
seem that the last few PCs may be more useful than the first few.

3.8 Principal Components for Patterned
Correlation or Covariance Matrices

At the end of Chapter 2, and in Section 3.7.3, the structure of the PCs
and their variances was discussed briefly in the case of a correlation matrix
with equal correlations between all variables. Other theoretical patterns in
correlation and covariance matrices can also be investigated; for example,
Jolliffe (1970) considered correlation matrices with elements ρij for which

ρ1j = ρ, j = 2, 3. . . . , p,

and

ρij = ρ2, 2 ≤ i < j < p,

and Brillinger (1981, p. 108) discussed PCs for Töplitz matrices, which
occur for time series data (see Chapter 12), and in which the ρij depend
only on |i − j|.

Such exact patterns will not, in general, occur in sample covariance or
correlation matrices, but it is sometimes possible to deduce the approxi-
mate form of some of the PCs by recognizing a particular type of structure
in a sample covariance or correlation matrix. One such pattern, which was
discussed in Section 3.3, occurs when one or more of the variances in a
covariance matrix are of very different sizes from all the rest. In this case,
as illustrated in the example of Section 3.3, there will often be a PC as-
sociated with each such variable which is almost indistinguishable from
that variable. Similar behaviour, that is, the existence of a PC very simi-
lar to one of the original variables, can occur for correlation matrices, but
in rather different circumstances. Here the requirement for such a PC is
that the corresponding variable is nearly uncorrelated with all of the other
variables.

The other main type of pattern detected in many correlation matrices is
one where there are one or more groups of variables within which all cor-
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relations are positive and not close to zero. Sometimes a variable in such a
group will initially have entirely negative correlations with the other mem-
bers of the group, but the sign of a variable is often arbitrary, and switching
the sign will give a group of the required structure. If correlations between
the q members of the group and variables outside the group are close to
zero, then there will be q PCs ‘associated with the group’ whose coeffi-
cients for variables outside the group are small. One of these PCs will have
a large variance, approximately 1 + (q − 1)r̄, where r̄ is the average corre-
lation within the group, and will have positive coefficients for all variables
in the group. The remaining (q − 1) PCs will have much smaller variances
(of order 1− r̄), and will have some positive and some negative coefficients.
Thus the ‘large variance PC’ for the group measures, roughly, the average
size of variables in the group, whereas the ‘small variance PCs’ give ‘con-
trasts’ between some or all of the variables in the group. There may be
several such groups of variables in a data set, in which case each group will
have one ‘large variance PC’ and several ‘small variance PCs.’ Conversely,
as happens not infrequently, especially in biological applications when all
variables are measurements on individuals of some species, we may find
that all p variables are positively correlated. In such cases, the first PC
is often interpreted as a measure of size of the individuals, whereas sub-
sequent PCs measure aspects of shape (see Sections 4.1, 13.2 for further
discussion).

The discussion above implies that the approximate structure and vari-
ances of the first few PCs can be deduced from a correlation matrix,
provided that well-defined groups of variables are detected, including pos-
sibly single-variable groups, whose within-group correlations are high, and
whose between-group correlations are low. The ideas can be taken further;
upper and lower bounds on the variance of the first PC can be calculated,
based on sums and averages of correlations (Friedman and Weisberg, 1981;
Jackson, 1991, Section 4.2.3). However, it should be stressed that although
data sets for which there is some group structure among variables are not
uncommon, there are many others for which no such pattern is apparent.
In such cases the structure of the PCs cannot usually be found without
actually performing the PCA.

3.8.1 Example

In many of the examples discussed in later chapters, it will be seen that the
structure of some of the PCs can be partially deduced from the correlation
matrix, using the ideas just discussed. Here we describe an example in which
all the PCs have a fairly clear pattern. The data consist of measurements of
reflexes at 10 sites of the body, measured for 143 individuals. As with the
examples discussed in Sections 3.3 and 3.4, the data were kindly supplied
by Richard Hews of Pfizer Central Research.
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Table 3.4. Correlation matrix for ten variables measuring reflexes.

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
V1 1.00
V2 0.98 1.00
V3 0.60 0.62 1.00
V4 0.71 0.73 0.88 1.00
V5 0.55 0.57 0.61 0.68 1.00
V6 0.55 0.57 0.56 0.68 0.97 1.00
V7 0.38 0.40 0.48 0.53 0.33 0.33 1.00
V8 0.25 0.28 0.42 0.47 0.27 0.27 0.90 1.00
V9 0.22 0.21 0.19 0.23 0.16 0.19 0.40 0.41 1.00
V10 0.20 0.19 0.18 0.21 0.13 0.16 0.39 0.40 0.94 1.00

The correlation matrix for these data is given in Table 3.4, and the
coefficients of, and the variation accounted for by, the corresponding PCs
are presented in Table 3.5. It should first be noted that the ten variables
fall into five pairs. Thus, V1, V2, respectively, denote strength of reflexes
for right and left triceps, with {V3, V4}, {V5, V6}, {V7, V8}, {V9, V10}
similarly defined for right and left biceps, right and left wrists, right and left
knees, and right and left ankles. The correlations between variables within
each pair are large, so that the differences between variables in each pair
have small variances. This is reflected in the last five PCs, which are mainly
within-pair contrasts, with the more highly correlated pairs corresponding
to the later components.

Turning to the first two PCs, there is a suggestion in the correlation
matrix that, although all correlations are positive, the variables can be
divided into two groups {V1–V6}, {V7–V10}. These correspond to sites in
the arms and legs, respectively. Reflecting this group structure, the first and
second PCs have their largest coefficients on the first and second groups of
variables, respectively. Because the group structure is not clear-cut, these
two PCs also have contributions from the less dominant group, and the
first PC is a weighted average of variables from both groups, whereas the
second PC is a weighted contrast between the groups.

The third, fourth and fifth PCs reinforce the idea of the two groups. The
third PC is a contrast between the two pairs of variables in the second
(smaller) group and the fourth and fifth PCs both give contrasts between
the three pairs of variables in the first group.

It is relatively rare for examples with as many as ten variables to have
such a nicely defined structure as in the present case for all their PCs.
However, as will be seen in the examples of subsequent chapters, it is not
unusual to be able to deduce the structure of at least a few PCs in this
manner.
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Table 3.5. Principal components based on the correlation matrix of Table 3.4

Component 1 2 3 4 5 6 7 8 9 10
number

Coefficients

V1 0.3 −0.2 0.2 −0.5 0.3 0.1 −0.1 −0.0 −0.6 0.2
V2 0.4 −0.2 0.2 −0.5 0.3 0.0 −0.1 −0.0 0.7 −0.3
V3 0.4 −0.1 −0.1 −0.0 −0.7 0.5 −0.2 0.0 0.1 0.1
V4 0.4 −0.1 −0.1 −0.0 −0.4 −0.7 0.3 −0.0 −0.1 −0.1
V5 0.3 −0.2 0.1 0.5 0.2 0.2 −0.0 −0.1 −0.2 −0.6
V6 0.3 −0.2 0.2 0.5 0.2 −0.1 −0.0 0.1 0.2 0.6
V7 0.3 0.3 −0.5 −0.0 0.2 0.3 0.7 0.0 −0.0 0.0
V8 0.3 0.3 −0.5 0.1 0.2 −0.2 −0.7 −0.0 −0.0 −0.0
V9 0.2 0.5 0.4 0.0 −0.1 0.0 −0.0 0.7 −0.0 −0.1

V10 0.2 0.5 0.4 0.0 −0.1 0.0 0.0 −0.7 0.0 0.0

Percentage of 52.3 20.4 11.0 8.5 5.0 1.0 0.9 0.6 0.2 0.2
total variation explained

3.9 Models for Principal Component Analysis

There is a variety of interpretations of what is meant by a model in the
context of PCA. Mandel (1972) considers the retention of m PCs, based
on the SVD (3.5.3), as implicitly using a model. Caussinus (1986) discusses
three types of ‘model.’ The first is a ‘descriptive algebraic model,’ which in
its simplest form reduces to the SVD. It can also be generalized to include
a choice of metric, rather than simply using a least squares approach. Such
generalizations are discussed further in Section 14.2.2. This model has no
random element, so there is no idea of expectation or variance. Hence it
corresponds to Pearson’s geometric view of PCA, rather than to Hotelling’s
variance-based approach.

Caussinus’s (1986) second type of model introduces probability distri-
butions and corresponds to Hotelling’s definition. Once again, the ‘model’
can be generalized by allowing a choice of metric.

The third type of model described by Caussinus is the so-called fixed
effects model (see also Esposito (1998)). In this model we assume that
the rows x1,x2, . . . ,xn of X are independent random variables, such that
E(xi) = zi, where zi lies in a q-dimensional subspace, Fq. Furthermore,
if ei = xi − zi, then E(ei) = 0 and var(ei) = σ2

wi
Γ, where Γ is a positive

definite symmetric matrix and the wi are positive scalars whose sum is 1.
Both Γ and the wi are assumed to be known, but σ2, the zi and the
subspace Fq all need to be estimated. This is done by minimizing

n∑

i=1

wi ‖xi − zi‖2
M , (3.9.1)
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where M denotes a metric (see Section 14.2.2) and may be related to Γ.
This statement of the model generalizes the usual form of PCA, for which
wi = 1

n , i = 1, 2, . . . , n and M = Ip, to allow different weights on the ob-
servations and a choice of metric. When M = Γ−1, and the distribution of
the xi is multivariate normal, the estimates obtained by minimizing (3.9.1)
are maximum likelihood estimates (Besse, 1994b). An interesting aspect of
the fixed effects model is that it moves away from the idea of a sample of
identically distributed observations whose covariance or correlation struc-
ture is to be explored, to a formulation in which the variation among the
means of the observations is the feature of interest.

Tipping and Bishop (1999a) describe a model in which column-centred
observations xi are independent normally distributed random variables
with zero means and covariance matrix BB′ + σ2Ip, where B is a (p × q)
matrix. We shall see in Chapter 7 that this is a special case of a factor
analysis model. The fixed effects model also has links to factor analysis
and, indeed, de Leeuw (1986) suggests in discussion of Caussinus (1986)
that the model is closer to factor analysis than to PCA. Similar models
date back to Young (1941).

Tipping and Bishop (1999a) show that, apart from a renormalization of
columns, and the possibility of rotation, the maximum likelihood estimate
of B is the matrix Aq of PC coefficients defined earlier (see also de Leeuw
(1986)). The MLE for σ2 is the average of the smallest (p − q) eigenval-
ues of the sample covariance matrix S. Tipping and Bishop (1999a) fit
their model using the EM algorithm (Dempster et al. (1977)), treating the
unknown underlying components as ‘missing values.’ Clearly, the compli-
cation of the EM algorithm is not necessary once we realise that we are
dealing with PCA, but it has advantages when the model is extended to
cope with genuinely missing data or to mixtures of distributions (see Sec-
tions 13.6, 9.2.3). Bishop (1999) describes a Bayesian treatment of Tipping
and Bishop’s (1999a) model. The main objective in introducing a prior dis-
tribution for B appears to be as a means of deciding on its dimension q
(see Section 6.1.5).

Roweis (1997) also uses the EM algorithm to fit a model for PCA. His
model is more general than Tipping and Bishop’s, with the error covariance
matrix allowed to take any form, rather than being restricted to σ2Ip. In
this respect it is more similar to the fixed effects model with equal weights,
but differs from it by not specifying different means for different observa-
tions. Roweis (1997) notes that a full PCA, with all p PCs, is obtained
from his model in the special case where the covariance matrix is σ2Ip and
σ2 → 0. He refers to the analysis based on Tipping and Bishop’s (1999a)
model with σ2 > 0 as sensible principal component analysis.

Martin (1988) considers another type of probability-based PCA, in which
each of the n observations has a probability distribution in p-dimensional
space centred on it, rather than being represented by a single point. In
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the one non-trivial example considered by Martin (1988), the distributions
are identical for each observation and spherical, so that the underlying
covariance matrix has the form Σ + σ2Ip. Lynn and McCulloch (2000) use
PCA to estimate latent fixed effects in a generalized linear model, and de
Falguerolles (2000) notes that PCA can be viewed as a special case of the
large family of generalized bilinear models.

Although PCA is a largely descriptive tool, it can be argued that build-
ing a model gives a better understanding of what the technique does, helps
to define circumstances in which it would be inadvisable to use it, and
suggests generalizations that explore the structure of a data set in a more
sophisticated way. We will see how either the fixed effects model or Tip-
ping and Bishop’s (1999a) model can be used in deciding how many PCs
to retain (Section 6.1.5); in examining mixtures of probability distributions
(Section 9.2.3); in a robust version of PCA (Section 10.4); in analysing func-
tional data (Section 12.3.4); in handling missing data (Section 13.6); and in
generalizations of PCA (Section 14.1, 14.2). One application that belongs
in the present chapter is described by Ferré (1995a). Here µ̂1, µ̂2, . . . , µ̂k

are estimates, derived from k samples of sizes n1, n2, . . . , nk of vectors of p
parameters µ1,µ2, . . . ,µk. Ferré (1995a) proposes estimates that minimize
an expression equivalent to (3.9.1) in which wi = ni

n where n =
∑k

i=1 ni;
xi, zi are replaced by µi, µ̂i where µ̂i is a projection onto an optimal q-
dimensional space; and M is chosen to be S−1 where S is an estimate of
the common covariance matrix for the data from which µ1,µ2, . . . ,µk are
estimated. The properties of such estimators are investigated in detail by
Ferré (1995a)
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4
Principal Components as a Small
Number of Interpretable Variables:
Some Examples

The original purpose of PCA was to reduce a large number (p) of variables
to a much smaller number (m) of PCs whilst retaining as much as possible
of the variation in the p original variables. The technique is especially useful
if m � p and if the m PCs can be readily interpreted.

Although we shall see in subsequent chapters that there are many other
ways of applying PCA, the original usage as a descriptive, dimension-
reducing technique is probably still the most prevalent single application.
This chapter simply introduces a number of examples from several different
fields of application where PCA not only reduces the dimensionality of the
problem substantially, but has PCs which are easily interpreted. Graphical
representations of a set of observations with respect to the m retained PCs
and discussion of how to choose an appropriate value of m are deferred
until Chapters 5 and 6, respectively.

Of course, if m is very much smaller than p, then the reduction of dimen-
sionality alone may justify the use of PCA, even if the PCs have no clear
meaning, but the results of a PCA are much more satisfying if intuitively
reasonable interpretations can be given to some or all of the m retained
PCs.

Each section of this chapter describes one example in detail, but other
examples in related areas are also mentioned in most sections. Some of the
examples introduced in this chapter are discussed further in subsequent
chapters; conversely, when new examples are introduced later in the book,
an attempt will be made to interpret the first few PCs where appropriate.
The examples are drawn from a variety of fields of application, demon-
strating the fact that PCA has been found useful in a very large number
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of subject areas, of which those illustrated in this book form only a subset.
It must be emphasized that although in many examples the PCs can be

readily interpreted, this is by no means universally true. There is no rea-
son, a priori, why a mathematically derived linear function of the original
variables (which is what the PCs are) should have a simple interpreta-
tion. It is remarkable how often it seems to be possible to interpret the
first few PCs, though it is probable that some interpretations owe a lot
to the analyst’s ingenuity and imagination. Careful thought should go into
any interpretation and, at an earlier stage, into the choice of variables and
whether to transform them. In some circumstances, transformation of vari-
ables before analysis may improve the chances of a simple interpretation
(see Sections 13.2, 13.3, 14.1 and 14.2). Conversely, the arbitrary inclusion
of logarithms, powers, ratios, etc., of the original variables can make it un-
likely that any simple interpretation will be found. Further discussion of
the difficulties of interpretation, and of some alternative approaches, will
be given in Chapter 11.

Many interesting applications have appeared since the first edition of this
book, and some will be discussed in detail later in this edition. However,
in the current chapter the original selection of examples, which illustrates
a nice range of applications, has been kept. Extra references are given, but
no new examples are discussed in detail. Texts such as Jackson (1991), Krz-
anowski (1988), Krzanowski and Marriott (1994) and Rencher (1995) are
useful sources for additional examples. A non-exhaustive list of disciplines
in which PCA has been applied was given at the end of Chapter 1.

4.1 Anatomical Measurements

One type of application where PCA has been found useful is identification
of the most important sources of variation in anatomical measurements for
various species. Typically, a large number of measurements are made on
individuals of a species, and a PCA is done. The first PC almost always
has positive coefficients for all variables and simply reflects overall ‘size’ of
the individuals. Later PCs usually contrast some of the measurements with
others, and can often be interpreted as defining certain aspects of ‘shape’
that are important for the species. Blackith and Reyment (1971, Chap-
ter 12) mention applications to squirrels, turtles, ammonites, foraminifera
(marine microorganisms) and various types of insects. The analysis of size
and shape is a large topic in its own right, and will discussed in greater
detail in Section 13.2. Here a small data set is examined in which seven
measurements were taken for a class of 28 students (15 women, 13 men).
The seven measurements are circumferences of chest, waist, wrist and head,
lengths of hand and forearm, and overall height. A similar data set for a
different group of students was introduced in Chapter 1.
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Table 4.1. First three PCs: student anatomical measurements.

Component number 1 2 3
Women

Hand 0.33 0.56 0.03
Wrist 0.26 0.62 0.11
Height 0.40 −0.44 −0.00
Forearm






Coefficients 0.41 −0.05 −0.55
Head 0.27 −0.19 0.80
Chest 0.45 −0.26 −0.12
Waist 0.47 0.03 −0.03

Eigenvalue 3.72 1.37 0.97

Cumulative percentage
of total variation 53.2 72.7 86.5

Men
Hand 0.23 0.62 0.64
Wrist 0.29 0.53 −0.42
Height 0.43 −0.20 0.04
Forearm






Coefficients 0.33 −0.53 0.38
Head 0.41 −0.09 −0.51
Chest 0.44 0.08 −0.01
Waist 0.46 −0.07 0.09

Eigenvalue 4.17 1.26 0.66

Cumulative percentage
of total variation 59.6 77.6 87.0

The PCA was done on the correlation matrix, even though it could be
argued that, since all measurements are made in the same units, the co-
variance matrix might be more appropriate (see Sections 2.3 and 3.3). The
correlation matrix was preferred because it was desired to treat all variables
on an equal footing: the covariance matrix gives greater weight to larger,
and hence more variable, measurements, such as height and chest girth, and
less weight to smaller measurements such as wrist girth and hand length.

Some of the results of the PC analyses, done separately for women and
men, are given in Tables 4.1 and 4.2.

It can be seen that the form of the first two PCs is similar for the two
sexes, with some similarity, too, for the third PC. Bearing in mind the small
sample sizes, and the consequent large sampling variation in PC coefficients,
it seems that the major sources of variation in the measurements, as given
by the first three PCs, are similar for each sex. A combined PCA using all 28
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Table 4.2. Simplified version of the coefficients in Table 4.1.

Component number 1 2 3
Women

Hand + +
Wrist + +
Height + −
Forearm + −
Head + (−) +
Chest + (−)
Waist +

Men
Hand + + +
Wrist + + −
Height + (−)
Forearm + − +
Head + −
Chest +
Waist +

observations therefore seems appropriate, in order to get better estimates
of the first three PCs. It is, of course, possible that later PCs are different
for the two sexes, and that combining all 28 observations will obscure such
differences. However, if we are interested solely in interpreting the first few,
high variance, PCs, then this potential problem is likely to be relatively
unimportant.

Before we attempt to interpret the PCs, some explanation of Table 4.2
is necessary. Typically, computer packages that produce PCs give the co-
efficients to several decimal places. When we interpret PCs, as with other
types of tabular data, it is usually only the general pattern of the coeffi-
cients that is really of interest, not values to several decimal places, which
may give a false impression of precision. Table 4.1 gives only two decimal
places and Table 4.2 simplifies still further. A + or − in Table 4.2 indicates
a coefficient whose absolute value is greater than half the maximum coeffi-
cient (again in absolute value) for the relevant PC; the sign of the coefficient
is also indicated. Similarly, a (+) or (−) indicates a coefficient whose ab-
solute value is between a quarter and a half of the largest absolute value
for the PC of interest. There are, of course, many ways of constructing a
simplified version of the PC coefficients in Table 4.1. For example, another
possibility is to rescale the coefficients in each PC so that the maximum
value is ±1, and tabulate only the values of the coefficients, rounded to
one decimal place whose absolute values are above a certain cut-off, say 0.5
or 0.7. Values of coefficients below the cut-off are omitted, leaving blank
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spaces, as in Table 4.2. Some such simple representation is often helpful
in interpreting PCs, particularly if a PCA is done on a large number of
variables.

Sometimes a simplification such as that given in Table 4.2 may be rather
too extreme, and it is therefore advisable to present the coefficients rounded
to one or two decimal places as well. Principal components with rounded
coefficients will no longer be optimal, so that the variances of the first few
will tend to be reduced, and exact orthogonality will be lost. However, it
has been shown (Bibby, 1980; Green, 1977) that fairly drastic rounding
of coefficients makes little difference to the variances of the PCs (see Sec-
tion 10.3). Thus, presentation of rounded coefficients will still give linear
functions of x with variances very nearly as large as those of the PCs, while
at the same time easing interpretations.

It must be stressed that interpretation of PCs is often more subtle than
is generally realised. Simplistic interpretation can be misleading. As well as
truncation or rounding of PC coefficients, a number of other ideas are avail-
able to aid interpretation. Some of these involve manipulation of the PC
coefficients themselves, whilst others are based on alternative, but similar,
techniques to PCA. In this chapter we concentrate on simple interpreta-
tion. Its dangers, and various alternative ways of tackling interpretation,
are discussed in Chapter 11.

Turning now to the interpretation of the PCs in the present example,
the first PC clearly measures overall ‘size’ for both sexes, as would be ex-
pected (see Section 3.8), as all the correlations between the seven variables
are positive. It accounts for 53% (women) or 60% (men) of the total varia-
tion. The second PC for both sexes contrasts hand and wrist measurements
with height, implying that, after overall size has been accounted for, the
main source of variation is between individuals with large hand and wrist
measurements relative to their heights, and individuals with the converse
relationship. For women, head and chest measurements also have some con-
tribution to this component, and for men the forearm measurement, which
is closely related to height, partially replaces height in the component.
This second PC accounts for slightly less than 20% of the total variation,
for both sexes.

It should be noted that the sign of any PC is completely arbitrary. If
every coefficient in a PC, zk = a′

kx, has its sign reversed, the variance of zk

is unchanged, and so is the orthogonality of ak with all other eigenvectors.
For example, the second PC for men as recorded in Tables 4.1 and 4.2 has
large positive values for students with large hand and wrist measurements
relative to their height. If the sign of a2, and hence z2, is reversed, the
large positive values now occur for students with small hand and wrist
measurements relative to height. The interpretation of the PC remains the
same, even though the roles of ‘large’ and ‘small’ are reversed.

The third PCs differ more between the sexes but nevertheless retain
some similarity. For women it is almost entirely a contrast between head
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and forearm measurements; for men these two measurements are also im-
portant, but, in addition, hand and wrist measurements appear with the
same signs as forearm and head, respectively. This component contributes
9%–14% of total variation.

Overall, the first three PCs account for a substantial proportion of to-
tal variation, 86.5% and 87.0% for women and men respectively. Although
discussion of rules for deciding how many PCs to retain is deferred un-
til Chapter 6, intuition strongly suggests that these percentages are large
enough for three PCs to give an adequate representation of the data.

A similar but much larger study, using seven measurements on 3000 crim-
inals, was reported by Macdonell (1902) and is quoted by Maxwell (1977).
The first PC again measures overall size, the second contrasts head and
limb measurements, and the third can be readily interpreted as measuring
the shape (roundness versus thinness) of the head. The percentages of total
variation accounted for by each of the first three PCs are 54.3%, 21.4% and
9.3%, respectively, very similar to the proportions given in Table 4.1.

The sample size (28) is rather small in our example compared to that of
Macdonnell’s (1902), especially when the sexes are analysed separately, so
caution is needed in making any inference about the PCs in the population
of students from which the sample is drawn. However, the same variables
have been measured for other classes of students, and similar PCs have
been found (see Sections 5.1 and 13.5). In any case, a description of the
sample, rather than inference about the underlying population, is often
what is required, and the PCs describe the major directions of variation
within a sample, regardless of the sample size.

4.2 The Elderly at Home

Hunt (1978) described a survey of the ‘Elderly at Home’ in which values
of a large number of variables were collected for a sample of 2622 elderly
individuals living in private households in the UK in 1976. The variables
collected included standard demographic information of the type found in
the decennial censuses, as well as information on dependency, social contact,
mobility and income. As part of a project carried out for the Departments
of the Environment and Health and Social Security, a PCA was done on a
subset of 20 variables from Hunt’s (1978) data. These variables are listed
briefly in Table 4.3. Full details of the variables, and also of the project as
a whole, are given by Jolliffe et al. (1982a), while shorter accounts of the
main aspects of the project are available in Jolliffe et al. (1980, 1982b). It
should be noted that many of the variables listed in Table 4.3 are discrete,
or even dichotomous.

Some authors suggest that PCA should only be done on continuous
variables, preferably with normal distributions. However, provided that
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Table 4.3. Variables used in the PCA for the elderly at home.

1. Age 11. Separate kitchen
2. Sex 12. Hot water
3. Marital status 13. Car or van ownership
4. Employed 14. Number of elderly in household
5. Birthplace 15. Owner occupier
6. Father’s birthplace 16. Council tenant
7. Length of residence in 17. Private tenant

present household 18. Lives alone
8. Density: persons per room 19. Lives with spouse or sibling
9. Lavatory 20. Lives with younger generation

10. Bathroom

inferential techniques that depend on assumptions such as multivariate
normality (see Section 3.7) are not invoked, there is no real necessity for
the variables to have any particular distribution. Admittedly, correlations
or covariances, on which PCs are based, have particular relevance for nor-
mal random variables, but they are still valid for discrete variables provided
that the possible values of the discrete variables have a genuine interpreta-
tion. Variables should not be defined with more than two possible values,
unless the values have a valid meaning relative to each other. If 0, 1, 3 are
possible values for a variable, then the values 1 and 3 must really be twice
as far apart as the values 0 and 1. Further discussion of PCA and related
techniques for discrete variables is given in Section 13.1.

It is widely accepted that old people who have only just passed retirement
age are different from the ‘very old,’ so that it might be misleading to deal
with all 2622 individuals together. Hunt (1978), too, recognized possible
differences between age groups by taking a larger proportion of elderly
whose age was 75 or over in her sample—compared to those between 65
and 74—than is present in the population as a whole. It was therefore
decided to analyse the two age groups 65–74 and 75+ separately, and part
of each analysis consisted of a PCA on the correlation matrices for the
20 variables listed in Table 4.3. It would certainly not be appropriate to
use the covariance matrix here, where the variables are of several different
types.

It turned out that for both age groups as many as 11 PCs could be
reasonably well interpreted, in the sense that not too many coefficients
were far from zero. Because there are relatively few strong correlations
among the 20 variables, the effective dimensionality of the 20 variables
is around 10 or 11, a much less substantial reduction than occurs when
there are large correlations between most of the variables (see Sections 4.3
and 6.4, for example). Eleven PCs accounted for 85.0% and 86.6% of the
total variation for the 65–74 and 75+ age groups, respectively.
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Table 4.4. Interpretations for the first 11 PCs for the ‘elderly at home.’

65–74 75+

Component 1 (16.0%; 17.8%)∗
Contrasts single elderly living alone with
others.

Contrasts single elderly, particularly fe-
male, living alone with others.

Component 2 (13.0%; 12.9%)
Contrasts those lacking basic ameni-
ties (lavatory, bathroom, hot water)
in private rented accommodation with
others.

Contrasts those lacking basic amenities
(lavatory, bathroom, hot water), who
also mainly lack a car and are in private,
rented accommodation, not living with
the next generation with others.

Component 3 (9.5%; 10.1%)

Contrasts council tenants, living in
crowded conditions with others.

Contrasts those who have a car, do not
live in council housing (and tend to live
in own accommodation) and tend to live
with the next generation with others.

Component 4 (9.2%; 9.2%)
Contrasts immigrants living with next
generation with others. There are ele-
ments here of overcrowding and posses-
sion of a car.

Contrasts council tenants, mainly immi-
grant, living in crowded conditions with
others.

Component 5 (7.3%; 8.3%)
Contrasts immigrants not living with
next generation, with others. They tend
to be older, fewer employed, fewer with
a car, than in component 4.

Contrasts immigrants with others.

Component 6 (6.7%; 5.6%)
Contrasts the younger employed peo-
ple (tendency to be male), in fairly
crowded conditions, often living with
next generation with others.

Contrasts younger (to a certain extent,
male) employed with others.

Component 7 (5.6%; 5.1%)
Contrasts long-stay people with a kitch-
en with others.

Contrasts those lacking kitchen facilities
with others. (NB: 1243 out of 1268 have
kitchen facilities)

Component 8 (5.0%; 4.9%)
Contrasts women living in private
accommodation with others.

Contrasts private tenants with others.

Component 9 (4.6%; 4.5%)
Contrasts old with others. Contrasts long-stay, mainly unemployed,

individuals with others.

Component 10 (4.4%; 4.4%)
Contrasts long-stay individuals, without
a kitchen, with others.

Contrasts very old with others.

Component 11 (3.7%; 3.8,%)
Contrasts employed (mainly female)
with others.

Contrasts men with women.

∗ The two percentages are the percentages of variation accounted for by the relevant PC
for the 65–74 and 75+ age groups, respectively.
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Interpretations of the first 11 PCs for the two age groups are given in
Table 4.4, together with the percentage of total variation accounted for by
each PC. The variances of corresponding PCs for the two age groups differ
very little, and there are similar interpretations for several pairs of PCs, for
example the first, second, sixth and eighth. In other cases there are groups
of PCs involving the same variables, but in different combinations for the
two age groups, for example the third, fourth and fifth PCs. Similarly, the
ninth and tenth PCs involve the same variables for the two age groups, but
the order of the PCs is reversed.

Principal component analysis has also been found useful in other de-
mographic studies, one of the earliest being that described by Moser and
Scott (1961). In this study, there were 57 demographic variables measured
for 157 British towns. A PCA of these data showed that, unlike the elderly
data, dimensionality could be vastly reduced; there are 57 variables, but
as few as four PCs account for 63% of the total variation. These PCs also
have ready interpretations as measures of social class, population growth
from 1931 to 1951, population growth after 1951, and overcrowding.

Similar studies have been done on local authority areas in the UK by
Imber (1977) and Webber and Craig (1978) (see also Jolliffe et al. (1986)).
In each of these studies, as well as Moser and Scott (1961) and the ‘elderly at
home’ project, the main objective was to classify the local authorities, towns
or elderly individuals, and the PCA was done as a prelude to, or as part
of, cluster analysis. The use of PCA in cluster analysis is discussed further
in Section 9.2, but the PCA in each study mentioned here provided useful
information, separate from the results of the cluster analysis, For example,
Webber and Craig (1978) used 40 variables, and they were able to interpret
the first four PCs as measuring social dependence, family structure, age
structure and industrial employment opportunity. These four components
accounted for 29.5%, 22.7%, 12.0% and 7.4% of total variation, respectively,
so that 71.6% of the total variation is accounted for in four interpretable
dimensions.

4.3 Spatial and Temporal Variation in
Atmospheric Science

Principal component analysis provides a widely used method of describing
patterns of pressure, temperature, or other meteorological variables over a
large spatial area. For example, Richman (1983) stated that, over the pre-
vious 3 years, more than 60 applications of PCA, or similar techniques, had
appeared in meteorological/climatological journals. More recently, 53 out
of 215 articles in the 1999 and 2000 volumes of the International Journal of
Climatology used PCA in some form. No other statistical technique came
close to this 25% rate of usage. The example considered in detail in this
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section is taken from Maryon (1979) and is concerned with sea level atmo-
spheric pressure fields, averaged over half-month periods, for most of the
Northern Hemisphere. There were 1440 half-months, corresponding to 60
years between 1900 and 1974, excluding the years 1916–21, 1940–48 when
data were inadequate. The pressure fields are summarized by estimating
average pressure at p = 221 grid points covering the Northern Hemisphere
so that the data set consists of 1440 observations on 221 variables. Data
sets of this size, or larger, are commonplace in atmospheric science, and
a standard procedure is to replace the variables by a few large-variance
PCs. The eigenvectors that define the PCs are often known as empirical
orthogonal functions (EOFs) in the meteorological or climatological liter-
ature, and the values of the PCs (the PC scores) are sometimes referred
to as amplitude time series (Rasmusson et al., 1981) or, confusingly, as
coefficients (Maryon, 1979) or EOF coefficients (von Storch and Zwiers,
1999, Chapter 13). Richman (1986) distinguishes between EOF analysis
and PCA, with the former having unit-length eigenvectors and the latter
having eigenvectors renormalized, as in (2.3.2), to have lengths propor-
tional to their respective eigenvalues. Other authors, such as von Storch
and Zwiers (1999) treat PCA and EOF analysis as synonymous.

For each PC, there is a coefficient (in the usual sense of the word), or
loading, for each variable, and because variables are gridpoints (geograph-
ical locations) it is possible to plot each loading (coefficient) on a map at
its corresponding gridpoint, and then draw contours through geographical
locations having the same coefficient values. The map representation can
greatly aid interpretation, as is illustrated in Figure 4.1.

This figure, which comes from Maryon (1979), gives the map of coeffi-
cients, arbitrarily renormalized to give ‘round numbers’ on the contours,
for the second PC from the pressure data set described above, and is much
easier to interpret than would be the corresponding table of 221 coefficients.
Half-months having large positive scores for this PC will tend to have high
values of the variables, that is high pressure values, where coefficients on the
map are positive, and low values of the variables (low pressure values) at
gridpoints where coefficients are negative. In Figure 4.1 this corresponds to
low pressure in the polar regions and high pressure in the subtropics, lead-
ing to situations where there is a strong westerly flow in high latitudes at
most longitudes. This is known as strong zonal flow, a reasonably frequent
meteorological phenomenon, and the second PC therefore contrasts half-
months with strong zonal flow with those of opposite character. Similarly,
the first PC (not shown) has one of its extremes identified as corresponding
to an intense high pressure area over Asia and such situations are again a
fairly frequent occurrence, although only in winter.

Several other PCs in Maryon’s (1979) study can also be interpreted as
corresponding to recognizable meteorological situations, especially when
coefficients are plotted in map form. The use of PCs to summarize pres-
sure fields and other meteorological or climatological fields has been found
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Figure 4.1. Graphical representation of the coefficients in the second PC for sea
level atmospheric pressure data.

to be so valuable that it is almost routine. For example, Craddock and
Flood (1969) find PCs with ready interpretations for Northern Hemispheric
500 mb geopotential surfaces, Craddock and Flintoff (1970) do the same for
1000 mb surfaces and 1000–500 mb thickness, Overland and Preisendorfer
(1982) interpret the first three PCs for data on spatial distributions of cy-
clone frequencies in the Bering Sea, Wigley et al. (1984) discuss PCs for
European precipitation data, and Folland et al. (1985) find interpretable
patterns in PCs of worldwide sea surface temperature anomalies. Some
patterns recur in different data sets. For example, Figure 4.1 could be
interpreted as the North Atlantic Oscillation (NAO), which reflects the
strength of the zonal flow in the North Atlantic and neighbouring areas, as
measured by the pressure difference between the Azores and Iceland. This
pattern, and a small number of others, notably ENSO (El Niño–Southern
Oscillation), have been identified as major modes of climate variability in
different parts of the world. They have been studied extensively (see, for
example, Ambaum et al. (2001) for a discussion of the NAO).
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It is not always the case that interpretation is straightforward. In atmo-
spheric science the PCs or EOFS are often rotated in an attempt to find
more clearly interpretable patterns. We return to this topic in Chapter 11.

Not only are the first few PCs readily interpreted in many meteoro-
logical and climatological examples, possibly after rotation, but they also
frequently enable a considerable reduction to be made in the dimensions of
the data set. In Maryon’s (1979) study, for example, there are initially 221
variables, but 16 PCs account for over 90% of the total variation. Nor is
this due to any disparity between variances causing a few dominant PCs;
size of variance is fairly similar for all 221 variables.

Maryon’s (1979) analysis was for a covariance matrix, which is reasonable
since all variables are measured in the same units (see Sections 2.3 and 3.3).
However, some atmospheric scientists advocate using correlation, rather
than covariance, matrices so that patterns of spatial correlation can be
detected without possible domination by the stations and gridpoints with
the largest variances (see Wigley et al. (1984)).

It should be clear from this section that meteorologists and climatolo-
gists have played a leading role in applying PCA. In addition, they have
developed many related methods to deal with the peculiarities of their
data, which often have correlation structure in both time and space. A
substantial part of Chapter 12 is devoted to these developments.

4.4 Properties of Chemical Compounds

The main example given in this section is based on a subset of data given
by Hansch et al. (1973); the PCA was described by Morgan (1981). Seven
properties (variables) were measured for each of 15 chemical substituents;
the properties and substituents are listed in Table 4.5. Some of the results of
a PCA based on the correlation matrix for these data are given in Table 4.6.

The aim of the work of Hansch et al. (1973), and of much subsequent re-
search in quantitative structure–activity relationships (QSAR), is to relate
aspects of the structure of chemicals to their physical properties or activi-
ties so that ‘new’ chemicals can be manufactured whose activities may be
predicted in advance. Although PCA is less evident recently in the exten-
sive QSAR literature, it appeared in a number of early papers on QSAR.
For example, it was used in conjunction with regression (see Chapter 8
and Mager (1980a)), and as a discriminant technique (see Section 9.1 and
Mager (1980b)). Here we look only at the reduction of dimensionality and
interpretations obtained by Morgan (1981) in this analysis of Hansch et
al.’s (1973) data. The first two PCs in Table 4.6 account for 79% of the
total variation; the coefficients for each have a moderately simple structure.
The first PC is essentially an average of all properties except π and MR,
whereas the most important contribution to the second PC is an average of
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Table 4.5. Variables and substituents considered by Hansch et al. (1973).

(a) Variables

1. π Hansch’s measure of lipophylicity

2. F
3. R

}
measures of electronic effect: F denotes ‘field’; R denotes resonance

4. MR molar refraction

5. σm

6. σp

}
further measures of electronic effect

7. MW molecular weight

(b) Substituents

1. Br 2. Cl 3. F 4. I 5. CF3

6. CH3 7. C2H5 8. C3H7 9. C4H2 10. OH
11. NH2 12. CH2OH 13. SO2CH3 14. SOCH3 15. SO2(NH2)

Table 4.6. First four PCs of chemical data from Hansch et al. (1973).

Component number 1 2 3 4
π 0.15 0.49 0.70 −0.45
F −0.42 −0.36 0.34 0.13
R −0.37 0.30 −0.44 −0.54
MR






Coefficients −0.16 0.62 −0.23 0.49
σm −0.48 −0.24 0.19 −0.03
σp −0.50 0.01 −0.11 −0.30
MW −0.40 0.30 0.31 0.40
Eigenvalue 3.79 1.73 0.74 0.59
Cumulative percentage

of total variation 54.1 78.8 89.4 97.8



76 4. Interpreting Principal Components: Examples

π and MR. Morgan (1981) also reports PCAs for a number of other similar
data sets, in several of which the PCs provide useful interpretations.

4.5 Stock Market Prices

The data in this example are the only set in this chapter that previously
appeared in a textbook (Press, 1972, Section 9.5.2). Both the data, and
the PCs have interesting structures. The data, which were originally anal-
ysed by Feeney and Hester (1967), consist of 50 quarterly measurements
between 1951 and 1963 of US stock market prices for the 30 industrial
stocks making up the Dow-Jones index at the end of 1961. Table 4.7 gives,
in the simplified form described for Table 4.2, the coefficients of the first
two PCs, together with the percentage of variation accounted for by each
PC, for both covariance and correlation matrices.

Looking at the PCs for the correlation matrix, the first is a ‘size’ com-
ponent, similar to those discussed in Section 4.1. It reflects the fact that
all stock prices rose fairly steadily during the period 1951–63, with the ex-
ception of Chrysler. It accounts for roughly two-thirds of the variation in
the 30 variables. The second PC can be interpreted as a contrast between
‘consumer’ and ‘producer’ stocks. ‘Consumer’ companies are those that
mainly supply goods or services directly to the consumer, such as AT&T,
American Tobacco, General Foods, Proctor and Gamble, Sears, and Wool-
worth, whereas ‘producer’ companies sell their goods or services mainly to
other companies, and include Alcoa, American Can, Anaconda, Bethlehem,
Union Carbide, and United Aircraft.

The PCs for the covariance matrix can be similarly interpreted, albeit
with a change of sign for the second component, but the interpretation
is slightly confounded, especially for the first PC, by the different-sized
variances for each variable.

Feeney and Hester (1967) also performed a number of other PCAs using
these and related data. In one analysis, they removed a linear trend from the
stock prices before calculating PCs, and found that they had eliminated the
size (trend) PC, and that the first PC was now very similar in form to the
second PC in the original analyses. They also calculated PCs based on ‘rate-
of-return’ rather than price, for each stock, and again found interpretable
PCs. Finally, PCs were calculated for subperiods of 12 years of data in
order to investigate the stability of the PCs, a topic that is discussed more
generally in Section 10.3.

To conclude this example, note that it is of a special type, as each variable
is a time series, in which consecutive observations are not independent.
Further discussion of PCA for time series data is given in Chapter 12. A
possible technique for finding PCs that are free of the trend in a vector of
time series, which is more general than the technique noted above for the
present example, is described in Section 14.3.
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Table 4.7. Simplified coefficients for the first two PCs: stock market prices.

Correlation matrix Covariance matrix
Component number 1 2 1 2
Allied Chemical + (−)
Alcoa + − (+) +
American Can + −
AT&T + + (+) −
American Tobacco + +
Anaconda (+) − +
Bethlehem + − (+)
Chrysler (−) (−)
Dupont + (−) + +
Eastman Kodak + (+) + −
Esso + (−)
General Electric + (+)
General Foods + + (+) −
General Motors +
Goodyear +
International Harvester + (+)
International Nickel + (+)
International Paper + (−)
Johns–Manville +
Owens–Illinois + (+)
Proctor and Gamble + + (+) −
Sears + + (+) −
Standard Oil (Cal.) +
Swift (+) (−)
Texaco + (+) (+) (−)
Union Carbide + (−) (+) (+)
United Aircraft + − +
US Steel + (−) (+) (+)
Westinghouse +
Woolworth + + (−)

Percentage of variation
accounted for 65.7 13.7 75.8 13.9



5
Graphical Representation of Data
Using Principal Components

The main objective of a PCA is to reduce the dimensionality of a set of
data. This is particularly advantageous if a set of data with many variables
lies, in reality, close to a two-dimensional subspace (plane). In this case the
data can be plotted with respect to these two dimensions, thus giving a
straightforward visual representation of what the data look like, instead of
appearing as a large mass of numbers to be digested. If the data fall close
to a three-dimensional subspace it is still possible to gain a good visual
impression of the data using interactive computer graphics. Even with a
few more dimensions it is possible, with some degree of ingenuity, to get
a ‘picture’ of the data (see, for example, Chapters 10–12 (by Tukey and
Tukey) in Barnett (1981)) although we shall concentrate almost entirely
on two-dimensional representations in the present chapter.

If a good representation of the data exists in a small number of dimen-
sions then PCA will find it, since the first q PCs give the ‘best-fitting’
q-dimensional subspace in the sense defined by Property G3 of Section 3.2.
Thus, if we plot the values for each observation of the first two PCs, we
get the best possible two-dimensional plot of the data (similarly for three
or more dimensions). The first section of this chapter simply gives exam-
ples illustrating this procedure. We largely defer until the next chapter the
problem of whether or not two PCs are adequate to represent most of the
variation in the data, or whether we need more than two.

There are numerous other methods for representing high-dimensional
data in two or three dimensions and, indeed, the book by Everitt (1978)
is almost entirely on the subject, as are the conference proceedings edited
by Wang (1978) and by Barnett (1981) (see also Chapter 5 of the book
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by Chambers et al. (1983)). A more recent thorough review of graphics
for multivariate data is given by Carr (1998). A major advance has been
the development of dynamic multivariate graphics, which Carr (1998) de-
scribes as part of ‘the visual revolution in computer science.’ The techniques
discussed in the present chapter are almost exclusively static, although
some could be adapted to be viewed dynamically. Only those graph-
ics that have links with, or can be used in conjunction with, PCA are
included.

Section 5.2 discusses principal coordinate analysis, which constructs low-
dimensional plots of a set of data from information about similarities or
dissimilarities between pairs of observations. It turns out that the plots
given by this analysis are equivalent to plots with respect to PCs in certain
special cases.

The biplot, described in Section 5.3, is also closely related to PCA. There
are a number of variants of the biplot idea, but all give a simultaneous
display of n observations and p variables on the same two-dimensional
diagram. In one of the variants, the plot of observations is identical to
a plot with respect to the first two PCs, but the biplot simultaneously
gives graphical information about the relationships between variables. The
relative positions of variables and observations, which are plotted on the
same diagram, can also be interpreted.

Correspondence analysis, which is discussed in Section 5.4, again gives
two-dimensional plots, but only for data of a special form. Whereas PCA
and the biplot operate on a matrix of n observations on p variables,
and principal coordinate analysis and other types of scaling or ordination
techniques use data in the form of a similarity or dissimilarity matrix, cor-
respondence analysis is used on contingency tables, that is, data classified
according to two categorical variables. The link with PCA is less straight-
forward than for principal coordinate analysis or the biplot, but the ideas
of PCA and correspondence analysis have some definite connections. There
are many other ordination and scaling methods that give graphical displays
of multivariate data, and which have increasingly tenuous links to PCA.
Some of these techniques are noted in Sections 5.2 and 5.4, and in Sec-
tion 5.5 some comparisons are made, briefly, between PCA and the other
techniques introduced in this chapter.

Another family of techniques, projection pursuit, is designed to find low-
dimensional representations of a multivariate data set that best display
certain types of structure such as clusters or outliers. Discussion of projec-
tion pursuit will be deferred until Chapters 9 and 10, which include sections
on cluster analysis and outliers, respectively.

The final section of this chapter describes some methods which have been
used for representing multivariate data in two dimensions when more than
two or three PCs are needed to give an adequate representation of the data.
The first q PCs can still be helpful in reducing the dimensionality in such
cases, even when q is much larger than 2 or 3.
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Finally, we note that as well as the graphical representations described
in the present chapter, we have already seen, in Section 4.3, one other type
of plot that uses PCs. This type of plot is rather specialized, but is used
extensively in atmospheric science. Related plots are discussed further in
Chapter 12.

5.1 Plotting Data with Respect to the First Two
(or Three) Principal Components

The idea here is simple: if a data set {x1,x2, . . . ,xn} has p variables, then
the observations can be plotted as points in p-dimensional space. If we wish
to plot the data in a ‘best-fitting’ q-dimensional subspace (q < p), where
‘best-fitting’ is defined, as in Property G3 of Section 3.2, as minimizing the
sum of squared perpendicular distances of x1,x2, . . . ,xn from the subspace,
then the appropriate subspace is defined by the first q PCs.

Two-dimensional plots are particularly useful for detecting patterns in
the data, and three-dimensional plots or models, though generally less easy
to interpret quickly, can sometimes give additional insights. If the data do
not lie close to a two- (or three-) dimensional subspace, then no two- (or
three-) dimensional plot of the data will provide an adequate represen-
tation, although Section 5.6 discusses briefly the use of indirect ways for
presenting the data in two dimensions in such cases. Conversely, if the data
are close to a q-dimensional subspace, then most of the variation in the
data will be accounted for by the first q PCs and a plot of the observations
with respect to these PCs will give a realistic picture of what the data
look like, unless important aspects of the data structure are concentrated
in the direction of low variance PCs. Plotting data sets with respect to
the first two PCs is now illustrated by two examples, with further illustra-
tions given, in conjunction with other examples, later in this chapter and
in subsequent chapters.

It should be noted that the range of structures that may be revealed by
plotting PCs is limited by the fact that the PCs are uncorrelated. Hence
some types of group structure or outlier patterns or non-linear relationships
between PCs, may be visible, but linear relationships between PCs are
impossible.

5.1.1 Examples

Two examples are given here that illustrate the sort of interpretation which
may be given to plots of observations with respect to their first two PCs.
These two examples do not reveal any strong, but previously unknown,
structure such as clusters; examples illustrating clusters will be presented
in Section 9.2. Nevertheless, useful information can still be gleaned from
the plots.
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Anatomical Measurements

The data presented here consist of the same seven anatomical measure-
ments as in the data set of Section 4.1, but for a different set of students,
this time comprising 11 women and 17 men. A PCA was done on the cor-
relation matrix for all 28 observations and, as in the analyses of Section 4.1
for each sex separately, the first PC is an overall measurement of size. The
second PC is a contrast between the head measurement and the other six
variables, and is therefore not particularly similar to any of the first three
PCs for the separate sexes found in Section 4.1, though it is closest to the
third component for the women. The difference between the second PC and
those from the earlier analyses may be partially due to the fact that the
sexes have been combined, but it is also likely to reflect some instability
in all but the first PC due to relatively small sample sizes. The first two
PCs for the present data account for 69% and 11% of the total variation,
respectively, so that a two-dimensional plot with respect to these PCs, re-
presenting 80% of the variation, gives a reasonably good approximation to
the relative positions of the observations in seven-dimensional space.

A plot of these data with respect to the first two PCs was given in
Figure 1.3, and it was noted that the first PC is successful in separating
the women from the men. It can also be seen in Figure 1.3 that there is one
clear outlier with respect to the second PC, seen at the bottom of the plot.
A second observation, at the left of the plot, is rather extreme on the first
PC. These two observations and other potential outliers will be discussed
further in Section 10.1. The observation at the bottom of the diagram has
such an extreme value for the second PC, roughly twice as large in absolute
terms as any other observation, that it could be mainly responsible for the
second PC taking the form that it does. This possibility will be discussed
further in Section 10.2.

Figures 5.1(a) and (b) are the same as Figure 1.3 except that super-
imposed on them are convex hulls for the two groups, men and women
(Figure 5.1(a)), and the minimum spanning tree (Figure 5.1(b)). Convex
hulls are useful in indicating the areas of a two-dimensional plot covered
by various subsets of observations. Here they confirm that, although the
areas covered by men and women overlap slightly, the two sexes largely
occupy different areas of the diagrams. The separation is mainly in terms
of the first PC (overall size) with very little differentiation between sexes
on the second PC. The plot therefore displays the unsurprising result that
the two groups of observations corresponding to the two sexes differ mainly
in terms of overall size.

It was noted above that the two-dimensional plot represents 80% of the
total variation of the 28 observations in seven-dimensional space. Percent-
age of total variation is an obvious measure of how good two-dimensional
representation is, but many of the other criteria that are discussed in Sec-
tion 6.1 could be used instead. Alternatively, an informal way of judging
the goodness-of-fit in two dimensions is to superimpose a minimum span-
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Figure 5.1. (a). Student anatomical measurements: plot of the first two PC for
28 students with convex hulls for men and women superimposed.

ning tree (MST) on the diagram, as in Figure 5.1(b). The MST is a set of
lines drawn between pairs of points such that

(i) each point is connected to every other point by a sequence of lines;

(ii) there are no closed loops;

(iii) the sum of ‘lengths’ of lines is minimized.

If the ‘lengths’ of the lines are defined as distances in seven-dimensional
space, then the corresponding MST will give an indication of the closeness-
of-fit of the two-dimensional representation. For example, it is seen that
observations 5 and 14, which are very close in two dimensions, are joined
via observation 17, and so must both be closer to observation 17 in seven-
dimensional space than to each other. There is therefore some distortion
in the two-dimensional representation in the vicinity of observations 5 and
14. Similar remarks apply to observations 12 and 23, and to the group of
observations 19, 22, 25, 27, 28. However, there appears to be little distortion
for the better-separated observations.
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Figure 5.1. (b). Student anatomical measurements: plot of the first two PCs for
28 students with minimum spanning tree superimposed.

Artistic Qualities of Painters

The second data set described in this section was analysed by Davenport
and Studdert-Kennedy (1972). It consists of a set of subjective mea-
surements of the artistic qualities ‘composition,’ ‘drawing,’ ‘colour’ and
‘expression’ for 54 painters. The measurements, on a scale from 0 to 20,
were compiled in France in 1708 by Roger de Piles for painters ‘of estab-
lished reputation.’ Davenport and Studdert-Kennedy (1972) give data for
56 painters, but for two painters one measurement is missing, so these
painters are omitted from the analysis.

Table 5.1 gives the variances and coefficients for the first two PCs based
on the correlation matrix for the 54 painters with complete data. The com-
ponents, and their contributions to the total variation, are very similar to
those found by Davenport and Studdert-Kennedy (1972) for the covari-
ance matrix. This strong similarity between the PCs for correlation and
covariance matrices is relatively unusual (see Section 3.3) and is due to the
near-equality of the variances for the four variables. The first component
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Table 5.1. First two PCs: artistic qualities of painters.

Component 1 Component 2
Composition 0.50 -0.49
Drawing 0.56 0.27





CoefficientsColour −0.35 −0.77

Expression 0.56 −0.31

Eigenvalue 2.27 1.04

Cumulative percentage of total variation 56.8 82.8

is interpreted by the researchers as an index of de Piles’ overall assessment
of the painters, although the negative coefficient for colour needs some ad-
ditional explanation. The form of this first PC could be predicted from the
correlation matrix. If the sign of the variable ‘colour’ is changed, then all
correlations in the matrix are positive, so that we would expect the first PC
to have positive coefficients for all variables after this redefinition of ‘colour’
(see Section 3.8). The second PC has its largest coefficient for colour, but
the other coefficients are also non-negligible.

A plot of the 54 painters with respect to the first two components is
given in Figure 5.2, and this two-dimensional display represents 82.8% of
the total variation. The main feature of Figure 5.2 is that painters of the
same school are mostly fairly close to each other. For example, the set of
the ten ‘Venetians’ {Bassano, Bellini, Veronese, Giorgione, Murillo, Palma
Vecchio, Palma Giovane, Pordenone, Tintoretto, Titian} are indicated on
the figure, and are all in a relatively small area at the bottom left of the
plot. Davenport and Studdert-Kennedy (1972) perform a cluster analysis
on the data, and display the clusters on a plot of the first two PCs. The
clusters dissect the data in a sensible looking manner, and none of them
has a convoluted shape on the PC plot. However, there is little evidence of
a strong cluster structure in Figure 5.2. Possible exceptions are a group of
three isolated painters near the bottom of the plot, and four painters at the
extreme left. The first group are all members of the ‘Seventeenth Century
School,’ namely Rembrandt, Rubens, and Van Dyck, and the second group
consists of three ‘Venetians,’ Bassano, Bellini, Palma Vecchio, together with
the ‘Lombardian’ Caravaggio. This data set will be discussed again in Sec-
tions 5.3 and 10.2, and the numbered observations on Figure 5.2 will be
referred to there. Further examples of the use of PCA in conjunction with
cluster analysis are given in Section 9.2.

Throughout this section there has been the suggestion that plots of the
first two PCs may reveal interesting structure in the data. This contradicts
the implicit assumption that the n observations are identically distributed
with a common mean and covariance matrix. Most ‘structures’ in the data
indicate that different observations have different means, and that PCA
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Figure 5.2. Artistic qualities of painters: plot of 54 painters with respect to their
first two PCs. The symbol × denotes member of the ‘Venetian’ school.

is looking for major directions of variation between means rather than
major directions of variation in a common distribution (de Falguerolles,
personal communication). This view is in line with the fixed effect model
of Section 3.9, and is discussed further in Section 5.3.

A variation of the simple plot of PC scores for the first two PCs is
proposed by Tarpey (2000). Lines are added to the plot, corresponding
to the directions of the first PC for two subsets of the data, derived by
dividing the full data set according to the sign of the first PC for the whole
data set. The idea is to indicate possible non-linearity in the data (see
Section 14.1.3).

5.2 Principal Coordinate Analysis

Principal coordinate analysis is a scaling or ordination method, sometimes
known as classical scaling. It was popularized by Gower (1966). Torgerson
(1952, 1958) discussed similar ideas, but did not point out the links be-
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tween principal coordinate analysis and PCA that were noted by Gower.
Like the more widely known non-metric multidimensional scaling (Kruskal,
1964a,b), the technique starts with a matrix of similarities or dissimilari-
ties between a set of observations, and aims to produce a low-dimensional
graphical plot of the data in such a way that distances between points in
the plot are close to the original dissimilarities. There are numerous scaling
techniques; Cox and Cox (2001) provide a good overview of many of them.

The starting point (an (n × n) matrix of (dis)similarities) of principal
coordinate analysis is different from that of PCA, which usually begins
with the (n×p) data matrix. However, in special cases discussed below the
two techniques give precisely the same low-dimensional representation. Fur-
thermore, PCA may be used to find starting configurations for the iterative
algorithms associated with non-metric multidimensional scaling (Davison,
1983, Chapters 5, 6). Before showing the equivalences between PCA and
principal coordinate analysis, we need first to describe principal coordinate
analysis in some detail.

Suppose that T is an (n × n) positive-semidefinite symmetric matrix of
similarities among a set of n observations. (Note that it is fairly standard
notation to use A, rather than T, here. However, we have avoided the
use of A in this context, as it is consistently taken to be the matrix of
PC coefficients in the current text.) From the spectral decomposition of T
(Property A3 of Sections 2.1 and 3.1 gives the spectral decomposition of
a covariance matrix, but the same idea is valid for any symmetric matrix)
we have

T = τ1b1b′
1 + τ2b2b′

2 + · · · + τnbnb′
n, (5.2.1)

where τ1 ≥ τ2 ≥ · · · ≥ τn are the eigenvalues of T and b1,b2, · · · ,bn are
the corresponding eigenvectors. Alternatively, this may be written

T = c1c′1 + c2c′2 + · · · + cnc′n, (5.2.2)

where

cj = τ
1/2
j bj , j = 1, 2, . . . , n.

Now consider the n observations as points in n-dimensional space with
the jth coordinate for the ith observation equal to cij , the ith element of
cj . With this geometric interpretation of the n observations, the Euclidean
distance between the hth and ith observations is

∆2
hi =

n∑

j=1

(chj − cij)2

=
n∑

j=1

c2
hj +

n∑

j=1

c2
ij − 2

n∑

j=1

chjcij .
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But from (5.2.2), the (h, i)th element of T can be written

thi =
n∑

j=1

chjcij , h, i = 1, 2, . . . , n,

so

∆2
hi = thh + tii − 2thi.

Principal coordinate analysis then attempts to find the ‘best-fitting’ q-
dimensional (q < n) approximation to the n-dimensional representation
defined above. ‘Best-fitting’ is defined here in the same way as in the ge-
ometric definition of PCA (Property G3 of Section 3.2), so that ‘principal
components’ are now found for the n ‘observations’ defined in n dimensions
by the coordinates cij . A q-dimensional principal coordinate representation
is then given by plotting the coordinates of the observations with respect
to the first q ‘PCs’. Principal coordinate analysis therefore consists of two
stages, both of which involve finding eigenvalues and eigenvectors of (n×n)
matrices:

(i) Find the eigenvectors c1, c2, . . . , cn of T, normalized to have lengths
equal to their respective eigenvalues, and represent the n observa-
tions as points in n-dimensional space with coordinate cij for the ith
observation in the jth dimension.

(ii) Find the PCs for the ‘data set’ in n dimensions defined in (i), and
calculate coordinates of the n observations with respect to the first q
PCs.

If the vectors cj defined in the first stage have
∑n

i=1 cij = 0 then the
covariance matrix that is calculated in stage (ii) will be proportional to
C′C where C is the (n × n) matrix with jth column cj , j = 1, 2, . . . , n.
But

c′jck =
{

τj j = k
0 j �= k

,

as the eigenvectors in the spectral decomposition (5.2.1) have the property

b′
jbk =

{
1 j = k
0 j �= k

and

cj = τ
1/2
j bj , j = 1, 2, . . . , n.

The matrix C′C is therefore diagonal with diagonal elements τj , j =
1, 2, . . . , n, so that the first q principal coordinates of the n observations
are simply the values of cij for i = 1, 2, . . . , n; j = 1, 2, . . . , q. Thus when∑n

i=1 cij = 0, stage (ii) is unnecessary.
In general, although a similarity matrix T need not lead to

∑n
i=1 cij =

0, this property can be readily achieved by replacing T by an adjusted
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similarity matrix. In this adjustment, thi is replaced by thi − t̄h − t̄i + t̄
where t̄h denotes the mean of the elements in the hth row (or column,
since T is symmetric) of T, and t̄ is the mean of all elements in T. This
adjusted similarity matrix has

∑n
i=1 cij = 0, and gives the same value

of ∆2
hi for each pair of observations as does T (Gower, 1966). Thus we

can replace the second stage of principal coordinate analysis by an initial
adjustment of T, for any similarity matrix T.

Principal coordinate analysis is equivalent to a plot with respect to the
first q PCs when the measure of similarity between two points is propor-
tional to −d2

hi, where d2
hi is the Euclidean squared distance between the

hth and ith observations, calculated from the usual (n × p) data matrix.
Assume thi = −γd2

hi, where γ is a positive constant; then if stage (i) of a
principal coordinate analysis is carried out, the ‘distance’ between a pair
of points in the constructed n-dimensional space is

∆2
hi = (thh + tii − 2thi)

= γ(−d2
hh − d2

ii + 2d2
hi)

= 2γd2
hi,

as Euclidean distance from a point to itself is zero. Thus, apart from a
possible rescaling if γ is taken to be a value other than 1

2 , the first stage of
principal coordinate analysis correctly reproduces the relative positions of
the n observations, which lie in a p-dimensional subspace of n-dimensional
space, so that the subsequent PCA in stage (ii) gives the same result as a
PCA on the original data.

Two related special cases are of interest. First, consider the situation
where all variables are binary. A commonly used measure of similarity be-
tween individuals h and i is the proportion of the p variables for which h
and i take the same value, and it can be easily demonstrated (Gower, 1966)
that this measure is equivalent to Euclidean distance. Thus, although PCA
of discrete—and in particular—binary data has its critics, it is equivalent
to principal coordinate analysis with a very plausible measure of similar-
ity. Principal component analysis for discrete data is discussed further in
Section 13.1.

The second special case occurs when the elements of the similarity matrix
T are defined as ‘covariances’ between observations, so that T is propor-
tional to XX′, where X, as before, is the column-centred (n × p) matrix
whose (i, j)th element is the value of the jth variable, measured about its
mean x̄j , for the ith observation. In this case the (h, i)th similarity is, apart
from a constant,

thi =
p∑

j=1

xhjxij

and the distances between the points in the n-dimensional space con-
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structed in the first stage of the principal coordinate analysis are

∆2
hi = thh + tii − 2thi

=
p∑

j=1

x2
hj +

p∑

j=1

x2
ij − 2

p∑

j=1

xhjxij

=
p∑

j=1

(xhj − xij)2

= d2
hi,

the Euclidean distance between the observations using the original p vari-
ables. As before, the PCA in the second stage of principal coordinate
analysis gives the same results as a PCA on the original data. Note, how-
ever, that XX′ is not a very obvious similarity matrix. For a ‘covariance
matrix’ between observations it is more natural to use a row-centred, rather
than column-centred, version of X.

Even in cases where PCA and principal coordinate analysis give equiv-
alent two-dimensional plots, there is a difference, namely that in principal
coordinate analysis there are no vectors of coefficients defining the axes
in terms of the original variables. This means that, unlike PCA, the
axes in principal coordinate analysis cannot be interpreted, unless the
corresponding PCA is also done.

The equivalence between PCA and principal coordinate analysis in the
circumstances described above is termed a duality between the two tech-
niques by Gower (1966). The techniques are dual in the sense that PCA
operates on a matrix of similarities between variables, whereas principal co-
ordinate analysis operates on a matrix of similarities between observations
(individuals), but both can lead to equivalent results.

To summarize, principal coordinate analysis gives a low-dimensional rep-
resentation of data when the data are given in the form of a similarity or
dissimilarity matrix. As it can be used with any form of similarity or dissim-
ilarity matrix, it is, in one sense, ‘more powerful than,’ and ‘extends,’ PCA
(Gower, 1967). However, as will be seen in subsequent chapters, PCA has
many uses other than representing data graphically, which is the overriding
purpose of principal coordinate analysis.

Except in the special cases discussed above, principal coordinate analysis
has no direct relationship with PCA, so no examples will be given of the
general application of the technique. In the case where principal coordinate
analysis gives an equivalent representation to that of PCA, nothing new
would be demonstrated by giving additional examples. The examples given
in Section 5.1 (and elsewhere) which are presented as plots with respect
to the first two PCs are, in fact, equivalent to two-dimensional princi-
pal coordinate plots if the ‘dissimilarity’ between observations h and i is
proportional to the Euclidean squared distance between the hth and ith
observations in p dimensions.
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In most cases, if the data are available in the form of an (n × p) matrix
of p variables measured for each of n observations, there is no advantage
in doing a principal coordinate analysis instead of a PCA, unless for some
reason a dissimilarity measure other than Euclidean distance is deemed
to be appropriate. However, an exception occurs when n < p, especially if
n � p as happens for some types of chemical, meteorological and biological
data. As principal coordinate analysis and PCA find eigenvectors of an
(n × n) matrix and a (p × p) matrix respectively, the dual analysis based
on principal coordinates will have computational advantages in such cases.

5.3 Biplots

The two previous sections describe plots of the n observations, usually
in two dimensions. Biplots similarly provide plots of the n observations,
but simultaneously they give plots of the relative positions of the p vari-
ables in two dimensions. Furthermore, superimposing the two types of plots
provides additional information about relationships between variables and
observations not available in either individual plot.

Since the publication of the first edition, there have been substantial
developments in biplots. In particular, the monograph by Gower and Hand
(1996) considerably extends the definition of biplots. As these authors note
themselves, their approach to biplots is unconventional, but it is likely
to become increasingly influential. The material on biplots which follows is
mostly concerned with what Gower and Hand (1996) call ‘classical biplots,’
although correspondence analysis, which is discussed in Section 5.4, also
falls under Gower and Hand’s (1996) biplot umbrella. A number of other
variations of biplots are discussed briefly at the end of the present section
and in later chapters. As with other parts of this book, the choice of how
far to stray from PCA in following interesting diversions such as these is
inevitably a personal one. Some readers may prefer to go further down
the biplot road; reference to Gower and Hand (1996) should satisfy their
curiosity.

Classical biplots, which might also be called ‘principal component bi-
plots,’ were principally developed and popularized by Gabriel (1971, and
several subsequent papers), although Jolicoeur and Mosimann (1960) had
earlier given an example of similar diagrams and they are periodically redis-
coverd in other disciplines (see, for example, Berry et al. (1995), who refer
to the same idea as ‘latent semantic indexing’). The plots are based on the
singular value decomposition (SVD), which was described in Section 3.5.
This states that the (n × p) matrix X of n observations on p variables
measured about their sample means can be written

X = ULA′, (5.3.1)

where U, A are (n×r), (p×r) matrices respectively, each with orthonormal
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columns, L is an (r × r) diagonal matrix with elements l
1/2
1 ≥ l

1/2
2 ≥ · · · ≥

l
1/2
r , and r is the rank of X. Now define Lα, for 0 ≤ α ≤ 1, as the diagonal
matrix whose elements are l

α/2
1 , l

α/2
2 , · · · , l

α/2
r with a similar definition for

L1−α, and let G = ULα,H′ = L1−αA′. Then

GH′ = ULαL1−αA′ = ULA′ = X,

and the (i, j)th element of X can be written

xij = g′
ihj , (5.3.2)

where g′
i, i = 1, 2, . . . , n and h′

j , j = 1, 2, . . . , p are the rows of G and H,
respectively. Both the gi and hj have r elements, and if X has rank 2, all
could be plotted as points in two-dimensional space. In the more general
case, where r > 2, it was noted in Section 3.5 that (5.3.1) can be written

xij =
r∑

k=1

uikl
1/2
k ajk (5.3.3)

which is often well approximated by

mx̃ij =
m∑

k=1

uikl
1/2
k ajk, with m < r. (5.3.4)

But (5.3.4) can be written

mx̃ij =
m∑

k=1

gikhjk

= g∗′
i h∗

j ,

where g∗
i , h∗

j contain the first m elements of gi and hj , respectively. In the
case where (5.3.4) with m = 2 provides a good approximation to (5.3.3),
g∗

i , i = 1, 2, . . . , n; h∗
j , j = 1, 2, . . . , p together give a good two-dimensional

representation of both the n observations and the p variables. This type
of approximation can, of course, be used for values of m > 2, but the
graphical representation is then less clear. Gabriel (1981) referred to the
extension to m ≥ 3 as a bimodel, reserving the term ‘biplot’ for the case
where m = 2. However, nine years later Gabriel adopted the more common
usage of ‘biplot’ for any value of m (see Gabriel and Odoroff (1990), which
gives several examples of biplots including one with m = 3). Bartkowiak
and Szustalewicz (1996) discuss how to display biplots in three dimensions.

In the description of biplots above there is an element of non-uniqueness,
as the scalar α which occurs in the definition of G and H can take any value
between zero and one and still lead to a factorization of the form (5.3.2).
Two particular values of α, namely α = 0 and α = 1, provide especially
useful interpretations for the biplot.
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If α = 0, then G = U and H′ = LA′ or H = AL. This means that

X′X = (GH′)′(GH′)
= HG′GH′

= HU′UH′

= HH′,

because the columns of U are orthonormal. The product h′
jhk is there-

fore equal to (n − 1) multiplied by the covariance sjk between the jth
and kth variables, and h∗′

j h∗
k, where h∗

j , j = 1, 2, · · · , p are as defined
above, provides an approximation to (n − 1)sjk. The lengths h′

jhj of the
vectors hj , i = 1, 2, · · · , p are proportional to the variances of the vari-
ables x1, x2, · · · , xp, and the cosines of the angles between the hj represent
correlations between variables. Plots of the h∗

j therefore provide a two-
dimensional picture (usually an approximation, but often a good one) of
the elements of the covariance matrix S, and such plots are advocated
by Corsten and Gabriel (1976) as a means of comparing the variance-
covariance structures of several different data sets. An earlier paper by
Gittins (1969), which is reproduced in Bryant and Atchley (1975), also
gives plots of the h∗

j , although it does not discuss their formal properties.
Not only do the hj have a ready graphical interpretation when α = 0, but

the gi also have the satisfying property that the Euclidean distance between
gh and gi in the biplot is proportional to the Mahalanobis distance between
the hth and ith observations in the complete data set. The Mahalanobis
distance between two observations xh, xi, assuming that X has rank p so
that S−1 exists, is defined as

δ2
hi = (xh − xi)′S−1(xh − xi), (5.3.5)

and is often used as an alternative to the Euclidean distance

d2
hi = (xh − xi)′(xh − xi).

Whereas Euclidean distance treats all variables on an equal footing, which
essentially assumes that all variables have equal variances and are uncor-
related, Mahalanobis distance gives relatively less weight to variables with
large variances and to groups of highly correlated variables.

To prove this Mahalanobis distance interpretation, rewrite (5.3.2) as

x′
i = g′

iH
′, i = 1, 2, . . . , n,

and substitute in (5.3.5) to give

δ2
hi = (gh − gi)′H′S−1H(gh − gi)

= (n − 1)(gh − gi)′LA′(X′X)−1AL(gh − gi), (5.3.6)

as H′ = LA′ and S−1 = (n − 1)(X′X)−1.
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But

X′X = (ULA′)′(ULA′)
= AL(U′U)LA′

= AL2A′,

and

(X′X)−1 = AL−2A′.

Substituting in (5.3.6) gives

δ2
hi = (n − 1)(gh − gi)′L(A′A)L−2(A′A)L(gh − gi)

= (n − 1)(gh − gi)′LL−2L(gh − gi)
(as the columns of A are orthonormal),

= (n − 1)(gh − gi)′(gh − gi), as required.

An adaptation to the straightforward factorization given above for α = 0
improves the interpretation of the plot still further. If we multiply the gi

by (n − 1)1/2 and correspondingly divide the hj by (n − 1)1/2, then the
distances between the modified gi are equal (not just proportional) to the
Mahalanobis distance and, if m = 2 < p, then the Euclidean distance
between g∗

h and g∗
i gives an easily visualized approximation to the Ma-

halanobis distance between xh and xi. Furthermore, the lengths h′
jhj are

equal to variances of the variables. This adaptation was noted by Gabriel
(1971), and is used in the examples below.

A further interesting property of the biplot when α = 0 is that measures
can be written down of how well the plot approximates

(a) the column-centred data matrix X;

(b) the covariance matrix S;

(c) the matrix of Mahalanobis distances between each pair of observations.

These measures are, respectively, (Gabriel 1971)

(a) (l1 + l2)
/ r∑

k=1

lk;

(b) (l21 + l22)
/ r∑

k=1

l2k;

(c) (l01 + l02)
/ r∑

k=1

l0k = 2/r.

Because l1 ≥ l2 ≥ · · · ≥ lr, these measures imply that the biplot gives a
better approximation to the variances and covariances than to the (Ma-
halanobis) distances between observations. This is in contrast to principal
coordinate plots, which concentrate on giving as good a fit as possible to
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interobservation dissimilarities or distances, and do not consider directly
the elements of X or S.

We have now seen readily interpretable properties of both the g∗
i and the

h∗
j separately for the biplot when α = 0, but there is a further property,

valid for any value of α, which shows that the plots of the g∗
i and h∗

j can
be usefully superimposed rather than simply considered separately.

From the relationship xij = g′
ihj , it follows that xij is represented by

the projection of gi onto hj . Remembering that xij is the value for the ith
observation of the jth variable measured about its sample mean, values of
xij close to zero, which correspond to observations close to the sample mean
of the jth variable, will only be achieved if gi and hj are nearly orthogonal.
Conversely, observations for which xij is a long way from zero will have gi

lying in a similar direction to hj . The relative positions of the points defined
by the gi and hj , or their approximations in two dimensions, the g∗

i and
h∗

j , will therefore give information about which observations take large,
average and small values on each variable.

Turning to the biplot with α = 1, the properties relating to gi and hj

separately are different from those for α = 0. With α = 1 we have

G = UL, H′ = A′,

and instead of (gh − gi)′(gh − gi) being proportional to the Mahalanobis
distance between xh and xi, it is now equal to the Euclidean distance. This
follows because

(xh − xi)′(xh − xi) = (gh − gi)′H′H(gh − gi)
= (gh − gi)′A′A(gh − gi)
= (gh − gi)′(gh − gi).

Therefore, if we prefer a plot on which the distance between g∗
h and

g∗
i is a good approximation to Euclidean, rather than Mahalanobis, dis-

tance between xh and xi then the biplot with α = 1 will be preferred
to α = 0. Note that using Mahalanobis distance emphasizes the dis-
tance between the observations in the direction of the low-variance PCs
and downweights distances in the direction of high-variance PCs, when
compared with Euclidean distance (see Section 10.1).

Another interesting property of the biplot with α = 1 is that the positions
of the g∗

i are identical to those given by a straightforward plot with respect
to the first two PCs, as described in Section 5.1. It follows from equation
(5.3.3) and Section 3.5 that we can write

xij =
r∑

k=1

zikajk,

where zik = uikl
1/2
k is the value of the kth PC for the ith observation. But

α = 1 implies that G = UL, so the kth element of gi is uikl
1/2
k = zik.
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The vector g∗
i consists of the first two elements of gi, which are simply the

values of the first two PCs for the ith observation.
The properties of the hj that were demonstrated above for α = 0 will

no longer be valid exactly for α = 1, although similar interpretations can
still be made, at least in qualitative terms. In fact, the coordinates of h∗

j

are simply the coefficients of the jth variable for the first two PCs. The
advantage of superimposing the plots of the g∗

i and h∗
j is preserved for

α = 1, as xij still represents the projection of gi onto hj . In many ways,
the biplot with α = 1 is nothing new, since the g∗

i give PC scores and
the h∗

j give PC coefficients, both of which are widely used on their own.
The biplot, however, superimposes both the g∗

i and h∗
j to give additional

information.
Other values of α could also be used; for example, Gabriel (1971) men-

tions α = 1
2 , in which the sum of squares of the projections of plotted points

onto either one of the axes is the same for observations as for variables (Os-
mond, 1985), but most applications seem to have used α = 0, or sometimes
α = 1. For other values of α the general qualitative interpretation of the
relative positions of the gi and the hj remains the same, but the exact
properties that hold for α = 0 and α = 1 are no longer valid.

Another possibility is to superimpose the g∗
i and the h∗

j corresponding
to different values of α. Choosing a single standard value of α for both
the g∗

i and h∗
j may mean that the scales of observations and variables are

so different that only one type of entity is visible on the plot. Digby and
Kempton (1987, Section 3.2) choose scales for observations and variables
so that both can easily be seen when plotted together. This is done rather
arbitrarily, but is equivalent to using different values of α for the two types
of entity. Mixing values of α in this way will, of course, lose the property
that xij is the projection of gi onto hj , but the relative positions of the
g∗

i and h∗
j still give qualitative information about the size of each variable

for each observation. Another way of mixing values of α is to use g∗
i cor-

responding to α = 1 and h∗
j corresponding to α = 0, so that the g∗

i give
a PC plot, and the h∗

j have a direct interpretation in terms of variances
and covariances. This is referred to by Gabriel (2001) as a ‘correspondence
analysis’ (see Section 5.4) plot. Gower and Hand (1996) and Gabriel (2001),
among others, have noted that different plotting positions can be chosen
to give optimal approximations to two, but not all three, of the following:

(a) the elements of X, as given by the scalar products g∗′
i h∗

j ;

(b) Euclidean distances between the rows of X;

(c) the covariance structure in the columns of X.

We noted earlier that for α = 0, (b) is fitted less well than (c). For α = 1,
(c) rather than (b) is sacrificed, while the correspondence analysis plot loses
(a). Choosing α = 1

2 approximates (a) optimally, but is suboptimal for (b)
and (c). For each of these four choices Gabriel (2001) investigates how
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much worse than optimal are the approximations to whichever of (a), (b),
(c) are suboptimally approximated. He defines a coefficient of goodness
of proportional fit equal to the squared matrix correlation between the
matrix being approximated and its approximation. For example, if X is
approximated by X̂, the matrix correlation, sometimes known as Yanai’s
generalized coefficient of determination (see also Section 6.3), is defined as

tr(X′X̂)
√

tr(X′X) tr(X̂′X̂)
.

By comparing this coefficient for a suboptimal choice of α with that for an
optimal choice, Gabriel (2001) measures how much the approximation is
degraded by the suboptimal choice. His conclusion is that the approxima-
tions are often very close to optimal, except when there is a large separation
between the first two eigenvalues. Even then, the symmetric (α = 1

2 ) and
correspondence analysis plots are never much inferior to the α = 0, α = 1
plots when one of the latter is optimal.

Another aspect of fit is explored by Heo and Gabriel (2001). They note
that biplots often appear to give a better representation of patterns in
the data than might be expected from simplistic interpretations of a low
value for goodness-of-fit. To explain this, Heo and Gabriel (2001) invoke
the special case of the unweighted version of the fixed effects model, with
Γ = Ip (see Section 3.9) and the corresponding view that we are plotting
different means for different observations, rather than points from a single
distribution. By simulating from the model with q = 2 and varying levels
of σ2 they show that the match between the biplot representation and the
underlying model is often much better than that between the biplot and
the data in the sample. Hence, the underlying pattern is apparent in the
biplot even though the sample measure of fit is low.

5.3.1 Examples

Two examples are now presented illustrating the use of biplots. Many other
examples have been given by Gabriel; in particular, see Gabriel (1981) and
Gabriel and Odoroff (1990). Another interesting example, which emphasizes
the usefulness of the simultaneous display of both rows and columns of the
data matrix, is presented by Osmond (1985).

In the examples that follow, the observations are plotted as points whose
coordinates are the elements of the g∗

i , whereas variables are plotted as lines
corresponding to the vectors h∗

j , j = 1, 2, . . . , p, with arrowheads at the ends
of the vectors. Plots consisting of points and vectors are fairly conventional,
but an alternative representation for the variables, strongly preferred by
Gower and Hand (1996), is to extend the vectors h∗

j right across the diagram
in both directions to become lines or axes. The disadvantage of this type
of plot is that information about the relative sizes of the variances is lost.
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Figure 5.3. Biplot using α = 0 for artistic qualities data.

However, what is gained is the ability to label these axes with values of
the variables, so that orthogonally projecting an observation onto an axis
immediately gives a prediction of the value of that variable for the chosen
observation. Examples of this type of plot can be found in Gower and Hand
(1996, Chapter 2).

Other variations of the plot are sometimes used. In one of their examples
in which the data fall into groups, Gabriel and Odoroff (1990) replace the in-
dividual points by ‘concentration ellipses’ for each group. These ellipses are
estimates of equal probability contours, assuming multivariate normality.
Jolicoeur and Mosimann (1960) included similar ellipses on their plots.

Artistic Qualities of Painters

In Figure 5.3 a biplot is given for the data set described in Section 5.1.1
and consisting of four subjective measurements of artistic qualities for 54
painters.

The plot given uses the adapted version of α = 0 in preference to α =
1, because with α = 1 the points representing the four variables are all
very close to the centre of the plot, leading to difficulties in interpretation.
The coordinates of the 54 painters are therefore rescaled versions of those
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displayed in Figure 5.2, but their relative positions are similar. For example,
the group of three ‘Seventeenth Century’ painters at the bottom of the plot
is still visible. Because of the compression of the horizontal relative to the
vertical scale, the group of four painters at the left of the plot now seems
to have been joined by a fifth, Murillo, who is from the same school as
three of the others in this group. There is also an outlying painter, Fr.
Penni, observation number 34, whose isolated position in the top left of
the plot is perhaps more obvious on Figure 5.3 than Figure 5.2. The main
distinguishing feature of this painter is that de Piles gave him a 0 score for
composition, compared to a minimum of 4 and a maximum of 18 for all
other painters.

Now consider the positions on the biplot of the vectors corresponding to
the four variables. It is seen that composition and expression (V1 and V4)
are close together, reflecting their relatively large positive correlation, and
that drawing and colour (V2 and V3) are in opposite quadrants, confirm-
ing their fairly large negative correlation. Other correlations, and hence
positions of vectors, are intermediate.

Finally, consider the simultaneous positions of painters and variables.
The two painters, numbered 9 and 15, that are slightly below the positive
horizontal axis are Le Brun and Domenichino. These are close to the direc-
tion defined by V4, and not far from the directions of V1 and V2, which
implies that they should have higher than average scores on these three
variables. This is indeed the case: Le Brun scores 16 on a scale from 0 to
20 on all three variables, and Domenichino scores 17 on V2 and V4 and 15
on V1. Their position relative to V3 suggests an average or lower score on
this variable; the actual scores are 8 and 9, which confirms this suggestion.
As another example consider the two painters 16 and 19 (Giorgione and
Da Udine), whose positions are virtually identical, in the bottom left-hand
quadrant of Figure 5.3. These two painters have high scores on V3 (18 and
16) and below average scores on V1, V2 and V4. This behaviour, but with
lower scores on V2 than on V1, V4, would be predicted from the points’
positions on the biplot.

100 km Running Data

The second example consists of data on times taken for each of ten 10
km sections by the 80 competitors who completed the Lincolnshire 100 km
race in June 1984. There are thus 80 observations on ten variables. (I am
grateful to Ron Hindley, the race organizer, for distributing the results of
the race in such a detailed form.)

The variances and coefficients for the first two PCs, based on the correla-
tion matrix for these data, are given in Table 5.2. Results for the covariance
matrix are similar, though with higher coefficients in the first PC for the
later sections of the race, as (means and) variances of the times taken
for each section tend to increase later in the race. The first component
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Table 5.2. First two PCs: 100 km running data.

Component 1 Component 2
First 10 km −0.30 0.45
Second 10 km −0.30 0.45
Third 10 km −0.33 0.34
Fourth 10 km −0.34 0.20
Fifth 10 km −0.34 −0.06






Coefficients
Sixth 10 km −0.35 −0.16
Seventh 10 km −0.31 −0.27
Eighth 10 km −0.31 −0.30
Ninth 10 km −0.31 −0.29
Tenth 10 km −0.27 −0.40

Eigenvalue 72.4 1.28

Cumulative percentage of total variation 7.24 85.3

measures the overall speed of the runners, and the second contrasts those
runners who slow down substantially during the course of the race with
those runners who maintain a more even pace. Together, the first two PCs
account for more than 85% of the total variation in the data.

The adapted α = 0 biplot for these data is shown in Figure 5.4.
As with the previous example, the plot using α = 1 is not very sat-

isfactory because the vectors corresponding to the variables are all very
close to the centre of the plot. Figure 5.4 shows that with α = 0 we have
the opposite extreme—the vectors corresponding to the variables and the
points corresponding to the observations are completely separated. As a
compromise, Figure 5.5 gives the biplot with α = 1

2 , which at least has
approximately the same degree of spread for variables and observations.
As with α = 0, the plot has been modified from the straightforward fac-
torization corresponding to α = 1

2 . The gi have been multiplied, and the
hj divided, by (n − 1)1/4, so that we have a compromise between α = 1
and the adapted version of α = 0. The adapted plot with α = 1

2 is still not
entirely satisfactory, but even an arbitrary rescaling of observations and/or
variables, as suggested by Digby and Kempton (1987, Section 3.2), would
still have all the vectors corresponding to variables within a very narrow
sector of the plot. This is unavoidable for data that, as in the present case,
have large correlations between all variables. The tight bunching of the vec-
tors simply reflects large correlations, but it is interesting to note that the
ordering of the vectors around their sector corresponds almost exactly to
their position within the race. (The ordering is the same for both diagrams,
but to avoid congestion, this fact has not been indicated on Figure 5.5.)
With hindsight, this is not surprising as times in one part of the race are
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Figure 5.4. Biplot using α = 0 for 100 km running data (V1, V2, . . . , V10 indicate
variables measuring times on first, second, . . . , tenth sections of the race).

more likely to be similar to those in adjacent parts than to those which are
more distant.

Turning to the positions of the observations, the points near the right-
hand side of the diagrams correspond to the fastest athletes and those on
the left to the slowest. To illustrate this, the first five and last five of the 80
finishers are indicated on Figure 5.5. Note that competitors 77 and 78 ran
together throughout the race; they therefore have identical values for all ten
variables and PCs, and hence identical positions on the plot. The positions
of the athletes in this (horizontal) direction tally with the directions of the
vectors: observations with large values on all variables, that is slow runners,
will be in the direction of the vectors, namely towards the left.

Similarly, the observations near the top of the diagram are of athletes
who maintained a fairly steady pace, while those at the bottom correspond
to athletes who slowed down considerably during the race. Again this corre-
sponds with the directions of the vectors: those observations at the bottom
of the diagram tend to have large values of V10, V9, V8, etc. compared
with V1, V2, V3, etc., meaning that these runners slow down a lot, whereas
those at the top have more nearly equal values for all variables. For exam-
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Figure 5.5. Biplot using α = 1
2

for 100 km running data (numbers indicate
finishing position in race).

ple, consider the outlying observation at the top of Figures 5.4 and 5.5. This
point corresponds to the 54th finisher, who was the only competitor to run
the final 10 km faster than the first 10 km. To put this into perspective it
should be noted that the average times taken for the first and last 10 km
by the 80 finishers were 47.6 min, and 67.0 min respectively, showing that
most competitors slowed down considerably during the race.

At the opposite extreme to the 54th finisher, consider the two athletes
corresponding to the points at the bottom left of the plots. These are the
65th and 73rd finishers, whose times for the first and last 10 km were 50.0
min and 87.8 min for the 65th finisher and 48.2 min and 110.0 min for the
73rd finisher. This latter athlete therefore ran at a nearly ‘average’ pace
for the first 10 km but was easily one of the slowest competitors over the
last 10 km.

5.3.2 Variations on the Biplot

The classical biplot described above is based on the SVD of X, the column-
centred data matrix. This in turn is linked to the spectral decomposition
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of X′X, and hence to PCA. The variations discussed so far relate only to
choices within this classical plot, for example the choice of α in defining gi

and hj (5.3.2), the possible rescaling by a factor (n − 1)1/2 and the form
of display (axes or arrowheads, concentration ellipses).

Gower and Hand (1996) describe many other variations. In particular,
they look at biplots related to multivariate techniques other than PCA,
including multidimensional scaling, canonical variate analysis, correspon-
dence analysis and multiple correspondence analysis. Gabriel (1995a,b) also
discusses biplots related to multivariate methods other than PCA, in partic-
ular multiple correspondence analysis and MANOVA (multivariate analysis
of variance).

A key distinction drawn by Gower and Hand (1996) is between interpo-
lation and prediction in a biplot. The former is concerned with determining
where in the diagram to place an observation, given its values on the mea-
sured variables. Prediction refers to estimating the values of these variables,
given the position of an observation in the plot. Both are straightforward
for classical biplots—g∗

i is used for interpolation and 2x̃ij for prediction—
but become more complicated for other varieties of biplot. Gower and Hand
(1996, Chapter 7) describe a framework for generalized biplots that includes
most other versions as special cases. One important special case is that of
non-linear biplots. These will be discussed further in Section 14.1, which
describes a number of non-linear modifications of PCA. Similarly, discus-
sion of robust biplots, due to Daigle and Rivest (1992), will be deferred
until Section 10.4, which covers robust versions of PCA.

The discussion and examples of the classical biplot given above use an
unstandardized form of X and hence are related to covariance matrix PCA.
As noted in Section 2.3 and elsewhere, it is more usual, and often more
appropriate, to base PCA on the correlation matrix as in the examples
of Section 5.3.1. Corresponding biplots can be derived from the SVD of
X̃, the column-centred data matrix whose jth column has been scaled by
dividing by the standard deviation of xj , j = 1, 2, . . . , p. Many aspects of
the biplot remain the same when the correlation, rather than covariance,
matrix is used. The main difference is in the positions of the hj . Recall that
if α = 0 is chosen, together with the scaling factor (n−1)1/2, then the length
h∗′

jh
∗
j approximates the variance of xj . In the case of a correlation-based

analysis, var(xj) = 1 and the quality of the biplot approximation to the
jth variable by the point representing h∗

j can be judged by the closeness of
h∗

j to the unit circle centred at the origin. For this reason, the unit circle is
sometimes drawn on correlation biplots to assist in evaluating the quality of
the approximation (Besse, 1994a). Another property of correlation biplots
is that the squared distance between hj and hk is 2(1 − rjk), where rjk is
the correlation between xj and xk. The squared distance between h∗

j and
h∗

k approximates this quantity.
An alternative to the covariance and correlation biplots is the coefficient

of variation biplot, due to Underhill (1990). As its name suggests, instead
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of dividing the jth column of X by the standard deviation of xj to give a
correlation biplot, here the jth column is divided by the mean of xj . Of
course, this only makes sense for certain types of non-negative variables,
but Underhill (1990) shows that for such variables the resulting biplot gives
a useful view of the data and variables. The cosines of the angles between
the h∗

j still provide approximations to the correlations between variables,
but the lengths of the vectors h∗

j now give information on the variability
of the xj relative to their means.

Finally, the biplot can be adapted to cope with missing values by in-
troducing weights wij for each observation xij when approximating xij by
g∗′

i h∗
j . A weight of zero is given to missing values and a unit weight to those

values which are present. The appropriate values for g∗
i ,h∗

j can be calcu-
lated using an algorithm which handles general weights, due to Gabriel and
Zamir (1979). For a more general discussion of missing data in PCA see
Section 13.6.

5.4 Correspondence Analysis

The technique commonly called correspondence analysis has been ‘redis-
covered’ many times in several different guises with various names, such
as ‘reciprocal averaging’ or ‘dual scaling.’ Greenacre (1984) provides a
comprehensive treatment of the subject; in particular his Section 1.3 and
Chapter 4 discuss, respectively, the history and the various different ap-
proaches to the topic. Benzécri (1992) is also comprehensive, and more
recent, but its usefulness is limited by a complete lack of references to
other sources. Two shorter texts, which concentrate on the more practi-
cal aspects of correspondence analysis, are Clausen (1998) and Greenacre
(1993).

The name ‘correspondence analysis’ is derived from the French ‘analyse
des correspondances’ (Benzécri, 1980). Although, at first sight, correspon-
dence analysis seems unrelated to PCA it can be shown that it is, in fact,
equivalent to a form of PCA for discrete (generally nominal) variables (see
Section 13.1). The technique is often used to provide a graphical representa-
tion of data in two dimensions. The data are normally presented in the form
of a contingency table, but because of this graphical usage the technique is
introduced briefly in the present chapter. Further discussion of correspon-
dence analysis and various generalizations of the technique, together with
its connections to PCA, is given in Sections 13.1, 14.1 and 14.2.

Suppose that a set of data is presented in the form of a two-way contin-
gency table, in which a set of n observations is classified according to its
values on two discrete random variables. Thus the information available is
the set of frequencies {nij , i = 1, 2, . . . , r; j = 1, 2, . . . , c}, where nij is the
number of observations that take the ith value for the first (row) variable
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and the jth value for the second (column) variable. Let N be the (r × c)
matrix whose (i, j)th element is nij .

There are a number of seemingly different approaches, all of which lead
to correspondence analysis; Greenacre (1984, Chapter 4) discusses these
various possibilities in some detail. Whichever approach is used, the final
product is a sequence of pairs of vectors (f1,g1), (f2,g2), . . . , (fq,gq) where
fk, k = 1, 2, . . ., are r-vectors of scores or coefficients for the rows of N,
and gk, k = 1, 2, . . . are c-vectors of scores or coefficients for the columns
of N. These pairs of vectors are such that the first q such pairs give a ‘best-
fitting’ representation in q dimensions, in a sense defined in Section 13.1,
of the matrix N, and of its rows and columns. It is common to take q = 2.
The rows and columns can then be plotted on a two-dimensional diagram;
the coordinates of the ith row are the ith elements of f1, f2, i = 1, 2, . . . , r,
and the coordinates of the jth column are the jth elements of g1,g2, j =
1, 2, . . . , c.

Such two-dimensional plots cannot in general be compared in any direct
way with plots made with respect to PCs or classical biplots, as N is
a different type of data matrix from that used for PCs or their biplots.
However, Greenacre (1984, Sections 9.6 and 9.10) gives examples where
correspondence analysis is done with an ordinary (n × p) data matrix,
X replacing N. This is only possible if all variables are measured in the
same units. In these circumstances, correspondence analysis produces a
simultaneous two-dimensional plot of the rows and columns of X, which is
precisely what is done in a biplot, but the two analyses are not the same.

Both the classical biplot and correspondence analysis determine the
plotting positions for rows and columns of X from the singular value de-
composition (SVD) of a matrix (see Section 3.5). For the classical biplot,
the SVD is calculated for the column-centred matrix X, but in correspon-
dence analysis, the SVD is found for a matrix of residuals, after subtracting
‘expected values assuming independence of rows and columns’ from X/n
(see Section 13.1). The effect of looking at residual (or interaction) terms is
(Greenacre, 1984, p. 288) that all the dimensions found by correspondence
analysis represent aspects of the ‘shape’ of the data, whereas in PCA the
first PC often simply represents ‘size’ (see Sections 4.1, 13.2). Correspon-
dence analysis provides one way in which a data matrix may be adjusted
in order to eliminate some uninteresting feature such as ‘size,’ before find-
ing an SVD and hence ‘PCs.’ Other possible adjustments are discussed in
Sections 13.2 and 14.2.3.

As with the biplot and its choice of α, there are several different ways of
plotting the points corresponding to rows and columns in correspondence
analysis. Greenacre and Hastie (1987) give a good description of the geom-
etry associated with the most usual of these plots. Whereas the biplot may
approximate Euclidean or Mahalanobis distances between rows, in corre-
spondence analysis the points are often plotted to optimally approximate
so-called χ2 distances (see Greenacre (1984), Benzécri (1992)).
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Figure 5.6. Correspondence analysis plot for summer species at Irish wetland
sites. The symbol × denotes site; ◦ denotes species.

5.4.1 Example

Figure 5.6 gives a plot obtained by correspondence analysis for a data set
that recorded the presence or otherwise of 52 bird species at a number of
wetland sites in Ireland. The data displayed in Figure 5.6 refer to sum-
mer sightings and are part of a much larger data set. (The larger set was
kindly supplied by Dr. R.J. O’Connor of the British Trust for Ornithol-
ogy, and which was analysed in various ways in two unpublished student
projects/dissertations (Worton, 1984; Denham, 1985) at the University of
Kent.) To avoid congestion on Figure 5.6, only a few of the points cor-
responding to sites and species have been labelled; these points will now
be discussed. Although correspondence analysis treats the data differently
from a biplot, it is still true that sites (or species) which are close to each
other on the correspondence analysis plot are likely to be similar with re-
spect to their values for the original data. Furthermore, as in a biplot, we
can interpret the joint positions of sites and species.

On Figure 5.6 we first note that those sites which are close to each other
on the figure also tend to be close geographically. For example, the group
of sites at the top right of the plot {50, 53, 103, 155, 156, 235} are all inland
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sites in the south west of Ireland, and the group {43, 168, 169, 171, 172} in
the bottom right of the diagram are all coastal sites in the south and east.

If we look at species, rather than sites, we find that similar species tend
to be located in the same part of Figure 5.6. For example, three of the
four species of goose which were recorded are in the bottom-right of the
diagram (BG, WG, GG).

Turning to the simultaneous positions of species and sites, the Grey-
lag Goose (GG) and Barnacle Goose (BG) were only recorded at site
171, among those sites which are numbered on Figure 5.6. On the plot,
site 171 is closest in position of any site to the positions of these two
species. The Whitefronted Goose (WG) is recorded at sites 171 and 172
only, the Gadwall (GA) at sites 43, 103, 168, 169, 172 among those la-
belled on the diagram, and the Common Sandpiper (CS) at all sites in
the coastal group {43, 168, 169, 171, 172}, but at only one of the inland
group {50, 53, 103, 155, 156, 235}. Again, these occurrences might be pre-
dicted from the relative positions of the sites and species on the plot.
However, simple predictions are not always valid, as the Coot (CO), whose
position on the plot is in the middle of the inland sites, is recorded at all
11 sites numbered on the figure.

5.5 Comparisons Between Principal Coordinates,
Biplots, Correspondence Analysis and Plots
Based on Principal Components

For most purposes there is little point in asking which of the graphical
techniques discussed so far in this chapter is ‘best.’ This is because they are
either equivalent, as is the case of PCs and principal coordinates for some
types of similarity matrix, so any comparison is trivial, or the data set is of
a type such that one or more of the techniques are not really appropriate,
and so should not be compared with the others. For example, if the data
are in the form of a contingency table, then correspondence analysis is
clearly relevant, but the use of the other techniques is more questionable.
As demonstrated by Gower and Hand (1996) and Gabriel (1995a,b), the
biplot is not restricted to ‘standard’ (n × p) data matrices, and could be
used on any two-way array of data. The simultaneous positions of the g∗

i

and h∗
j still have a similar interpretation to that discussed in Section 5.3,

even though some of the separate properties of the g∗
i and h∗

j , for instance,
those relating to variances and covariances, are clearly no longer valid. A
contingency table could also be analysed by PCA, but this is not really
appropriate, as it is not at all clear what interpretation could be given
to the results. Principal coordinate analysis needs a similarity or distance
matrix, so it is hard to see how it could be used directly on a contingency
table.
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There are a number of connections between PCA and the other
techniques–links with principal coordinate analysis and biplots have al-
ready been discussed, while those with correspondence analysis are deferred
until Section 13.1—but for most data sets one method is more appropriate
than the others. Contingency table data imply correspondence analysis,
and similarity or dissimilarity matrices suggest principal coordinate analy-
sis, whereas PCA is defined for ‘standard’ data matrices of n observations
on p variables. Notwithstanding these distinctions, different techniques
have been used on the same data sets and a number of empirical compar-
isons have been reported in the ecological literature. Digby and Kempton
(1987, Section 4.3) compare twelve ordination methods, including principal
coordinate analysis, with five different similarity measures and correspon-
dence analysis, on both species abundances and presence/absence data.
The comparison is by means of a second-level ordination based on simi-
larities between the results of the twelve methods. Gauch (1982, Chapter
4) discusses criteria for choosing an appropriate ordination technique for
ecological data, and in Gauch (1982, Chapter 3) a number of studies are
described which compare PCA with other techniques, including correspon-
dence analysis, on simulated data. The data are generated to have a similar
structure to that expected in some types of ecological data, with added
noise, and investigations are conducted to see which techniques are ‘best’
at recovering the structure. However, as with comparisons between PCA
and correspondence analysis given by Greenacre (1994, Section 9.6), the
relevance to the data analysed of all the techniques compared is open to
debate. Different techniques implicitly assume that different types of struc-
ture or model are of interest for the data (see Section 14.2.3 for some further
possibilities) and which technique is most appropriate will depend on which
type of structure or model is relevant.

5.6 Methods for Graphical Display of Intrinsically
High-Dimensional Data

Sometimes it will not be possible to reduce a data set’s dimensionality
to two or three without a substantial loss of information; in such cases,
methods for displaying many variables simultaneously in two dimensions
may be useful. Plots of trigonometric functions due to Andrews (1972),
illustrated below, and the display in terms of faces suggested by Chernoff
(1973), for which several examples are given in Wang (1978), became pop-
ular in the 1970s and 1980s. There are many other possibilities (see, for
example, Tukey and Tukey (1981) and Carr(1998)) which will not be dis-
cussed here. Recent developments in the visualization of high-dimensional
data using the ever-increasing power of computers have created displays
which are dynamic, colourful and potentially highly informative, but there
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remain limitations on how many dimensions can be effectively shown si-
multaneously. The less sophisticated ideas of Tukey and Tukey (1981) still
have a rôle to play in this respect.

Even when dimensionality cannot be reduced to two or three, a reduc-
tion to as few dimensions as possible, without throwing away too much
information, is still often worthwhile before attempting to graph the data.
Some techniques, such as Chernoff’s faces, impose a limit on the number
of variables that can be handled, although a modification due to Flury and
Riedwyl (1981) increases the limit, and for most other methods a reduction
in the number of variables leads to simpler and more easily interpretable
diagrams. An obvious way of reducing the dimensionality is to replace the
original variables by the first few PCs, and the use of PCs in this context
will be particularly successful if each PC has an obvious interpretation (see
Chapter 4). Andrews (1972) recommends transforming to PCs in any case,
because the PCs are uncorrelated, which means that tests of significance
for the plots may be more easily performed with PCs than with the origi-
nal variables. Jackson (1991, Section 18.6) suggests that Andrews’ curves
of the residuals after ‘removing’ the first q PCs, that is, the sum of the last
(r − q) terms in the SVD of X, may provide useful information about the
behaviour of residual variability.

5.6.1 Example

In Jolliffe et al. (1986), 107 English local authorities are divided into groups
or clusters, using various methods of cluster analysis (see Section 9.2), on
the basis of measurements on 20 demographic variables.

The 20 variables can be reduced to seven PCs, which account for over
90% of the total variation in the 20 variables, and for each local authority
an Andrews’ curve is defined on the range −π ≤ t ≤ π by the function

f(t) =
z1√
2

+ z2 sin t + z3 cos t + z4 sin 2t + z5 cos 2t + z6 sin 3t + z7 cos 3t,

where z1, z2, . . . , z7 are the values of the first seven PCs for the local au-
thority. Andrews’ curves may be plotted separately for each cluster. These
curves are useful in assessing the homogeneity of the clusters. For example,
Figure 5.7 gives the Andrews’ curves for three of the clusters (Clusters 2,
11 and 12) in a 13-cluster solution, and it can be seen immediately that
the shape of the curves is different for different clusters.

Compared to the variation between clusters, the curves fall into fairly
narrow bands, with a few exceptions, for each cluster. Narrower bands for
the curves imply greater homogeneity in the cluster.

In Cluster 12 there are two curves that are somewhat different from
the remainder. These curves have three complete oscillations in the range
(−π, π), with maxima at 0 and ±2π/3. This implies that they are domi-
nated by cos 3t and hence z7. Examination of the seventh PC shows that
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Figure 5.7. Local authorities demographic data: Andrews’ curves for three
clusters.
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its largest coefficients are all positive and correspond to numbers of elderly
persons who have recently moved to the area, numbers in privately rented
accommodation, and population sparsity (Area/Population). The implica-
tion of the outlying curves for Cluster 12 is that the two local authorities
corresponding to the curves (Cumbria, Northumberland) have substantially
larger values for the seventh PC than do the other local authorities in the
same cluster (Cornwall, Gloucestershire, Kent, Lincolnshire, Norfolk, North
Yorkshire, Shropshire, Somerset and Suffolk). This is, indeed, the case and
it further implies atypical values for Northumberland and Cumbria, com-
pared to the remainder of the cluster, for the three variables having the
largest coefficients for the seventh PC.

Another example of using Andrews’ curves to examine the homogeneity
of clusters in cluster analysis and to investigate potential outliers is given
by Jolliffe et al. (1980) for the data set discussed in Section 4.2.



6
Choosing a Subset of Principal
Components or Variables

In this chapter two separate, but related, topics are considered, both of
which are concerned with choosing a subset of variables. In the first section,
the choice to be examined is how many PCs adequately account for the
total variation in x. The major objective in many applications of PCA is
to replace the p elements of x by a much smaller number m of PCs, which
nevertheless discard very little information. It is crucial to know how small
m can be taken without serious information loss. Various rules, many ad
hoc, have been proposed for determining a suitable value of m, and these
are discussed in Section 6.1. Examples of their use are given in Section 6.2.

Using m PCs instead of p variables considerably reduces the dimension-
ality of the problem when m � p, but usually the values of all p variables
are still needed in order to calculate the PCs, as each PC is likely to be
a function of all p variables. It might be preferable if, instead of using m
PCs we could use m, or perhaps slightly more, of the original variables,
to account for most of the variation in x. The question arises of how to
compare the information contained in a subset of variables with that in
the full data set. Different answers to this question lead to different criteria
and different algorithms for choosing the subset. In Section 6.3 we concen-
trate on methods that either use PCA to choose the variables or aim to
reproduce the PCs in the full data set with a subset of variables, though
other variable selection techniques are also mentioned briefly. Section 6.4
gives two examples of the use of variable selection methods.

All of the variable selection methods described in the present chapter
are appropriate when the objective is to describe variation within x as
well as possible. Variable selection when x is a set of regressor variables
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in a regression analysis, or a set of predictor variables in a discriminant
analysis, is a different type of problem as criteria external to x must be
considered. Variable selection in regression is the subject of Section 8.5. The
related problem of choosing which PCs to include in a regression analysis
or discriminant analysis is discussed in Sections 8.2, 9.1 respectively.

6.1 How Many Principal Components?

In this section we present a number of rules for deciding how many PCs
should be retained in order to account for most of the variation in x (or
in the standardized variables x∗ in the case of a correlation matrix-based
PCA).

In some circumstances the last few, rather than the first few, PCs are of
interest, as was discussed in Section 3.4 (see also Sections 3.7, 6.3, 8.4, 8.6
and 10.1). In the present section, however, the traditional idea of trying
to reduce dimensionality by replacing the p variables by the first m PCs
(m < p) is adopted, and the possible virtues of the last few PCs are ignored.

The first three types of rule for choosing m, described in Sections 6.1.1–
6.1.3, are very much ad hoc rules-of-thumb, whose justification, despite
some attempts to put them on a more formal basis, is still mainly that
they are intuitively plausible and that they work in practice. Section 6.1.4
discusses rules based on formal tests of hypothesis. These make distribu-
tional assumptions that are often unrealistic, and they frequently seem to
retain more variables than are necessary in practice. In Sections 6.1.5, 6.1.6
a number of statistically based rules, most of which do not require distri-
butional assumptions, are described. Several use computationally intensive
methods such as cross-validation and bootstrapping. Some procedures that
have been suggested in the context of atmospheric science are presented
briefly in Section 6.1.7, and Section 6.1.8 provides some discussion of a
number of comparative studies, and a few comments on the relative merits
of various rules.

6.1.1 Cumulative Percentage of Total Variation

Perhaps the most obvious criterion for choosing m, which has already been
informally adopted in some of the examples of Chapters 4 and 5, is to
select a (cumulative) percentage of total variation which one desires that
the selected PCs contribute, say 80% or 90%. The required number of
PCs is then the smallest value of m for which this chosen percentage is
exceeded. It remains to define what is meant by ‘percentage of variation
accounted for by the first m PCs,’ but this poses no real problem. Principal
components are successively chosen to have the largest possible variance,
and the variance of the kth PC is lk. Furthermore,

∑p
k=1 lk =

∑p
j=1 sjj ,
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that is the sum of the variances of the PCs is equal to the sum of the
variances of the elements of x. The obvious definition of ‘percentage of
variation accounted for by the first m PCs’ is therefore

tm = 100
m∑

k=1

lk

/ p∑

j=1

sjj = 100
m∑

k=1

lk

/ p∑

k=1

lk,

which reduces to

tm =
100
p

m∑

k=1

lk

in the case of a correlation matrix.
Choosing a cut-off t∗ somewhere between 70% and 90% and retaining m

PCs, where m is the smallest integer for which tm > t∗, provides a rule
which in practice preserves in the first m PCs most of the information in
x. The best value for t∗ will generally become smaller as p increases, or
as n, the number of observations, increases. Although a sensible cutoff is
very often in the range 70% to 90%, it can sometimes be higher or lower
depending on the practical details of a particular data set. For example,
a value greater than 90% will be appropriate when one or two PCs repre-
sent very dominant and rather obvious sources of variation. Here the less
obvious structures beyond these could be of interest, and to find them a
cut-off higher than 90% may be necessary. Conversely, when p is very large
choosing m corresponding to 70% may give an impractically large value of
m for further analyses. In such cases the threshold should be set somewhat
lower.

Using the rule is, in a sense, equivalent to looking at the spectral de-
composition of the covariance (or correlation) matrix S (see Property A3
of Sections 2.1, 3.1), or the SVD of the data matrix X (see Section 3.5). In
either case, deciding how many terms to include in the decomposition in
order to get a good fit to S or X respectively is closely related to looking
at tm, because an appropriate measure of lack-of-fit of the first m terms in
either decomposition is

∑p
k=m+1 lk. This follows because

n∑

i=1

p∑

j=1

(mx̃ij − xij)2 = (n − 1)
p∑

k=m+1

lk,

(Gabriel, 1978) and ‖mS−S‖ =
∑p

k=m+1 lk (see the discussion of Property
G4 in Section 3.2), where mx̃ij is the rank m approximation to xij based
on the SVD as given in equation (3.5.3), and mS is the sum of the first m
terms of the spectral decomposition of S.

A number of attempts have been made to find the distribution of tm,
and hence to produce a formal procedure for choosing m, based on tm.
Mandel (1972) presents some expected values for tm for the case where all
variables are independent, normally distributed, and have the same vari-
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ance. Mandel’s results are based on simulation studies, and although exact
results have been produced by some authors, they are only for limited spe-
cial cases. For example, Krzanowski (1979a) gives exact results for m = 1
and p = 3 or 4, again under the assumptions of normality, independence
and equal variances for all variables. These assumptions mean that the
results can be used to determine whether or not all variables are indepen-
dent, but are of little general use in determining an ‘optimal’ cut-off for
tm. Sugiyama and Tong (1976) describe an approximate distribution for tm
which does not assume independence or equal variances, and which can be
used to test whether l1, l2, . . . , lm are compatible with any given structure
for λ1, λ2, . . . , λm, the corresponding population variances. However, the
test still assumes normality and it is only approximate, so it is not clear
how useful it is in practice for choosing an appropriate value of m.

Huang and Tseng (1992) describe a ‘decision procedure for determining
the number of components’ based on tm. Given a proportion of population
variance τ , which one wishes to retain, and the true minimum number of
population PCs mτ that achieves this, Huang and Tseng (1992) develop
a procedure for finding a sample size n and a threshold t∗ having a pre-
scribed high probability of choosing m = mτ . It is difficult to envisage
circumstances where this would be of practical value.

A number of other criteria based on
∑p

k=m+1 lk are discussed briefly by
Jackson (1991, Section 2.8.11). In situations where some desired residual
variation can be specified, as sometimes happens for example in quality
control (see Section 13.7), Jackson (1991, Section 2.8.5) advocates choosing
m such that the absolute, rather than percentage, value of

∑p
k=m+1 lk first

falls below the chosen threshold.

6.1.2 Size of Variances of Principal Components

The previous rule is equally valid whether a covariance or a correlation
matrix is used to compute the PCs. The rule described in this section is
constructed specifically for use with correlation matrices, although it can
be adapted for some types of covariance matrices. The idea behind the
rule is that if all elements of x are independent, then the PCs are the
same as the original variables and all have unit variances in the case of
a correlation matrix. Thus any PC with variance less than 1 contains less
information than one of the original variables and so is not worth retaining.
The rule, in its simplest form, is sometimes called Kaiser’s rule (Kaiser,
1960) and retains only those PCs whose variances lk exceed 1. If the data
set contains groups of variables having large within-group correlations, but
small between group correlations, then there is one PC associated with each
group whose variance is > 1, whereas any other PCs associated with the
group have variances < 1 (see Section 3.8). Thus, the rule will generally
retain one, and only one, PC associated with each such group of variables,
which seems to be a reasonable course of action for data of this type.
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As well as these intuitive justifications, Kaiser (1960) put forward a num-
ber of other reasons for a cut-off at lk = 1. It must be noted, however, that
most of the reasons are pertinent to factor analysis (see Chapter 7), rather
than PCA, although Kaiser refers to PCs in discussing one of them.

It can be argued that a cut-off at lk = 1 retains too few variables. Con-
sider a variable which, in the population, is more-or-less independent of
all other variables. In a sample, such a variable will have small coefficients
in (p − 1) of the PCs but will dominate one of the PCs, whose variance
lk will be close to 1 when using the correlation matrix. As the variable
provides independent information from the other variables it would be un-
wise to delete it. However, deletion will occur if Kaiser’s rule is used, and
if, due to sampling variation, lk < 1. It is therefore advisable to choose
a cut-off l∗ lower than 1, to allow for sampling variation. Jolliffe (1972)
suggested, based on simulation studies, that l∗ = 0.7 is roughly the correct
level. Further discussion of this cut-off level will be given with respect to
examples in Sections 6.2 and 6.4.

The rule just described is specifically designed for correlation matrices,
but it can be easily adapted for covariance matrices by taking as a cut-off l∗

the average value l̄ of the eigenvalues or, better, a somewhat lower cut-off
such as l∗ = 0.7l̄. For covariance matrices with widely differing variances,
however, this rule and the one based on tk from Section 6.1.1 retain very
few (arguably, too few) PCs, as will be seen in the examples of Section 6.2.

An alternative way of looking at the sizes of individual variances is to use
the so-called broken stick model. If we have a stick of unit length, broken
at random into p segments, then it can be shown that the expected length
of the kth longest segment is

l∗k =
1
p

p∑

j=k

1
j
.

One way of deciding whether the proportion of variance accounted for by
the kth PC is large enough for that component to be retained is to compare
the proportion with l∗k. Principal components for which the proportion
exceeds l∗k are then retained, and all other PCs deleted. Tables of l∗k are
available for various values of p and k (see, for example, Legendre and
Legendre (1983, p. 406)).

6.1.3 The Scree Graph and the Log-Eigenvalue Diagram

The first two rules described above usually involve a degree of subjectiv-
ity in the choice of cut-off levels, t∗ and l∗ respectively. The scree graph,
which was discussed and named by Cattell (1966) but which was already
in common use, is even more subjective in its usual form, as it involves
looking at a plot of lk against k (see Figure 6.1, which is discussed in detail
in Section 6.2) and deciding at which value of k the slopes of lines joining
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Figure 6.1. Scree graph for the correlation matrix: blood chemistry data.

the plotted points are ‘steep’ to the left of k, and ‘not steep’ to the right.
This value of k, defining an ‘elbow’ in the graph, is then taken to be the
number of components m to be retained. Its name derives from the simi-
larity of its typical shape to that of the accumulation of loose rubble, or
scree, at the foot of a mountain slope. An alternative to the scree graph,
which was developed in atmospheric science, is to plot log(lk), rather than
lk, against k; this is known as the log-eigenvalue (or LEV) diagram (see
Farmer (1971), Maryon (1979)).

In introducing the scree graph, Cattell (1966) gives a somewhat different
formulation from that above, and presents strong arguments that when it
is used in factor analysis it is entirely objective and should produce the
‘correct’ number of factors (see Cattell and Vogelmann (1977) for a large
number of examples). In fact, Cattell (1966) views the rule as a means of
deciding upon an upper bound to the true number of factors in a factor
analysis after rotation (see Chapter 7). He did not seem to envisage its use
in PCA, although it has certainly been widely adopted for that purpose.

The way in which Cattell (1966) formulates the rule goes beyond a simple
change of slope from ‘steep’ to ‘shallow.’ He looks for the point beyond
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which the scree graph defines a more-or-less straight line, not necessarily
horizontal. The first point on the straight line is then taken to be the last
factor/component to be retained. If there are two or more straight lines
formed by the lower eigenvalues, then the cut-off is taken at the upper (left-
hand) end of the left-most straight line. Cattell (1966) discusses at some
length whether the left-most point on the straight line should correspond
to the first excluded factor or the last factor to be retained. He concludes
that it is preferable to include this factor, although both variants are used
in practice.

The rule in Section 6.1.1 is based on tm =
∑m

k=1 lk, the rule in Sec-
tion 6.1.2 looks at individual eigenvalues lk, and the current rule, as applied
to PCA, uses lk−1 − lk as its criterion. There is, however, no formal nu-
merical cut-off based on lk−1 − lk and, in fact, judgments of when lk−1 − lk
stops being large (steep) will depend on the relative values of lk−1 − lk
and lk − lk+1, as well as the absolute value of lk−1 − lk. Thus the rule is
based subjectively on the second, as well as the first, differences among
the lk. Because of this, it is difficult to write down a formal numerical rule
and the procedure has until recently remained purely graphical. Tests that
attempt to formalize the procedure, due to Bentler and Yuan (1996,1998),
are discussed in Section 6.1.4.

Cattell’s formulation, where we look for the point at which lk−1 − lk
becomes fairly constant for several subsequent values, is perhaps less sub-
jective, but still requires some degree of judgment. Both formulations of
the rule seem to work well in practice, provided that there is a fairly sharp
‘elbow,’ or change of slope, in the graph. However, if the slope gradually
becomes less steep, with no clear elbow, as in Figure 6.1, then it is clearly
less easy to use the procedure.

A number of methods have been suggested in which the scree plot is
compared with a corresponding plot representing given percentiles, often a
95 percentile, of the distributions of each variance (eigenvalue) when PCA
is done on a ‘random’ matrix. Here ‘random’ usually refers to a correlation
matrix obtained from a random sample of n observations on p uncorrelated
normal random variables, where n, p are chosen to be the same as for the
data set of interest. A number of varieties of this approach, which goes
under the general heading parallel analysis, have been proposed in the
psychological literature. Parallel analysis dates back to Horn (1965), where
it was described as determining the number of factors in factor analysis.
Its ideas have since been applied, sometimes inappropriately, to PCA.

Most of its variants use simulation to construct the 95 percentiles em-
pirically, and some examine ‘significance’ of loadings (eigenvectors), as well
as eigenvalues, using similar reasoning. Franklin et al. (1995) cite many of
the most relevant references in attempting to popularize parallel analysis
amongst ecologists. The idea in versions of parallel analysis that concen-
trate on eigenvalues is to retain m PCs, where m is the largest integer for
which the scree graph lies above the graph of upper 95 percentiles. Boot-
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strap versions of these rules are used by Jackson (1993) and are discussed
further in Section 6.1.5. Stauffer et al. (1985) informally compare scree
plots from a number of ecological data sets with corresponding plots from
random data sets of the same size. They incorporate bootstrap confidence
intervals (see Section 6.1.5) but their main interest is in the stability of
the eigenvalues (see Section 10.3) rather than the choice of m. Preisendor-
fer and Mobley’s (1988) Rule N, described in Section 6.1.7 also uses ideas
similar to parallel analysis.

Turning to the LEV diagram, an example of which is given in Sec-
tion 6.2.2 below, one of the earliest published descriptions was in Craddock
and Flood (1969), although, like the scree graph, it had been used routinely
for some time before this. Craddock and Flood argue that, in meteorology,
eigenvalues corresponding to ‘noise’ should decay in a geometric progres-
sion, and such eigenvalues will therefore appear as a straight line on the
LEV diagram. Thus, to decide on how many PCs to retain, we should
look for a point beyond which the LEV diagram becomes, approximately,
a straight line. This is the same procedure as in Cattell’s interpretation of
the scree graph, but the results are different, as we are now plotting log(lk)
rather than lk. To justify Craddock and Flood’s procedure, Farmer (1971)
generated simulated data with various known structures (or no structure).
For purely random data, with all variables uncorrelated, Farmer found that
the whole of the LEV diagram is approximately a straight line. Further-
more, he showed that if structures of various dimensions are introduced,
then the LEV diagram is useful in indicating the correct dimensionality, al-
though real examples, of course, give much less clear-cut results than those
of simulated data.

6.1.4 The Number of Components with Unequal Eigenvalues
and Other Hypothesis Testing Procedures

In Section 3.7.3 a test, sometimes known as Bartlett’s test, was described
for the null hypothesis

H0,q : λq+1 = λq+2 = · · · = λp

against the general alternative that at least two of the last (p−q) eigenvalues
are unequal. It was argued that using this test for various values of q, it
can be discovered how many of the PCs contribute substantial amounts of
variation, and how many are simply ‘noise.’ If m, the required number of
PCs to be retained, is defined as the number of PCs that are not noise,
then the test is used sequentially to find m.

H0,p−2 is tested first, that is λp−1 = λp, and if H0,p−2 is not rejected then
H0,p−3 is tested. If H0,p−3 is not rejected, H0,p−4 is tested next, and this
sequence continues until H0,q is first rejected at q = q∗, say. The value of
m is then taken to be q∗ +1 (or q∗ +2 if q∗ = p−2). There are a number of
disadvantages to this procedure, the first of which is that equation (3.7.6)
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is based on the assumption of multivariate normality for x, and is only
approximately true even then. The second problem is concerned with the
fact that unless H0,p−2 is rejected, there are several tests to be done, so
that the overall significance level of the sequence of tests is not the same
as the individual significance levels of each test. Furthermore, it is difficult
to get even an approximate idea of the overall significance level because
the number of tests done is not fixed but random, and the tests are not
independent of each other. It follows that, although the testing sequence
suggested above can be used to estimate m, it is dangerous to treat the
procedure as a formal piece of statistical inference, as significance levels are
usually unknown. The reverse sequence H00,H01, . . . can be used instead
until the first non-rejection occurs (Jackson, 1991, Section 2.6), but this
suffers from similar problems.

The procedure could be added to the list of ad hoc rules, but it has
one further, more practical, disadvantage, namely that in nearly all real
examples it tends to retain more PCs than are really necessary. Bartlett
(1950), in introducing the procedure for correlation matrices, refers to it
as testing how many of the PCs are statistically significant, but ‘statistical
significance’ in the context of these tests does not imply that a PC accounts
for a substantial proportion of the total variation. For correlation matrices,
Jolliffe (1970) found that the rule often corresponds roughly to choosing a
cut-off l∗ of about 0.1 to 0.2 in the method of Section 6.1.2. This is much
smaller than is recommended in that section, and occurs because defining
unimportant PCs as those with variances equal to that of the last PC is
not necessarily a sensible way of finding m. If this definition is acceptable,
as it may be if the model of Tipping and Bishop (1999a) (see Section 3.9) is
assumed, for example, then the sequential testing procedure may produce
satisfactory results, but it is easy to construct examples where the method
gives silly answers. For instance, if there is one near-constant relationship
among the elements of x, with a much smaller variance than any other
PC, then the procedure rejects H0,p−2 and declares that all PCs need to
be retained, regardless of how nearly equal are the next few eigenvalues.

The method of this section is similar in spirit to, though more formal-
ized than, one formulation of the scree graph. Looking for the first ‘shallow’
slope in the graph corresponds to looking for the first of two consecutive
eigenvalues that are nearly equal. The scree graph differs from the formal
testing procedure in that it starts from the largest eigenvalue and com-
pares consecutive eigenvalues two at a time, whereas the tests start with
the smallest eigenvalues and compare blocks of two, three, four and so on.
Another difference is that the ‘elbow’ point is retained in Cattell’s formu-
lation of the scree graph, but excluded in the testing procedure. The scree
graph is also more subjective but, as has been stated above, the objectivity
of the testing procedure is something of an illusion.

Cattell’s original formulation of the scree graph differs from the above
since it is differences lk−1 − lk, rather than lk, which must be equal beyond
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the cut-off point. In other words, in order to retain q PCs the last (p −
q) eigenvalues should have a linear trend. Bentler and Yuan (1996,1998)
develop procedures for testing in the case of covariance and correlation
matrices, respectively, the null hypothesis

H∗
q : λq+k = α + βxk, k = 1, 2, . . . , (p − q)

where α, β are non-negative constants and xk = (p − q) − k.
For covariance matrices a maximum likelihood ratio test (MLRT) can

be used straightforwardly, with the null distribution of the test statistic
approximated by a χ2 distribution. In the correlation case Bentler and
Yuan (1998) use simulations to compare the MLRT, treating the correlation
matrix as a covariance matrix, with a minimum χ2 test. They show that
the MLRT has a seriously inflated Type I error, even for very large sample
sizes. The properties of the minimum χ2 test are not ideal, but the test
gives plausible results in the examples examined by Bentler and Yuan.
They conclude that it is reliable for sample sizes of 100 or larger. The
discussion section of Bentler and Yuan (1998) speculates on improvements
for smaller sample sizes, on potential problems caused by possible different
orderings of eigenvalues in populations and samples, and on the possibility
of testing hypotheses for specific non-linear relationships among the last
(p − q) eigenvalues.

Ali et al. (1985) propose a method for choosing m based on testing hy-
potheses for correlations between the variables and the components. Recall
from Section 2.3 that for a correlation matrix PCA and the normalization
α̃′

kα̃k = λk, the coefficients α̃kj are precisely these correlations. Similarly,
the sample coefficients ãkj are correlations between the kth PC and the
jth variable in the sample. The normalization constraint means that the
coefficients will decrease on average as k increases. Ali et al. (1985) suggest
defining m as one fewer than the index of the first PC for which none of
these correlation coefficients is significantly different from zero at the 5%
significance level. However, there is one immediate difficulty with this sug-
gestion. For a fixed level of significance, the critical values for correlation
coefficients decrease in absolute value as the sample size n increases. Hence
for a given sample correlation matrix, the number of PCs retained depends
on n. More components will be kept as n increases.

6.1.5 Choice of m Using Cross-Validatory or
Computationally Intensive Methods

The rule described in Section 6.1.1 is equivalent to looking at how well the
data matrix X is fitted by the rank m approximation based on the SVD.
The idea behind the first two methods discussed in the present section is
similar, except that each element xij of X is now predicted from an equation
like the SVD, but based on a submatrix of X that does not include xij . In
both methods, suggested by Wold (1978) and Eastment and Krzanowski
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(1982), the number of terms in the estimate for X, corresponding to the
number of PCs, is successively taken as 1, 2, . . . , and so on, until overall
prediction of the xij is no longer significantly improved by the addition of
extra terms (PCs). The number of PCs to be retained, m, is then taken to
be the minimum number necessary for adequate prediction.

Using the SVD, xij can be written, as in equations (3.5.2),(5.3.3),

xij =
r∑

k=1

uikl
1/2
k ajk,

where r is the rank of X. (Recall that, in this context, lk, k = 1, 2, . . . , p
are eigenvalues of X′X, rather than of S.)

An estimate of xij , based on the first m PCs and using all the data, is

mx̃ij =
m∑

k=1

uikl
1/2
k ajk, (6.1.1)

but what is required is an estimate based on a subset of the data that does
not include xij . This estimate is written

mx̂ij =
m∑

k=1

ûik l̂
1/2
k âjk, (6.1.2)

where ûik, l̂k, âjk are calculated from suitable subsets of the data. The sum
of squared differences between predicted and observed xij is then

PRESS(m) =
n∑

i=1

p∑

j=1

(mx̂ij − xij)2. (6.1.3)

The notation PRESS stands for PREdiction Sum of Squares, and is taken
from the similar concept in regression, due to Allen (1974). All of the above
is essentially common to both Wold (1978) and Eastment and Krzanowski
(1982); they differ in how a subset is chosen for predicting xij , and in how
(6.1.3) is used for deciding on m.

Eastment and Krzanowski (1982) use an estimate âjk in (6.1.2) based on
the data set with just the ith observation xi deleted. ûik is calculated with
only the jth variable deleted, and l̂k combines information from the two
cases with the ith observation and the jth variable deleted, respectively.
Wold (1978), on the other hand, divides the data into g blocks, where he
recommends that g should be between four and seven and must not be a
divisor of p, and that no block should contain the majority of the elements
in any row or column of X. Quantities equivalent to ûik, l̂k and âjk are
calculated g times, once with each block of data deleted, and the estimates
formed with the hth block deleted are then used to predict the data in the
hth block, h = 1, 2, . . . , g.

With respect to the choice of m, Wold (1978) and Eastment and Krza-
nowski (1982) each use a (different) function of PRESS(m) as a criterion
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for choosing m. To decide on whether to include the mth PC, Wold (1978)
examines the ratio

R =
PRESS(m)

∑n
i=l

∑p
j=1((m−1)x̃ij − xij)2

. (6.1.4)

This compares the prediction error sum of squares after fitting m compo-
nents, with the sum of squared differences between observed and estimated
data points based on all the data, using (m − 1) components. If R < 1,
then the implication is that a better prediction is achieved using m rather
than (m − 1) PCs, so that the mth PC should be included.

The approach of Eastment and Krzanowski (1982) is similar to that in an
analysis of variance. The reduction in prediction (residual) sum of squares
in adding the mth PC to the model, divided by its degrees of freedom, is
compared to the prediction sum of squares after fitting m PCs, divided by
its degrees of freedom. Their criterion is thus

W =
[PRESS(m − 1) − PRESS(m)]/νm,1

PRESS(m)/νm,2
, (6.1.5)

where νm,1, νm,2 are the degrees of freedom associated with the numerator
and denominator, respectively. It is suggested that if W > 1, then inclusion
of the mth PC is worthwhile, although this cut-off at unity is to be inter-
preted with some flexibility. It is certainly not appropriate to stop adding
PCs as soon as (6.1.5) first falls below unity, because the criterion is not
necessarily a monotonic decreasing function of m. Because the ordering
of the population eigenvalues may not be the same as that of the sam-
ple eigenvalues, especially if consecutive eigenvalues are close, Krzanowski
(1987a) considers orders of the components different from those implied by
the sample eigenvalues. For the well-known alate adelges data set (see Sec-
tion 6.4), Krzanowski (1987a) retains components 1–4 in a straightforward
implementation of W , but he keeps only components 1,2,4 when reorder-
ings are allowed. In an example with a large number (100) of variables,
Krzanowski and Kline (1995) use W in the context of factor analysis and
simply take the number of components with W greater than a threshold,
regardless of their position in the ordering of eigenvalues, as an indicator of
the number of factors to retain. For example, the result where W exceeds
0.9 for components 1, 2, 4, 18 and no others is taken to indicate that a
4-factor solution is appropriate.

It should be noted that although the criteria described in this section
are somewhat less ad hoc than those of Sections 6.1.1–6.1.3, there is still
no real attempt to set up a formal significance test to decide on m. Some
progress has been made by Krzanowski (1983) in investigating the sam-
pling distribution of W using simulated data. He points out that there are
two sources of variability to be considered in constructing such a distri-
bution; namely the variability due to different sample covariance matrices
S for a fixed population covariance matrix Σ and the variability due to
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the fact that a fixed sample covariance matrix S can result from different
data matrices X. In addition to this two-tiered variability, there are many
parameters that can vary: n, p, and particularly the structure of Σ. This
means that simulation studies can only examine a fraction of the possible
parameter values, and are therefore of restricted applicability. Krzanowski
(1983) looks at several different types of structure for Σ, and reaches the
conclusion that W chooses about the right number of PCs in each case, al-
though there is a tendency for m to be too small. Wold (1978) also found,
in a small simulation study, that R retains too few PCs. This underestima-
tion for m can clearly be overcome by moving the cut-offs for W and R,
respectively, slightly below and slightly above unity. Although the cut-offs
at R = 1 and W = 1 seem sensible, the reasoning behind them is not rigid,
and they could be modified slightly to account for sampling variation in the
same way that Kaiser’s rule (Section 6.1.2) seems to work better when l∗

is changed to a value somewhat below unity. In later papers (Krzanowski,
1987a; Krzanowski and Kline, 1995) a threshold for W of 0.9 is used.

Krzanowski and Kline (1995) investigate the use of W in the context of
factor analysis, and compare the properties and behaviour of W with three
other criteria derived from PRESS(m). Criterion P is based on the ratio

(PRESS(1) − PRESS(m))
PRESS(m)

,

P ∗ on

(PRESS(0) − PRESS(m))
PRESS(m)

,

and R (different from Wold’s R) on

(PRESS(m − 1) − PRESS(m))
(PRESS(m − 1) − PRESS(m + 1))

.

In each case the numerator and denominator of the ratio are divided by
appropriate degrees of freedom, and in each case the value of m for which
the criterion is largest gives the number of factors to be retained. On the
basis of two previously analysed psychological examples, Krzanowski and
Kline (1995) conclude that W and P ∗ select appropriate numbers of factors,
whereas P and R are erratic and unreliable. As discussed later in this
section, selection in factor analysis needs rather different considerations
from PCA. Hence a method that chooses the ‘right number’ of factors may
select too few PCs.

Cross-validation of PCs is computationally expensive for large data sets.
Mertens et al. (1995) describe efficient algorithms for cross-validation, with
applications to principal component regression (see Chapter 8) and in the
investigation of influential observations (Section 10.2). Besse and Ferré
(1993) raise doubts about whether the computational costs of criteria based
on PRESS(m) are worthwhile. Using Taylor expansions, they show that
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for large n, PRESS(m) and W are almost equivalent to the much simpler
quantities

∑p
k=m+1 lk and

lm∑p
k=m+1 lk

,

respectively. However, Gabriel (personal communication) notes that this
conclusion holds only for large sample sizes.

In Section 3.9 we introduced the fixed effects model. A number of authors
have used this model as a basis for constructing rules to determine m,
with some of the rules relying on the resampling ideas associated with the
bootstrap and jackknife. Recall that the model assumes that the rows xi of
the data matrix are such that E(xi) = zi, where zi lies in a q-dimensional
space Fq. If ei is defined as (xi − zi), then E(ei) = 0 and var(ei) = σ2

wi
Γ,

where Γ is a positive definite symmetric matrix and the wi are positive
scalars whose sum is unity. For fixed q, the quantity

n∑

i=1

wi ‖xi − zi‖2
M , (6.1.6)

given in equation (3.9.1), is to be minimized in order to estimate σ2, the zi

and Fq (Γ and the wi are assumed known). The current selection problem
is not only to estimate the unknown parameters, but also to find q. We
wish our choice of m, the number of components retained, to coincide with
the true value of q, assuming that such a value exists.

To choose m, Ferré (1990) attempts to find q so that it minimizes the
loss function

fq = E[
n∑

i=1

wi ‖zi − ẑi‖2
Γ−1 ], (6.1.7)

where ẑi is the projection of xi onto Fq. The criterion fq cannot be calcu-
lated, but must be estimated, and Ferré (1990) shows that a good estimate
of fq is

f̂q =
p∑

k=q+1

λ̂k + σ2[2q(n + q − p) − np + 2(p − q) + 4
q∑

l=1

p∑

k=q+1

λ̂l

(λ̂l − λ̂k)
],

(6.1.8)
where λ̂k is the kth largest eigenvalue of VΓ−1 and

V =
p∑

i=1

wi(xi − x̄)(xi − x̄)′.

In the special case where Γ = Ip and wi = 1
n , i = 1, . . . , n, we have

VΓ−1 = (n−1)
n S, and λ̂k = (n−1)

n lk, where lk is the kth largest eigenvalue
of the sample covariance matrix S. In addition, ẑi is the projection of xi

onto the space spanned by the first q PCs. The residual variance σ2 still
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needs to be estimated; an obvious estimate is the average of the (p − q)
smallest eigenvalues of S.

Besse and de Falguerolles (1993) start from the same fixed effects model
and concentrate on the special case just noted. They modify the loss
function to become

Lq =
1
2

∥
∥
∥Pq − P̂q

∥
∥
∥

2

, (6.1.9)

where P̂q = AqA′
q, Aq is the (p × q) matrix whose kth column is the

kth eigenvalue of S, Pq is the quantity corresponding to P̂q for the true
q-dimensional subspace Fq, and ‖.‖ denotes Euclidean norm. The loss func-
tion Lq measures the distance between the subspace Fq and its estimate
F̂q spanned by the columns of Aq.

The risk function that Besse and de Falguerolles (1993) seek to mini-
mize is Rq = E[Lq]. As with fq, Rq must be estimated, and Besse and
de Falguerolles (1993) compare four computationally intensive ways of do-
ing so, three of which were suggested by Besse (1992), building on ideas
from Daudin et al. (1988, 1989). Two are bootstrap methods; one is based
on bootstrapping residuals from the q-dimensional model, while the other
bootstraps the data themselves. A third procedure uses a jackknife esti-
mate and the fourth, which requires considerably less computational effort,
constructs an approximation to the jackknife.

Besse and de Falguerolles (1993) simulate data sets according to the fixed
effects model, with p = 10, q = 4 and varying levels of the noise variance
σ2. Because q and σ2 are known, the true value of Rq can be calculated.
The four procedures outlined above are compared with the traditional scree
graph and Kaiser’s rule, together with boxplots of scores for each principal
component. In the latter case a value m is sought such that the boxplots
are much less wide for components (m + 1), (m + 2), . . . , p than they are
for components 1, 2, . . . ,m.

As the value of σ2 increases, all of the criteria, new or old, deteriorate in
their performance. Even the true value of Rq does not take its minimum
value at q = 4, although q = 4 gives a local minimum in all the simulations.
Bootstrapping of residuals is uninformative regarding the value of q, but
the other three new procedures each have strong local minima at q = 4. All
methods have uninteresting minima at q = 1 and at q = p, but the jackknife
techniques also have minima at q = 6, 7 which become more pronounced
as σ2 increases. The traditional methods correctly choose q = 4 for small
σ2, but become less clear as σ2 increases.

The plots of the risk estimates are very irregular, and both Besse (1992)
and Besse and de Falguerolles (1993) note that they reflect the important
feature of stability of the subspaces retained. Many studies of stability (see,
for example, Sections 10.2, 10.3, 11.1 and Besse, 1992) show that pairs of
consecutive eigenvectors are unstable if their corresponding eigenvalues are
of similar size. In a similar way, Besse and de Falguerolles’ (1993) risk
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estimates depend on the reciprocal of the difference between lm and lm+1

where, as before, m is the number of PCs retained. The usual implemen-
tations of the rules of Sections 6.1.1, 6.1.2 ignore the size of gaps between
eigenvalues and hence do not take stability into account. However, it is ad-
visable when using Kaiser’s rule or one of its modifications, or a rule based
on cumulative variance, to treat the threshold with flexibility, and be pre-
pared to move it, if it does not correspond to a good-sized gap between
eigenvalues.

Besse and de Falguerolles (1993) also examine a real data set with p = 16
and n = 60. Kaiser’s rule chooses m = 5, and the scree graph suggests either
m = 3 or m = 5. The bootstrap and jackknife criteria behave similarly to
each other. Ignoring the uninteresting minimum at m = 1, all four methods
choose m = 3, although there are strong secondary minima at m = 8 and
m = 5.

Another model-based rule is introduced by Bishop (1999) and, even
though one of its merits is said to be that it avoids cross-validation, it
seems appropriate to mention it here. Bishop (1999) proposes a Bayesian
framework for Tipping and Bishop’s (1999a) model, which was described in
Section 3.9. Recall that under this model the covariance matrix underlying
the data can be written as BB′ + σ2Ip, where B is a (p × q) matrix. The
prior distribution of B in Bishop’s (1999) framework allows B to have its
maximum possible value of q (= p − 1) under the model. However if the
posterior distribution assigns small values for all elements of a column bk of
B, then that dimension is removed. The mode of the posterior distribution
can be found using the EM algorithm.

Jackson (1993) discusses two bootstrap versions of ‘parallel analysis,’
which was described in general terms in Section 6.1.3. The first, which
is a modification of Kaiser’s rule defined in Section 6.1.2, uses bootstrap
samples from a data set to construct confidence limits for the popula-
tion eigenvalues (see Section 3.7.2). Only those components for which the
corresponding 95% confidence interval lies entirely above 1 are retained.
Unfortunately, although this criterion is reasonable as a means of deciding
the number of factors in a factor analysis (see Chapter 7), it is inappropri-
ate in PCA. This is because it will not retain PCs dominated by a single
variable whose correlations with all the other variables are close to zero.
Such variables are generally omitted from a factor model, but they provide
information not available from other variables and so should be retained if
most of the information in X is to be kept. Jolliffe’s (1972) suggestion of
reducing Kaiser’s threshold from 1 to around 0.7 reflects the fact that we
are dealing with PCA and not factor analysis. A bootstrap rule designed
with PCA in mind would retain all those components for which the 95%
confidence interval for the corresponding eigenvalue does not lie entirely
below 1.

A second bootstrap approach suggested by Jackson (1993) finds 95%
confidence intervals for both eigenvalues and eigenvector coefficients. To
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decide on m, two criteria need to be satisfied. First, the confidence inter-
vals for λm and λm+1 should not overlap, and second no component should
be retained unless it has at least two coefficients whose confidence intervals
exclude zero. This second requirement is again relevant for factor analy-
sis, but not PCA. With regard to the first criterion, it has already been
noted that avoiding small gaps between lm and lm+1 is desirable because
it reduces the likelihood of instability in the retained components.

6.1.6 Partial Correlation

For PCA based on a correlation matrix, Velicer (1976) suggested that the
partial correlations between the p variables, given the values of the first
m PCs, may be used to determine how many PCs to retain. The criterion
proposed is the average of the squared partial correlations

V =
p∑

i=1
i�=j

p∑

j=1

(r∗ij)
2

p(p − 1)
,

where r∗ij is the partial correlation between the ith and jth variables, given
the first m PCs. The statistic r∗ij is defined as the correlation between the
residuals from the linear regression of the ith variable on the first m PCs,
and the residuals from the corresponding regression of the jth variable on
these m PCs. It therefore measures the strength of the linear relationship
between the ith and jth variables after removing the common effect of the
first m PCs.

The criterion V first decreases, and then increases, as m increases, and
Velicer (1976) suggests that the optimal value of m corresponds to the
minimum value of the criterion. As with Jackson’s (1993) bootstrap rules
of Section 6.1.5, and for the same reasons, this criterion is plausible as
a means of deciding the number of factors in a factor analysis, but it is
inappropriate in PCA. Numerous other rules have been suggested in the
context of factor analysis (Reddon, 1984, Chapter 3). Many are subjective,
although some, such as parallel analysis (see Sections 6.1.3, 6.1.5) attempt
a more objective approach. Few are relevant to, or useful for, PCA unless
they are modified in some way.

Beltrando (1990) gives a sketchy description of what appears to be an-
other selection rule based on partial correlations. Instead of choosing m so
that the average squared partial correlation is minimized, Beltrando (1990)
selects m for which the number of statistically significant elements in the
matrix of partial correlations is minimized.

6.1.7 Rules for an Atmospheric Science Context

As mentioned in Section 4.3, PCA has been widely used in meteorology
and climatology to summarize data that vary both spatially and tempo-
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rally, and a number of rules for selecting a subset of PCs have been put
forward with this context very much in mind. The LEV diagram, discussed
in Section 6.1.3, is one example, as is Beltrando’s (1990) method in Sec-
tion 6.1.6, but there are many others. In the fairly common situation where
different observations correspond to different time points, Preisendorfer and
Mobley (1988) suggest that important PCs will be those for which there is
a clear pattern, rather than pure randomness, present in their behaviour
through time. The important PCs can then be discovered by forming a
time series of each PC, and testing which time series are distinguishable
from white noise. Many tests are available for this purpose in the time
series literature, and Preisendorfer and Mobley (1988, Sections 5g–5j) dis-
cuss the use of a number of them. This type of test is perhaps relevant
in cases where the set of multivariate observations form a time series (see
Chapter 12), as in many atmospheric science applications, but in the more
usual (non-meteorological) situation where the observations are indepen-
dent, such techniques are irrelevant, as the values of the PCs for different
observations will also be independent. There is therefore no natural order-
ing of the observations, and if they are placed in a sequence, they should
necessarily look like a white noise series.

Chapter 5 of Preisendorfer and Mobley (1988) gives a thorough review of
selection rules used in atmospheric science. In Sections 5c–5e they discuss
a number of rules similar in spirit to the rules of Sections 6.1.3 and 6.1.4
above. They are, however, derived from consideration of a physical model,
based on spring-coupled masses (Section 5b), where it is required to distin-
guish signal (the important PCs) from noise (the unimportant PCs). The
details of the rules are, as a consequence, somewhat different from those
of Sections 6.1.3 and 6.1.4. Two main ideas are described. The first, called
Rule A4 by Preisendorfer and Mobley (1988), has a passing resemblance to
Bartlett’s test of equality of eigenvalues, which was defined and discussed
in Sections 3.7.3 and 6.1.4. Rule A4 assumes that the last (p−q) population
eigenvalues are equal, and uses the asymptotic distribution of the average
of the last (p− q) sample eigenvalues to test whether the common popula-
tion value is equal to λ0. Choosing an appropriate value for λ0 introduces
a second step into the procedure and is a weakness of the rule.

Rule N , described in Section 5d of Preisendorfer and Mobley (1988) is
popular in atmospheric science. It is similar to the techniques of parallel
analysis, discussed in Sections 6.1.3 and 6.1.5, and involves simulating a
large number of uncorrelated sets of data of the same size as the real data
set which is to be analysed, and computing the eigenvalues of each sim-
ulated data set. To assess the significance of the eigenvalues for the real
data set, the eigenvalues are compared to percentiles derived empirically
from the simulated data. The suggested rule keeps any components whose
eigenvalues lie above the 95% level in the cumulative distribution of the
simulated data. A disadvantage is that if the first eigenvalue for the data
is very large, it makes it difficult for later eigenvalues to exceed their own
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95% thresholds. It may therefore be better to look at the size of second and
subsequent eigenvalues only with respect to smaller, not larger, eigenval-
ues. This could be achieved by removing the first term in the singular value
decomposition (SVD) (3.5.2), and viewing the original second eigenvalue
as the first eigenvalue in the analysis of this residual matrix. If the second
eigenvalue is above its 95% threshold in this analysis, we subtract a second
term from the SVD, and so on. An alternative idea, noted in Preisendorfer
and Mobley (1988, Section 5f), is to simulate from a given covariance or
correlation structure in which not all the variables are uncorrelated.

If the data are time series, with autocorrelation between successive obser-
vations, Preisendorfer and Mobley (1988) suggest calculating an ‘equivalent
sample size’, n∗, allowing for the autocorrelation. The simulations used to
implement Rule N are then carried out with sample size n∗, rather than
the actual sample size, n. They also note that both Rules A4 and N tend to
retain too few components, and therefore recommend choosing a value for
m that is the larger of the two values indicated by these rules. In Section 5k
Preisendorfer and Mobley (1988) provide rules for the case of vector-valued
fields.

Like Besse and de Falguerolles (1993) (see Section 6.1.5) North et al.
(1982) argue strongly that a set of PCs with similar eigenvalues should
either all be retained or all excluded. The size of gaps between successive
eigenvalues is thus an important consideration for any decision rule, and
North et al. (1982) provide a rule-of-thumb for deciding whether gaps are
too small to split the PCs on either side of the gap.

The idea of using simulated data to assess significance of eigenvalues
has also been explored by other authors, for example, Farmer (1971) (see
also Section 6.1.3 above), Cahalan (1983) and, outside the meteorological
context, Mandel (1972), Franklin et al. (1995) and the parallel analysis
literature.

Other methods have also been suggested in the atmospheric science liter-
ature. For example, Jones et al. (1983), Briffa et al. (1986) use a criterion for
correlation matrices, which they attribute to Guiot (1981). In this method
PCs are retained if their cumulative eigenvalue product exceeds one. This
technique retains more PCs than most of the other procedures discussed
earlier, but Jones et al. (1983) seem to be satisfied with the results it
produces. Preisendorfer and Mobley (1982, Part IV) suggest a rule that
considers retaining subsets of m PCs not necessarily restricted to the first
m. This is reasonable if the PCs are to be used for an external purpose,
such as regression or discriminant analysis (see Chapter 8, Section 9.1),
but is not really relevant if we are merely interested in accounting for as
much of the variation in x as possible. Richman and Lamb (1987) look
specifically at the case where PCs are rotated (see Section 11.1), and give
a rule for choosing m based on the patterns in rotated eigenvectors.

North and Wu (2001), in an application of PCA to climate change
detection, use a modification of the percentage of variation criterion of
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Section 6.1.1. They use instead the percentage of ‘signal’ accounted for,
although the PCA is done on a covariance matrix other than that associ-
ated with the signal (see Section 12.4.3). Buell (1978) advocates stability
with respect to different degrees of approximation of a continuous spatial
field by discrete points as a criterion for choosing m. Section 13.3.4 of von
Storch and Zwiers (1999) is dismissive of selection rules.

6.1.8 Discussion

Although many rules have been examined in the last seven subsections,
the list is by no means exhaustive. For example, in Section 5.1 we noted
that superimposing a minimum spanning tree on a plot of the observations
with respect to the first two PCs gives a subjective indication of whether or
not a two-dimensional representation is adequate. It is not possible to give
definitive guidance on which rules are best, but we conclude this section
with a few comments on their relative merits. First, though, we discuss a
small selection of the many comparative studies that have been published.

Reddon (1984, Section 3.9) describes nine such studies, mostly from the
psychological literature, but all are concerned with factor analysis rather
than PCA. A number of later studies in the ecological, psychological and
meteorological literatures have examined various rules on both real and
simulated data sets. Simulation of multivariate data sets can always be
criticized as unrepresentative, because they can never explore more than
a tiny fraction of the vast range of possible correlation and covariance
structures. Several of the published studies, for example Grossman et al.
(1991), Richman (1988), are particularly weak in this respect, looking only
at simulations where all p of the variables are uncorrelated, a situation
which is extremely unlikely to be of much interest in practice. Another
weakness of several psychology-based studies is their confusion between
PCA and factor analysis. For example, Zwick and Velicer (1986) state that
‘if PCA is used to summarize a data set each retained component must
contain at least two substantial loadings.’ If the word ‘summarize’ implies
a descriptive purpose the statement is nonsense, but in the simulation study
that follows all their ‘components’ have three or more large loadings. With
this structure, based on factor analysis, it is no surprise that Zwick and
Velicer (1986) conclude that some of the rules they compare, which were
designed with descriptive PCA in mind, retain ‘too many’ factors.

Jackson (1993) investigates a rather broader range of structures, includ-
ing up to 12 variables in up to 3 correlated groups, as well as the completely
uncorrelated case. The range of stopping rules is also fairly wide, includ-
ing: Kaiser’s rule; the scree graph; the broken stick rule; the proportion of
total variance; tests of equality of eigenvalues; and Jackson’s two bootstrap
procedures described in Section 6.1.5. Jackson (1993) concludes that the
broken stick and bootstrapped eigenvalue-eigenvector rules give the best
results in his study. However, as with the reasoning used to develop his
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bootstrap rules, the results are viewed from a factor analysis rather than a
PCA perspective.

Franklin et al. (1995) compare 39 published analyses from ecology. They
seem to start from the unproven premise that ‘parallel analysis’ (see Sec-
tion 6.1.3) selects the ‘correct’ number of components or factors to retain,
and then investigate in how many of the 39 analyses ‘too many’ or ‘too few’
dimensions are chosen. Franklin et al. (1995) claim that 2

3 of the 39 analyses
retain too many dimensions. However, as with a number of other references
cited in this chapter, they fail to distinguish between what is needed for
PCA and factor analysis. They also stipulate that PCAs require normally
distributed random variables, which is untrue for most purposes. It seems
difficult to instil the message that PCA and factor analysis require differ-
ent rules. Turner (1998) reports a large study of the properties of parallel
analysis, using simulation, and notes early on that ‘there are important
differences between principal component analysis and factor analysis.’ He
then proceeds to ignore the differences, stating that the ‘term factors will
be used throughout [the] article [to refer] to either factors or components.’

Ferré (1995b) presents a comparative study which is extensive in its
coverage of selection rules, but very limited in the range of data for which
the techniques are compared. A total of 18 rules are included in the study,
as follows:

• From Section 6.1.1 the cumulative percentage of variance with four
cut-offs: 60%, 70%, 80%, 90%.

• From Section 6.1.2 Kaiser’s rule with cut-off 1, together with
modifications whose cut-offs are 0.7 and 2; the broken stick rule.

• From Section 6.1.3 the scree graph.

• From Section 6.1.4 Bartlett’s test and an approximation due to
Mardia.

• From Section 6.1.5 four versions of Eastment and Krzanowski’s cross-
validation methods, where two cut-offs, 1 and 0.9, are used and, for
each threshold, the stopping rule can be based on either the first or
last occasion that the criterion dips below the threshold; Ferré’s f̂q;
Besse and de Falguerolles’s approximate jackknife criterion.

• From Section 6.1.6 Velicer’s test.

The simulations are based on the fixed effects model described in Sec-
tion 6.1.5. The sample size is 20, the number of variables is 10, and each
simulated data matrix is the sum of a fixed (20 × 10) matrix Z of rank 8
and a matrix of independent Gaussian noise with two levels of the noise
variance. This is a fixed effects model with q = 8, so that at first sight we
might aim to choose m = 8. For the smaller value of noise, Ferre (1995b)
considers this to be appropriate, but the higher noise level lies between the
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second and third largest eigenvalues of the fixed matrix Z, so he argues
that m = 2 should be chosen. This implies a movement away from the
objective ‘correct’ choice given by the model, back towards what seems to
be the inevitable subjectivity of the area.

The simulations are replicated 100 times for each of the two noise levels,
and give results which are consistent with other studies. Kaiser’s modified
rule with a threshold at 2, the broken stick rule, Velicer’s test, and cross-
validation rules that stop after the first fall below the threshold—all retain
relatively few components. Conversely, Bartlett’s test, cumulative variance
with a cut-off of 90%, f̂q and the approximate jackknife retain greater
numbers of PCs. The approximate jackknife displays the strange behaviour
of retaining more PCs for larger than for smaller noise levels. If we consider
m = 8 to be ‘correct’ for both noise levels, all rules behave poorly for the
high noise level. For the low noise level, f̂q and Bartlett’s tests do best.
If m = 2 is deemed correct for the high noise level, the best procedures
are Kaiser’s modified rule with threshold 2, the scree graph, and all four
varieties of cross-validation. Even within this restricted study no rule is
consistently good.

Bartkowiak (1991) gives an empirical comparison for some meteorologi-
cal data of: subjective rules based on cumulative variance and on the scree
and LEV diagrams; the rule based on eigenvalues greater than 1 or 0.7; the
broken stick rule; Velicer’s criterion. Most of the rules lead to similar deci-
sions, except for the broken stick rule, which retains too few components,
and the LEV diagram, which is impossible to interpret unambiguously.
The conclusion for the broken stick rule is the opposite of that in Jackson’s
(1993) study.

Throughout our discussion of rules for choosing m we have empha-
sized the descriptive rôle of PCA and contrasted it with the model-based
approach of factor analysis. It is usually the case that the number of compo-
nents needed to achieve the objectives of PCA is greater than the number
of factors in a factor analysis of the same data. However, this need not
be the case when a model-based approach is adopted for PCA (see Sec-
tions 3.9, 6.1.5). As Heo and Gabriel (2001) note in the context of biplots
(see Section 5.3), the fit of the first few PCs to an underlying population
pattern (model) may be much better than their fit to a sample. This im-
plies that a smaller value of m may be appropriate for model-based PCA
than for descriptive purposes. In other circumstances, too, fewer PCs may
be sufficient for the objectives of the analysis. For example, in atmospheric
science, where p can be very large, interest may be restricted only to the
first few dominant and physically interpretable patterns of variation, even
though their number is fewer than that associated with most PCA-based
rules. Conversely, sometimes very dominant PCs are predictable and hence
of less interest than the next few. In such cases more PCs will be retained
than indicated by most rules. The main message is that different objec-
tives for a PCA lead to different requirements concerning how many PCs
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Table 6.1. First six eigenvalues for the correlation matrix, blood chemistry data.

Component number 1 2 3 4 5 6
Eigenvalue, lk 2.79 1.53 1.25 0.78 0.62 0.49
tm = 100

∑m
k=1 lk/p 34.9 54.1 69.7 79.4 87.2 93.3

lk−1 − lk 1.26 0.28 0.47 0.16 0.13

to retain. In reading the concluding paragraph that follows, this message
should be kept firmly in mind.

Some procedures, such as those introduced in Sections 6.1.4 and 6.1.6,
are usually inappropriate because they retain, respectively, too many or too
few PCs in most circumstances. Some rules have been derived in particular
fields of application, such as atmospheric science (Sections 6.1.3, 6.1.7) or
psychology (Sections 6.1.3, 6.1.6) and may be less relevant outside these
fields than within them. The simple rules of Sections 6.1.1 and 6.1.2 seem
to work well in many examples, although the recommended cut-offs must
be treated flexibly. Ideally the threshold should not fall between two PCs
with very similar variances, and it may also change depending on the values
on the values of n and p, and on the presence of variables with dominant
variances (see the examples in the next section). A large amount of research
has been done on rules for choosing m since the first edition of this book
appeared. However it still remains true that attempts to construct rules
having more sound statistical foundations seem, at present, to offer little
advantage over the simpler rules in most circumstances.

6.2 Choosing m, the Number of Components:
Examples

Two examples are given here to illustrate several of the techniques described
in Section 6.1; in addition, the examples of Section 6.4 include some relevant
discussion, and Section 6.1.8 noted a number of comparative studies.

6.2.1 Clinical Trials Blood Chemistry

These data were introduced in Section 3.3 and consist of measurements
of eight blood chemistry variables on 72 patients. The eigenvalues for the
correlation matrix are given in Table 6.1, together with the related infor-
mation that is required to implement the ad hoc methods described in
Sections 6.1.1–6.1.3.

Looking at Table 6.1 and Figure 6.1, the three methods of Sections 6.1.1–
6.1.3 suggest that between three and six PCs should be retained, but the
decision on a single best number is not clear-cut. Four PCs account for
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Table 6.2. First six eigenvalues for the covariance matrix, blood chemistry data.

Component number 1 2 3 4 5 6

Eigenvalue, lk 1704.68 15.07 6.98 2.64 0.13 0.07
lk/l̄ 7.88 0.07 0.03 0.01 0.0006 0.0003

tm = 100

∑m

k=1
lk∑p

k=1
lk

98.6 99.4 99.8 99.99 99.995 99.9994

lk−1 − lk 1689.61 8.09 4.34 2.51 0.06

nearly 80% of the total variation, but it takes six PCs to account for 90%.
A cut-off at l∗ = 0.7 for the second criterion retains four PCs, but the next
eigenvalue is not very much smaller, so perhaps five should be retained. In
the scree graph the slope actually increases between k = 3 and 4, but then
falls sharply and levels off, suggesting that perhaps only four PCs should
be retained. The LEV diagram (not shown) is of little help here; it has no
clear indication of constant slope after any value of k, and in fact has its
steepest slope between k = 7 and 8.

Using Cattell’s (1966) formulation, there is no strong straight-line be-
haviour after any particular point, although perhaps a cut-off at k = 4 is
most appropriate. Cattell suggests that the first point on the straight line
(that is, the ‘elbow’ point) should be retained. However, if we consider the
scree graph in the same light as the test of Section 6.1.4, then all eigen-
values after, and including, the elbow are deemed roughly equal and so all
corresponding PCs should be deleted. This would lead to the retention of
only three PCs in the present case.

Turning to Table 6.2, which gives information for the covariance matrix,
corresponding to that presented for the correlation matrix in Table 6.1, the
three ad hoc measures all conclusively suggest that one PC is sufficient. It
is undoubtedly true that choosing m = 1 accounts for the vast majority
of the variation in x, but this conclusion is not particularly informative
as it merely reflects that one of the original variables accounts for nearly
all the variation in x. The PCs for the covariance matrix in this example
were discussed in Section 3.3, and it can be argued that it is the use of
the covariance matrix, rather than the rules of Sections 6.1.1–6.1.3, that is
inappropriate for these data.

6.2.2 Gas Chromatography Data

These data, which were originally presented by McReynolds (1970), and
which have been analysed by Wold (1978) and by Eastment and Krzanow-
ski (1982), are concerned with gas chromatography retention indices. After
removal of a number of apparent outliers and an observation with a missing
value, there remain 212 (Eastment and Krzanowski) or 213 (Wold) mea-
surements on ten variables. Wold (1978) claims that his method indicates
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Table 6.3. First six eigenvalues for the covariance matrix, gas chromatography
data.

Component number 1 2 3 4 5 6

Eigenvalue, lk 312187 2100 768 336 190 149
lk/l̄ 9.88 0.067 0.024 0.011 0.006 0.005

tm = 100

∑m

k=1
lk∑p

k=1
lk

98.8 99.5 99.7 99.8 99.9 99.94

lk−1 − lk 310087 1332 432 146 51
R 0.02 0.43 0.60 0.70 0.83 0.99
W 494.98 4.95 1.90 0.92 0.41 0.54

the inclusion of five PCs in this example but, in fact, he slightly modifies
his criterion for retaining PCs. His nominal cut-off for including the kth
PC is R < 1; the sixth PC has R = 0.99 (see Table 6.3) but he nevertheless
chooses to exclude it. Eastment and Krzanowski (1982) also modify their
nominal cut-off but in the opposite direction, so that an extra PC is in-
cluded. The values of W for the third, fourth and fifth PCs are 1.90, 0.92,
0.41 (see Table 6.3) so the formal rule, excluding PCs with W < 1, would
retain three PCs. However, because the value of W is fairly close to unity,
Eastment and Krzanowski (1982) suggest that it is reasonable to retain the
fourth PC as well.

It is interesting to note that this example is based on a covariance ma-
trix, and has a very similar structure to that of the previous example when
the covariance matrix was used. Information for the present example, cor-
responding to Table 6.2, is given in Table 6.3, for 212 observations. Also
given in Table 6.3 are Wold’s R (for 213 observations) and Eastment and
Krzanowski’s W .

It can be seen from Table 6.3, as with Table 6.2, that the first two of
the ad hoc methods retain only one PC. The scree graph, which cannot be
sensibly drawn because l1 � l2, is more equivocal; it is clear from Table 6.3
that the slope drops very sharply after k = 2, indicating m = 2 (or 1), but
each of the slopes for k = 3, 4, 5, 6 is substantially smaller than the previous
slope, with no obvious levelling off. Nor is there any suggestion, for any cut-
off, that the later eigenvalues lie on a straight line. There is, however, an
indication of a straight line, starting at m = 4, in the LEV plot, which is
given in Figure 6.2.

It would seem, therefore, that the cross-validatory criteria R and W dif-
fer considerably from the ad hoc rules (except perhaps the LEV plot) in the
way in which they deal with covariance matrices that include a very domi-
nant PC. Whereas most of the ad hoc rules will invariably retain only one
PC in such situations, the present example shows that the cross-validatory
criteria may retain several more. Krzanowski (1983) suggests that W looks
for large gaps among the ordered eigenvalues, which is a similar aim to that
of the scree graph, and that W can therefore be viewed as an objective ana-
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Figure 6.2. LEV diagram for the covariance matrix: gas chromatography data.

logue of the scree diagram. However, although this interpretation may be
valid for the correlation matrices in his simulations, it does not seem to
hold for the dominant variance structures exhibited in Tables 6.2 and 6.3.

For correlation matrices, and presumably for covariance matrices with
less extreme variation among eigenvalues, the ad hoc methods and the
cross-validatory criteria are likely to give more similar results. This is illus-
trated by a simulation study in Krzanowski (1983), where W is compared
with the first two ad hoc rules with cut-offs at t∗ = 75% and l∗ = 1,
respectively. Bartlett’s test, described in Section 6.1.4, is also included in
the comparison but, as expected from the earlier discussion, it retains too
many PCs in most circumstances. The behaviour of W compared with the
two ad hoc rules is the reverse of that observed in the example above. W
retains fewer PCs than the tm > 75% criterion, despite the fairly low cut-
off of 75%. Similar numbers of PCs are retained for W and for the rule
based on lk > 1. The latter rule retains more PCs if the cut-off is lowered
to 0.7 rather than 1.0, as suggested in Section 6.1.2. It can also be argued
that the cut-off for W should be reduced below unity (see Section 6.1.5),
in which case all three rules will give similar results.
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Krzanowski (1983) examines the gas chromatography example further
by generating six different artificial data sets with the same sample covari-
ance matrix as the real data. The values of W are fairly stable across the
replicates and confirm the choice of four PCs obtained above by slightly de-
creasing the cut-off for W . For the full data set, with outliers not removed,
the replicates give some different, and useful, information from that in the
original data.

6.3 Selecting a Subset of Variables

When p, the number of variables observed, is large it is often the case that
a subset of m variables, with m � p, contains virtually all the information
available in all p variables. It is then useful to determine an appropriate
value of m, and to decide which subset or subsets of m variables are best.

Solution of these two problems, the choice of m and the selection of a
good subset, depends on the purpose to which the subset of variables is
to be put. If the purpose is simply to preserve most of the variation in
x, then the PCs of x can be used fairly straightforwardly to solve both
problems, as will be explained shortly. A more familiar variable selection
problem is in multiple regression, and although PCA can contribute in this
context (see Section 8.5), it is used in a more complicated manner. This is
because external considerations, namely the relationships of the predictor
(regressor) variables with the dependent variable, as well as the internal
relationships between the regressor variables, must be considered. External
considerations are also relevant in other variable selection situations, for
example in discriminant analysis (Section 9.1); these situations will not be
considered in the present chapter. Furthermore, practical considerations,
such as ease of measurement of the selected variables, may be important in
some circumstances, and it must be stressed that such considerations, as
well as the purpose of the subsequent analysis, can play a prominent role in
variable selection, Here, however, we concentrate on the problem of finding
a subset of x in which the sole aim is to represent the internal variation of
x as well as possible.

Regarding the choice of m, the methods of Section 6.1 are all relevant.
The techniques described there find the number of PCs that account for
most of the variation in x, but they can also be interpreted as finding the
effective dimensionality of x. If x can be successfully described by only m
PCs, then it will often be true that x can be replaced by a subset of m (or
perhaps slightly more) variables, with a relatively small loss of information.

Moving on to the choice of m variables, Jolliffe (1970, 1972, 1973) dis-
cussed a number of methods for selecting a subset of m variables that
preserve most of the variation in x. Some of the methods compared, and
indeed some of those which performed quite well, are based on PCs. Other
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methods, including some based on cluster analyses of variables (see Sec-
tion 9.2) were also examined but, as these do not use the PCs to select
variables, they are not described here. Three main types of method using
PCs were examined.

(i) Associate one variable with each of the last m∗
1(= p − m1) PCs and

delete those m∗
1 variables. This can either be done once only or iter-

atively. In the latter case a second PCA is performed on the m1

remaining variables, and a further set of m∗
2 variables is deleted, if ap-

propriate. A third PCA can then be done on the p−m∗
1−m∗

2 variables,
and the procedure is repeated until no further deletions are considered
necessary. The choice of m∗

1,m
∗
2, . . . is based on a criterion determined

by the size of the eigenvalues lk.
The reasoning behind this method is that small eigenvalues correspond
to near-constant relationships among a subset of variables. If one of
the variables involved in such a relationship is deleted (a fairly obvious
choice for deletion is the variable with the highest coefficient in abso-
lute value in the relevant PC) little information is lost. To decide on
how many variables to delete, the criterion lk is used as described in
Section 6.1.2. The criterion tm of Section 6.1.1 was also tried by Jolliffe
(1972), but shown to be less useful.

(ii) Associate a set of m∗ variables en bloc with the last m∗ PCs, and
then delete these variables. Jolliffe (1970, 1972) investigated this type
of method, with the m∗ variables either chosen to maximize sums of
squares of coefficients in the last m∗ PCs or to be those m∗ variables
that are best predicted by regression on the first m = p − m∗ PCs.
Choice of m∗ is again based on the sizes of the lk. Such methods
were found to be unsatisfactory, as they consistently failed to select
an appropriate subset for some simple correlation structures.

(iii) Associate one variable with each of the first m PCs, namely the variable
not already chosen with the highest coefficient in absolute value in
each successive PC. These m variables are retained, and the remaining
m∗ = p − m are deleted. The arguments leading to this approach are
twofold. First, it is an obvious complementary approach to (i) and,
second, in cases where there are groups of highly correlated variables it
is designed to select just one variable from each group. This will happen
because there will be exactly one high-variance PC associated with each
group (see Section 3.8). The approach is a plausible one, as a single
variable from each group should preserve most of the information given
by that group when all variables in the group are highly correlated.

In Jolliffe (1972) comparisons were made, using simulated data, between
non-iterative versions of method (i) and method (iii), called methods B2, B4
respectively, and with several other subset selection methods that did not
use the PCs. The results showed that the PC methods B2, B4 retained the
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‘best’ subsets more often than the other methods considered, but they also
selected ‘bad,’ as opposed to ‘good’ or ‘moderate’, subsets more frequently
than the other methods. Method B4 was most extreme in this respect; it
selected ‘best’ and ‘bad’ subsets more frequently than any other method,
and ‘moderate’ or ‘good’ subsets less frequently.

Similarly, for various real data sets Jolliffe (1973) found that none of
the variable selection methods was uniformly best, but several of them,
including B2 and B4, found reasonable subsets in most cases.

McCabe (1984) adopted a somewhat different approach to the variable
selection problem. He started from the fact that, as has been seen in Chap-
ters 2 and 3, PCs satisfy a number of different optimality criteria. A subset
of the original variables that optimizes one of these criteria is termed a set
of principal variables by McCabe (1984). Property A1 of Sections 2.1, 3.1,
is uninteresting as it simply leads to a subset of variables whose variances
are largest, but other properties lead to one of these four criteria:

(a) Minimize
m∗
∏

j=1

θj

(b) Minimize
m∗
∑

j=1

θj

(c) Minimize
m∗
∑

j=1

θ2
j

(d) Minimize
m−
∑

j=1

ρ2
j

where θj , j = 1, 2, . . . ,m∗ are the eigenvalues of the conditional covariance
(or correlation) matrix of the m∗ deleted variables, given the values of
the m selected variables, and ρj , j = 1, 2, . . . ,m− = min(m,m∗) are the
canonical correlations between the set of m∗ deleted variables and the set
of m selected variables.

Consider, for example, Property A4 of Sections 2.1 and 3.1, where
det(Σy) (or det(Sy) for samples) is to be maximized. In PCA, y consists
of orthonormal linear functions of x; for principal variables y is a subset of
x.

From a well-known result concerning partitioned matrices, det(Σ) =
det(Σy) det(Σy∗· y), where Σy∗· y is the matrix of conditional covariances for
those variables not in y, given the value of y. Because Σ, and hence det(Σ),
is fixed for a given random vector x, maximizing det(Σy) is equivalent to
minimizing det(Σy∗· y). Now det(Σy∗· y) =

∏m∗

j=1 θj , so that Property A4
becomes McCabe’s criterion (a) when deriving principal variables. Other
properties of Chapters 2 and 3 can similarly be shown to be equivalent to
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one of McCabe’s four criteria when dealing with principal variables.
Of the four criteria, McCabe (1984) argues that only for the first is it

computationally feasible to explore all possible subsets, although the second
can be used to define a stepwise variable-selection procedure; Bhargava and
Ishizuka (1991) describe such a procedure. The third and fourth criteria are
not explored further in McCabe’s paper.

Several of the methods for selecting subsets of variables that preserve
most of the information in the data associate variables with individual PCs.
Cadima and Jolliffe (2001) extend the ideas of Cadima and Jolliffe (1995)
for individual PCs, and look for subsets of variables that best approximate
the subspace spanned by a subset of q PCs, in the the sense that the
subspace spanned by the chosen variables is close to that spanned by the
PCs of interest. A similar comparison of subspaces is the starting point
for Besse and de Falguerolles’s (1993) procedures for choosing the number
of components to retain (see Section 6.1.5). In what follows we restrict
attention to the first q PCs, but the reasoning extends easily to any set of
q PCs.

Cadima and Jolliffe (2001) argue that there are two main ways of assess-
ing the quality of the subspace spanned by a subset of m variables. The
first compares the subspace directly with that spanned by the first q PCs;
the second compares the data with its configuration when projected onto
the m-variable subspaces.

Suppose that we wish to approximate the subspace spanned by the first
q PCs using a subset of m variables. The matrix of orthogonal projections
onto that subspace is given by

Pq =
1

(n − 1)
XS−

q X′, (6.3.1)

where Sq =
∑q

k=1 lkaka′
k is the sum of the first q terms in the spectral

decomposition of S, and S−
q =

∑q
k=1 l−1

k aka′
k is a generalized inverse of Sq.

The corresponding matrix of orthogonal projections onto the space spanned
by a subset of m variables is

Pm =
1

(n − 1)
XImS−1

m I′mX′, (6.3.2)

where Im is the identity matrix of order m and S−1
m is the inverse of the

(m × m) submatrix of S corresponding to the m selected variables.
The first measure of closeness for the two subspaces considered by

Cadima and Jolliffe (2001) is the matrix correlation between Pq and Pm,
defined by

corr(Pq,Pm) =
tr(P′

qPm)
√

tr(P′
qPq) tr(P′

mPm)
. (6.3.3)

This measure is also known as Yanai’s generalized coefficient of determina-
tion (Yanai, 1980). It was used by Tanaka (1983) as one of four criteria for
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variable selection in factor analysis. Cadima and Jolliffe (2001) show that
Yanai’s coefficient can be written as

corr(Pq,Pm) =
1√
qm

q∑

k=1

r2
km (6.3.4)

where rkm is the multiple correlation between the kth PC and the set of
m selected variables.

The second indicator examined by Cadima and Jolliffe (2001) is again a
matrix correlation, this time between the data matrix X and the matrix
formed by orthogonally projecting X onto the space spanned by the m
selected variables. It can be written

corr(X,PmX) =

√∑p
k=1 λkr2

km∑p
k=1 λk

. (6.3.5)

It turns out that this measure is equivalent to the second of McCabe’s
(1984) criteria defined above (see also McCabe (1986)). Cadima and Jol-
liffe (2001) discuss a number of other interpretations, and relationships
between their measures and previous suggestions in the literature. Both
indicators (6.3.4) and (6.3.5) are weighted averages of the squared multi-
ple correlations between each PC and the set of selected variables. In the
second measure, the weights are simply the eigenvalues of S, and hence the
variances of the PCs. For the first indicator the weights are positive and
equal for the first q PCs, but zero otherwise. Thus the first indicator ignores
PCs outside the chosen q-dimensional subspace when assessing closeness,
but it also gives less weight than the second indicator to the PCs with the
very largest variances relative to those with intermediate variances.

Cadima and Jolliffe (2001) discuss algorithms for finding good subsets
of variables and demonstrate the use of the two measures on three exam-
ples, one of which is large (p = 62) compared to those typically used for
illustration. The examples show that the two measures can lead to quite
different optimal subsets, implying that it is necessary to know what aspect
of a subspace it is most desirable to preserve before choosing a subset of
variables to achieve this. They also show that

• the algorithms usually work efficiently in cases where numbers of
variables are small enough to allow comparisions with an exhaustive
search;

• as discussed elsewhere (Section 11.3), choosing variables on the basis
of the size of coefficients or loadings in the PCs’ eigenvectors can be
inadvisable;

• to match the information provided by the first q PCs it is often only
necessary to keep (q + 1) or (q + 2) variables.

For data sets in which p is too large to conduct an exhaustive search
for the optimal subset, algorithms that can find a good subset are needed.
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Cadima et al. (2002) compare various algorithms for finding good subsets
according to the measures (6.3.4) and (6.3.5), and also with respect to the
RV-coefficient, which is discussed briefly below (see also Section 3.2). Two
versions of simulated annealing, a genetic algorithm, and a restricted im-
provement algorithm, are compared with a number of stepwise algorithms,
on a total of fourteen data sets. The results show a general inferiority of
the stepwise methods, but no single algorithm outperforms all the others.
Cadima et al. (2002) recommend using simulated annealing or a genetic al-
gorithm to provide a starting point for a restricted improvement algorithm,
which then refines the solution. They make the interesting point that for
large p the number of candidate subsets is so large that, for criteria whose
range of values is bounded, it is almost inevitable that there are many solu-
tions that are very close to optimal. For instance, in one of their examples,
with p = 62, they find 800 solutions corresponding to a population size of
800 in their genetic algorithm. The best of these has a value 0.8079 for the
criterion (6.3.5), but the worst is 0.8060, less than 0.3% smaller. Of course,
it is possible that the global optimum is much greater than the best of
these 800, but it seems highly unlikely.

Al-Kandari (1998) provides an extensive study of a large number of
variable selection methods. The ideas of Jolliffe (1972, 1973) and McCabe
(1984) are compared with a variety of new methods, based on loadings in
the PCs, on correlations of the PCs with the variables, and on versions of
McCabe’s (1984) principal variables that are constructed from correlation,
rather than covariance, matrices. The methods are compared on simulated
data with a wide range of covariance or correlation structures, and on var-
ious real data sets that are chosen to have similar covariance/correlation
structures to those of the simulated data. On the basis of the results of
these analyses, it is concluded that few of the many techniques considered
are uniformly inferior to other methods, and none is uniformly superior.
The ‘best’ method varies, depending on the covariance or correlation struc-
ture of a data set. It also depends on the ‘measure of efficiency’ used to
determine how good is a subset of variables, as noted also by Cadima and
Jolliffe (2001). In assessing which subsets of variables are best, Al-Kandari
(1998) additionally takes into account the interpretability of the PCs based
on the subset, relative to the PCs based on all p variables (see Section 11.3).

Al-Kandari (1998) also discusses the distinction between criteria used to
choose subsets of variables and criteria used to evaluate how good a chosen
subset is. The latter are her ‘measures of efficiency’ and ideally these same
criteria should be used to choose subsets in the first place. However, this
may be computationally infeasible so that a suboptimal but computation-
ally straightforward criterion is used to do the choosing instead. Some of
Al-Kandari’s (1998) results are reported in Al-Kandari and Jolliffe (2001)
for covariance, but not correlation, matrices.

King and Jackson (1999) combine some of the ideas of the present Section
with some from Section 6.1. Their main objective is to select a subset
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of m variables, but rather than treating m as fixed they also consider
how to choose m. They use methods of variable selection due to Jolliffe
(1972, 1973), adding a new variant that was computationally infeasible in
1972. To choose m, King and Jackson (1999) consider the rules described
in Sections 6.1.1 and 6.1.2, including the broken stick method, together
with a rule that selects the largest value of m for which n/m > 3. To
assess the quality of a chosen subset of size m, King and Jackson (1999)
compare plots of scores on the first two PCs for the full data set and for
the data set containing only the m selected variables. They also compute a
Procrustes measure of fit (Krzanowski, 1987a) between the m-dimensional
configurations given by PC scores in the full and reduced data sets, and a
weighted average of correlations between PCs in the full and reduced data
sets.

The data set analyzed by King and Jackson (1999) has n = 37 and
p = 36. The results of applying the various selection procedures to these
data confirm, as Jolliffe (1972, 1973) found, that methods B2 and B4 do
reasonably well. The results also confirm that the broken stick method
generally chooses smaller values of m than the other methods, though its
subsets do better with respect to the Procrustes measure of fit than some
much larger subsets. The small number of variables retained by the broken
stick implies a corresponding small proportion of total variance accounted
for by the subsets it selects. King and Jackson’s (1999) recommendation of
method B4 with the broken stick could therefore be challenged.

We conclude this section by briefly describing a number of other possible
methods for variable selection. None uses PCs directly to select variables,
but all are related to topics discussed more fully in other sections or chap-
ters. Bartkowiak (1991) uses a method described earlier in Bartkowiak
(1982) to select a set of ‘representative’ variables in an example that also
illustrates the choice of the number of PCs (see Section 6.1.8). Variables
are added sequentially to a ‘representative set’ by considering each vari-
able currently outside the set as a candidate for inclusion. The maximum
residual sum of squares is calculated from multiple linear regressions of
each of the other excluded variables on all the variables in the set plus the
candidate variable. The candidate for which this maximum sum of squares
is minimized is then added to the set. One of Jolliffe’s (1970, 1972, 1973)
rules uses a similar idea, but in a non-sequential way. A set of m variables
is chosen if it maximizes the minimum multiple correlation between each
of the (p − m) non-selected variables and the set of m selected variables.

The RV-coefficient, due to Robert and Escoufier (1976), was defined in
Section 3.2. To use the coefficient to select a subset of variables, Robert
and Escoufier suggest finding X1 which maximizes RV(X,M′X1), where
RV(X,Y) is defined by equation (3.2.2) of Section 3.2. The matrix X1

is the (n × m) submatrix of X consisting of n observations on a subset
of m variables, and M is a specific (m × m) orthogonal matrix, whose
construction is described in Robert and Escoufier’s paper. It is interesting
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to compare what is being optimized here with the approaches described
earlier.

• The RV-coefficient compares linear combinations of subsets of
variables with the full set of variables.

• Some methods, such as those of Jolliffe (1970, 1972, 1973), com-
pare principal components of subsets of variables with principal
components from the full set.

• Some approaches, such as McCabe’s (1984) principal variables, simply
compare subsets of the variables with the full set of variables.

• Some criteria, such as Yanai’s generalized coefficient of determination,
compare subspaces spanned by a subset of variables with subspaces
spanned by a subset of PCs, as in Cadima and Jolliffe (2001).

No examples are presented by Robert and Escoufier (1976) of how their
method works in practice. However, Gonzalez et al. (1990) give a stepwise
algorithm for implementing the procedure and illustrate it with a small
example (n = 49; p = 6). The example is small enough for all subsets of
each size to be evaluated. Only for m = 1, 2, 3 does the stepwise algorithm
give the best subset with respect to RV, as identified by the full search.
Escoufier (1986) provides further discussion of the properties of the RV-
coefficient when used in this context.

Tanaka and Mori (1997) also use the RV-coefficient, as one of two criteria
for variable selection. They consider the same linear combinations M′X1 of
a given set of variables as Robert and Escoufier (1976), and call these lin-
ear combinations modified principal components. Tanaka and Mori (1997)
assess how well a subset reproduces the full set of variables by means of
the RV-coefficient. They also have a second form of ‘modified’ principal
components, constructed by minimizing the trace of the residual covari-
ance matrix obtained by regressing X on M′X1. This latter formulation is
similar to Rao’s (1964) PCA of instrumental variables (see Section 14.3).
The difference between Tanaka and Mori’s (1997) instrumental variable
approach and that of Rao (1964) is that Rao attempts to predict X2, the
(n × (p − m)) complementary matrix to X1 using linear functions of X1,
whereas Tanaka and Mori try to predict the full matrix X.

Both of Tanaka and Mori’s modified PCAs solve the same eigenequation

(S2
11 + S12S21)a = lS11a, (6.3.6)

with obvious notation, but differ in the way that the quality of a sub-
set is measured. For the instrumental variable approach, the criterion
is proportional to

∑m
k=1 lk, whereas for the components derived via the

RV-coefficient, quality is based on
∑m

k=1 l2k, where lk is the kth largest
eigenvalue in the solution of (6.3.6). A backward elimination method is
used to delete variables until some threshold is reached, although in the
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examples given by Tanaka and Mori (1997) the decision on when to stop
deleting variables appears to be rather subjective.

Mori et al. (1999) propose that the subsets selected in modified PCA
are also assessed by means of a PRESS criterion, similar to that defined in
equation (6.1.3), except that mx̃ij is replaced by the prediction of xij found
from modified PCA with the ith observation omitted. Mori et al. (2000)
demonstrate a procedure in which the PRESS citerion is used directly to
select variables, rather than as a supplement to another criterion. Tanaka
and Mori (1997) show how to evaluate the influence of variables on param-
eters in a PCA (see Section 10.2 for more on influence), and Mori et al.
(2000) implement and illustrate a backward-elimination variable selection
algorithm in which variables with the smallest influence are successively
removed.

Hawkins and Eplett (1982) describe a method which can be used for
selecting a subset of variables in regression; their technique and an ear-
lier one introduced by Hawkins (1973) are discussed in Sections 8.4 and
8.5. Hawkins and Eplett (1982) note that their method is also potentially
useful for selecting a subset of variables in situations other than multiple
regression, but, as with the RV-coefficient, no numerical example is given
in the original paper. Krzanowski (1987a,b) describes a methodology, us-
ing principal components together with Procrustes rotation for selecting
subsets of variables. As his main objective is preserving ‘structure’ such as
groups in the data, we postpone detailed discussion of his technique until
Section 9.2.2.

6.4 Examples Illustrating Variable Selection

Two examples are presented here; two other relevant examples are given in
Section 8.7.

6.4.1 Alate adelges (Winged Aphids)

These data were first presented by Jeffers (1967) and comprise 19 different
variables measured on 40 winged aphids. A description of the variables,
together with the correlation matrix and the coefficients of the first four
PCs based on the correlation matrix, is given by Jeffers (1967) and will
not be reproduced here. For 17 of the 19 variables all of the correlation
coefficients are positive, reflecting the fact that 12 variables are lengths
or breadths of parts of each individual, and some of the other (discrete)
variables also measure aspects of the size of each aphid. Not surprisingly,
the first PC based on the correlation matrix accounts for a large proportion
(73.0%) of the total variation, and this PC is a measure of overall size of
each aphid. The second PC, accounting for 12.5% of total variation, has its
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Table 6.4. Subsets of selected variables, Alate adelges.

(Each row corresponds to a selected subset with × denoting a selected variable.)

Variables
5 8 9 11 13 14 17 18 19

McCabe, using criterion (a)
best × × ×

Three variables
{

second best × × ×
best × × × ×

Four variables
{

second best × × × ×
Jolliffe, using criteria B2, B4

B2 × × ×
Three variables

{

B4 × × ×
B2 × × × ×

Four variables
{

B4 × × × ×
Criterion (6.3.4)
Three variables × × ×
Four variables × × × ×
Criterion (6.3.5)
Three variables × × ×
Four variables × × × ×

largest coefficients on five of the seven discrete variables, and the third PC
(3.9%) is almost completely dominated by one variable, number of antennal
spines. This variable, which is one of the two variables negatively correlated
with size, has a coefficient in the third PC that is five times as large as any
other variable.

Table 6.4 gives various subsets of variables selected by Jolliffe (1973)
and by McCabe (1982) in an earlier version of his 1984 paper that included
additional examples. The subsets given by McCabe (1982) are the best two
according to his criterion (a), whereas those from Jolliffe (1973) are selected
by the criteria B2 and B4 discussed above. Only the results for m = 3 are
given in Jolliffe (1973), but Table 6.4 also gives results for m = 4 using his
methods. In addition, the table includes the ‘best’ 3- and 4-variable subsets
according to the criteria (6.3.4) and (6.3.5).

There is considerable overlap between the various subsets selected. In
particular, variable 11 is an almost universal choice and variables 5, 13 and
17 also appear in subsets selected by at least three of the four methods.
Conversely, variables {1–4, 6, 7, 10, 12, 15, 16} appear in none of subsets of
Table 6.4. It should be noted the variable 11 is ‘number of antennal spines,’
which, as discussed above, dominates the third PC. Variables 5 and 17, mea-
suring number of spiracles and number of ovipositor spines, respectively, are
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both among the group of dominant variables for the second PC, and vari-
able 13 (tibia length 3) has the largest coefficient of any variable for PC1.

Comparisons can be made regarding how well Jolliffe’s and McCabe’s se-
lections perform with respect to the criteria (6.3.4) and (6.3.5). For (6.3.5),
Jolliffe’s choices are closer to optimality than McCabe’s, achieving values
of 0.933 and 0.945 for four variables, compared to 0.907 and 0.904 for
McCabe, whereas the optimal value is 0.948. Discrepancies are generally
larger but more variable for criterion (6.3.4). For example, the B2 selec-
tion of three variables achieves a value of only 0.746 compared the optimal
value of 0.942, which is attained by B4. Values for McCabe’s selections are
intermediate (0.838, 0.880).

Regarding the choice of m, the lk criterion of Section 6.1.2 was found
by Jolliffe (1972), using simulation studies, to be appropriate for methods
B2 and B4, with a cut-off close to l∗ = 0.7. In the present example the
criterion suggests m = 3, as l3 = 0.75 and l4 = 0.50. Confirmation that m
should be this small is given by the criterion tm of Section 6.1.1. Two PCs
account for 85.4% of the variation, three PCs give 89.4% and four PCs
contribute 92.0%, from which Jeffers (1967) concludes that two PCs are
sufficient to account for most of the variation. However, Jolliffe (1973) also
looked at how well other aspects of the structure of data are reproduced for
various values of m. For example, the form of the PCs and the division into
four distinct groups of aphids (see Section 9.2 for further discussion of this
aspect) were both examined and found to be noticeably better reproduced
for m = 4 than for m = 2 or 3, so it seems that the criteria of Sections 6.1.1
and 6.1.2 might be relaxed somewhat when very small values of m are
indicated, especially when coupled with small values of n, the sample size.
McCabe (1982) notes that four or five of the original variables are necessary
in order to account for as much variation as the first two PCs, confirming
that m = 4 or 5 is probably appropriate here.

Tanaka and Mori (1997) suggest, on the basis of their two criteria and
using a backward elimination algorithm, that seven or nine variables should
be kept, rather more than Jolliffe (1973) or McCabe (1982). If only four
variables are retained, Tanaka and Mori’s (1997) analysis keeps variables
5, 6, 14, 19 according to the RV-coefficient, and variables 5, 14, 17, 18 using
residuals from regression. At least three of the four variables overlap with
choices made in Table 6.4. On the other hand, the selection rule based
on influential variables suggested by Mori et al. (2000) retains variables
2, 4, 12, 13 in a 4-variable subset, a quite different selection from those of
the other methods.

6.4.2 Crime Rates

These data were given by Ahamad (1967) and consist of measurements of
the crime rate in England and Wales for 18 different categories of crime
(the variables) for the 14 years, 1950–63. The sample size n = 14 is very
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Table 6.5. Subsets of selected variables, crime rates.

(Each row corresponds to a selected subset with × denoting a selected variable.)

Variables

1 3 4 5 7 8 10 13 14 16 17

McCabe, using criterion (a)
best × × ×

Three variables
{

second best × × ×
best × × × ×

Four variables
{

second best × × × ×
Jolliffe, using criteria B2, B4

B2 × × ×
Three variables

{

B4 × × ×
B2 × × × ×

Four variables
{

B4 × × × ×
Criterion (6.3.4)
Three variables × × ×
Four variables × × × ×
Criterion (6.3.5)
Three variables × × ×
Four variables × × × ×

small, and is in fact smaller than the number of variables. Furthermore,
the data are time series, and the 14 observations are not independent (see
Chapter 12), so that the effective sample size is even smaller than 14. Leav-
ing aside this potential problem and other criticisms of Ahamad’s analysis
(Walker, 1967), subsets of variables that are selected using the correlation
matrix by the same methods as in Table 6.4 are shown in Table 6.5.

There is a strong similarity between the correlation structure of the
present data set and that of the previous example. Most of the variables
considered increased during the time period considered, and the correla-
tions between these variables are large and positive. (Some elements of the
correlation matrix given by Ahamad (1967) are incorrect; Jolliffe (1970)
gives the correct values.)

The first PC based on the correlation matrix therefore has large coeffi-
cients on all these variables; it measures an ‘average crime rate’ calculated
largely from 13 of the 18 variables, and accounts for 71.7% of the total
variation. The second PC, accounting for 16.1% of the total variation, has
large coefficients on the five variables whose behaviour over the 14 years
is ‘atypical’ in one way or another. The third PC, accounting for 5.5% of
the total variation, is dominated by the single variable ‘homicide,’ which
stayed almost constant compared with the trends in other variables over
the period of study. On the basis of tm only two or three PCs are necessary,
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as they account for 87.8%, 93.3%, respectively, of the total variation. The
third and fourth eigenvalues are 0.96, 0.68 so that a cut-off of l∗ = 0.70
gives m = 3, but l4 is so close to 0.70 that caution suggests m = 4. Such
conservatism is particularly appropriate for small sample sizes, where sam-
pling variation may be substantial. As in the previous example, Jolliffe
(1973) found that the inclusion of a fourth variable produced a marked
improvement in reproducing some of the results given by all 18 variables.
McCabe (1982) also indicated that m = 3 or 4 is appropriate.

The subsets chosen in Table 6.5 overlap less than in the previous example,
and McCabe’s subsets change noticeably in going from m = 3 to m = 4.
However, there is still substantial agreement; for example, variable 1 is
a member of all but one of the selected subsets and variable 13 is also
selected by all four methods, whereas variables {2, 6, 9, 11, 12, 15, 18} are
not selected at all.

Of the variables that are chosen by all four methods, variable 1 is ‘homi-
cide,’ which dominates the third PC and is the only crime whose occurrence
shows no evidence of serial correlation during the period 1950–63. Because
its behaviour is different from that of all the other variables, it is impor-
tant that it should be retained in any subset that seeks to account for most
of the variation in x. Variable 13 (assault) is also atypical of the general
upward trend—it actually decreased between 1950 and 1963.

The values of the criteria (6.3.4) and (6.3.5) for Jolliffe’s and McCabe’s
subsets are closer to optimality and less erratic than in the earlier exam-
ple. No chosen subset does worse with respect to (6.3.5) than 0.925 for 3
variables and 0.964 for 4 variables, compared to optimal values of 0.942,
0.970 respectively. The behaviour with respect to (6.3.4) is less good, but
far less erratic than in the previous example.

In addition to the examples given here, Al-Kandari (1998), Cadima and
Jolliffe (2001), Gonzalez et al. (1990), Jolliffe (1973), King and Jackson
(1999) and McCabe (1982, 1984) all give further illustrations of variable
selection based on PCs. Krzanowski (1987b) looks at variable selection for
the alate adelges data set of Section 6.4.1, but in the context of preserving
group structure. We discuss this further in Chapter 9.



7
Principal Component Analysis and
Factor Analysis

Principal component analysis has often been dealt with in textbooks as a
special case of factor analysis, and this practice is continued by some widely
used computer packages, which treat PCA as one option in a program for
factor analysis. This view is misguided since PCA and factor analysis, as
usually defined, are really quite distinct techniques. The confusion may
have arisen, in part, because of Hotelling’s (1933) original paper, in which
principal components were introduced in the context of providing a small
number of ‘more fundamental’ variables that determine the values of the
p original variables. This is very much in the spirit of the factor model
introduced in Section 7.1, although Girschick (1936) indicates that there
were soon criticisms of Hotelling’s PCs as being inappropriate for factor
analysis. Further confusion results from the fact that practitioners of ‘fac-
tor analysis’ do not always have the same definition of the technique (see
Jackson, 1991, Section 17.1). In particular some authors, for example Rey-
ment and Jöreskog (1993), Benzécri (1992, Section 4.3) use the term to
embrace a wide spectrum of multivariate methods. The definition adopted
in this chapter is, however, fairly standard.

Both PCA and factor analysis aim to reduce the dimensionality of a
set of data, but the approaches taken to do so are different for the two
techniques. Principal component analysis has been extensively used as part
of factor analysis, but this involves ‘bending the rules’ that govern factor
analysis and there is much confusion in the literature over the similarities
and differences between the techniques. This chapter attempts to clarify
the issues involved, and starts in Section 7.1 with a definition of the basic
model for factor analysis. Section 7.2 then discusses how a factor model
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may be estimated and how PCs are, but should perhaps not be, used in
this estimation process. Section 7.3 contains further discussion of differences
and similarities between PCA and factor analysis, and Section 7.4 gives a
numerical example, which compares the results of PCA and factor analysis.
Finally, in Section 7.5, a few concluding remarks are made regarding the
‘relative merits’ of PCA and factor analysis, and the possible use of rotation
with PCA. The latter is discussed further in Chapter 11.

7.1 Models for Factor Analysis

The basic idea underlying factor analysis is that p observed random vari-
ables, x, can be expressed, except for an error term, as linear functions
of m (< p) hypothetical (random) variables or common factors, that
is if x1, x2, . . . , xp are the variables and f1, f2, . . . , fm are the factors,
then

x1 = λ11f1 + λ12f2 + . . . + λ1mfm + e1 (7.1.1)
x2 = λ21f1 + λ22f2 + . . . + λ2mfm + e2

...
xp = λp1f1 + λp2f2 + . . . + λpmfm + ep

where λjk, j = 1, 2, . . . , p; k = 1, 2, . . . ,m are constants called the factor
loadings, and ej , j = 1, 2, . . . , p are error terms, sometimes called specific
factors (because ej is ‘specific’ to xj , whereas the fk are ‘common’ to sev-
eral xj). Equation (7.1.1) can be rewritten in matrix form, with obvious
notation, as

x = Λf + e. (7.1.2)

One contrast between PCA and factor analysis is immediately ap-
parent. Factor analysis attempts to achieve a reduction from p to
m dimensions by invoking a model relating x1, x2, . . . , xp to m hy-
pothetical or latent variables. We have seen in Sections 3.9, 5.3 and
6.1.5 that models have been postulated for PCA, but for most prac-
tical purposes PCA differs from factor analysis in having no explicit
model .

The form of the basic model for factor analysis given in (7.1.2) is fairly
standard, although some authors give somewhat different versions. For ex-
ample, there could be three terms on the right-hand side corresponding
to contributions from common factors, specific factors and measurement
errors (Reyment and Jöreskog, 1993, p. 36), or the model could be made
non-linear. There are a number of assumptions associated with the factor
model, as follows:

(i) E[e] = 0, E[f ] = 0, E[x] = 0.
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Of these three assumptions, the first is a standard assumption for error
terms in most statistical models, and the second is convenient and loses no
generality. The third may not be true, but if it is not, (7.1.2) can be simply
adapted to become x = µ + Λf + e, where E[x] = µ. This modification
introduces only a slight amount of algebraic complication compared with
(7.1.2), but (7.1.2) loses no real generality and is usually adopted.

(ii) E[ee′] = Ψ (diagonal)
E[fe′] = 0 (a matrix of zeros)
E[ff ′] = Im (an identity matrix)

The first of these three assumptions is merely stating that the error terms
are uncorrelated which is a basic assumption of the factor model, namely
that all of x which is attributable to common influences is contained in
Λf , and ej , ek, j �= k are therefore uncorrelated. The second assumption,
that the common factors are uncorrelated with the specific factors, is also
a fundamental one. However, the third assumption can be relaxed so that
the common factors may be correlated (oblique) rather than uncorrelated
(orthogonal). Many techniques in factor analysis have been developed for
finding orthogonal factors, but some authors, such as Cattell (1978, p.
128), argue that oblique factors are almost always necessary in order to
get a correct factor structure. Such details will not be explored here as
the present objective is to compare factor analysis with PCA, rather than
to give a full description of factor analysis, and for convenience all three
assumptions will be made.

(iii) For some purposes, such as hypothesis tests to decide on an appropriate
value of m, it is necessary to make distributional assumptions. Usually
the assumption of multivariate normality is made in such cases but,
as with PCA, many of the results of factor analysis do not depend on
specific distributional assumptions.

(iv) Some restrictions are generally necessary on Λ, because without any
restrictions there will be a multiplicity of possible Λs that give equally
good solutions. This problem will be discussed further in the next
section.

7.2 Estimation of the Factor Model

At first sight, the factor model (7.1.2) looks like a standard regression model
such as that given in Property A7 of Section 3.1 (see also Chapter 8). How-
ever, closer inspection reveals a substantial difference from the standard
regression framework, namely that neither Λ nor f in (7.1.2) is known,
whereas in regression Λ would be known and f would contain the only un-
known parameters. This means that different estimation techniques must
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be used, and it also means that there is indeterminacy in the solutions—the
‘best-fitting’ solution is not unique.

Estimation of the model is usually done initially in terms of the pa-
rameters in Λ and Ψ, while estimates of f are found at a later stage.
Given the assumptions of the previous section, the covariance matrix can
be calculated for both sides of (7.1.2) giving

Σ = ΛΛ′ + Ψ. (7.2.1)

In practice, we have the sample covariance (or correlation) matrix S, rather
than Σ, and Λ and Ψ are found so as to satisfy

S = ΛΛ′ + Ψ,

(which does not involve the unknown vector of factor scores f) as closely as
possible. The indeterminacy of the solution now becomes obvious; if Λ, Ψ
is a solution of (7.2.1) and T is an orthogonal matrix, then Λ∗, Ψ is also
a solution, where Λ∗ = ΛT. This follows since

Λ∗Λ∗′
= (ΛT)(ΛT)′

= ΛTT′Λ′

= ΛΛ′,

as T is orthogonal.
Because of the indeterminacy, estimation of Λ and Ψ typically proceeds

in two stages. In the first, some restrictions are placed on Λ in order to find
a unique initial solution. Having found an initial solution, other solutions
which can be found by rotation of Λ, that is, multiplication by an orthog-
onal matrix T, are explored. The ‘best’ of these rotated solutions is chosen
according to some particular criterion. There are several possible criteria,
but all are designed to make the structure of Λ as simple as possible in some
sense, with most elements of Λ either ‘close to zero’ or ‘far from zero,’ and
with as few as possible of the elements taking intermediate values. Most
statistical computer packages provide options for several different rotation
criteria, such as varimax, quartimax and promax. Cattell (1978, p. 136),
Richman (1986) give non-exhaustive lists of eleven and nineteen automatic
rotation methods, respectively, including some like oblimax that enable the
factors to become oblique by allowing T to be not necessarily orthogonal.
For illustration, we give the formula for what is probably the most popular
rotation criterion, varimax. It is the default in several of the best known
software packages. For details of other rotation criteria see Cattell (1978,
p. 136), Lawley and Maxwell (1971, Chapter 6), Lewis-Beck (1994, Section
II.3), Richman (1986) or Rummel (1970, Chapters 16 and 17) An example
illustrating the results of using two rotation criteria is given in Section 7.4.

Suppose that B = ΛT and that B has elements bjk, j = 1, 2, . . . , p; k =
1, 2, . . . ,m. Then for varimax rotation the orthogonal rotation matrix T is
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chosen to maximize

Q =
m∑

k=1

[
p∑

j=1

b4
jk − 1

p

( p∑

j=1

b2
jk

)2
]

. (7.2.2)

The terms in the square brackets are proportional to the variances of
squared loadings for each rotated factor. In the usual implementations of
factor analysis the loadings are necessarily between −1 and 1, so the cri-
terion tends to drive squared loadings towards the end of the range 0 to 1,
and hence loadings towards −1, 0 or 1 and away from intermediate values,
as required. The quantity Q in equation (7.2.2) is the raw varimax criterion.
A normalized version is also used in which bjk is replaced by

bjk√∑m
k=1 b2

jk

in (7.2.2).
As discussed in Section 11.1, rotation can be applied to principal compo-

nent coefficients in order to simplify them, as is done with factor loadings.
The simplification achieved by rotation can help in interpreting the factors
or rotated PCs. This is illustrated nicely using diagrams (see Figures 7.1
and 7.2) in the simple case where only m = 2 factors or PCs are retained.
Figure 7.1 plots the loadings of ten variables on two factors. In fact, these
loadings are the coefficients a1, a2 for the first two PCs from the exam-
ple presented in detail later in the chapter, normalized so that a′

kak = lk,
where lk is the kth eigenvalue of S, rather than a′

kak = 1. When an orthog-
onal rotation method (varimax) is performed, the loadings for the rotated
factors (PCs) are given by the projections of each plotted point onto the
axes represented by dashed lines in Figure 7.1.

Similarly, rotation using an oblique rotation method (direct quartimin)
gives loadings after rotation by projecting onto the new axes shown in
Figure 7.2. It is seen that in Figure 7.2 all points lie close to one or other
of the axes, and so have near-zero loadings on the factor represented by
the other axis, giving a very simple structure for the loadings. The loadings
implied for the rotated factors in Figure 7.1, whilst having simpler structure
than the original coefficients, are not as simple as those for Figure 7.2, thus
illustrating the advantage of oblique, compared to orthogonal, rotation.

Returning to the first stage in the estimation of Λ and Ψ, there is some-
times a problem with identifiability, meaning that the size of the data set
is too small compared to the number of parameters to allow those param-
eters to be estimated (Jackson, 1991, Section 17.2.6; Everitt and Dunn,
2001, Section 12.3)). Assuming that identifiability is not a problem, there
are a number of ways of constructing initial estimates (see, for example,
Lewis-Beck (1994, Section II.2); Rencher (1998, Section 10.3); Everitt and
Dunn (2001, Section 12.2)). Some, such as the centroid method (see Cat-
tell, 1978, Section 2.3), were developed before the advent of computers and
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Figure 7.1. Factor loadings for two factors with respect to original and
orthogonally rotated factors.

were designed to give quick computationally feasible results. Such methods
do a reasonable job of getting a crude factor model, but have little or no
firm mathematical basis for doing so. This, among other aspects of fac-
tor analysis, gave it a ‘bad name’ among mathematicians and statisticians.
Chatfield and Collins (1989, Chapter 5), for example, treat the topic rather
dismissively, ending with the recommendation that factor analysis ‘should
not be used in most practical situations.’

There are more ‘statistically respectable’ approaches, such as the
Bayesian approach outlined by Press (1972, Section 10.6.2) and the widely
implemented idea of maximum likelihood estimation of Ψ and Λ, assuming
multivariate normality of f and e. Finding maximum likelihood estimates
of Ψ and Λ leads to an iterative procedure involving a moderate amount
of algebra, which will not be repeated here (see, for example, Lawley and
Maxwell (1971)).
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Figure 7.2. Factor loadings for two factors with respect to original and obliquely
rotated factors.

An interesting point is that factor loadings found by maximum likeli-
hood for a correlation matrix are equivalent to those for the corresponding
covariance matrix, that is, they are scale invariant. This is in complete
contrast to what happens for PCA (see Sections 2.3 and 3.3).

A potential problem with the maximum likelihood approach is that
it relies on the assumption of multivariate normality, which may not be
justified, and Everitt and Dunn (2001, Section 12.7) caution against us-
ing such estimates when the data are categorical. However, it can be
shown (Morrison, 1976, Section 9.8; Rao, 1955, which is also reproduced
in Bryant and Atchley (1975)) that the maximum likelihood estimators
(MLEs) also optimize two criteria that make no direct distributional as-
sumptions. If the factor model (7.1.2) holds exactly, then the partial
correlations between the elements of x, given the value of f , are zero
(see also Section 6.1.6), as f accounts for all the common variation in
the elements of x. To derive the criterion described by Morrison (1976),
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a sample estimate of the matrix of partial correlations is calculated. The
determinant of this matrix will attain its maximum value of unity when
all its off-diagonal elements are zero, so that maximizing this determi-
nant is one way of attempting to minimize the absolute values of the
partial correlations. This maximization problem leads to the MLEs, but
here they appear regardless of whether or not multivariate normality
holds.

The procedure suggested by Rao (1955) is based on canonical correla-
tion analysis (see Section 9.3) between x and f . He looks, successively,
for pairs of linear functions {a′

k1x,a′
k2f} that have maximum correlation

subject to being uncorrelated with previous pairs. The factor loadings are
then proportional to the elements of the ak2, k = 1, 2, . . . , m, which in
turn leads to the same loadings as for the MLEs based on the assump-
tion of multivariate normality (Rao, 1955). As with the criterion based on
partial correlations, no distributional assumptions are necessary for Rao’s
canonical analysis.

In a way, the behaviour of the partial correlation and canonical cor-
relation criteria parallels the phenomenon in regression where the least
squares criterion is valid regardless of the distribution of error terms, but
if errors are normally distributed then least squares estimators have the
added attraction of maximizing the likelihood function.

An alternative but popular way of getting initial estimates for Λ is to
use the first m PCs. If z = A′x is the vector consisting of all p PCs, with
A defined to have αk, the kth eigenvector of Σ, as its kth column as in
(2.1.1), then x = Az because of the orthogonality of A. If A is partitioned
into its first m and last (p−m) columns, with a similar partitioning of the
rows of z, then

x = (Am | A∗
p−m)

(
zm

z∗p−m

)
(7.2.3)

= Amzm + A∗
p−mz∗p−m

= Λf + e,

where

Λ = Am, f = zm and e = A∗
p−mz∗p−m.

Equation (7.2.3) looks very much like the factor model (7.1.2) but it violates
a basic assumption of the factor model, because the elements of e in (7.2.3)
are not usually uncorrelated. Despite the apparently greater sophistication
of using the sample version of Am as an initial estimator, compared with
crude techniques such as centroid estimates, its theoretical justification is
really no stronger.

As well as the straightforward use of PCs to estimate Λ, many varieties
of factor analysis use modifications of this approach; this topic will be
discussed further in the next section.
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7.3 Comparisons and Contrasts Between Factor
Analysis and Principal Component Analysis

As mentioned in Section 7.1 a major distinction between factor analysis
and PCA is that there is a definite model underlying factor analysis, but
for most purposes no model is assumed in PCA. Section 7.2 concluded by
describing the most common way in which PCs are used in factor analysis.
Further connections and contrasts between the two techniques are discussed
in the present section, but first we revisit the ‘models’ that have been
proposed for PCA. Recall from Section 3.9 that Tipping and Bishop (1999a)
describe a model in which x has covariance matrix BB′ +σ2Ip, where B is
a (p × q) matrix. Identifying B with Λ, and q with m, it is clear that this
model is equivalent to a special case of equation (7.2.1) in which Ψ = σ2Ip,
so that all p specific variances are equal.

De Leeuw (1986) refers to a generalization of Tipping and Bishop’s
(1999a) model, in which σ2Ip is replaced by a general covariance matrix for
the error terms in the model, as the (random factor score) factor analysis
model. This model is also discussed by Roweis (1997). A related model,
in which the factors are assumed to be fixed rather than random, corre-
sponds to Caussinus’s (1986) fixed effects model, which he also calls the
‘fixed factor scores model.’ In such models, variability amongst individu-
als is mainly due to different means rather than to individuals’ covariance
structure, so they are distinctly different from the usual factor analysis
framework.

Both factor analysis and PCA can be thought of as trying to represent
some aspect of the covariance matrix Σ (or correlation matrix) as well
as possible, but PCA concentrates on the diagonal elements, whereas in
factor analysis the interest is in the off-diagonal elements. To justify this
statement, consider first PCA. The objective is to maximize

∑m
k=1 var(zk)

or, as
∑p

k=1 var(zk) =
∑p

j=1 var(xj), to account for as much as possible
of the sum of diagonal elements of Σ. As discussed after Property A3 in
Section 2.1, the first m PCs will in addition often do a good job of explain-
ing the off-diagonal elements of Σ, which means that PCs can frequently
provide an adequate initial solution in a factor analysis. However, this is
not the stated purpose of PCA and will not hold universally. Turning now
to factor analysis, consider the factor model (7.1.2) and the corresponding
equation (7.2.1) for Σ. It is seen that, as Ψ is diagonal, the common fac-
tor term Λf in (7.1.2) accounts completely for the off -diagonal elements
of Σ in the perfect factor model, but there is no compulsion for the diag-
onal elements to be well explained by the common factors. The elements,
ψj , j = 1, 2, . . . , p, of Ψ will all be low if all of the variables have consid-
erable common variation, but if a variable xj is almost independent of all
other variables, then ψj = var(ej) will be almost as large as var(xj). Thus,
factor analysis concentrates on explaining only the off-diagonal elements of
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Σ by a small number of factors, whereas, conversely, PCA concentrates on
the diagonal elements of Σ.

This leads to another difference between the two techniques concerning
the number of dimensions m which give an adequate representation of the
p dimensional variable x. In PCA, if any individual variables are almost
independent of all other variables, then there will be a PC corresponding
to each such variable, and that PC will be almost equivalent to the corre-
sponding variable. Such ‘single variable’ PCs are generally included if an
adequate representation of x is required, as was discussed in Section 6.1.5.
In contrast, a common factor in factor analysis must contribute to at least
two of the variables, so it is not possible to have a ‘single variable’ common
factor. Instead, such factors appear as specific factors (error terms) and do
not contribute to the dimensionality of the model. Thus, for a given set
of data, the number of factors required for an adequate factor model is no
larger—and may be strictly smaller—than the number of PCs required to
account for most of the variation in the data. If PCs are used as initial
factors, then the ideal choice of m is often less than that determined by
the rules of Section 6.1, which are designed for descriptive PCA. As noted
several times in that Section, the different objectives underlying PCA and
factor analysis have led to confusing and inappropriate recommendations
in some studies with respect to the best choice of rules.

The fact that a factor model concentrates on accounting for the off-
diagonal elements, but not the diagonal elements, of Σ leads to various
modifications of the idea of using the first m PCs to obtain initial esti-
mates of factor loadings. As the covariance matrix of the common factors’
contribution to x is Σ−Ψ, it seems reasonable to use ‘PCs’ calculated for
Σ − Ψ rather than Σ to construct initial estimates, leading to so-called
principal factor analysis. This will, of course, require estimates of Ψ, which
can be found in various ways (see, for example, Rencher, 1998, Section 10.3;
Rummel, 1970, Chapter 13), either once-and-for-all or iteratively, leading
to many different factor estimates. Many, though by no means all, of the
different varieties of factor analysis correspond to simply using different
estimates of Ψ in this type of ‘modified PC’ procedure. None of these esti-
mates has a much stronger claim to absolute validity than does the use of
the PCs of Σ, although arguments have been put forward to justify various
different estimates of Ψ.

Another difference between PCA and (after rotation) factor analysis is
that changing m, the dimensionality of the model, can have much more
drastic effects on factor analysis than it does on PCA. In PCA, if m is
increased from m1 to m2, then an additional (m2 −m1) PCs are included,
but the original m1 PCs are still present and unaffected. However, in factor
analysis an increase from m1 to m2 produces m2 factors, none of which need
bear any resemblance to the original m1 factors.

A final difference between PCs and common factors is that the former
can be calculated exactly from x, whereas the latter typically cannot. The
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PCs are exact linear functions of x and have the form

z = A′x.

The factors, however, are not exact linear functions of x; instead x is defined
as a linear function of f apart from an error term, and when the relationship
is reversed, it certainly does not lead to an exact relationship between f
and x. Indeed, the fact that the expected value of x is a linear function
of f need not imply that the expected value of f is a linear function of
x (unless multivariate normal assumptions are made). Thus, the use of
PCs as initial factors may force the factors into an unnecessarily restrictive
linear framework. Because of the non-exactness of the relationship between
f and x, the values of f , the factor scores, must be estimated, and there
are several possible ways of doing this (see, for example, Bartholomew and
Knott (1999, 3.23–3.25); Jackson (1991, Section 17.7); Lawley and Maxwell
(1971, Chapter 8); Lewis-Beck (1994, Section II.6)).

To summarize, there are many ways in which PCA and factor analysis
differ from one another. Despite these differences, they both have the aim of
reducing the dimensionality of a vector of random variables. The use of PCs
to find initial factor loadings, though having no firm justification in theory
(except when Ψ = σ2Ip as in Tipping and Bishop’s (1999a) model) will
often not be misleading in practice. In the special case where the elements
of Ψ are proportional to the diagonal elements of Σ, Gower (1966) shows
that the configuration of points produced by factor analysis will be similar
to that found by PCA. In principal factor analysis, the results are equivalent
to those of PCA if all (non-zero) elements of Ψ are identical (Rao, 1955).
More generally, the coefficients found from PCA and the loadings found
from (orthogonal) factor analysis will often be very similar, although this
will not hold unless all the elements of Ψ are of approximately the same size
(Rao, 1955), which again relates to Tipping and Bishop’s (1999a) model.

Schneeweiss and Mathes (1995) provide detailed theoretical comparisons
between factor analysis and PCA. Assuming the factor model (7.2.1), they
compare Λ with estimates of Λ obtained from PCA and from factor anal-
ysis. Comparisons are also made between f , the PC scores, and estimates
of f using factor analysis. General results are given, as well as comparisons
for the special cases where m = 1 and where Σ = σ2I. The theorems, lem-
mas and corollaries given by Schneeweiss and Mathes provide conditions
under which PCs and their loadings can be used as adequate surrogates
for the common factors and their loadings. One simple set of conditions
is that p is large and that the elements of Ψ are small, although, un-
like the conventional factor model, Ψ need not be diagonal. Additional
conditions for closeness of factors and principal components are given by
Schneeweiss (1997). Further, mainly theoretical, discussion of relationships
between factor analysis and PCA appears in Ogasawara (2000).

The results derived by Schneeweiss and Mathes (1995) and Schneeweiss
(1997) are ‘population’ results, so that the ‘estimates’ referred to above
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are actually derived from correlation matrices corresponding exactly to the
underlying model. In practice, the model itself is unknown and must be
estimated from a data set. This allows more scope for divergence between
the results from PCA and from factor analysis. There have been a number
of studies in which PCA and factor analysis are compared empirically on
data sets, with comparisons usually based on a subjective assessment of
how well and simply the results can be interpreted. A typical study of
this sort from atmospheric science is Bärring (1987). There have also been
a number of comparative simulation studies, such as Snook and Gorsuch
(1989), in which, unsurprisingly, PCA is inferior to factor analysis in finding
underlying structure in data simulated from a factor model.

There has been much discussion in the behavioural science literature of
the similarities and differences between PCA and factor analysis. For exam-
ple, 114 pages of the first issue in 1990 of Multivariate Behavioral Research
was devoted to a lead article by Velicer and Jackson (1990) on ‘Component
analysis versus common factor analysis . . . ,’ together with 10 shorter dis-
cussion papers by different authors and a rejoinder by Velicer and Jackson.
Widaman (1993) continued this debate, and concluded that ‘. . . principal
component analysis should not be used if a researcher wishes to obtain
parameters reflecting latent constructs or factors.’ This conclusion reflects
the fact that underlying much of the 1990 discussion is the assumption that
unobservable factors are being sought from which the observed behavioural
variables can be derived. Factor analysis is clearly designed with this ob-
jective in mind, whereas PCA does not directly address it. Thus, at best,
PCA provides an approximation to what is truly required.

PCA and factor analysis give similar numerical results for many exam-
ples. However PCA should only be used as a surrogate for factor analysis
with full awareness of the differences between the two techniques, and even
then caution is necessary. Sato (1990), who, like Schneeweiss and Mathes
(1995) and Schneeweiss (1997), gives a number of theoretical comparisons,
showed that for m = 1 and small p the loadings given by factor analysis
and by PCA can sometimes be quite different.

7.4 An Example of Factor Analysis

The example that follows is fairly typical of the sort of data that are often
subjected to a factor analysis. The data were originally discussed by Yule
et al. (1969) and consist of scores for 150 children on ten subtests of the
Wechsler Pre-School and Primary Scale of Intelligence (WPPSI); there are
thus 150 observations on ten variables. The WPPSI tests were designed
to measure ‘intelligence’ of children aged 41

2–6 years, and the 150 children
tested in the Yule et al. (1969) study were a sample of children who entered
school in the Isle of Wight in the autumn of 1967, and who were tested
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during their second term in school. Their average age at the time of testing
was 5 years, 5 months. Similar data sets are analysed in Lawley and Maxwell
(1971).

Table 7.1 gives the variances and the coefficients of the first four PCs,
when the analysis is done on the correlation matrix. It is seen that the
first four components explain nearly 76% of the total variation, and that
the variance of the fourth PC is 0.71. The fifth PC, with a variance of
0.51, would be discarded by most of the rules described in Section 6.1
and, indeed, in factor analysis it would be more usual to keep only two,
or perhaps three, factors in the present example. Figures 7.1, 7.2 earlier in
the chapter showed the effect of rotation in this example when only two
PCs are considered; here, where four PCs are retained, it is not possible to
easily represent the effect of rotation in the same diagrammatic way.

All of the correlations between the ten variables are positive, so the
first PC has the familiar pattern of being an almost equally weighted
‘average’ of all ten variables. The second PC contrasts the first five vari-
ables with the final five. This is not unexpected as these two sets of
variables are of different types, namely ‘verbal’ tests and ‘performance’
tests, respectively. The third PC is mainly a contrast between variables
6 and 9, which interestingly were at the time the only two ‘new’ tests in
the WPSSI battery, and the fourth does not have a very straightforward
interpretation.

Table 7.2 gives the factor loadings when the first four PCs are rotated
using an orthogonal rotation method (varimax), and an oblique method
(direct quartimin). It would be counterproductive to give more varieties
of factor analysis for this single example, as the differences in detail tend
to obscure the general conclusions that are drawn below. Often, results
are far less sensitive to the choice of rotation criterion than to the choice
of how many factors to rotate. Many further examples can be found in
texts on factor analysis such as Cattell (1978), Lawley and Maxwell (1971),
Lewis-Beck (1994) and Rummel (1970).

In order to make comparisons between Table 7.1 and Table 7.2 straight-
forward, the sum of squares of the PC coefficients and factor loadings are
normalized to be equal to unity for each factor. Typically, the output from
computer packages that implement factor analysis uses the normalization in
which the sum of squares of coefficients in each PC before rotation is equal
to the variance (eigenvalue) associated with that PC (see Section 2.3). The
latter normalization is used in Figures 7.1 and 7.2. The choice of normal-
ization constraints is important in rotation as it determines the properties
of the rotated factors. Detailed discussion of these properties in the context
of rotated PCs is given in Section 11.1.

The correlations between the oblique factors in Table 7.2 are given in
Table 7.3 and it can be seen that there is a non-trivial degree of correlation
between the factors given by the oblique method. Despite this, the structure
of the factor loadings is very similar for the two factor rotation methods.
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Table 7.1. Coefficients for the first four PCs: children’s intelligence tests.

Component number 1 2 3 4
1 0.34 −0.39 0.09 −0.08
2 0.34 −0.37 −0.08 −0.23
3 0.35 −0.10 0.05 0.03
4 0.30 −0.24 −0.20 0.63

Variable 5 0.34 −0.32 0.19 −0.28






number 6 0.27 0.24 −0.57 0.30
7 0.32 0.27 −0.27 −0.34
8 0.30 0.51 0.19 −0.27
9 0.23 0.22 0.69 0.43

10 0.36 0.33 −0.03 0.02

Eigenvalue 4.77 1.13 0.96 0.71

Cumulative percentage
of total variation 47.7 59.1 68.6 75.7

Table 7.2. Rotated factor loadings–four factors: children’s intelligence tests.

Factor number 1 2 3 4
Varimax

1 0.48 0.09 0.17 0.14
2 0.49 0.15 0.18 −0.03
3 0.35 0.22 0.24 0.22
4 0.26 −0.00 0.64 0.20

Variable 5 0.49 0.16 0.02 0.15






number 6 0.05 0.34 0.60 −0.09
7 0.20 0.51 0.18 −0.07
8 0.10 0.54 −0.02 0.32
9 0.10 0.13 0.07 0.83

10 0.17 0.46 0.28 0.26

Direct quartimin
1 0.51 −0.05 0.05 0.05
2 0.53 0.04 0.05 −0.14
3 0.32 0.13 0.16 0.15
4 0.17 −0.19 0.65 0.20

Variable 5 0.54 0.06 −0.13 0.05






number 6 −0.07 0.28 0.67 −0.12
7 0.16 0.53 0.13 −0.17
8 0.03 0.62 −0.09 0.26
9 0.00 0.09 0.02 0.87

10 0.08 0.45 0.24 0.21
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Table 7.3. Correlations between four direct quartimin factors: children’s intelli-
gence tests.

Factor number
1 2 3

Factor 2 0.349
number 3 0.418 0.306

4 0.305 0.197 0.112

Table 7.4. Factor loadings—three factors, varimax rotation: children’s intelligence
tests.

Factor number
1 2 3

1 0.47 0.09 0.14
2 0.47 0.17 0.05
3 0.36 0.23 0.24
4 0.37 0.23 0.00

Variable 5 0.45 0.08 0.23






number 6 0.12 0.55 −0.05
7 0.17 0.48 0.17
8 0.05 0.36 0.52
9 0.13 −0.01 0.66

10 0.18 0.43 0.36

The first factor in both methods has its highest loadings in variables 1, 2,
3 and 5, with the next highest loadings on variables 4 and 7. In factors
2, 3, 4 there is the same degree of similarity in the position of the highest
loadings: for factor 2, the loadings for variables 7, 8, 10 are highest, with an
intermediate value on variable 6; factor 3 has large loadings on variables 4
and 6 and an intermediate value on variable 10; and factor 4 is dominated by
variable 9 with intermediate values on variables 8 and 10. The only notable
difference between the results for the two methods is that obliqueness allows
the second method to achieve slightly higher values on the highest loadings
and correspondingly lower values on the low loadings, as indeed it is meant
to.

By contrast, the differences between the loadings before and after ro-
tation are more substantial. After rotation, the ‘general factor’ with
coefficients of similar size on all variables disappears, as do most nega-
tive coefficients, and the structure of the loadings is simplified. Again, this
is precisely what rotation is meant to achieve.
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To illustrate what happens when different numbers of factors are re-
tained, Table 7.4 gives factor loadings for three factors using varimax
rotation. The loadings for direct quartimin (not shown) are again very sim-
ilar. Before rotation, changing the number of PCs simply adds or deletes
PCs, leaving the remaining PCs unchanged. After rotation, however, dele-
tion or addition of factors will usually change all of the factor loadings.
In the present example, deletion of the fourth unrotated factor leaves the
first rotated factor almost unchanged, except for a modest increase in the
loading for variable 4. Factor 2 here is also similar to factor 2 in the four-
factor analysis, although the resemblance is somewhat less strong than for
factor 1. In particular, variable 6 now has the largest loading in factor 2,
whereas previously it had only the fourth largest loading. The third factor
in the three-factor solution is in no way similar to factor 3 in the four-factor
analysis. In fact, it is quite similar to the original factor 4, and the original
factor 3 has disappeared, with its highest loadings on variables 4 and 6
partially ‘transferred’ to factors 1 and 2, respectively.

The behaviour displayed in this example, when a factor is deleted, is
not untypical of what happens in factor analysis generally, although the
‘mixing-up’ and ‘rearrangement’ of factors can be much more extreme than
in the present case.

7.5 Concluding Remarks

Factor analysis is a large subject, and this chapter has concentrated on
aspects that are most relevant to PCA. The interested reader is referred to
one of the many books on the subject such as Cattell (1978), Lawley and
Maxwell (1971), Lewis-Beck (1994) or Rummell (1970) for further details.
Factor analysis is one member of the class of latent variable models (see
Bartholomew and Knott (1999)) which have been the subject of much
recent research. Mixture modelling, discussed in Section 9.2.3, is another
of the many varieties of latent variable models.

It should be clear from the discussion of this chapter that it does not
really make sense to ask whether PCA is ‘better than’ factor analysis or
vice versa, because they are not direct competitors. If a model such as
(7.1.2) seems a reasonable assumption for a data set, then factor analysis,
rather than PCA, is appropriate. If no such model can be assumed, then
factor analysis should not really be used.

Despite their different formulations and objectives, it can be informa-
tive to look at the results of both techniques on the same data set. Each
technique gives different insights into the data structure, with PCA con-
centrating on explaining the diagonal elements, and factor analysis the
off-diagonal elements, of the covariance matrix, and both may be useful.
Furthermore, one of the main ideas of factor analysis, that of rotation, can
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be ‘borrowed’ for PCA without any implication that a factor model is be-
ing assumed. Once PCA has been used to find an m-dimensional subspace
that contains most of the variation in the original p variables, it is possible
to redefine, by rotation, the axes (or derived variables) that form a basis
for this subspace. The rotated variables will together account for the same
amount of variation as the first few PCs, but will no longer successively
account for the maximum possible variation. This behaviour is illustrated
by Tables 7.1 and 7.2; the four rotated PCs in Table 7.2 together account
for 75.7% of the total variation, as did the unrotated PCs in Table 7.1.
However, the percentages of total variation accounted for by individual
factors (rotated PCs) are 27.4, 21.9, 14.2 and 12.1, compared with 47.7,
11.3, 9.6 and 7.1 for the unrotated PCs. The rotated PCs, when expressed
in terms of the original variables, may be easier to interpret than the PCs
themselves because their coefficients will typically have a simpler structure.
This is discussed in more detail in Chapter 11. In addition, rotated PCs of-
fer advantages compared to unrotated PCs in some types of analysis based
on PCs (see Sections 8.5 and 10.1).



8
Principal Components in Regression
Analysis

As illustrated elsewhere in this book, principal components are used in
conjunction with a variety of other statistical techniques. One area in which
this activity has been extensive is regression analysis.

In multiple regression, one of the major difficulties with the usual least
squares estimators is the problem of multicollinearity, which occurs when
there are near-constant linear functions of two or more of the predictor,
or regressor, variables. A readable review of the multicollinearity problem
is given by Gunst (1983). Multicollinearities are often, but not always,
indicated by large correlations between subsets of the variables and, if mul-
ticollinearities exist, then the variances of some of the estimated regression
coefficients can become very large, leading to unstable and potentially mis-
leading estimates of the regression equation. To overcome this problem,
various approaches have been proposed. One possibility is to use only a sub-
set of the predictor variables, where the subset is chosen so that it does not
contain multicollinearities. Numerous subset selection methods are avail-
able (see, for example, Draper and Smith, 1998, Chapter 15; Hocking, 1976;
Miller, 1984, 1990), and among the methods are some based on PCs. These
methods will be dealt with later in the chapter (Section 8.5), but first some
more widely known uses of PCA in regression are described.

These uses of PCA follow from a second class of approaches to overcom-
ing the problem of multicollinearity, namely the use of biased regression
estimators. This class includes ridge regression, shrinkage estimators, par-
tial least squares, the so-called LASSO, and also approaches based on PCA.
The best-known such approach, generally known as PC regression, simply
starts by using the PCs of the predictor variables in place of the predic-



168 8. Principal Components in Regression Analysis

tor variables. As the PCs are uncorrelated, there are no multicollinearities
between them, and the regression calculations are also simplified. If all the
PCs are included in the regression, then the resulting model is equivalent
to that obtained by least squares, so the large variances caused by multi-
collinearities have not gone away. However, calculation of the least squares
estimates via PC regression may be numerically more stable than direct
calculation (Flury and Riedwyl, 1988, p. 212).

If some of the PCs are deleted from the regression equation, estima-
tors are obtained for the coefficients in the original regression equation.
These estimators are usually biased, but can simultaneously greatly reduce
any large variances for regression coefficient estimators caused by multi-
collinearities. Principal component regression is introduced in Section 8.1,
and strategies for deciding which PCs to delete from the regression equa-
tion are discussed in Section 8.2; some connections between PC regression
and other forms of biased regression are described in Section 8.3.

Variations on the basic idea of PC regression have also been proposed.
One such variation, noted in Section 8.3, allows the possibility that a PC
may be only ‘partly deleted’ from the regression equation. A rather different
approach, known as latent root regression, finds the PCs of the predictor
variables together with the dependent variable. These PCs can then be
used to construct biased regression estimators, which differ from those de-
rived from PC regression. Latent root regression in various forms, together
with its properties, is discussed in Section 8.4. A widely used alternative
to PC regression is partial least squares (PLS). This, too, is included in
Section 8.4, as are a number of other regression-related techniques that
have connections with PCA. One omission is the use of PCA to detect out-
liers. Because the detection of outliers is important in other areas as well
as regression, discussion of this topic is postponed until Section 10.1.

A topic which is related to, but different from, regression analysis is
that of functional and structural relationships. The idea is, like regression
analysis, to explore relationships between variables but, unlike regression,
the predictor variables as well as the dependent variable may be subject
to error. Principal component analysis can again be used in investigat-
ing functional and structural relationships, and this topic is discussed in
Section 8.6.

Finally in this chapter, in Section 8.7 two detailed examples are given
of the use of PCs in regression, illustrating many of the ideas discussed in
earlier sections.

8.1 Principal Component Regression

Consider the standard regression model, as defined in equation (3.1.5), that
is,

y = Xβ + ε, (8.1.1)
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where y is a vector of n observations on the dependent variable, measured
about their mean, X is an (n×p) matrix whose (i, j)th element is the value
of the jth predictor (or regressor) variable for the ith observation, again
measured about its mean, β is a vector of p regression coefficients and ε is
a vector of error terms; the elements of ε are independent, each with the
same variance σ2. It is convenient to present the model (8.1.1) in ‘centred’
form, with all variables measured about their means. Furthermore, it is
conventional in much of the literature on PC regression to assume that the
predictor variables have been standardized so that X′X is proportional to
the correlation matrix for the predictor variables, and this convention is
followed in the present chapter. Similar derivations to those below are pos-
sible if the predictor variables are in uncentred or non-standardized form,
or if an alternative standardization has been used, but to save space and
repetition, these derivations are not given. Nor do we discuss the contro-
versy that surrounds the choice of whether or not to centre the variables
in a regression analysis. The interested reader is referred to Belsley (1984)
and the discussion which follows that paper.

The values of the PCs for each observation are given by

Z = XA, (8.1.2)

where the (i, k)th element of Z is the value (score) of the kth PC for the
ith observation, and A is a (p × p) matrix whose kth column is the kth
eigenvector of X′X.

Because A is orthogonal, Xβ can be rewritten as XAA′β = Zγ, where
γ = A′β. Equation (8.1.1) can therefore be written as

y = Zγ + ε, (8.1.3)

which has simply replaced the predictor variables by their PCs in the re-
gression model. Principal component regression can be defined as the use
of the model (8.1.3) or of the reduced model

y = Zmγm + εm, (8.1.4)

where γm is a vector of m elements that are a subset of elements of γ,
Zm is an (n × m) matrix whose columns are the corresponding subset of
columns of Z, and εm is the appropriate error term. Using least squares to
estimate γ in (8.1.3) and then finding an estimate for β from the equation

β̂ = Aγ̂ (8.1.5)

is equivalent to finding β̂ by applying least squares directly to (8.1.1).
The idea of using PCs rather than the original predictor variables is not

new (Hotelling, 1957; Kendall, 1957), and it has a number of advantages.
First, calculating γ̂ from (8.1.3) is more straightforward than finding β̂
from (8.1.1) as the columns of Z are orthogonal. The vector γ̂ is

γ̂ = (Z′Z)−1Z′y = L−2Z′y, (8.1.6)
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where L is the diagonal matrix whose kth diagonal element is l
1/2
k , and

lk is defined here, as in Section 3.5, as the kth largest eigenvalue of X′X,
rather than S. Furthermore, if the regression equation is calculated for PCs
instead of the predictor variables, then the contributions of each trans-
formed variable (PC) to the equation can be more easily interpreted than
the contributions of the original variables. Because of uncorrelatedness, the
contribution and estimated coefficient of a PC are unaffected by which other
PCs are also included in the regression, whereas for the original variables
both contributions and coefficients can change dramatically when another
variable is added to, or deleted from, the equation. This is especially true
when multicollinearity is present, but even when multicollinearity is not
a problem, regression on the PCs, rather than the original predictor vari-
ables, may have advantages for computation and interpretation. However, it
should be noted that although interpretation of the separate contributions
of each transformed variable is improved by taking PCs, the interpretation
of the regression equation itself may be hindered if the PCs have no clear
meaning.

The main advantage of PC regression occurs when multicollinearities are
present. In this case, by deleting a subset of the PCs, especially those with
small variances, much more stable estimates of β can be obtained. To see
this, substitute (8.1.6) into (8.1.5) to give

β̂ = A(Z′Z)−1Z′y (8.1.7)

= AL−2Z′y

= AL−2A′X′y

=
p∑

k=1

l−1
k aka′

kX
′y, (8.1.8)

where lk is the kth diagonal element of L2 and ak is the kth column of A.
Equation (8.1.8) can also be derived more directly from β̂ = (X′X)−1X′y,
by using the spectral decomposition (see Property A3 of Sections 2.1 and
3.1) of the matrix (X′X)−1, which has eigenvectors ak and eigenvalues
l−1
k , k = 1, 2, . . . , p.

Making the usual assumption that the elements of y are uncorrelated,
each with the same variance σ2 (that is the variance-covariance matrix of
y is σ2In), it is seen from (8.1.7) that the variance-covariance matrix of β̂
is

σ2A(Z′Z)−1Z′Z(Z′Z)−1A′ = σ2A(Z′Z)−1A′

= σ2AL−2A′

= σ2

p∑

k=1

l−1
k aka′

k. (8.1.9)
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This expression gives insight into how multicollinearities produce large
variances for the elements of β̂. If a multicollinearity exists, then it appears
as a PC with very small variance (see also Sections 3.4 and 10.1); in other
words, the later PCs have very small values of lk (the variance of the kth
PC is lk/(n−1) in the present notation), and hence very large values of l−1

k .
Thus (8.1.9) shows that any predictor variable having moderate or large
coefficients in any of the PCs associated with very small eigenvalues will
have a very large variance.

One way of reducing this effect is to delete the terms from (8.1.8) that
correspond to very small lk, leading to an estimator

β̃ =
m∑

k=1

l−1
k aka′

kX
′y, (8.1.10)

where lm+1, lm+2, . . . , lp are the very small eigenvalues. This is equivalent
to setting the last (p − m) elements of γ equal to zero.

Then the variance-covariance matrix V (β̃) for β̃ is

σ2
m∑

j=1

l−1
j aja′

jX
′X

m∑

k=1

l−1
k aka′

k.

Substituting

X′X =
p∑

h=1

lhaha′
h

from the spectral decomposition of X′X, we have

V (β̃) = σ2

p∑

h=1

m∑

j=1

m∑

k=1

lhl−1
j l−1

k aja′
jaha′

haka′
k.

Because the vectors ah, h = 1, 2, . . . , p are orthonormal, the only non-zero
terms in the triple summation occur when h = j = k, so that

V (β̃) = σ2
m∑

k=1

l−1
k aka′

k (8.1.11)

If none of the first m eigenvalues lk is very small, then none of the variances
given by the diagonal elements of (8.1.11) will be large.

The decrease in variance for the estimator β̃ given by (8.1.10), compared
with the variance of β̂, is achieved at the expense of introducing bias into
the estimator β̃. This follows because

β̃ = β̂ −
p∑

k=m+1

l−1
k aka′

kX
′y, E(β̂) = β,
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and

E

[
p∑

k=m+1

l−1
k aka′

kX
′y

]

=
p∑

k=m+1

l−1
k aka′

kX
′Xβ

=
p∑

k=m+1

aka′
kβ.

This last term is, in general, non-zero so that E(β̃) �= β. However, if
multicollinearity is a serious problem, the reduction in variance can be
substantial, whereas the bias introduced may be comparatively small. In
fact, if the elements of γ corresponding to deleted components are actually
zero, then no bias will be introduced.

As well as, or instead of, deleting terms from (8.1.8) corresponding to
small eigenvalues, it is also possible to delete terms for which the cor-
responding elements of γ are not significantly different from zero. The
question of which elements are significantly non-zero is essentially a variable
selection problem, with PCs rather than the original predictor variables as
variables. Any of the well-known methods of variable selection for regres-
sion (see, for example, Draper and Smith, 1998, Chapter 15) can be used.
However, the problem is complicated by the desirability of also deleting
high-variance terms from (8.1.8).

The definition of PC regression given above in terms of equations (8.1.3)
and (8.1.4) is equivalent to using the linear model (8.1.1) and estimating
β by

β̃ =
∑

M

l−1
k aka′

kX
′y, (8.1.12)

where M is some subset of the integers 1, 2, . . . , p. A number of authors con-
sider only the special case (8.1.10) of (8.1.12), in which M = {1, 2, . . . ,m},
but this is often too restrictive, as will be seen in Section 8.2. In the general
definition of PC regression, M can be any subset of the first p integers, so
that any subset of the coefficients of γ, corresponding to the complement of
M , can be set to zero. The next section will consider various strategies for
choosing M , but we first note that once again the singular value decompo-
sition (SVD) of X defined in Section 3.5 can be a useful concept (see also
Sections 5.3, 6.1.5, 13.4, 13.5, 13.6, 14.2 and Appendix A1). In the present
context it can be used to provide an alternative formulation of equation
(8.1.12) and to help in the interpretation of the results of a PC regression.
Assuming that n ≥ p and that X has rank p, recall that the SVD writes X
in the form

X = ULA′,

where

(i) A and L are as defined earlier in this section;
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(ii) the columns of U are those eigenvectors of XX′ that correspond to
non-zero eigenvalues, normalized so that U′U = Ip.

Then Xβ can be rewritten ULA′β = Uδ, where δ = LA′β, so that
β = AL−1δ. The least squares estimator for δ is

δ̂ = (U′U)−1U′y = U′y,

leading to β̂ = AL−1δ̂.
The relationship between γ, defined earlier, and δ is straightforward,

namely

γ = A′β = A′(AL−1δ) = (A′A)L−1δ = L−1δ,

so that setting a subset of elements of δ equal to zero is equivalent to setting
the same subset of elements of γ equal to zero. This result means that the
SVD can provide an alternative computational approach for estimating PC
regression equations, which is an advantage, as efficient algorithms exist for
finding the SVD of a matrix (see Appendix A1).

Interpretation of the results of a PC regression can also be aided by using
the SVD, as illustrated by Mandel (1982) for artificial data (see also Nelder
(1985)).

8.2 Strategies for Selecting Components in
Principal Component Regression

When choosing the subset M in equation (8.1.12) there are two partially
conflicting objectives. In order to eliminate large variances due to multi-
collinearities it is essential to delete all those components whose variances
are very small but, at the same time, it is undesirable to delete components
that have large correlations with the dependent variable y. One strategy
for choosing M is simply to delete all those components whose variances
are less than l∗, where l∗ is some cut-off level. The choice of l∗ is rather
arbitrary, but when dealing with correlation matrices, where the average
value of the eigenvalues is 1, a value of l∗ somewhere in the range 0.01 to
0.1 seems to be useful in practice.

An apparently more sophisticated way of choosing l∗ is to look at so-
called variance inflation factors (VIFs) for the p predictor variables. The
VIF for the jth variable when using standardized variables is defined as
cjj/σ2 (which equals the jth diagonal element of (X′X)−1—Marquardt,
1970), where cjj is the variance of the jth element of the least squares
estimator for β. If all the variables are uncorrelated, then all the VIFs
are equal to 1, but if severe multicollinearities exist then the VIFs for β̂
will be very large for those variables involved in the multicollinearities. By
successively deleting the last few terms in (8.1.8), the VIFs for the resulting
biased estimators will be reduced; deletion continues until all VIFs are
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Table 8.1. Variation accounted for by PCs of predictor variables in monsoon data
for (a) predictor variables, (b) dependent variable.

Component
number 1 2 3 4 5 6 7 8 9 10

Percentage (a) Predictor
variation variables 26 22 17 11 10 7 4 3 1 < 1

accounted (b) Dependent
for variable 3 22 < 1 1 3 3 6 24 5 20

below some desired level. The original VIF for a variable is related to the
squared multiple correlation R2 between that variable and the other (p−1)
predictor variables by the formula VIF = (1−R2)−1. Values of VIF > 10
correspond to R2 > 0.90, and VIF > 4 is equivalent to R2 > 0.75, so that
values of R2 can be considered when choosing how small a level of VIF is
desirable. However, the choice of this desirable level is almost as arbitrary
as the choice of l∗ above.

Deletion based solely on variance is an attractive and simple strategy, and
Property A7 of Section 3.1 gives it, at first sight, an added respectability.
However, low variance for a component does not necessarily imply that
the corresponding component is unimportant in the regression model. For
example, Kung and Sharif (1980) give an example from meteorology where,
in a regression of monsoon onset dates on all of the (ten) PCs, the most
important PCs for prediction are, in decreasing order of importance, the
eighth, second and tenth (see Table 8.1). The tenth component accounts
for less than 1% of the total variation in the predictor variables, but is
an important predictor of the dependent variable, and the most important
PC in the regression accounts for 24% of the variation in y but only 3% of
the variation in x. Further examples of this type are presented in Jolliffe
(1982). Thus, the two objectives of deleting PCs with small variances and
of retaining PCs that are good predictors of the dependent variable may
not be simultaneously achievable.

Some authors (for example, Hocking, 1976; Mosteller and Tukey, 1977,
pp. 397–398; Gunst and Mason, 1980, pp. 327–328) argue that the choice
of PCs in the regression should be made entirely, or mainly, on the basis of
variance reduction but, as can be seen from the examples cited by Jolliffe
(1982), such a procedure can be dangerous if low-variance components have
predictive value. Jolliffe (1982) notes that examples where this occurs seem
to be not uncommon in practice. Berk’s (1984) experience with six data
sets indicates the opposite conclusion, but several of his data sets are of
a special type, in which strong positive correlations exist between all the
regressor variables and between the dependent variable and the regressor
variables. In such cases the first PC is a (weighted) average of the regres-
sor variables, with all weights positive (see Section 3.8), and as y is also
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positively correlated with each regressor variable it is strongly correlated
with the first PC. Hadi and Ling (1998) (see also Cuadras (1998)) define
PC regression in terms of equation (8.1.10), and argue that the technique
is flawed because predictive low-variance PCs may be excluded. With the
more general definition of PC regression, based on (8.1.12), this criticism
disappears.

In contrast to selection based solely on size of variance, the opposite
extreme is to base selection only on values of t-statistics measuring the
(independent) contribution of each PC to the regression equation. This, too,
has its pitfalls. Mason and Gunst (1985) showed that t-tests for low-variance
PCs have reduced power compared to those for high-variance components,
and so are less likely to be selected. A compromise between selection on the
basis of variance and on the outcome of t-tests is to delete PCs sequentially
starting with the smallest variance, then the next smallest variance and
so on; deletion stops when the first significant t-value is reached. Such a
strategy is likely to retain more PCs than are really necessary.

Hill et al. (1977) give a comprehensive discussion of various, more so-
phisticated, strategies for deciding which PCs to delete from the regression
equation. Their criteria are of two main types, depending on whether the
primary objective is to get β̃ close to β, or to get Xβ̃, the estimate of y,
close to y or to E(y). In the first case, estimation of β is the main interest;
in the second it is prediction of y which is the chief concern. Whether or
not β̃ is an improvement on β̂ is determined for several of the criteria by
looking at mean square error (MSE) so that variance and bias are both
taken into account.

More specifically, two criteria are suggested of the first type, the ‘weak’
and ‘strong’ criteria. The weak criterion, due to Wallace (1972), prefers β̃

to β̂ if tr[MSE(β̃)] ≤ tr[MSE(β̂)], where MSE(β̃) is the matrix E[(β̃ −
β)(β̃ − β)′], with a similar definition for the matrix MSE(β̂). This simply
means that β̃ is preferred when the expected Euclidean distance between
β̃ and β is smaller than that between β̂ and β.

The strong criterion insists that

MSE(c′β̃) ≤ MSE(c′β̂)

for every non-zero p-element vector c, where

MSE(c′β̃) = E[(c′β̃ − c′β)2],

with, again, a similar definition for MSE(c′β̂).
Among those criteria of the second type (where prediction of y rather

than estimation of β is the main concern) that are considered by Hill et al.
(1977), there are again two which use MSE. The first is also due to Wallace
(1972) and is again termed a ‘weak’ criterion. It prefers β̃ to β̂ if

E[(Xβ̃ − Xβ)′(Xβ̃ − Xβ)] ≤ E[(Xβ̂ − Xβ)′(Xβ̂ − Xβ)],
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so that β̃ is preferred to β̂ if the expected Euclidean distance between Xβ̃
(the estimate of y) and Xβ (the expected value of y) is smaller than the
corresponding distance between Xβ̂ and Xβ. An alternative MSE criterion
is to look at the distance between each estimate of y and the actual, rather
than expected, value of y. Thus β̃ is preferred to β̂ if

E[(Xβ̃ − y)′(Xβ̃ − y)] ≤ E[(Xβ̂ − y)′(Xβ̂ − y)].

Substituting y = Xβ + ε it follows that

E[(Xβ̃ − y)′(Xβ̃ − y)] = E[(Xβ̃ − Xβ)′(Xβ̃ − Xβ)] + nσ2,

with a similar expression for β̂. At first sight, it seems that this second
criterion is equivalent to the first. However σ2 is unknown and, although
it can be estimated, we may get different estimates when the equation is
fitted using β̃, β̂, respectively.

Hill et al. (1977) consider several other criteria; further details may be
found in their paper, which also describes connections between the various
decision rules for choosing M and gives illustrative examples. They argue
that the choice of PCs should not be based solely on the size of their
variance, but little advice is offered on which of their criteria gives an overall
‘best’ trade-off between variance and bias; rather, separate circumstances
are identified in which each may be the most appropriate.

Gunst and Mason (1979) also consider integrated MSE of predictions
as a criterion for comparing different regression estimators. Friedman and
Montgomery (1985) prefer to use the predictive ability for individual obser-
vations, rather than averaging this ability over a distribution of potential
observations as is done by Gunst and Mason (1979).

Another way of comparing predicted and observed values of y is by means
of cross-validation. Mertens et al. (1995) use a version of PRESS, defined
in equation (6.1.3), as a criterion for deciding how many PCs to retain in
PC regression. Their criterion is

n∑

i=1

(yi − ŷM(i))2,

where ŷM(i) is the estimate of yi obtained from a PC regression based on
a subset M and using the data matrix X(i), which is X with its ith row
deleted. They have an efficient algorithm for computing all PCAs with each
observation deleted in turn, though the algebra that it uses is applicable
only to covariance, not correlation, matrices. Mainly for reasons of conve-
nience, they also restrict their procedure to implementing (8.1.10), rather
than the more general (8.1.12).

Yet another approach to deletion of PCs that takes into account both
variance and bias is given by Lott (1973). This approach simply calculates
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the adjusted multiple coefficient of determination,

R̄2 = 1 − (n − 1)
(n − p − 1)

(1 − R2),

where R2 is the usual multiple coefficient of determination (squared multi-
ple correlation) for the regression equation obtained from each subset M of
interest. The ‘best’ subset is then the one that maximizes R̄2. Lott demon-
strates that this very simple procedure works well in a limited simulation
study. Soofi (1988) uses a Bayesian approach to define the gain of informa-
tion from the data about the ith element γi of γ. The subset M is chosen
to consist of integers corresponding to components with the largest val-
ues of this measure of information. Soofi shows that the measure combines
the variance accounted for by a component with its correlation with the
dependent variable.

It is difficult to give any general advice regarding the choice of a decision
rule for determining M . It is clearly inadvisable to base the decision en-
tirely on the size of variance; conversely, inclusion of highly predictive PCs
can also be dangerous if they also have very small variances, because of
the resulting instability of the estimated regression equation. Use of MSE
criteria provides a number of compromise solutions, but they are essentially
arbitrary.

What PC regression can do, which least squares cannot, is to indicate
explicitly whether a problem exists with respect to the removal of multi-
collinearity, that is whether instability in the regression coefficients can only
be removed by simultaneously losing a substantial proportion of the pre-
dictability of y. An extension of the cross-validation procedure of Mertens
et al. (1995) to general subsets M would provide a less arbitrary way than
most of deciding which PCs to keep, but the choice of M for PC regression
remains an open question.

8.3 Some Connections Between Principal
Component Regression and Other Biased
Regression Methods

Using the expressions (8.1.8), (8.1.9) for β̂ and its variance-covariance ma-
trix, it was seen in the previous section that deletion of the last few terms
from the summation for β̂ can dramatically reduce the high variances of el-
ements of β̂ caused by multicollinearities. However, if any of the elements of
γ corresponding to deleted components are non-zero, then the PC estimator
β̃ for β is biased. Various other methods of biased estimation that aim to
remove collinearity-induced high variances have also been proposed. A full
description of these methods will not be given here as several do not involve
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PCs directly, but there are various relationships between PC regression and
other biased regression methods which will be briefly discussed.

Consider first ridge regression, which was described by Hoerl and Ken-
nard (1970a,b) and which has since been the subject of much debate in
the statistical literature. The estimator of β using the technique can be
written, among other ways, as

β̂R =
p∑

k=1

(lk + κ)−1aka′
kX

′y,

where κ is some fixed positive constant and the other terms in the expres-
sion have the same meaning as in (8.1.8). The variance-covariance matrix
of β̂R, is equal to

σ2

p∑

k=1

lk(lk + κ)−2aka′
k.

Thus, ridge regression estimators have rather similar expressions to those
for least squares and PC estimators, but variance reduction is achieved
not by deleting components, but by reducing the weight given to the later
components. A generalization of ridge regression has p constants κk, k =
1, 2, . . . , p that must be chosen, rather than a single constant κ.

A modification of PC regression, due to Marquardt (1970) uses a simi-
lar, but more restricted, idea. Here a PC regression estimator of the form
(8.1.10) is adapted so that M includes the first m integers, excludes the
integers m + 2,m + 3, . . . , p, but includes the term corresponding to inte-
ger (m + 1) with a weighting less than unity. Detailed discussion of such
estimators is given by Marquardt (1970).

Ridge regression estimators ‘shrink’ the least squares estimators towards
the origin, and so are similar in effect to the shrinkage estimators pro-
posed by Stein (1960) and Sclove (1968). These latter estimators start with
the idea of shrinking some or all of the elements of γ̂ (or β̂) using argu-
ments based on loss functions, admissibility and prior information; choice
of shrinkage constants is based on optimization of MSE criteria. Partial
least squares regression is sometimes viewed as another class of shrinkage
estimators. However, Butler and Denham (2000) show that it has peculiar
properties, shrinking some of the elements of γ̂ but inflating others.

All these various biased estimators have relationships between them. In
particular, all the present estimators, as well as latent root regression,
which is discussed in the next section along with partial least squares,
can be viewed as optimizing (β̃ − β)′X′X(β̃ − β), subject to different
constraints for different estimators (see Hocking (1976)). If the data set
is augmented by a set of dummy observations, and least squares is used
to estimate β from the augmented data, Hocking (1976) demonstrates
further that ridge, generalized ridge, PC regression, Marquardt’s modifi-
cation and shrinkage estimators all appear as special cases for particular
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choices of the dummy observations and their variances. In a slightly differ-
ent approach to the same topic, Hocking et al. (1976) give a broad class
of biased estimators, which includes all the above estimators, including
those derived from PC regression, as special cases. Oman (1978) shows
how several biased regression methods, including PC regression, can be
fitted into a Bayesian framework by using different prior distributions for
β; Leamer and Chamberlain (1976) also look at a Bayesian approach to
regression, and its connections with PC regression. Other biased estima-
tors have been suggested and compared with PC regression by Iglarsh and
Cheng (1980) and Trenkler (1980), and relationships between ridge regres-
sion and PC regression are explored further by Hsuan (1981). Trenkler and
Trenkler (1984) extend Hsuan’s (1981) results, and examine circumstances
in which ridge and other biased estimators can be made close to PC re-
gression estimators, where the latter are defined by the restrictive equation
(8.1.10).

Hoerl et al. (1986) describe a simulation study in which PC regression is
compared with other biased estimators and variable selection methods, and
found to be inferior. However, the comparison is not entirely fair. Several
varieties of ridge regression are included in the comparison, but only one
way of choosing M is considered for PC regression. This is the restrictive
choice of M consisting of 1, 2, . . . ,m, where m is the largest integer for
which a t-test of the PC regression coefficient γm gives a significant result.
Hoerl et al. (1986) refer to a number of other simulation studies comparing
biased regression methods, some of which include PC regression. Theoret-
ical comparisons between PC regression, least squares and ridge regression
with respect to the predictive ability of the resulting regression equations
are made by Gunst and Mason (1979) and Friedman and Montgomery
(1985), but only for p = 2.

Essentially the same problem arises for all these biased methods as oc-
curred in the choice of M for PC regression, namely, the question of which
compromise should be chosen in the trade-off between bias and variance.
In ridge regression, this compromise manifests itself in the choice of κ, and
for shrinkage estimators the amount of shrinkage must be determined. Sug-
gestions have been made regarding rules for making these choices, but the
decision is usually still somewhat arbitrary.

8.4 Variations on Principal Component Regression

Marquardt’s (1970) fractional rank estimator, which was described in the
previous section, is one modification of PC regression as defined in Sec-
tion 8.1, but it is a fairly minor modification. Another approach, suggested
by Oman (1991), is to use shrinkage estimators, but instead of shrink-
ing the least squares estimators towards zero or some other constant, the



180 8. Principal Components in Regression Analysis

shrinkage is towards the first few PCs. This tends to downweight the con-
tribution of the less stable low-variance PC but does not ignore them.
Oman (1991) demonstrates considerable improvements over least squares
with these estimators.

A rather different type of approach, which, nevertheless, still uses PCs in
a regression problem, is provided by latent root regression. The main dif-
ference between this technique and straightforward PC regression is that
the PCs are not calculated for the set of p predictor variables alone. In-
stead, they are calculated for a set of (p + 1) variables consisting of the
p predictor variables and the dependent variable. This idea was suggested
independently by Hawkins (1973) and by Webster et al. (1974), and termed
‘latent root regression’ by the latter authors. Subsequent papers (Gunst et
al., 1976; Gunst and Mason, 1977a) investigated the properties of latent
root regression, and compared it with other biased regression estimators.
As with the biased estimators discussed in the previous section, the latent
root regression estimator can be derived by optimizing a quadratic func-
tion of β, subject to constraints (Hocking, 1976). Latent root regression,
as defined in Gunst and Mason (1980, Section 10.2), will now be described;
the technique introduced by Hawkins (1973) has slight differences and is
discussed later in this section.

In latent root regression, a PCA is done on the set of (p + 1) variables
described above, and the PCs corresponding to the smallest eigenvalues
are examined. Those for which the coefficient of the dependent vari-
able y is also small are called non-predictive multicollinearities, and are
deemed to be of no use in predicting y. However, any PC with a small
eigenvalue will be of predictive value if its coefficient for y is large.
Thus, latent root regression deletes those PCs which indicate multi-
collinearities, but only if the multicollinearities appear to be useless for
predicting y.

Let δk be the vector of the p coefficients on the p predictor variables
in the kth PC for the enlarged set of (p + 1) variables; let δ0k be the
corresponding coefficient of y, and let l̃k be the corresponding eigenvalue.
Then the latent root estimator for β is defined as

β̂LR =
∑

MLR

fkδk, (8.4.1)

where MLR is the subset of the integers 1, 2, . . . , p + 1, in which integers
corresponding to the non-predictive multicollinearities defined above, and
no others, are deleted; the fk are coefficients chosen to minimize residual
sums of squares among estimators of the form (8.4.1).

The fk can be determined by first using the kth PC to express y as a
linear function of X to provide an estimator ŷk. A weighted average, ŷLR,
of the ŷk for k ∈ MLR is then constructed, where the weights are chosen
so as to minimize the residual sum of squares (ŷLR − y)′(ŷLR − y). The
vector ŷLR is then the latent root regression predictor Xβ̂LR, and the fk



8.4. Variations on Principal Component Regression 181

are given by

fk = −δ0kηy l̃−1
k

(
∑

MLR

δ2
0k l̃−1

k

)−1

, (8.4.2)

where η2
y =
∑n

i=1(yi − ȳ)2, and δ0k, l̃k are as defined above. Note that the
least squares estimator β̂ can also be written in the form (8.4.1) if MLR in
(8.4.1) and (8.4.2) is taken to be the full set of PCs.

The full derivation of this expression for fk is fairly lengthy, and can
be found in Webster et al. (1974). It is interesting to note that fk is pro-
portional to the size of the coefficient of y in the kth PC, and inversely
proportional to the variance of the kth PC; both of these relationships are
intuitively reasonable.

In order to choose the subset MLR it is necessary to decide not only how
small the eigenvalues must be in order to indicate multicollinearities, but
also how large the coefficient of y must be in order to indicate a predictive
multicollinearity. Again, these are arbitrary choices, and ad hoc rules have
been used, for example, by Gunst et al. (1976). A more formal procedure
for identifying non-predictive multicollinearities is described by White and
Gunst (1979), but its derivation is based on asymptotic properties of the
statistics used in latent root regression.

Gunst et al. (1976) compared β̂LR and β̂ in terms of MSE, using a
simulation study, for cases of only one multicollinearity, and found that
β̂LR showed substantial improvement over β̂ when the multicollinearity
is non-predictive. However, in cases where the single multicollinearity had
some predictive value, the results were, unsurprisingly, less favourable to
β̂LR. Gunst and Mason (1977a) reported a larger simulation study, which
compared PC, latent root, ridge and shrinkage estimators, again on the
basis of MSE. Overall, latent root estimators did well in many, but not all,
situations studied, as did PC estimators, but no simulation study can ever
be exhaustive, and different conclusions might be drawn for other types of
simulated data.

Hawkins (1973) also proposed finding PCs for the enlarged set of (p+1)
variables, but he used the PCs in a rather different way from that of latent
root regression as defined above. The idea here is to use the PCs themselves,
or rather a rotated version of them, to decide upon a suitable regression
equation. Any PC with a small variance gives a relationship between y
and the predictor variables whose sum of squared residuals orthogonal to
the fitted plane is small. Of course, in regression it is squared residuals in
the y-direction, rather than orthogonal to the fitted plane, which are to
be minimized (see Section 8.6), but the low-variance PCs can nevertheless
be used to suggest low-variability relationships between y and the predic-
tor variables. Hawkins (1973) goes further by suggesting that it may be
more fruitful to look at rotated versions of the PCs, instead of the PCs
themselves, in order to indicate low-variance relationships. This is done
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by rescaling and then using varimax rotation (see Chapter 7), which has
the effect of transforming the PCs to a different set of uncorrelated vari-
ables. These variables are, like the PCs, linear functions of the original
(p + 1) variables, but their coefficients are mostly close to zero or a long
way from zero, with relatively few intermediate values. There is no guaran-
tee, in general, that any of the new variables will have particularly large or
particularly small variances, as they are chosen by simplicity of structure
of their coefficients, rather than for their variance properties. However, if
only one or two of the coefficients for y are large, as should often happen
with varimax rotation, then Hawkins (1973) shows that the corresponding
transformed variables will have very small variances, and therefore suggest
low-variance relationships between y and the predictor variables. Other
possible regression equations may be found by substitution of one subset of
predictor variables in terms of another, using any low-variability relation-
ships between predictor variables that are suggested by the other rotated
PCs.

The above technique is advocated by Hawkins (1973) and by Jeffers
(1981) as a means of selecting which variables should appear in the regres-
sion equation (see Section 8.5), rather than as a way of directly estimating
their coefficients in the regression equation, although the technique could
be used for the latter purpose. Daling and Tamura (1970) also discussed
rotation of PCs in the context of variable selection, but their PCs were for
the predictor variables only.

In a later paper, Hawkins and Eplett (1982) propose another variant of la-
tent root regression one which can be used to efficiently find low-variability
relationships between y and the predictor variables, and which also can be
used in variable selection. This method replaces the rescaling and varimax
rotation of Hawkins’ earlier method by a sequence of rotations leading to
a set of relationships between y and the predictor variables that are sim-
pler to interpret than in the previous method. This simplicity is achieved
because the matrix of coefficients defining the relationships has non-zero
entries only in its lower-triangular region. Despite the apparent complexity
of the new method, it is also computationally simple to implement. The
covariance (or correlation) matrix Σ̃ of y and all the predictor variables is
factorized using a Cholesky factorization

Σ̃ = DD′,

where D is lower-triangular. Then the matrix of coefficients defining the
relationships is proportional to D−1, which is also lower-triangular. To find
D it is not necessary to calculate PCs based on Σ̃, which makes the links
between the method and PCA rather more tenuous than those between
PCA and latent root regression. The next section discusses variable selec-
tion in regression using PCs, and because all three variants of latent root
regression described above can be used in variable selection, they will all
be discussed further in that section.
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Another variation on the idea of PC regression has been used in several
meteorological examples in which a multivariate (rather than multiple)
regression analysis is appropriate, that is, where there are several dependent
variables as well as regressor variables. Here PCA is performed on the
dependent variables and, separately, on the predictor variables. A number
of PC regressions are then carried out with, as usual, PCs of predictor
variables in place of the predictor variables but, in each regression, the
dependent variable is now one of the high variance PCs of the original set
of dependent variables. Preisendorfer and Mobley (1988, Chapter 9) discuss
this set-up in some detail, and demonstrate links between the results and
those of canonical correlation analysis (see Section 9.3) on the two sets
of variables. Briffa et al. (1986) give an example in which the dependent
variables are mean sea level pressures at 16 grid-points centred on the
UK and France, and extending from 45◦–60◦N, and from 20◦W–10◦E. The
predictors are tree ring widths for 14 oak ring width chronologies from the
UK and Northern France. They transform the relationships found between
the two sets of PCs back into relationships between the original sets of
variables and present the results in map form.

The method is appropriate if the prediction of high-variance PCs of the
dependent variables is really of interest, in which case another possibil-
ity is to regress PCs of the dependent variables on the original predictor
variables. However, if overall optimal prediction of linear functions of de-
pendent variables from linear functions of predictor variables is required,
then canonical correlation analysis (see Section 9.3; Mardia et al., 1979,
Chapter 10; Rencher, 1995, Chapter 11) is more suitable. Alternatively,
if interpretable relationships between the original sets of dependent and
predictor variables are wanted, then multivariate regression analysis or a
related technique (see Section 9.3; Mardia et al., 1979, Chapter 6; Rencher,
1995, Chapter10) may be the most appropriate technique.

The so-called PLS (partial least squares) method provides yet another
biased regression approach with links to PC regression. The method has
a long and complex history and various formulations (Geladi, 1988; Wold,
1984). It has often been expressed only in terms of algorithms for its im-
plementation, which makes it difficult to understand exactly what it does.
A number of authors, for example, Garthwaite (1994) and Helland (1988,
1990), have given interpretations that move away from algorithms towards
a more model-based approach, but perhaps the most appealing interpre-
tation from a statistical point of view is that given by Stone and Brooks
(1990). They show that PLS is equivalent to successively finding linear
functions of the predictor variables that have maximum covariance with
the dependent variable, subject to each linear function being uncorrelated
with previous ones. Whereas PC regression in concerned with variances de-
rived from X, and least squares regression maximizes correlations between
y and X, PLS combines correlation and variance to consider covariance.
Stone and Brooks (1990) introduce a general class of regression procedures,
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called continuum regression, in which least squares and PC regression are
two extremes of the class, and PLS lies halfway along the continuum in
between them. As well as different algorithms and interpretations, PLS is
sometimes known by a quite different name, albeit with the same acronym,
in the field of statistical process control (see Section 13.7). Martin et al.
(1999), for example, refer to it as ‘projection to latent structure.’

Lang et al. (1998) define another general class of regression estimates,
called cyclic subspace regression, which includes both PC regression and
PLS as special cases. The nature of the special cases within this framework
shows that PLS uses information from the directions of all the eigenvectors
of X′X, whereas PC regression, by definition, uses information from only
a chosen subset of these directions.

Naes and Helland (1993) propose a compromise between PC regres-
sion and PLS, which they call restricted principal component regression
(RPCR). The motivation behind the method lies in the idea of components
(where ‘component’ means any linear function of the predictor variables x)
or subspaces that are ‘relevant’ for predicting y. An m-dimensional sub-
space M in the space of the predictor variables is strongly relevant if the
linear functions of x defining the (p − m)-dimensional subspace M̄, or-
thogonal to M, are uncorrelated with y and with the linear functions of
x defining M. Using this definition, if an m-dimensional relevant subspace
exists it can be obtained by taking the first component found by PLS as the
first component in this subspace, followed by (m − 1) components, which
can be considered as PCs in the space orthogonal to the first PLS com-
ponent. Naes and Helland (1993) show, in terms of predictive ability, that
when PC regression and PLS differ considerably in performance, RPCR
tends to be close to the better of the two. Asymptotic comparisons be-
tween PLS, RPCR and PC regression (with M restricted to contain the
first m integers) are made by Helland and Almøy (1994). Their conclusions
are that PLS is preferred in many circumstances, although in some cases
PC regression is a better choice.

A number of other comparisons have been made between least squares,
PC regression, PLS and other biased regression techniques, and adapta-
tions involving one or more of the biased methods have been suggested.
A substantial proportion of this literature is in chemometrics, in particu-
lar concentrating on the analysis of spectroscopic data. Naes et al. (1986)
find that PLS tends to be superior to PC regression, although only the
rule based on (8.1.10) is considered for PC regression. For near infrared
spectroscopy data, the researchers also find that results are improved by
pre-processing the data using an alternative technique which they call mul-
tiple scatter correction, rather than simple centering. Frank and Friedman
(1993) give an extensive comparative discussion of PLS and PC regres-
sion, together with other strategies for overcoming the problems caused by
multicollinearity. From simulations and other considerations they conclude
that the two techniques are superior to variable selection but inferior to
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ridge regression, although this latter conclusion is disputed by S. Wold in
the published discussion that follows the article.

Naes and Isaksson (1992) use a locally weighted version of PC regression
in the calibration of spectroscopic data. PCA is done on the predictor
variables, and to form a predictor for a particular observation only the k
observations closest to the chosen observation in the space of the first m
PCs are used. These k observations are given weights in a regression of the
dependent variable on the first m PCs whose values decrease as distance
from the chosen observation increases. The values of m and k are chosen
by cross-validation, and the technique is shown to outperform both PC
regression and PLS.

Bertrand et al. (2001) revisit latent root regression, and replace the PCA
of the matrix of (p + 1) variables formed by y together with X by the
equivalent PCA of y together with the PC scores Z. This makes it easier
to identify predictive and non-predictive multicollinearities, and gives a
simple expression for the MSE of the latent root estimator. Bertrand et al.
(2001) present their version of latent root regression as an alternative to
PLS or PC regression for near infrared spectroscopic data.

Marx and Smith (1990) extend PC regression from linear models to gen-
eralized linear models. Straying further from ordinary PCA, Li et al. (2000)
discuss principal Hessian directions, which utilize a variety of generalized
PCA (see Section 14.2.2) in a regression context. These directions are used
to define splits in a regression tree, where the objective is to find directions
along which the regression surface ‘bends’ as much as possible. A weighted
covariance matrix SW is calculated for the predictor variables, where the
weights are residuals from a multiple regression of y on all the predictor
variables. Given the (unweighted) covariance matrix S, their derivation of
the first principal Hessian direction is equivalent to finding the first eigen-
vector in a generalized PCA of SW with metric Q = S−1 and D = 1

nIn, in
the notation of Section 14.2.2.

8.5 Variable Selection in Regression Using
Principal Components

Principal component regression, latent root regression, and other biased re-
gression estimates keep all the predictor variables in the model, but change
the estimates from least squares estimates in a way that reduces the ef-
fects of multicollinearity. As mentioned in the introductory section of this
chapter, an alternative way of dealing with multicollinearity problems is to
use only a subset of the predictor variables. Among the very many possible
methods of selecting a subset of variables, a few use PCs.

As noted in the previous section, the procedures due to Hawkins (1973)
and Hawkins and Eplett (1982) can be used in this way. Rotation of the PCs
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produces a large number of near-zero coefficients for the rotated variables,
so that in low-variance relationships involving y (if such low-variance rela-
tionships exist) only a subset of the predictor variables will have coefficients
substantially different from zero. This subset forms a plausible selection of
variables to be included in a regression model. There may be other low-
variance relationships between the predictor variables alone, again with
relatively few coefficients far from zero. If such relationships exist, and in-
volve some of the same variables as are in the relationship involving y,
then substitution will lead to alternative subsets of predictor variables.
Jeffers (1981) argues that in this way it is possible to identify all good sub-
regressions using Hawkins’ (1973) original procedure. Hawkins and Eplett
(1982) demonstrate that their newer technique, incorporating Cholesky fac-
torization, can do even better than the earlier method. In particular, for an
example that is analysed by both methods, two subsets of variables selected
by the first method are shown to be inappropriate by the second.

Principal component regression and latent root regression may also be
used in an iterative manner to select variables. Consider, first, PC regression
and suppose that β̃ given by (8.1.12) is the proposed estimator for β.
Then it is possible to test whether or not subsets of the elements of β̃ are
significantly different from zero, and those variables whose coefficients are
found to be not significantly non-zero can then be deleted from the model.
Mansfield et al. (1977), after a moderate amount of algebra, construct the
appropriate tests for estimators of the form (8.1.10), that is, where the
PCs deleted from the regression are restricted to be those with the smallest
variances. Provided that the true coefficients of the deleted PCs are zero
and that normality assumptions are valid, the appropriate test statistics
are F -statistics, reducing to t-statistics if only one variable is considered at
a time. A corresponding result will also hold for the more general form of
estimator (8.1.12).

Although the variable selection procedure could stop at this stage, it may
be more fruitful to use an iterative procedure, similar to that suggested by
Jolliffe (1972) for variable selection in another (non-regression) context (see
Section 6.3, method (i)). The next step in such a procedure is to perform
a PC regression on the reduced set of variables, and then see if any further
variables can be deleted from the reduced set, using the same reasoning
as before. This process is repeated, until eventually no more variables are
deleted. Two variations on this iterative procedure are described by Mans-
field et al. (1977). The first is a stepwise procedure that first looks for the
best single variable to delete, then the best pair of variables, one of which is
the best single variable, then the best triple of variables, which includes the
best pair, and so on. The procedure stops when the test for zero regression
coefficients on the subset of excluded variables first gives a significant result.
The second variation is to delete only one variable at each stage, and then
recompute the PCs using the reduced set of variables, rather than allowing
the deletion of several variables before the PCs are recomputed. According
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to Mansfield et al. (1977) this second variation gives, for several examples,
an improved performance for the selected variables compared with subsets
selected by the other possibilities. Only one example is described in detail
in their paper, and this will be discussed further in the final section of
the present chapter. In this example, they adapt their method still further
by discarding a few low variance PCs before attempting any selection of
variables.

A different iterative procedure is described by Boneh and Mendieta
(1994). The method works on standardized variables, and hence on the
correlation matrix. The first step is to do a PC regression and choose M
to contain those PCs that contribute significantly to the regression. Signif-
icance is judged mainly by the use of t-tests. However, a modification is
used for the PCs with the smallest variance, as Mason and Gunst (1985)
have shown that t-tests have reduced power for such PCs.

Each of the p predictor variables is then regressed on the PCs in M ,
and the variable with the smallest residual sum of squares is selected. At
subsequent stages in the iteration, suppose that a set Q of q variables has
been selected and that Q̄ is the complement of Q, consisting of (p − q)
variables. The variables in Q̄ are individually regressed on all the variables
in Q, and a vector of residuals is found for each variable in Q̄. Principal
components are then found for the (p − q) residual variables and the de-
pendent variable y is regressed on these (p − q) PCs, together with the
q variables in Q. If none of the PCs contributes significantly to this re-
gression, the procedure stops. Otherwise, each of the residual variables is
regressed on the significant PCs, and the variable is selected for which the
residual sum of squares is smallest. As well as these forward selection steps,
Boneh and Mendieta’s (1994) procedure includes backward looks, in which
previously selected variables can be deleted from (and never allowed to re-
turn to) Q. Deletion of a variable occurs if its contribution is sufficiently
diminished by the later inclusion of other variables. Boneh and Mendieta
(1994) claim that, using cross-validation, their method often does better
than its competitors with respect to prediction error.

A similar procedure to that of Mansfield et al. (1977) for PC regression
can be constructed for latent root regression, this time leading to approxi-
mate F -statistics (see Gunst and Mason (1980, p. 339)). Such a procedure
is described and illustrated by Webster et al. (1974) and Gunst et al. (1976).

Baskerville and Toogood (1982) also suggest that the PCs appearing in
latent root regression can be used to select subsets of the original predictor
variables. Their procedure divides the predictor variables into four groups
on the basis of their coefficients in the PCs, where each of the groups has
a different degree of potential usefulness in the regression equation. The
first group of predictor variables they define consists of ‘isolated’ variables,
which are virtually uncorrelated with y and with all other predictor vari-
ables; such variables can clearly be deleted. The second and third groups
contain variables that are involved in nonpredictive and predictive multi-
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collinearities, respectively; those variables in the second group can usually
be excluded from the regression analysis, whereas those in the third group
certainly cannot. The fourth group simply consists of variables that do not
fall into any of the other three groups. These variables may or may not
be important in the regression, depending on the purpose of the analysis
(for example, prediction or identification of structure) and each must be
examined individually (see Baskerville and Toogood (1982) for an example).

A further possibility for variable selection is based on the idea of associ-
ating a variable with each of the first few (last few) components and then
retaining (deleting) those variables associated with the first few (last few)
PCs. This procedure was described in a different context in Section 6.3,
and it is clearly essential to modify it in some way for use in a regression
context. In particular, when there is not a single clear-cut choice of which
variable to associate with a particular PC, the choice should be determined
by looking at the strength of the relationships between the candidate vari-
ables and the dependent variable. Great care is also necessary to avoid
deletion of variables that occur in a predictive multicollinearity.

Daling and Tamura (1970) adopt a modified version of this type of ap-
proach. They first delete the last few PCs, then rotate the remaining PCs
using varimax, and finally select one variable associated with each of those
rotated PCs which has a ‘significant’ correlation with the dependent vari-
able. The method therefore takes into account the regression context of the
problem at the final stage, and the varimax rotation increases the chances
of an unambiguous choice of which variable to associate with each rotated
PC. The main drawback of the approach is in its first stage, where dele-
tion of the low-variance PCs may discard substantial information regarding
the relationship between y and the predictor variables, as was discussed in
Section 8.2.

8.6 Functional and Structural Relationships

In the standard regression framework, the predictor variables are implicitly
assumed to be measured without error, whereas any measurement error in
the dependent variable y can be included in the error term ε. If all the
variables are subject to measurement error the problem is more compli-
cated, even when there is only one predictor variable, and much has been
written on how to estimate the so-called functional or structural relation-
ships between the variables in such cases (see, for example, Kendall and
Stuart (1979, Chapter 29); Anderson (1984); Cheng and van Ness (1999)).
The term ‘functional and structural relationships’ seems to have gone out
of fashion, but there are close connections to the ‘errors-in-variables’ mod-
els from econometrics (Darnell, 1994) and to some of the approaches of
Section 9.3.



8.6. Functional and Structural Relationships 189

Consider the case where there are (p+1) variables x0, x1, x2, . . . , xp that
have a linear functional relationship (Kendall and Stuart, 1979, p. 416)

p∑

j=0

βjxj = const (8.6.1)

between them, but which are all subject to measurement error, so that we
actually have observations on ξ0, ξ1, ξ2, . . . , ξp, where

ξj = xj + ej , j = 0, 1, 2, . . . , p,

and ej is a measurement error term. The distinction between ‘functional’
and ‘structural’ relationships is that x1, x2, . . . , xp are taken as fixed in the
former but are random variables in the latter. We have included (p + 1)
variables in order to keep a parallel with the case of linear regression with
dependent variable y and p predictor variables x1, x2, . . . , xp, but there is no
reason here to treat any one variable differently from the remaining p. On
the basis of n observations on ξj , j = 0, 1, 2, . . . , p, we wish to estimate the
coefficients β0, β1, . . . βp in the relationship (8.6.1). If the ej are assumed to
be normally distributed, and (the ratios of) their variances are known, then
maximum likelihood estimation of β0, β1, . . . , βp leads to the coefficients of
the last PC from the covariance matrix of ξ0/σ0, ξ1/σ1, . . . , ξp/σp, where
σ2

j = var(ej). This holds for both functional and structural relationships. If
there is no information about the variances of the ej , and the xj are distinct,
then no formal estimation procedure is possible, but if it is expected that
the measurement errors of all (p + 1) variables are of similar variability,
then a reasonable procedure is to use the last PC of ξ0, ξ1, . . . , ξp.

If replicate observations are available for each xj , they can be used to
estimate var(ej). In this case, Anderson (1984) shows that the maximum
likelihood estimates for functional, but not structural, relationships are
given by solving an eigenequation, similar to a generalized PCA in which
the PCs of between-xj variation are found with respect to a metric based
on within-xj variation (see Section 14.2.2). Even if there is no formal re-
quirement to estimate a relationship such as (8.6.1), the last few PCs are
still of interest in finding near-constant linear relationships among a set of
variables, as discussed in Section 3.4.

When the last PC is used to estimate a ‘best-fitting’ relationship between
a set of (p + 1) variables, we are finding the p-dimensional hyperplane for
which the sum of squares of perpendicular distances of the observations
from the hyperplane is minimized. This was, in fact, one of the objectives of
Pearson’s (1901) original derivation of PCs (see Property G3 in Section 3.2).
By contrast, if one of the (p + 1) variables y is a dependent variable and
the remaining p are predictor variables, then the ‘best-fitting’ hyperplane,
in the least squares sense, minimizes the sum of squares of the distances
in the y direction of the observations from the hyperplane and leads to a
different relationship.
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A different way of using PCs in investigating structural relationships
is illustrated by Rao (1964). In his example there are 20 variables corre-
sponding to measurements of ‘absorbance’ made by a spectrophotometer
at 20 different wavelengths. There are 54 observations of the 20 variables,
corresponding to nine different spectrophotometers, each used under three
conditions on two separate days. The aim is to relate the absorbance mea-
surements to wavelengths; both are subject to measurement error, so that
a structural relationship, rather than straightforward regression analysis, is
of interest. In this example, the first PCs, rather than the last, proved to be
useful in investigating aspects of the structural relationship. Examination
of the values of the first two PCs for the 54 observations identified sys-
tematic differences between spectrophotometers in the measurement errors
for wavelength. Other authors have used similar, but rather more compli-
cated, ideas based on PCs for the same type of data. Naes (1985) refers to
the problem as one of multivariate calibration (see also Martens and Naes
(1989)) and investigates an estimate (which uses PCs) of some chemical
or physical quantity, given a number of spectrophotometer measurements.
Sylvestre et al. (1974) take as their objective the identification and estima-
tion of mixtures of two or more overlapping curves in spectrophotometry,
and again use PCs in their procedure.

8.7 Examples of Principal Components in
Regression

Early examples of PC regression include those given by Kendall (1957,
p. 71), Spurrell (1963) and Massy (1965). Examples of latent root regres-
sion in one form or another, and its use in variable selection, are given by
Gunst et al. (1976), Gunst and Mason (1977b), Hawkins (1973), Baskerville
and Toogood (1982) and Hawkins and Eplett (1982). In Gunst and Mason
(1980, Chapter 10) PC regression, latent root regression and ridge regres-
sion are all illustrated, and can therefore be compared, for the same data
set. In the present section we discuss two examples illustrating some of the
techniques described in this chapter.

8.7.1 Pitprop Data

No discussion of PC regression would be complete without the example
given originally by Jeffers (1967) concerning strengths of pitprops, which
has since been analysed by several authors. The data consist of 14 vari-
ables which were measured for each of 180 pitprops cut from Corsican pine
timber. The objective is to construct a prediction equation for one of the
variables (compressive strength y) using the values of the other 13 variables.
These other 13 variables are physical measurements on the pitprops that
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could be measured fairly straightforwardly without destroying the props.
The variables are listed by Jeffers (1967, 1981) and the correlation matrix
for all 14 variables is reproduced in Table 8.2. In his original paper, Jeffers
(1967) used PC regression to predict y from the 13 variables. The coef-
ficients of the variables for each of the PCs are given in Table 8.3. The
pattern of correlations in Table 8.2 is not easy to interpret; nor is it sim-
ple to deduce the form of the first few PCs from the correlation matrix.
However, Jeffers (1967) was able to interpret the first six PCs.

Also given in Table 8.3 are variances of each component, the percentage
of total variation accounted for by each component, the coefficients γk in
a regression of y on the PCs, and the values of t-statistics measuring the
importance of each PC in the regression.

Judged solely on the basis of size of variance it appears that the last
three, or possibly four, PCs should be deleted from the regression. However,
looking at values of γk and the corresponding t-statistics, it can be seen that
the twelfth component is relatively important as a predictor of y, despite
the fact that it accounts for only 0.3% of the total variation in the predictor
variables. Jeffers (1967) only retained the first, second, third, fifth and sixth
PCs in his regression equation, whereas Mardia et al. (1979, p. 246) suggest
that the seventh, eighth and twelfth PCs should also be included.

This example has been used by various authors to illustrate techniques
of variable selection, and some of the results are given in Table 8.4. Jeffers
(1981) used Hawkins’ (1973) variant of latent root regression to select sub-
sets of five, six or seven regressor variables. After varimax rotation, only
one of the rotated components has a substantial coefficient for compressive
strength, y. This rotated component has five other variables that have large
coefficients, and it is suggested that these should be included in the regres-
sion equation for y; two further variables with moderate coefficients might
also be included. One of the five variables definitely selected by this method
is quite difficult to measure, and one of the other rotated components sug-
gests that it can be replaced by another, more readily measured, variable.
However, this substitution causes a substantial drop in the squared multiple
correlation for the five-variable regression equation, from 0.695 to 0.581.

Mansfield et al. (1977) used an iterative method based on PC regression
and described above in Section 8.5, to select a subset of variables for these
data. The procedure is fairly lengthy as only one variable is deleted at each
iteration, but the F -criterion used to decide whether to delete an extra
variable jumps from 1.1 to 7.4 between the fifth and sixth iterations, giving
a clear-cut decision to delete five variables, that is to retain eight variables.
The iterative procedure of Boneh and Mendieta (1994) also selects eight
variables. As can be seen from Table 8.4, these eight-variable subsets have
a large degree of overlap with the subsets found by Jeffers (1981).

Jolliffe (1973) also found subsets of the 13 variables, using various meth-
ods, but the variables in this case were chosen to reproduce the relationships
between the regressor variables, rather than to predict y as well as possi-



Table 8.2. Correlation matrix for the pitprop data.

topdiam
0.954 length
0.364 0.297 moist
0.342 0.284 0.882 testsg

−0.129 −0.118 −0.148 0.220 ovensg
0.313 0.291 0.153 0.381 0.364 ringtop
0.496 0.503 −0.029 0.174 0.296 0.813 ringbut
0.424 0.419 −0.054 −0.059 0.004 0.090 0.372 bowmax
0.592 0.648 0.125 0.137 −0.039 0.211 0.465 0.482 bowdist
0.545 0.569 −0.081 −0.014 0.037 0.274 0.679 0.557 0.526 whorls
0.084 0.076 0.162 0.097 0.091 −0.036 −0.113 0.061 0.085 −0.319 clear

−0.019 −0.036 0.220 0.169 −0.145 0.024 −0.232 −0.357 −0.127 −0.368 0.029 knots
0.134 0.144 0.126 0.015 −0.208 −0.329 −0.424 −0.202 −0.076 −0.291 0.007 0.184 diaknot

−0.419 −0.338 −0.728 −0.543 0.247 0.117 0.110 −0.253 −0.235 −0.101 −0.055 −0.117 −0.153 strength
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Table 8.3. Principal component regression for the pitprop data: coefficients, variances, regression coefficients and t-statistics for each
component.

Principal component
1 2 3 4 5 6 7 8 9 10 11 12 13

x1 −0.40 0.22 −0.21 −0.09 −0.08 0.12 −0.11 0.14 0.33 −0.31 0.00 0.39 −0.57
x2 −0.41 0.19 −0.24 −0.10 −0.11 0.16 −0.08 0.02 0.32 −0.27 −0.05 −0.41 0.58
x3 −0.12 0.54 0.14 0.08 0.35 −0.28 −0.02 0.00 −0.08 0.06 0.12 0.53 0.41
x4 −0.17 0.46 0.35 0.05 0.36 −0.05 0.08 −0.02 −0.01 0.10 −0.02 −0.59 −0.38
x5 −0.06 −0.17 0.48 0.05 0.18 0.63 0.42 −0.01 0.28 −0.00 0.01 0.20 0.12
x6 −0.28 −0.01 0.48 −0.06 −0.32 0.05 −0.30 0.15 −0.41 −0.10 −0.54 0.08 0.06
x7
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−0.40 −0.19 0.25 −0.07 −0.22 0.00 −0.23 0.01 −0.13 0.19 0.76 −0.04 0.00
x8 −0.29 −0.19 −0.24 0.29 0.19 −0.06 0.40 0.64 −0.35 −0.08 0.03 −0.05 0.02
x9 −0.36 0.02 −0.21 0.10 −0.10 0.03 0.40 −0.70 −0.38 −0.06 −0.05 0.05 −0.06
x10 −0.38 −0.25 −0.12 −0.21 0.16 −0.17 0.00 −0.01 0.27 0.71 −0.32 0.06 0.00
x11 0.01 0.21 −0.07 0.80 −0.34 0.18 −0.14 0.01 0.15 0.34 −0.05 0.00 −0.01
x12 0.12 0.34 0.09 −0.30 −0.60 −0.17 0.54 0.21 0.08 0.19 0.05 0.00 0.00
x13 0.11 0.31 −0.33 −0.30 0.08 0.63 −0.16 0.11 −0.38 0.33 0.04 0.01 −0.01
Variance 4.22 2.38 1.88 1.11 0.91 0.82 0.58 0.44 0.35 0.19 0.05 0.04 0.04
% of total

variance 32.5 18.3 14.4 8.5 7.0 6.3 4.4 3.4 2.7 1.5 0.4 0.3 0.3
Regression

coefficient γk 0.13 −0.37 0.13 −0.05 −0.39 0.27 −0.24 −0.17 0.03 0.00 −0.12 −1.05 0.00
t-value 68.6 14.39 4.38 1.26 9.23 6.19 4.50 2.81 0.46 0.00 0.64 5.26 0.01
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Table 8.4. Variable selection using various techniques on the pitprop data. (Each
row corresponds to a selected subset with × denoting a selected variable.)

Variables
1 2 3 4 5 6 7 8 9 10 11 12 13

Five variables
Jeffers (1981) × × × × ×

× × × × ×
McCabe (1982) × × × × ×

× × × × ×
× × × × ×

× × × × ×
Six variables
Jeffers (1981) × × × × × ×
McCabe (1982) × × × × × ×
Jolliffe (1973) × × × × × ×

× × × × × ×
× × × × × ×

McCabe (1982)
{

× × × × × ×
Jolliffe (1973) × × × × × ×

Eight variables
Mansfield et al. × × × × × × × ×
(1977)
Boneh and × × × × × × × ×
Mendieta (1994)

ble. McCabe (1982), using a technique related to PCA (see Section 6.3),
and with a similar purpose to Jolliffe’s (1973) methods, chose subsets of
various sizes. McCabe’s subsets in Table 8.4 are the best few with re-
spect to a single criterion, whereas Jolliffe gives the single best subset but
for several different methods. The best subsets due to Jolliffe (1973) and
McCabe (1982) have considerable overlap with each other, but there are
substantial differences from the subsets of Jeffers (1981) and Mansfield et
al. (1977). This reflects the different aims of the different selection methods.
It shows again that substantial variation within the set of regressor vari-
ables does not necessarily imply any relationship with y and, conversely,
that variables having little correlation with the first few PCs can still be
important in predicting y. Interestingly, the subset chosen by Boneh and
Mendieta (1994) overlaps less with Jeffers’ (1981) selection than that of
Mansfield et al. (1977), but more than do those of Jolliffe (1973) or McCabe
(1982).
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Table 8.5. Variables used in the household formation example.

No. Description
1. Population in non-private establishments
2. Population age 0–14
3. Population age 15–44
4. Population age 60/65+
5. Females currently married
6. Married males 15–29
7. Persons born ex UK
8. Average population increase per annum (not births and deaths)
9. Persons moved in previous 12 months

10. Households in owner occupation
11. Households renting from Local Authority
12. Households renting private unfurnished
13. Vacant dwellings
14. Shared dwellings
15. Households over one person per room
16. Households with all exclusive amenities
17. Ratio households to rateable units
18. Domestic rateable value (£) per head
19. Rateable units with rateable value < £100
20. Students age 15+
21. Economically active married females
22. Unemployed males seeking work
23. Persons employed in agriculture
24. Persons employed in mining and manufacturing
25. Males economically active or retired in socio-economic

group 1, 2, 3, 4, 13
26. Males economically active or retired in socio-economic

group 5, 6, 8, 9, 12, 14
27. With degrees (excluding students with degree)
28. Economically active males socio-economic group 3, 4
29. Average annual total income (£) per adult

8.7.2 Household Formation Data

This example uses part of a data set that arose in a study of household
formation. The subset of data used here has 29 demographic variables mea-
sured in 1971 for 168 local government areas in England and Wales. The
variables are listed in Table 8.5. All variables, except numbers 17, 18 and
29, are expressed as numbers per 1000 of population; precise definitions of
each variable are given in Appendix B of Bassett et al. (1980).
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Table 8.6. Eigenvalues of the correlation matrix and order of importance in
predicting y for the household formation data.

PC Eigenvalue Order of PC Eigenvalue Order of
number importance number importance

in predicting y in predicting y

1 8.62 1 15 0.24 17
2 6.09 4 16 0.21 25
3 3.40 2 17 0.18 16
4 2.30 8 18 0.14 10
5 1.19 9 19 0.14 7
6 1.06 3 20 0.10 21
7 0.78 13 21 0.10 28
8 0.69 22 22 0.07 6
9 0.58 20 23 0.07 18
10 0.57 5 24 0.05 12
11 0.46 11 25 0.04 14
12 0.36 15 26 0.03 27
13 0.27 24 27 0.02 19
14 0.25 23 28 0.003 26

Although this was not the purpose of the original project, the objective
considered here is to predict the final variable (average annual total income
per adult) from the other 28. This objective is a useful one, as information
on income is often difficult to obtain accurately, and predictions from other,
more readily available, variables would be valuable. The results presented
below were given by Garnham (1979) in an unpublished M.Sc. disserta-
tion, and further details of the regression analysis can be found in that
source. A full description of the project from which the data are taken is
available in Bassett et al. (1980). Most regression problems with as many
as 28 regressor variables have multicollinearities, and the current example
is no exception. Looking at the list of variables in Table 8.5 it is clear,
even without detailed definitions, that there are groups of variables that
are likely to be highly correlated. For example, several variables relate to
type of household, whereas another group of variables considers rates of
employment in various types of job. Table 8.6, giving the eigenvalues of the
correlation matrix, confirms that there are multicollinearities; some of the
eigenvalues are very small.

Consider now PC regression and some of the strategies that can be used
to select a subset of PCs to be included in the regression. Deleting compo-
nents with small variance, with a cut-off of about l∗ = 0.10, implies that
between seven and nine components can be left out. Sequential deletion
of PCs with the smallest variances using t-statistics at each stage suggests
that only six PCs can be deleted. However, from the point of view of R2,
the squared multiple correlation coefficient, deletion of eight or more might
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be acceptable; R2 is 0.874 for the full model including all 28 variables, and
it is reduced to 0.865, 0.851, respectively, when five and eight components
are deleted.

It is interesting to examine the ordering of size of correlations between y
and the PCs, or equivalently the ordering of the individual t-values, which
is also given in Table 8.6. It is seen that those PCs with small variances do
not necessarily have small correlations with y. The 18th, 19th and 22nd in
size of variance are in the first ten in order of importance for predicting y; in
particular, the 22nd PC with variance 0.07, has a highly significant t-value,
and should almost certainly be retained.

An approach using stepwise deletion based solely on the size of corre-
lation between y and each PC produces, because of the zero correlations
between PCs, the subset whose value of R2 is maximized for any given
subset size. Far fewer PCs need to be retained using this approach than
the 20 to 23 indicated when only small-variance components are rejected.
In particular, if the 10 PCs are retained that best predict y, then R2 is
0.848, compared with 0.874 for the full model and 0.851 using the first 20
PCs. It would appear that a strategy based solely on size of variance is
unsatisfactory.

The two ‘weak MSE’ criteria described in Section 8.2 were also tested, in
a limited way, on these data. Because of computational constraints it was
not possible to find the overall ‘best’ subset M , so a stepwise approach was
adopted, deleting PCs according to either size of variance, or correlation
with y. The first criterion selected 22 PCs when selection was based on
size of variance, but only 6 PCs when correlation with y was the basis for
stepwise selection. The corresponding results for the second (predictive)
criterion were 24 and 12 PCs, respectively. It is clear, once again, that
selection based solely on order of size of variance retains more components
than necessary but may still miss predictive components.

The alternative approach of Lott (1973) was also investigated for these
data in a stepwise manner using correlation with y to determine order of
selection, with the result that R̄2 was maximized for 19 PCs. This is a
substantially larger number than indicated by those other methods that
use correlation with y to define order of selection and, given the concensus
from the other methods, suggests that Lott’s (1973) method is not ideal.

When PCs are found for the augmented set of variables, including y and
all the regressor variables, as required for latent root regression, there is
remarkably little change in the PCs, apart from the addition of an extra one.
All of the coefficients on the regressor variables are virtually unchanged,
and the PCs that have largest correlation with y are in very nearly the
same order as in the PC regression.

It may be of more interest to select a subset of variables, rather than a
subset of PCs, to be included in the regression, and this was also attempted,
using various methods, for the household formation data. Variable selec-
tion based on PC regression, deleting just one variable at a time before
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recomputing the PCs as suggested by Mansfield et al. (1977), indicated
that only 12, and possibly fewer, variables need to be retained. R2 for the
12-variable subset given by this method is 0.862, and it only drops to 0.847
for the 8-variable subset, compared with 0.874 for the full model and 0.851
using the first 20 PCs in the regression. Other variable selection methods,
described by Jolliffe (1972) and in Section 6.3, were also tried, but these did
not produce quite such good results as the Mansfield et al. (1977) method.
This is not surprising since, as noted in the previous example, they are not
specifically tailored for variable selection in the context of regression. How-
ever, they did confirm that only eight to ten variables are really necessary
in order to provide an adequate prediction of ‘income’ for these data.



9
Principal Components Used with
Other Multivariate Techniques

Principal component analysis is often used as a dimension-reducing tech-
nique within some other type of analysis. For example, Chapter 8 described
the use of PCs as regressor variables in a multiple regression analysis. The
present chapter discusses three classes of multivariate techniques, namely
discriminant analysis, cluster analysis and canonical correlation analysis;
for each these three there are examples in the literature that use PCA as
a dimension-reducing technique.

Discriminant analysis is concerned with data in which each observation
comes from one of several well-defined groups or populations. Assumptions
are made about the structure of the populations, and the main objective
is to construct rules for assigning future observations to one of the popula-
tions so as to minimize the probability of misclassification or some similar
criterion. As with regression, there can be advantages in replacing the vari-
ables in a discriminant analysis by their principal components. The use
of PCA in this way in linear discriminant analysis is discussed in Section
9.1. In addition, the section includes brief descriptions of other discrimi-
nant techniques that use PCs, and discussion of links between PCA and
canonical discriminant analysis.

Cluster analysis is one of the most frequent contexts in which PCs are
derived in order to reduce dimensionality prior to the use of a different
multivariate technique. Like discriminant analysis, cluster analysis deals
with data sets in which the observations are to be divided into groups.
However, in cluster analysis little or nothing is known a priori about the
groups, and the objective is to divide the given observations into groups or
clusters in a ‘sensible’ way. There are two main ways in which PCs are em-
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ployed within cluster analysis: to construct distance measures or to provide
a graphical representation of the data; the latter is often called ordination
or scaling (see also Section 5.1) and is useful in detecting or verifying a
cluster structure. Both rôles are described and illustrated with examples
in Section 9.2. The idea of clustering variables rather than observations
is sometimes useful, and a connection between PCA and this idea is de-
scribed. Also discussed in Section 9.2 are projection pursuit, which searches
for clusters using techniques bearing some resemblance to PCA, and the
construction of models for clusters which are mixtures of the PC model
introduced in Section 3.9.

‘Discriminant analysis’ and ‘cluster analysis’ are standard statistical
terms, but the techniques may be encountered under a variety of other
names. For example, the word ‘classification’ is sometimes used in a broad
sense, including both discrimination and clustering, but it also has more
than one specialized meaning. Discriminant analysis and cluster analysis
are prominent in both the pattern recognition and neural network liter-
atures, where they fall within the areas of supervised and unsupervised
learning, respectively (see, for example, Bishop (1995)). The relatively new,
but large, field of data mining (Hand et al. 2001; Witten and Frank, 2000)
also includes ‘clustering methods. . . [and] supervised classification methods
in general. . . ’ (Hand, 1998).

The third, and final, multivariate technique discussed in this chapter, in
Section 9.3, is canonical correlation analysis. This technique is appropriate
when the vector of random variables x is divided into two parts, xp1 ,xp2 ,
and the objective is to find pairs of linear functions of xp1 and xp2 , respec-
tively, such that the correlation between the linear functions within each
pair is maximized. In this case the replacement of xp1 , xp2 by some or all
of the PCs of xp1 , xp2 , respectively, has been suggested in the literature. A
number of other techniques linked to PCA that are used to investigate rela-
tionships between two groups of variables are also discussed in Section 9.3.
Situations where more than two groups of variables are to be analysed are
left to Section 14.5.

9.1 Discriminant Analysis

In discriminant analysis, observations may be taken from any of G ≥ 2 pop-
ulations or groups. Assumptions are made regarding the structure of these
groups, namely that the random vector x associated with each observa-
tion is assumed to have a particular (partly or fully specified) distribution
depending on its group membership. Information may also be available
about the overall relative frequencies of occurrence of each group. In ad-
dition, there is usually available a set of data x1,x2, . . . ,xn (the training
set) for which the group membership of each observation is known. Based
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on the assumptions about group structure and on the training set if one
is available, rules are constructed for assigning future observations to one
of the G groups in some ‘optimal’ way, for example, so as to minimize the
probability or cost of misclassification.

The best-known form of discriminant analysis occurs when there are only
two populations, and x is assumed to have a multivariate normal distribu-
tion that differs between the two populations with respect to its mean but
not its covariance matrix. If the means µ1, µ2 and the common covariance
matrix Σ are known, then the optimal rule (according to several different
criteria) is based on the linear discriminant function x′Σ−1(µ1−µ2). If µ1,
µ2, Σ are estimated from a ‘training set’ by x̄1, x̄2, Sw, respectively, then a
rule based on the sample linear discriminant function x′S−1

w (x̄1−x̄2) is often
used. There are many other varieties of discriminant analysis (McLach-
lan, 1992), depending on the assumptions made regarding the population
structure, and much research has been done, for example, on discriminant
analysis for discrete data and on non-parametric approaches (Goldstein
and Dillon, 1978; Hand, 1982).

The most obvious way of using PCA in a discriminant analysis is to
reduce the dimensionality of the analysis by replacing x by the first m
(high variance) PCs in the derivation of a discriminant rule. If the first two
PCs account for a high proportion of the variance, they can also be used
to provide a two-dimensional graphical representation of the data showing
how good, or otherwise, the separation is between the groups.

The first point to be clarified is exactly what is meant by the PCs of
x in the context of discriminant analysis. A common assumption in many
forms of discriminant analysis is that the covariance matrix is the same
for all groups, and the PCA may therefore be done on an estimate of this
common within-group covariance (or correlation) matrix. Unfortunately,
this procedure may be unsatisfactory for two reasons. First, the within-
group covariance matrix may be different for different groups. Methods for
comparing PCs from different groups are discussed in Section 13.5, and later
in the present section we describe techniques that use PCs to discriminate
between populations when equal covariance matrices are not assumed. For
the moment, however, we make the equal covariance assumption.

The second, more serious, problem encountered in using PCs based on a
common within-group covariance matrix to discriminate between groups is
that there is no guarantee that the separation between groups will be in the
direction of the high-variance PCs. This point is illustrated diagramatically
in Figures 9.1 and 9.2 for two variables. In both figures the two groups are
well separated, but in the first the separation is in the direction of the first
PC (that is parallel to the major axis of within-group variation), whereas in
the second the separation is orthogonal to this direction. Thus, the first few
PCs will only be useful for discriminating between groups in the case where
within- and between-group variation have the same dominant directions. If
this does not occur (and in general there is no particular reason for it to
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Figure 9.1. Two data sets whose direction of separation is the same as that of
the first (within-group) PC.

do so) then omitting the low-variance PCs may actually throw away most
of the information in x concerning between-group variation.

The problem is essentially the same one that arises in PC regression
where, as discussed in Section 8.2, it is inadvisable to look only at high-
variance PCs, as the low-variance PCs can also be highly correlated with the
dependent variable. That the same problem arises in both multiple regres-
sion and discriminant analysis is hardly surprising, as linear discriminant
analysis can be viewed as a special case of multiple regression in which
the dependent variable is a dummy variable defining group membership
(Rencher, 1995, Section 8.3).

An alternative to finding PCs from the within-group covariance ma-
trix is mentioned by Rao (1964) and used by Chang (1983), Jolliffe et
al. (1996) and Mager (1980b), among others. It ignores the group structure
and calculates an overall covariance matrix based on the raw data. If the
between-group variation is much larger than within-group variation, then
the first few PCs for the overall covariance matrix will define directions in
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Figure 9.2. Two data sets whose direction of separation is orthogonal to that of
the first (within-group) PC.

which there are large between-group differences. Such PCs therefore seem
more useful than those based on within-group covariance matrices, but the
technique should be used with some caution, as it will work well only if
between-group variation dominates within-group variation.

It is well known that, for two completely specified normal populations,
differing only in mean, the probability of misclassification using the linear
discriminant function is a monotonically decreasing function of the squared
Mahalanobis distance ∆2 between the two populations (Rencher, 1998,
Section 6.4). Here ∆2 is defined as

∆2 = (µ1 − µ2)
′Σ−1(µ − µ2). (9.1.1)

Note that we meet a number of other varieties of Mahalanobis distance else-
where in the book. In equation (5.3.5) of Section 5.3, Mahalanobis distance
between two observations in a sample is defined, and there is an obvious sim-
ilarity between (5.3.5) and the definition given in (9.1.1) for Mahalanobis
distance between two populations. Further modifications define Mahalanobis
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distance between two samples (see equation (9.1.3)), between an observa-
tion and a sample mean (see Section 10.1, below equation (10.1.2)), and
between an observation and a population mean.

If we take a subset of the original p variables, then the discriminatory
power of the subset can be measured by the Mahalanobis distance between
the two populations in the subspace defined by the subset of variables.
Chang (1983) shows that this is also true if Σ−1 is replaced in (9.1.1) by
Ψ−1, where Ψ = Σ+π(1−π)(µ1 −µ2)(µ1 −µ2)′ and π is the probability
of an observation coming from the ith population, i = 1, 2. The matrix
Ψ is the overall covariance matrix for x, ignoring the group structure.
Chang (1983) shows further that the Mahalanobis distance based on the
kth PC of Ψ is a monotonic, increasing function of θk = [α′

k(µ1−µ2)]2/λk,
where αk, λk are, as usual, the vector of coefficients in the kth PC and the
variance of the kth PC, respectively. Therefore, the PC with the largest
discriminatory power is the one that maximizes θk; this will not necessarily
correspond to the first PC, which maximizes λk. Indeed, if α1 is orthogonal
to (µ1 − µ2), as in Figure 9.2, then the first PC has no discriminatory
power at all. Chang (1983) gives an example in which low-variance PCs are
important discriminators, and he also demonstrates that a change of scaling
for the variables, for example in going from a covariance to a correlation
matrix, can change the relative importance of the PCs. Townshend (1984)
has an example from remote sensing in which there are seven variables
corresponding to seven spectral bands. The seventh PC accounts for less
than 0.1% of the total variation, but is important in discriminating between
different types of land cover.

The quantity θk is also identified as an important parameter for dis-
criminant analysis by Dillon et al. (1989) and Kshirsagar et al. (1990) but,
like Chang (1983), they do not examine the properties of its sample ana-
logue θ̂k, where θ̂k is defined as [a′

k(x̄1 − x̄2)]2/lk, with obvious notation.
Jolliffe et al. (1996) show that a statistic which is a function of θ̂k has a
t-distribution under the null hypothesis that the kth PC has equal means
for the two populations.

The results of Chang (1983) and Jolliffe et al. (1996) are for two groups
only, but Devijver and Kittler (1982, Section 9.6) suggest that a similar
quantity to θ̂k should be used when more groups are present. Their statistic
is θ̃k = a′

kSbak/lk, where Sb is proportional to a quantity that generalizes
(x̄1 − x̄2)(x̄1 − x̄2)′, namely

∑G
g=1 ng(x̄g − x̄)(x̄g − x̄)′, where ng is the

number of observations in the gth group and x̄ is the overall mean of all
the observations. A difference between θ̂k and θ̃k is seen in the following:
ak, lk are eigenvectors and eigenvalues, respectively, for the overall co-
variance matrix in the formula for θ̂k, but for the within-group covariance
matrix Sw for θ̃k. Devijver and Kittler (1982) advocate ranking the PCs in
terms of θ̃k and deleting those components for which θ̃k is smallest. Once
again, this ranking will typically diverge from the ordering based on size of
variance.
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Corbitt and Ganesalingam (2001) also examine an extension to more
than two groups based on the ideas of Dillon et al. (1989), but most of their
paper consists of case studies in which only two groups are present. Corbitt
and Ganesalingam (2001) show that a two-group version of their interpreta-
tion of Dillon et al.’s methodology is inferior to Jolliffe et al.’s (1996) t-tests
with respect to correct classification. However, both are beaten in several
of the examples studied by selecting a subset of the original variables.

Friedman (1989) demonstrates that a quantity similar to θ̂k is also rel-
evant in the case where the within-group covariance matrices are not
necessarily equal. In these circumstances a discriminant score is formed
for each group, and an important part of that score is a term correspond-
ing to θ̂k, with lk, ak replaced by the eigenvalues and eigenvectors of the
covariance matrix for that group. Friedman (1989) notes that sample esti-
mates of large eigenvalues are biased upwards, whereas estimates of small
eigenvalues are biased downwards and, because the reciprocals of the eigen-
values appear in the discriminant scores, this can lead to an exaggerated
influence of the low-variance PCs in the discrimination. To overcome this,
he proposes a form of ‘regularized’ discriminant analysis in which sample
covariance matrices for each group are shrunk towards the pooled estimate
Sw. This has the effect of decreasing large eigenvalues and increasing small
ones.

We return to regularized discriminant analysis later in this section, but
we first note that Takemura (1985) also describes a bias in estimating eigen-
values in the context of one- and two-sample tests for multivariate normal
means, based on Hotelling T 2. For two groups, the question of whether or
not it is worth calculating a discriminant function reduces to testing the
null hypothesis H0 : µ1 = µ2. This is often done using Hotelling’s T 2.
Läuter (1996) suggests a statistic based on a subset of the PCs of the over-
all covariance matrix. He concentrates on the case where only the first PC
is used, for which one-sided, as well as global, alternatives to H0 may be
considered.

Takemura (1985) proposes a decomposition of T 2 into contributions
due to individual PCs. In the two-sample case this is equivalent to cal-
culating t-statistics to decide which PCs discriminate between the groups
corresponding to the samples, although in Takemura’s case the PCs are
calculated from the within-group, rather than overall, covariance matrix.
Takemura (1985) suggests that later PCs might be deemed significant,
and hence selected, too often. However, Jolliffe et al. (1996) dispel these
worries for their tests by conducting a simulation study which shows no
tendency for over-selection of the low-variance PCs in the null case, and
which also gives indications of the power of the t-test when the null hypoth-
esis of equal means in the two populations is false. Interestingly, Mason and
Gunst (1985) noted bias in the opposite direction in PC regression, namely
that low-variance PCs are selected less, rather than more, often than the
high-variance components. Given the links between regression and discrim-
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ination, it may be that the opposite effects described by Mason and Gunst
(1985) and by Takemura (1985) roughly balance in the case of using PCs
in discriminant analysis.

The fact that separation between populations may be in the directions
of the last few PCs does not mean that PCs should not be used at all in
discriminant analysis. They can still provide a reduction of dimensionality
and, as in regression, their uncorrelatedness implies that in linear discrim-
inant analysis each PC’s contribution can be assessed independently. This
is an advantage compared to using the original variables x, where the con-
tribution of one of the variables depends on which other variables are also
included in the analysis, unless all elements of x are uncorrelated. The main
point to bear in mind when using PCs in discriminant analysis is that the
best subset of PCs does not necessarily simply consist of those with the
largest variances. It is easy to see, because of their uncorrelatedness, which
of the PCs are best at discriminating between the populations. However,
as in regression, some caution is advisable in using PCs with very low vari-
ances, because at least some of the estimated coefficients in the discriminant
function will have large variances if low variance PCs are included. Many
of the comments made in Section 8.2 regarding strategies for selecting PCs
in regression are also relevant in linear discriminant analysis.

Some of the approaches discussed so far have used PCs from the over-
all covariance matrix, whilst others are based on the pooled within-group
covariance matrix. This latter approach is valid for types of discriminant
analysis in which the covariance structure is assumed to be the same for
all populations. However, it is not always realistic to make this assump-
tion, in which case some form of non-linear discriminant analysis may be
necessary. If the multivariate normality assumption is kept, the most usual
approach is quadratic discrimination (Rencher, 1998, Section 6.2.2). With
an assumption of multivariate normality and G groups with sample means
and covariance matrices x̄g,Sg, g = 1, 2, . . . , G, the usual discriminant rule
assigns a new vector of observations x to the group for which

(x − x̄g)′S−1
g (x − x̄g) + ln(|Sg|) (9.1.2)

is minimized. When the equal covariance assumption is made, Sg is replaced
by the pooled covariance matrix Sw in (9.1.2), and only the linear part of
the expression is different for different groups. In the general case, (9.1.2) is
a genuine quadratic function of x, leading to quadratic discriminant anal-
ysis. Flury (1995) suggests two other procedures based on his common
principal component (CPC) framework, whose assumptions are interme-
diate compared to those of linear and quadratic discrimination. Further
details will be given when the CPC framework is discussed in Section 13.5.

Alternatively, the convenience of looking only at linear functions of x
can be kept by computing PCs separately for each population. In a num-
ber of papers (see, for example, Wold, 1976; Wold et al., 1983), Wold and
others have described a method for discriminating between populations
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that adopts this approach. The method, called SIMCA (Soft Independent
Modelling of Class Analogy), does a separate PCA for each group, and
retains sufficient PCs in each to account for most of the variation within
that group. The number of PCs retained will typically be different for dif-
ferent populations. The square of this distance for a particular population
is simply the sum of squares of the values of the omitted PCs for that pop-
ulation, evaluated for the observation in question (Mertens, et al., 1994).
The same type of quantity is also used for detecting outliers (see Section
10.1, equation (10.1.1)).

To classify a new observation, a ‘distance’ of the observation from the
hyperplane defined by the retained PCs is calculated for each population.
If future observations are to be assigned to one and only one population,
then assignment is to the population from which the distance is minimized.
Alternatively, a firm decision may not be required and, if all the distances
are large enough, the observation can be left unassigned. As it is not close
to any of the existing groups, it may be an outlier or come from a new
group about which there is currently no information. Conversely, if the
groups are not all well separated, some future observations may have small
distances from more than one population. In such cases, it may again be
undesirable to decide on a single possible class; instead two or more groups
may be listed as possible ‘homes’ for the observation.

According to Wold et al. (1983), SIMCA works with as few as five ob-
jects from each population, although ten or more is preferable, and there
is no restriction on the number of variables. This is important in many
chemical problems where the number of variables can greatly exceed the
number of observations. SIMCA can also cope with situations where one
class is very diffuse, simply consisting of all observations that do not be-
long in one of a number of well-defined classes. Frank and Freidman (1989)
paint a less favourable picture of SIMCA. They use a number of data
sets and a simulation study to compare its performance with that of linear
and quadratic discriminant analyses, with regularized discriminant analysis
and with a technique called DASCO (discriminant analysis with shrunken
covariances).

As already explained, Friedman’s (1989) regularized discriminant analy-
sis shrinks the individual within-group covariance matrices Sg towards the
pooled estimate Sw in an attempt to reduce the bias in estimating eigen-
values. DASCO has a similar objective, and Frank and Freidman (1989)
show that SIMCA also has a similar effect. They note that in terms of
expression (9.1.2), SIMCA ignores the log-determinant term and replaces
S−1

g by a weighted and truncated version of its spectral decomposition,
which in its full form is S−1

g =
∑p

k=1 l−1
gk agka′

gk, with fairly obvious nota-
tion. If qg PCs are retained in the gth group, then SIMCA’s replacement

for S−1
g is

∑p
k=qg+1 l̄−1

g agka′
gk, where l̄g =

∑p

k=qg+1
lgk

(p−qg) . DASCO treats the
last (p− qg) PCs in the same way as SIMCA, but adds the terms from the
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spectral decomposition corresponding to the first qg PCs. Thus it replaces
S−1

g in (9.1.2) by

qg∑

k=1

l−1
gk agka′

gk +
p∑

k=qg+1

l̄−1
g agka′

gk.

Another difference between DASCO and SIMCA is that DASCO retains
the log-determinant term in (9.1.2).

In Frank and Freidman’s (1989) simulation studies and data analyses,
SIMCA is outperformed by both DASCO and regularized discriminant
analysis in many circumstances, especially when the covariance structures
are different in different groups. This is perhaps not surprising, given its
omission of the log-determinant term from (9.1.2). The absence of the first
qg PCs from SIMCA’s measure of discrepancy of an observation from a
group also means that it is unlikely to do well when the groups differ
in the directions of these PCs (Mertens et al., 1994). These latter authors
treat SIMCA’s measure of discrepancy between an observation and a group
as an indication of the outlyingness of the observation with respect to the
group, and suggest modifications of SIMCA in which other outlier detection
measures are used (see Section 10.1).

A similar idea to SIMCA is suggested by Asselin de Beauville (1995).
As with SIMCA, separate PCAs are done for each group, but here an
observation is assigned on the basis of a measure that combines the smallest
distance of the observation from an axis defining a PC for a group and its
score on that PC.

It has been noted above that discriminant analysis can be treated as a
multiple regression problem, with dummy variables, corresponding to the
group membership, as dependent variables. Other regression techniques,
as well as PC regression, can therefore be adapted for the discriminant
problem. In particular, partial least squares (PLS — see Section 8.4), which
is, in a sense, a compromise between least squares and PC regression, can
be used in the discriminant context (Vong et al. (1990)).

SIMCA calculates PCs separately within each group, compared with the
more usual practice of finding PCs from the overall covariance matrix, or
from a pooled within-group covariance matrix. Yet another type of PC
can be derived from the between-group covariance matrix Sb. However,
if the dominant direction of Sb coincides with that of the within-group
covariance matrix Sw, there may be better discriminatory power in a dif-
ferent direction, corresponding to a low-variance direction for Sw. This
leads Devijver and Kittler (1982, Section 9.7) to ‘prewhiten’ the data,
using Sw, before finding PCs with respect to Sb. This is equivalent to
the well-known procedure of canonical variate analysis or canonical dis-
criminant analysis, in which uncorrelated linear functions are found that
discriminate as well as possible between the groups. Canonical variates are
defined as γ′

1x, γ′
2x, . . . ,γ′

g−1x where γ′
kx maximizes the ratio γ′Sbγ

γ′Swγ , of
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between- to within-group variance of γ′x, subject to being uncorrelated
with γ′

1x, γ′
2x, . . . ,γ′

k−1x. For more details see, for example, McLachlan
(1992, Section 9.2) or Mardia et al. (1979, Section 12.5).

A variation on prewhitening using Sw is to ‘standardize’ Sb by dividing
each variable by its within-group standard deviation and then calculate a
between-group covariance matrix S∗

b from these rescaled variables. Finding
PCs based on S∗

b is called discriminant principal components analysis by
Yendle and MacFie (1989). They compare the results of this analysis with
those from a PCA based on Sb and also with canonical discriminant analysis
in which the variables x are replaced by their PCs. In two examples, Yendle
and MacFie (1989) find, with respect to misclassification probabilities, the
performance of PCA based on S∗

b to be superior to that based on Sb, and
comparable to that of canonical discriminant analysis using PCs. However,
in the latter analysis only the restrictive special case is examined, in which
the first q PCs are retained. It is also not made explicit whether the PCs
used are obtained from the overall covariance matrix S or from Sw, though
it seems likely that S is used.

To conclude this section, we note some relationships between PCA and
canonical discriminant analysis, via principal coordinate analysis (see Sec-
tion 5.2), which are described by Gower (1966). Suppose that a principal
coordinate analysis is done on a distance matrix whose elements are Ma-
halanobis distances between the samples from the G populations. These
distances are defined as the square roots of

δ2
hi = (x̄h − x̄i)′S−1

w (x̄h − x̄i); h, i = 1, 2, . . . , G. (9.1.3)

Gower (1966) then shows that the configuration found in m(< G) di-
mensions is the same as that provided by the first m canonical variates
from canonical discriminant analysis. Furthermore, the same results may
be found from a PCA with X′X replaced by (X̄W)′(X̄W), where WW′ =
S−1

w and X̄ is the (G × p) matrix whose hth row gives the sample means
of the p variables for the hth population, h = 1, 2, . . . , G. Yet another, re-
lated, way of finding canonical variates is via a two-stage PCA, as described
by Campbell and Atchley (1981). At the first stage PCs are found, based
on the within-group covariance matrix Sw, and standardized to have unit
variance. The values of the means of these standardised PCs for each of the
G groups are then subjected to a weighted PCA (see Section 14.2.1), with
weights proportional to the sample sizes ni in each group. The PC scores
at this second stage are the values of the group means with respect to the
canonical variates. Krzanowski (1990) generalizes canonical discriminant
analysis, based on the common PCA model due to Flury (1988), using this
two-stage derivation. Bensmail and Celeux (1996) also describe an approach
to discriminant analysis based on the common PCA framework; this will
be discussed further in Section 13.5. Campbell and Atchley (1981) note the
possibility of an alternative analysis, different from canonical discriminant
analysis, in which the PCA at the second of their two stages is unweighted.
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Because of the connections between PCs and canonical variates, Mardia et
al. (1979, p. 344) refer to canonical discriminant analysis as the analogue
for grouped data of PCA for ungrouped data. Note also that with an ap-
propriate choice of metric, generalized PCA as defined in Section 14.2.2 is
equivalent to a form of discriminant analysis.

No examples have been given in detail in this section, although some have
been mentioned briefly. An interesting example, in which the objective is
to discriminate between different carrot cultivars, is presented by Horgan
et al. (2001). Two types of data are available, namely the positions of
‘landmarks’ on the outlines of the carrots and the brightness of each pixel
in a cross-section of each carrot. The two data sets are subjected to separate
PCAs, and a subset of PCs taken from both analyses is used to construct
a discriminant function.

9.2 Cluster Analysis

In cluster analysis, it is required to divide a set of observations into groups
or clusters in such a way that most pairs of observations that are placed in
the same group are more similar to each other than are pairs of observations
that are placed into two different clusters. In some circumstances, it may
be expected or hoped that there is a clear-cut group structure underlying
the data, so that each observation comes from one of several distinct popu-
lations, as in discriminant analysis. The objective then is to determine this
group structure where, in contrast to discriminant analysis, there is little or
no prior information about the form that the structure takes. Cluster anal-
ysis can also be useful when there is no clear group structure in the data.
In this case, it may still be desirable to segment or dissect (using the ter-
minology of Kendall (1966)) the observations into relatively homogeneous
groups, as observations within the same group may be sufficiently similar
to be treated identically for the purpose of some further analysis, whereas
this would be impossible for the whole heterogeneous data set. There are
very many possible methods of cluster analysis, and several books have
appeared on the subject, for example Aldenderfer and Blashfield (1984),
Everitt et al. (2001), Gordon (1999). Most methods can be used either
for detection of clear-cut groups or for dissection/segmentation, although
there is increasing interest in mixture models, which explicitly assume the
existence of clusters (see Section 9.2.3).

The majority of cluster analysis techniques require a measure of sim-
ilarity or dissimilarity between each pair of observations, and PCs have
been used quite extensively in the computation of one type of dissimilarity.
If the p variables that are measured for each observation are quantitative
and in similar units, then an obvious measure of dissimilarity between two
observations is the Euclidean distance between the observations in the p-
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dimensional space defined by the variables. If the variables are measured
in non-compatible units, then each variable can be standardized by divid-
ing by its standard deviation, and an arbitrary, but obvious, measure of
dissimilarity is then the Euclidean distance between a pair of observations
in the p-dimensional space defined by the standardized variables.

Suppose that a PCA is done based on the covariance or correlation ma-
trix, and that m (< p) PCs account for most of the variation in x. A possible
alternative dissimilarity measure is the Euclidean distance between a pair
of observations in the m-dimensional subspace defined by the first m PCs;
such dissimilarity measures have been used in several published studies, for
example Jolliffe et al. (1980). There is often no real advantage in using this
measure, rather than the Euclidean distance in the original p-dimensional
space, as the Euclidean distance calculated using all p PCs from the co-
variance matrix is identical to that calculated from the original variables.
Similarly, the distance calculated from all p PCs for the correlation matrix
is the same as that calculated from the p standardized variables. Using m
instead of p PCs simply provides an approximation to the original Euclidean
distance, and the extra calculation involved in finding the PCs far outweighs
any saving which results from using m instead of p variables in computing
the distance. However, if, as in Jolliffe et al. (1980), the PCs are being cal-
culated in any case, the reduction from p to m variables may be worthwhile.

In calculating Euclidean distances, the PCs have the usual normalization,
so that the sample variance of a′

kx is lk, k = 1, 2, . . . , p and l1 ≥ l2 ≥ · · · ≥
lp, using the notation of Section 3.1. As an alternative, a distance can be
calculated based on PCs that have been renormalized so that each PC
has the same variance. This renormalization is discussed further in the
context of outlier detection in Section 10.1. In the present setting, where
the objective is the calculation of a dissimilarity measure, its use is based
on the following idea. Suppose that one of the original variables is almost
independent of all the others, but that several of the remaining variables are
measuring essentially the same property as each other. Euclidean distance
will then give more weight to this property than to the property described
by the ‘independent’ variable. If it is thought desirable to give equal weight
to each property then this can be achieved by finding the PCs and then
giving equal weight to each of the first m PCs.

To see that this works, consider a simple example in which four meteo-
rological variables are measured. Three of the variables are temperatures,
namely air temperature, sea surface temperature and dewpoint, and the
fourth is the height of the cloudbase. The first three variables are highly
correlated with each other, but nearly independent of the fourth. For a
sample of 30 measurements on these variables, a PCA based on the corre-
lation matrix gave a first PC with variance 2.95, which is a nearly equally
weighted average of the three temperature variables. The second PC, with
variance 0.99 is dominated by cloudbase height, and together the first two
PCs account for 98.5% of the total variation in the four variables.
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Euclidean distance based on the first two PCs gives a very close ap-
proximation to Euclidean distance based on all four variables, but it gives
roughly three times as much weight to the first PC as to the second. Al-
ternatively, if the first two PCs are renormalized to have equal weight, this
implies that we are treating the one measurement of cloudbase height as
being equal in importance to the three measurements of temperature.

In general, if Euclidean distance is calculated using all p renormalized
PCs, then this is equivalent to calculating the Mahalanobis distance for the
original variables (see Section 10.1, below equation (10.1.2), for a proof of
the corresponding property for Mahalanobis distances of observations from
sample means, rather than between pairs of observations). Mahalanobis
distance is yet another plausible dissimilarity measure, which takes into
account the variances and covariances between the elements of x. Naes and
Isaksson (1991) give an example of (fuzzy) clustering in which the distance
measure is based on Mahalanobis distance, but is truncated to exclude the
last few PCs when the variances of these are small and unstable.

Regardless of the similarity or dissimilarity measure adopted, PCA has
a further use in cluster analysis, namely to give a two-dimensional repre-
sentation of the observations (see also Section 5.1). Such a two-dimensional
representation can give a simple visual means of either detecting or verify-
ing the existence of clusters, as noted by Rao (1964), provided that most of
the variation, and in particular the between-cluster variation, falls in the
two-dimensional subspace defined by the first two PCs.

Of course, the same problem can arise as in discriminant analysis, namely
that the between-cluster variation may be in directions other than those of
the first two PCs, even if these two PCs account for nearly all of the total
variation. However, this behaviour is generally less likely in cluster analysis,
as the PCs are calculated for the whole data set, not within-groups. As
pointed out in Section 9.1, if between-cluster variation is much greater than
within-cluster variation, such PCs will often successfully reflect the cluster
structure. It is, in any case, frequently impossible to calculate within-group
PCs in cluster analysis as the group structure is usually unknown a priori.

It can be argued that there are often better directions than PCs in
which to view the data in order to ‘see’ structure such as clusters. Pro-
jection pursuit includes a number of ideas for finding such directions, and
will be discussed in Section 9.2.2. However, the examples discussed below
illustrate that plots with respect to the first two PCs can give suitable
two-dimensional representations on which to view the cluster structure if
a clear structure exists. Furthermore, in the case where there is no clear
structure, but it is required to dissect the data using cluster analysis, there
can be no real objection to the use of a plot with respect to the first two
PCs. If we wish to view the data in two dimensions in order to see whether
a set of clusters given by some procedure ‘looks sensible,’ then the first two
PCs give the best possible representation in two dimensions in the sense
defined by Property G3 of Section 3.2.
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Before looking at examples of the uses just described of PCA in cluster
analysis, we discuss a rather different way in which cluster analysis can
be used and its connections with PCA. So far we have discussed cluster
analysis on observations or individuals, but in some circumstances it is
desirable to divide variables, rather than observations, into groups. In fact,
by far the earliest book on cluster analysis (Tryon, 1939) was concerned
with this type of application. Provided that a suitable measure of similarity
between variables can be defined—the correlation coefficient is an obvious
candidate—methods of cluster analysis used for observations can be readily
adapted for variables.

One connection with PCA is that when the variables fall into well-defined
clusters, then, as discussed in Section 3.8, there will be one high-variance
PC and, except in the case of ‘single-variable’ clusters, one or more low-
variance PCs associated with each cluster of variables. Thus, PCA will
identify the presence of clusters among the variables, and can be thought
of as a competitor to standard cluster analysis of variables. The use of
PCA in this way in fairly common in climatology (see, for example, Cohen
(1983), White et al. (1991), Romero et al. (1999)). In an analysis of a
climate variable recorded at stations over a large geographical area, the
loadings of the PCs at the various stations can be used to divide the area
into regions with high loadings on each PC. In fact, this regionalization
procedure is usually more effective if the PCs are rotated (see Section 11.1)
so that most analyses are done using rotated loadings.

Identifying clusters of variables may be of general interest in investigating
the structure of a data set but, more specifically, if we wish to reduce
the number of variables without sacrificing too much information, then we
could retain one variable from each cluster. This is essentially the idea
behind some of the variable selection techniques based on PCA that were
described in Section 6.3.

Hastie et al. (2000) describe a novel clustering procedure for ‘variables’
which uses PCA applied in a genetic context. They call their method ‘gene
shaving.’ Their data consist of p = 4673 gene expression measurements
for n = 48 patients, and the objective is to classify the 4673 genes into
groups that have coherent expressions. The first PC is found for these data
and a proportion of the genes (typically 10%) having the smallest absolute
inner products with this PC are deleted (shaved). PCA followed by shaving
is repeated for the reduced data set, and this procedure continues until
ultimately only one gene remains. A nested sequence of subsets of genes
results from this algorithm and an optimality criterion is used to decide
which set in the sequence is best. This gives the first cluster of genes. The
whole procedure is then repeated after centering the data with respect to
the ‘average gene expression’ in the first cluster, to give a second cluster
and so on.

Another way of constructing clusters of variables, which simultaneously
finds the first PC within each cluster, is proposed by Vigneau and Qannari
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(2001). Suppose that the p variables are divided into G groups or clusters,
and that xg denotes the vector of variables in the gth group, g = 1, 2, . . . , G.
Vigneau and Qannari (2001) seek vectors a11,a21, . . . ,aG1 that maximize∑G

g=1 var(a′
g1xg), where var(a′

g1xg) is the sample variance of the linear
function a′

g1xg. This sample variance is clearly maximized by the first PC
for the variables in the gth group, but simultaneously we wish to find the
partition of the variables into G groups for which the sum of these variances
is maximized. An iterative procedure is presented by Vigneau and Qannari
(2001) for solving this problem.

The formulation of the problem assumes that variables with large squared
correlations with the first PC in a cluster should be assigned to that clus-
ter. Vigneau and Qannari consider two variations of their technique. In the
first, the signs of the correlations between variables and PCs are important;
only those variables with large positive correlations with a PC should be
in its cluster. In the second, relationships with external variables are taken
into account.

9.2.1 Examples

Only one example will be described in detail here, although a number of
other examples that have appeared elsewhere will be discussed briefly. In
many of the published examples where PCs have been used in conjunction
with cluster analysis, there is no clear-cut cluster structure, and cluster
analysis has been used as a dissection technique. An exception is the well-
known example given by Jeffers (1967), which was discussed in the context
of variable selection in Section 6.4.1. The data consist of 19 variables mea-
sured on 40 aphids and, when the 40 observations are plotted with respect
to the first two PCs, there is a strong suggestion of four distinct groups; re-
fer to Figure 9.3, on which convex hulls (see Section 5.1) have been drawn
around the four suspected groups. It is likely that the four groups indi-
cated on Figure 9.3 correspond to four different species of aphids; these
four species cannot be readily distinguished using only one variable at a
time, but the plot with respect to the first two PCs clearly distinguishes
the four populations.

The example introduced in Section 1.1 and discussed further in Section
5.1.1, which has seven physical measurements on 28 students, also shows (in
Figures 1.3, 5.1) how a plot with respect to the first two PCs can distinguish
two groups, in this case men and women. There is, unlike the aphid data,
a small amount of overlap between groups and if the PC plot is used to
identify, rather than verify, a cluster structure, then it is likely that some
misclassification between sexes will occur. A simple but specialized use of
PC scores, one PC at a time, to classify seabird communities is described
by Huettmann and Diamond (2001).

In the situation where cluster analysis is used for dissection, the aim of a
two-dimensional plot with respect to the first two PCs will almost always be
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Figure 9.3. Aphids: plot with respect to the first two PCs showing four groups
corresponding to species.

to verify that a given dissection ‘looks’ reasonable, rather than to attempt
to identify clusters. An early example of this type of use was given by Moser
and Scott (1961), in their Figure 9.2. The PCA in their study, which has
already been mentioned in Section 4.2, was a stepping stone on the way
to a cluster analysis of 157 British towns based on 57 variables. The PCs
were used both in the construction of a distance measure, and as a means
of displaying the clusters in two dimensions.

Principal components are used in cluster analysis in a similar manner
in other examples discussed in Section 4.2, details of which can be found
in Jolliffe et al. (1980, 1982a, 1986), Imber (1977) and Webber and Craig
(1978). Each of these studies is concerned with demographic data, as is the
example described next in detail.

Demographic Characteristics of English Counties

In an unpublished undergraduate dissertation, Stone (1984) considered
a cluster analysis of 46 English counties. For each county there were 12
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Table 9.1. Demographic variables used in the analysis of 46 English counties.

1. Population density—numbers per hectare
2. Percentage of population aged under 16
3. Percentage of population above retirement age
4. Percentage of men aged 16–65 who are employed
5. Percentage of men aged 16–65 who are unemployed
6. Percentage of population owning their own home
7. Percentage of households which are ‘overcrowded’
8. Percentage of employed men working in industry
9. Percentage of employed men working in agriculture

10. (Length of public roads)/(area of county)
11. (Industrial floor space)/(area of county)
12. (Shops and restaurant floor space)/(area of county)

Table 9.2. Coefficients and variances for the first four PCs: English counties data.

Component number 1 2 3 4

1 0.35 −0.19 0.29 0.06
2 0.02 0.60 −0.03 0.22
3 −0.11 −0.52 −0.27 −0.36
4 −0.30 0.07 0.59 −0.03
5 0.31 0.05 −0.57 0.07
6 −0.29 0.09 −0.07 −0.59

Variable






7 0.38 0.04 0.09 0.08
8 0.13 0.50 −0.14 −0.34
9 −0.25 −0.17 −0.28 0.51

10 0.37 −0.09 0.09 −0.18
11 0.34 0.02 −0.00 −0.24
12 0.35 −0.20 0.24 0.07

Eigenvalue 6.27 2.53 1.16 0.96

Cumulative percentage
of total variation 52.3 73.3 83.0 90.9
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demographic variables, which are listed in Table 9.1.
The objective of Stone’s analysis, namely dissection of local authority

areas into clusters, was basically the same as that in other analyses by
Imber (1977), Webber and Craig (1978) and Jolliffe et al. (1986), but these
various analyses differ in the variables used and in the local authorities
considered. For example, Stone’s list of variables is shorter than those of the
other analyses, although it includes some variables not considered by any of
the others. Also, Stone’s list of local authorities includes large metropolitan
counties such as Greater London, Greater Manchester and Merseyside as
single entities, whereas these large authorities are subdivided into smaller
areas in the other analyses. A comparison of the clusters obtained from
several different analyses is given by Jolliffe et al. (1986).

As in other analyses of local authorities, PCA is used in Stone’s analysis
in two ways: first, to summarize and explain the major sources of variation
in the data, and second, to provide a visual display on which to judge the
adequacy of the clustering.

Table 9.2 gives the coefficients and variances for the first four PCs using
the correlation matrix for Stone’s data. It is seen that the first two compo-
nents account for 73% of the total variation, but that most of the relevant
rules of Section 6.1 would retain four components (the fifth eigenvalue
is 0.41).

There are fairly clear interpretations for each of the first three PCs. The
first PC provides a contrast between urban and rural areas, with positive
coefficients for variables that are high in urban areas, such as densities of
population, roads, and industrial and retail floor space; negative coefficients
occur for owner occupation, percentage of employed men in agriculture, and
overall employment level, which at the time of the study tended to be higher
in rural areas. The main contrast for component 2 is between the percent-
ages of the population below school-leaving age and above retirement age.
This component is therefore a measure of the age of the population in each
county, and it identifies, at one extreme, the south coast retirement areas.

The third PC contrasts employment and unemployment rates. This con-
trast is also present in the first urban versus rural PC, so that the third
PC is measuring variation in employment/unemployment rates within ru-
ral areas and within urban areas, rather than between the two types of
area.

Turning now to the cluster analysis of the data, Stone (1984) examines
several different clustering methods, and also considers the analysis with
and without Greater London, which is very different from any other area,
but whose omission produces surprisingly little change. Figure 9.4 shows
the position of the 46 counties with respect to the first two PCs, with the
four-cluster solution obtained using complete-linkage cluster analysis (see
Gordon, 1999, p. 85) indicated by different symbols for different clusters.
The results for complete-linkage are fairly similar to those found by several
of the other clustering methods investigated.

In the four-cluster solution, the single observation at the bottom left of
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Figure 9.4. English counties: complete-linkage four-cluster solution superimposed
on a plot of the first two PCs.

the diagram is Greater London and the four-county cluster at the top left
consists of other metropolitan counties. The counties at the right of the
diagram are more rural, confirming the interpretation of the first PC given
earlier. The split between the larger groups at the right of the plot is rather
more arbitrary but, as might be expected from the interpretation of the
second PC, most of the retirement areas have similar values in the vertical
direction; they are all in the bottom part of the diagram. Conversely, many
of the counties towards the top have substantial urban areas within them,
and so have somewhat lower values on the first PC as well.

The clusters are rather nicely located in different areas of the figure,
although the separation between them is not particularly clear-cut, except
for Greater London. This behaviour is fairly similar to what occurs for other
clustering methods in this example, and for different numbers of clusters.
For example, in the eight-cluster solution for complete-linkage clustering,
one observation splits off from each of the clusters in the top left and bottom
right parts of the diagram to form single-county clusters. The large 27-
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county cluster in the top right of the plot splits into three groups containing
13, 10 and 4 counties, with some overlap between them.

This example is typical of many in which cluster analysis is used for
dissection. Examples like that of Jeffers’ (1967) aphids, where a very clear-
cut and previously unknown cluster structure is uncovered, are relatively
unusual, although another illustration is given by Blackith and Reyment
(1971, p. 155). In their example, a plot of the observations with respect to
the second and third (out of seven) PCs shows a very clear separation into
two groups. It is probable that in many circumstances ‘projection-pursuit’
methods, which are discussed next, will provide a better two-dimensional
space in which to view the results of a cluster analysis than that defined by
the first two PCs. However, if dissection rather than discovery of a clear-cut
cluster structure is the objective of a cluster analysis, then there is likely
to be little improvement over a plot with respect to the first two PCs.

9.2.2 Projection Pursuit

As mentioned earlier in this chapter, it may be possible to find low-
dimensional representations of a data set that are better than the first few
PCs at displaying ‘structure’ in the data. One approach to doing this is to
define structure as ‘interesting’ and then construct an index of ‘interesting-
ness,’ which is successively maximized. This is the idea behind projection
pursuit, with different indices leading to different displays. If ‘interesting’
is defined as ‘large variance,’ it is seen that PCA is a special case of projec-
tion pursuit. However, the types of structure of interest are often clusters
or outliers, and there is no guarantee that the high-variance PCs will find
such features. The term ‘projection pursuit’ dates back to Friedman and
Tukey (1974), and a great deal of work was done in the early 1980s. This
is described at length in three key papers: Friedman (1987), Huber (1985),
and Jones and Sibson (1987). The last two both include extensive discus-
sion, in addition to the paper itself. Some techniques are good at finding
clusters, whereas others are better at detecting outliers.

Most projection pursuit techniques start from the premise that the least
interesting structure is multivariate normality, so that deviations from
normality form the basis of many indices. There are measures based on
skewness and kurtosis, on entropy, on looking for deviations from unifor-
mity in transformed data, and on finding ‘holes’ in the data. More recently,
Foster (1998) suggested looking for directions of high density, after ‘spher-
ing’ the data to remove linear structure. Sphering operates by transforming
the variables x to z = S− 1

2 (x−x̄), which is equivalent to converting to PCs,
which are then standardized to have zero mean and unit variance. Friedman
(1987) also advocates sphering as a first step in his version of projection
pursuit. After identifying the high-density directions for the sphered data,
Foster (1998) uses the inverse transformation to discover the nature of the
interesting structures in terms of the original variables.
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Projection pursuit indices usually seek out deviations from multivariate
normality. Bolton and Krzanowski (1999) show that if normality holds then
PCA finds directions for which the maximized likelihood is minimized. They
interpret this result as PCA choosing interesting directions to be those for
which normality is least likely, thus providing a link with the ideas of pro-
jection pursuit. A different projection pursuit technique with an implicit
assumption of normality is based on the fixed effects model of Section 3.9.
Recall that the model postulates that, apart from an error term ei with
var(ei) = σ2

wi
Γ, the variables x lie in a q-dimensional subspace. To find

the best-fitting subspace,
∑n

i=1 wi ‖xi − zi‖2
M is minimized for an appro-

priately chosen metric M. For multivariate normal ei the optimal choice
for M is Γ−1. Given a structure of clusters in the data, all wi equal, and
ei describing variation within clusters, Caussinus and Ruiz (1990) suggest
a robust estimate of Γ, defined by

Γ̂ =

∑n−1
i=1

∑n
j=i+1 K[‖xi − xj‖2

S−1 ](xi − xj)(xi − xj)′
∑n−1

i=1

∑n
j=i+1 K[‖xi − xj‖2

S−1 ]
, (9.2.1)

where K[.] is a decreasing positive real function (Caussinus and Ruiz, 1990,
use K[d] = e−

β
2 t for β > 0) and S is the sample covariance matrix. The best

fit is then given by finding eigenvalues and eigenvectors of SΓ̂
−1

, which is
a type of generalized PCA (see Section 14.2.2). There is a similarity here
with canonical discriminant analysis (Section 9.1), which finds eigenvalues
and eigenvectors of SbS−1

w , where Sb, Sw are between and within-group
covariance matrices. In Caussinus and Ruiz’s (1990) form of projection
pursuit, S is the overall covariance matrix, and Γ̂ is an estimate of the
within-group covariance matrix. Equivalent results would be obtained if S
were replaced by an estimate of between-group covariance, so that the only
real difference from canonical discriminant analysis is that the groups are
known in the latter case but are unknown in projection pursuit. Further
theoretical details and examples of Caussinus and Ruiz’s technique can
be found in Caussinus and Ruiz-Gazen (1993, 1995). The choice of values
for β is discussed, and values in the range 0.5 to 3.0 are recommended.
There is a link between Caussinus and Ruiz-Gazen’s technique and the
mixture models of Section 9.2.3. In discussing theoretical properties of their
technique, they consider a framework in which clusters arise from a mixture
of multivariate normal distributions. The q dimensions of the underlying
model correspond to q clusters and Γ represents ‘residual’ or within-group
covariance.

Although not projection pursuit as such, Krzanowski (1987b) also looks
for low-dimensional representations of the data that preserve structure, but
in the context of variable selection. Plots are made with respect to the first
two PCs calculated from only a subset of the variables. A criterion for
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choosing a subset of k variables is based on how closely a Procrustes rota-
tion of the configuration of scores on the first q PCs for a selected subset of
variables matches the corresponding configuration based on the first q PCs
for the full set of variables. It is shown that the visibility of group structure
may be enhanced by plotting with respect to PCs that are calculated from
only a subset of variables. The selected variables differ from those chosen
by the methods of Section 6.3 (Krzanowski, 1987b; Jmel, 1992), which il-
lustrates again that different selection rules are needed, depending on the
purpose for which the variables are chosen (Jolliffe, 1987a).

Some types of projection pursuit are far more computationally demand-
ing than PCA, and for large data sets an initial reduction of dimension
may be necessary before they can be implemented. In such cases, Friedman
(1987) suggests reducing dimensionality by retaining only the high-variance
PCs from a data set and conducting the projection pursuit on those. Causs-
inus (1987) argues that an initial reduction of dimensionality using PCA
may be useful even when there are no computational problems.

9.2.3 Mixture Models

Cluster analysis traditionally consisted of a wide variety of rather ad hoc
descriptive techniques, with little in the way of statistical underpinning.
The consequence was that it was fine for dissection, but less satisfactory
for deciding whether clusters actually existed and, if so, how many there
were. An attractive alternative approach is to model the cluster structure
by a mixture model, in which the probability density function (p.d.f.) for
the vector of variables x is expressed as

f(x;θ) =
G∑

g=1

πgfg(x;θg), (9.2.2)

where G is the number of clusters, πg is the probability of an observation
coming from the gth cluster, fg(x;θg) is the p.d.f. in the gth cluster, and
θ′ = (θ′

1,θ
′
2, . . . ,θ

′
G) is a vector of parameters that must be estimated.

A particular form needs to be assumed for each p.d.f. fg(x;θg), the most
usual choice being multivariate normality in which θg consists of the mean
vector µg, and the covariance matrix Σg, for the gth cluster.

The problem of fitting a model such as (9.2.2) is difficult, even for small
values of p and G, so the approach was largely ignored at the time when
many clustering algorithms were developed. Later advances in theory, in
computational sophistication, and in computing speed made it possible for
versions of (9.2.2) to be developed and fitted, especially in the univariate
case (see, for example, Titterington et al. (1985); McLachlan and Bashford
(1988); Böhning (1999)). However, many multivariate problems are still
intractable because of the large number of parameters that need to be esti-
mated. For example, in a multivariate normal mixture the total number of
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parameters in the πg, µg and Σg is 1
2G[p2 + 3p + 2] − 1. To overcome this

intractability, the elements of the Σg can be constrained in some way, and
a promising approach was suggested by Tipping and Bishop (1999b), based
on their probabilistic model for PCA which is described in Section 3.9. In
this approach, the p.d.f.s in (9.2.2) are replaced by p.d.f.s derived from Tip-
ping and Bishop’s (1999a,b) model. These p.d.f.s are multivariate normal,
but instead of having general covariance matrices, the matrices take the
form BgB′

g + σ2
gIp, where Bg is a (p × q) matrix, and q (< p) is the same

for all groups. This places constraints on the covariance matrices, but the
constraints are not as restrictive as the more usual ones, such as equality or
diagonality of matrices. Tipping and Bishop (1999b) describe a two-stage
EM algorithm for finding maximum likelihood estimates of all the parame-
ters in the model. As with Tipping and Bishop’s (1999a) single population
model, it turns out the columns of Bg define the space spanned by the first
q PCs, this time within each cluster. There remains the question of the
choice of q, and there is still a restriction to multivariate normal distribu-
tions for each cluster, but Tipping and Bishop (1999b) provide examples
where the procedure gives clear improvements compared to the imposi-
tion of more standard constraints on the Σg. Bishop (1999) outlines how a
Bayesian version of Tipping and Bishop’s (1999a) model can be extended
to mixtures of distributions.

9.3 Canonical Correlation Analysis and Related
Techniques

Canonical correlation analysis (CCA) is the central topic in this section.
Here the variables are in two groups, and relationships are sought between
these groups of variables. CCA is probably the most commonly used tech-
nique for tackling this objective. The emphasis in this section, as elsewhere
in the book, is on how PCA can be used with, or related to, the tech-
nique. A number of other methods have been suggested for investigating
relationships between groups of variables. After describing CCA, and illus-
trating it with an example, some of these alternative approaches are briefly
described, with their connections to PCA again highlighted. Discussion of
techniques which analyse more than two sets of variables simultaneously is
largely deferred to Section 14.5.

9.3.1 Canonical Correlation Analysis

Suppose that xp1 , xp2 are vectors of random variables with p1, p2 elements,
respectively. The objective of canonical correlation analysis (CCA) is to find
successively for k = 1, 2, . . . , min[p1, p2], pairs {a′

k1xp1 ,a
′
k2xp2} of linear

functions of xp1 , xp2 , respectively, called canonical variates, such that the
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correlation between a′
k1xp1 and a′

k2xp2 is maximized, subject to a′
k1xp1 ,

a′
k2xp2 both being uncorrelated with a′

jhxph
, j = 1, 2, . . . , (k − 1); h =

1, 2. The name of the technique is confusingly similar to ‘canonical variate
analysis,’ which is used in discrimination (see Section 9.1). In fact, there is a
link between the two techniques (see, for example, Gittins, 1985, Chapter 4;
Mardia et al. 1979, Exercise 11.5.4), but this will not be discussed in detail
here. Because of this link, the view of canonical discriminant analysis as a
two-stage PCA, noted by Campbell and Atchley (1981) and discussed in
Section 9.1, is also a valid perspective for CCA. Although CCA treats the
two sets of variables xp1 , xp2 on an equal footing, it can still be used, as
in the example of Section 9.3.2, if one set is clearly a set of responses while
the other is a set of predictors. However, alternatives such as multivariate
regression and other techniques discussed in Sections 8.4, 9.3.3 and 9.3.4
may be more appropriate in this case.

A number of authors have suggested that there are advantages in calcu-
lating PCs zp1 , zp2 separately for xp1 ,xp2 and then performing the CCA on
zp1 , zp2 rather than xp1 ,xp2 . Indeed, the main derivation of CCA given by
Preisendorfer and Mobley (1988, Chapter 8) is in terms of the PCs for the
two groups of variables. If zp1 , zp2 consist of all p1, p2 PCs, respectively,
then the results using zp1 , zp2 are equivalent to those for xp1 ,xp2 . This
follows as zp1 , zp2 are exact linear functions of xp1 ,xp2 , respectively, and,
conversely, xp1 ,xp2 are exact linear functions of zp1 , zp2 , respectively. We
are looking for ‘optimal’ linear functions of zp1 , zp2 , but this is equivalent
to searching for ‘optimal’ linear functions of xp1 ,xp2 so we have the same
analysis as that based on xp1 ,xp2 .

Muller (1982) argues that using zp1 , zp2 instead of xp1 ,xp2 can make
some of the theory behind CCA easier to understand, and that it can
help in interpreting the results of such an analysis. He also illustrates the
use of PCA as a preliminary dimension-reducing technique by performing
CCA based on just the first few elements of zp1 and zp2 . Von Storch and
Zwiers (1999, Section 14.1.6) note computational advantages in working
with the PCs and also suggest using only the first few PCs to construct
the canonical variates. This works well in the example given by Muller
(1982), but cannot be expected to do so in general, for reasons similar
to those already discussed in the contexts of regression (Chapter 8) and
discriminant analysis (Section 9.1). There is simply no reason why those
linear functions of xp1 that are highly correlated with linear functions of
xp2 should necessarily be in the subspace spanned by the first few PCs
of xp1 ; they could equally well be related to the last few PCs of xp1 .
The fact that a linear function of xp1 has a small variance, as do the
last few PCs, in no way prevents it from having a high correlation with
some linear function of xp2 . As well as suggesting the use of PCs in CCA,
Muller (1982) describes the closely related topic of using canonical corre-
lation analysis to compare sets of PCs. This will be discussed further in
Section 13.5.
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An interesting connection between PCA and CCA is given by consider-
ing the problem of minimizing var[a′

1xp1 −a′
2xp2 ]. If constraints a′

1Σ11a1 =
a′

2Σ22a2 = 1 are added to this problem, where Σ11, Σ22 are the covariance
matrices for xp1 , xp2 , respectively, we obtain the first pair of canonical
variates. If, instead, the constraint a′

1a1 + a′
2a2 = 1 is added, the co-

efficients (a′
1,a

′
2)

′ define the last PC for the vector of random variables
x = (x′

p1
,x′

p2
)′. There has been much discussion in the literature of a va-

riety of connections between multivariate techniques, including PCA and
CCA. Gittins (1985, Sections 4.8, 5.6, 5.7) gives numerous references. In
the special case where p1 = p2 and the same variables are measured in
both xp1 and xp2 , perhaps at different time periods or for matched pairs
of individuals, Flury and Neuenschwander (1995) demonstrate a theoret-
ical equivalence between the canonical variates and a common principal
component model (see Section 13.5) when the latter model holds.

9.3.2 Example of CCA

Jeffers (1978, p. 136) considers an example with 15 variables measured on
272 sand and mud samples taken from various locations in Morecambe Bay,
on the north west coast of England. The variables are of two types: eight
variables are chemical or physical properties of the sand or mud samples,
and seven variables measure the abundance of seven groups of invertebrate
species in the samples. The relationships between the two groups of vari-
ables, describing environment and species, are of interest, so that canonical
correlation analysis is an obvious technique to use.

Table 9.3 gives the coefficients for the first two pairs of canonical variates,
together with the correlations between each pair—the canonical corre-
lations. The definitions of each variable are not given here (see Jeffers
(1978, pp. 103, 107)). The first canonical variate for species is dominated
by a single species. The corresponding canonical variate for the environ-
mental variables involves non-trivial coefficients for four of the variables,
but is not difficult to interpret (Jeffers, 1978, p. 138). The second pair of
canonical variates has fairly large coefficients for three species and three
environmental variables.

Jeffers (1978, pp. 105–109) also looks at PCs for the environmental and
species variables separately, and concludes that four and five PCs, respec-
tively, are necessary to account for most of the variation in each group. He
goes on to look, informally, at the between-group correlations for each set
of retained PCs.

Instead of simply looking at the individual correlations between PCs for
different groups, an alternative is to do a canonical correlation analysis
based only on the retained PCs, as suggested by Muller (1982). In the
present example this analysis gives values of 0.420 and 0.258 for the first
two canonical correlations, compared with 0.559 and 0.334 when all the
variables are used. The first two canonical variates for the environmental
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Table 9.3. Coefficients for the first two canonical variates in a canonical correlation
analysis of species and environmental variables.

First canonical variates Second canonical variates
x1 0.03 0.17
x2 0.51 0.52
x3 0.56 0.49

Environment x4 0.37 0.67






variables x5 0.01 −0.08
x6 0.03 0.07
x7 −0.00 0.04
x8 0.53 −0.02

x9 0.97 −0.19
x10 −0.06 −0.25
x11 0.01 −0.28

Species






x12 0.14 0.58
variables

x13 0.19 0.00
x14 0.06 0.46
x15 0.01 0.53

Canonical
correlation 0.559 0.334

variables and the first canonical variate for the species variables are each
dominated by a single PC, and the second canonical variate for the species
variables has two non-trivial coefficients. Thus, the canonical variates for
PCs look, at first sight, easier to interpret than those based on the origi-
nal variables. However, it must be remembered that, even if only one PC
occurs in a canonical variate, the PC itself is not necessarily an easily in-
terpreted entity. For example, the environmental PC that dominates the
first canonical variate for the environmental variables has six large coeffi-
cients. Furthermore, the between-group relationships found by CCA of the
retained PCs are different in this example from those found from CCA on
the original variables.

9.3.3 Maximum Covariance Analysis (SVD Analysis),
Redundancy Analysis and Principal Predictors

The first technique described in this section has been used in psychology for
many years, dating back to Tucker (1958), where it is known as inter-battery
factor analysis. This method postulates a model in which

xp1 = µ1 + Λ1z + Γ1y1 + e1 (9.3.1)
xp2 = µ2 + Λ2z + Γ2y2 + e2,
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where µ1,µ2 are vectors of means, Λ1,Λ2,Γ1,Γ2 are matrices of coeffi-
cients, z is a vector of latent variables common to both xp1 and xp2 , y1,y2

are vectors of latent variables specific to xp1 ,xp2 , and e1, e2 are vectors
of errors. Tucker (1958) fits the model using the singular value decom-
position of the (p1 × p2) matrix of correlations between two batteries of
tests xp1 ,xp2 , and notes that his procedure is equivalent to finding linear
combinations of the two batteries that have maximum covariance. Browne
(1979) demonstrates some algebraic connections between the results of this
technique and those of CCA.

The method was popularised in atmospheric science by Bretherton et
al. (1992) and Wallace et al. (1992) under the name singular value de-
composition (SVD) analysis. This name arose because, as Tucker (1958)
showed, the analysis can be conducted via an SVD of the (p1 × p2) matrix
of covariances between xp1 and xp2 , but the use of this general term for a
specific technique is potentially very confusing. The alternative canonical
covariance analysis, which Cherry (1997) notes was suggested in unpub-
lished work by Muller, is a better descriptor of what the technique does,
namely that it successively finds pairs of linear functions of xp1 and xp2

that have maximum covariance and whose vectors of loadings are orthog-
onal. Even better is maximum covariance analysis, which is used by von
Storch and Zwiers (1999, Section 14.1.7) and others (Frankignoul, personal
communication), and we will adopt this terminology. Maximum covariance
analysis differs from CCA in two ways: covariance rather than correlation
is maximized, and vectors of loadings are orthogonal instead of derived
variates being uncorrelated. The rationale behind maximum covariance
analysis is that it may be important to explain a large proportion of
the variance in one set of variables using the other set, and a pair of
variates from CCA with large correlation need not necessarily have large
variance.

Bretherton et al. (1992) and Wallace et al. (1992) discuss maximum
covariance analysis (SVD analysis) in some detail, make comparisons with
competing techniques and give examples. Cherry (1997) and Hu (1997)
point out some disadvantages of the technique, and Cherry (1997) also
demonstrates a relationship with PCA. Suppose that separate PCAs are
done on the two sets of variables and that the values (scores) of the n
observations on the first q PCs are given by the (n × q) matrices Z1, Z2

for the two sets of variables. If B1, B2 are orthogonal matrices chosen to
minimize ‖Z1B1 −Z2B2‖, the resulting matrices Z1B1, Z2B2 contain the
values for the n observations of the first q pairs of variates from a maximum
covariance analysis. Thus, maximum covariance analysis can be viewed as
two PCAs, followed by rotation to match up the results of the two analyses
as closely as possible.

Like maximum covariance analysis, redundancy analysis attempts to in-
corporate variance as well as correlation in its search for relationships
between two sets of variables. The redundancy coefficient was introduced
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by Stewart and Love (1968), and is an index of the average proportion
of the variance of the variables in one set that is reproducible from the
variables in the other set. One immediate difference from both CCA and
maximum covariance analysis is that it does not view the two sets of vari-
ables symmetrically. One set is treated as response variables and the other
as predictor variables, and the results of the analysis are different depend-
ing on the choice of which set contains responses. For convenience, in what
follows xp1 and xp2 consist of responses and predictors, respectively.

Stewart and Love’s (1968) redundancy index, given a pair of canonical
variates, can be expressed as the product of two terms. These terms are
the squared canonical correlation and the variance of the canonical variate
for the response set. It is clear that a different value results if the rôles of
predictor and response variables are reversed. The redundancy coefficient
can be obtained by regressing each response variable on all the predictor
variables and then averaging the p1 squared multiple correlations from
these regressions. This has a link to the interpretation of PCA given in
the discussion of Property A6 in Chapter 2, and was used by van den
Wollenberg (1977) and Thacker (1999) to introduce two slightly different
techniques.

In van den Wollenberg’s (1977) redundancy analysis, linear functions
a′

k2xp2 of xp2 are found that successively maximize their average squared
correlation with the elements of the response set xp1 , subject to the vectors
of loadings a12, a22, . . . being orthogonal. It turns out (van den Wollenberg,
1977) that finding the required linear functions is achieved by solving the
equation

RxyRyxak2 = lkRxxak2, (9.3.2)

where Rxx is the correlation matrix for the predictor variables, Rxy is the
matrix of correlations between the predictor and response variables, and
Ryx is the transpose of Rxy. A linear function of xp1 can be found by
reversing the rôles of predictor and response variables, and hence replacing
x by y and vice versa, in equation (9.3.2).

Thacker (1999) also considers a linear function z1 = a′
12xp2 of the pre-

dictors xp2 . Again a12 is chosen to maximize
∑p1

j=1 r2
1j , where r1j is the

correlation between z1 and the jth response variable. The variable z1 is
called the first principal predictor by Thacker (1999). Second, third, . . .
principal predictors are defined by maximizing the same quantity, subject
to the constraint that each principal predictor must be uncorrelated with
all previous principal predictors. Thacker (1999) shows that the vectors of
loadings a12, a22, . . . are solutions of the equation

Sxy[diag(Syy)]−1Syxak2 = lkSxxak2, (9.3.3)

where Sxx, Syy, Sxy and Syx are covariance matrices defined analogously to
the correlation matrices Rxx, Ryy, Rxy and Ryx above. The eigenvalue lk
corresponding to ak2 is equal to the sum of squared correlations

∑p1
j=1 r2

kj
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between a′
k2xp2 and each of the variables xj . The difference between prin-

cipal predictors and redundancy analysis is that the principal predictors
are uncorrelated, whereas the derived variables in redundancy analysis are
correlated but have vectors of loadings that are orthogonal. The presence
of correlation in redundancy analysis may be regarded as a drawback, and
van den Wollenberg (1977) suggests using the first few derived variables
from redundancy analysis as input to CCA. This will then produce uncor-
related canonical variates whose variances are unlikely to be small. The
possibility of using the first few PCs from each set as input to CCA was
mentioned above, as was the disadvantage that excluded low-variance PCs
might contain strong inter-set correlations. As low-variance directions are
unlikely to be of interest in redundancy analysis, using the first few PCs
as input seems to be far safer in this case and is another option.

It is of interest to note the similarity between equations (9.3.2), (9.3.3)
and the eigenequation whose solution gives the loadings ak2 on xp2 for
canonical correlation analysis, namely

SxyS−1
yy Syxak2 = lkSxxak2, (9.3.4)

using the present notation. Wang and Zwiers (2001) solve a version of
(9.3.2) with covariance matrices replacing correlation matrices, by first
solving the eigenequation

SyxS−1
xx Sxybk2 = lkbk2, (9.3.5)

and then setting ak2 = l
− 1

2
k S−1

xx Sxybk2. This is equivalent to a PCA of
the covariance matrix SyxS−1

xx Sxy of the predicted values of the response
variables obtained from a multivariate regression on the predictor variables.
Multivariate regression is discussed further in Section 9.3.4.

Van den Wollenberg (1977) notes that PCA is a special case of redun-
dancy analysis (and principal predictors, but not CCA) when xp1 and xp2

are the same (see also Property A6 in Chapter 2). Muller (1981) shows
that redundancy analysis is equivalent to orthogonally rotating the results
of a multivariate regression analysis. DeSarbo and Jedidi (1986) give a
number of other properties, together with modifications and extensions, of
redundancy analysis.

9.3.4 Other Techniques for Relating Two Sets of Variables

A number of other techniques for relating two sets of variables were noted
in Section 8.4. They include separate PCAs on the two groups of variables,
followed by the calculation of a regression equation to predict, again sepa-
rately, each PC from one set from the PCs in the other set. Another way of
using PCA is to concatenate the two sets of variables and find PCs for the
combined set of (p1 + p2) variables. This is sometimes known as combined
PCA, and is one of the methods that Bretherton et al. (1992) compare with
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maximum covariance analysis. The reasoning behind the analysis, apart
from being very easy to implement, is that two variables are more likely
to simultaneously have large loadings in the same high-variance combined
PC if they are strongly correlated. Thus, by looking at which variables
from different groups appear together in the same high-variance compo-
nents, some ideas can be gained about the relationships between the two
groups. This is true to some extent, but the combined components do not
directly quantify the precise form of the relationships, nor their strength,
in the way that CCA or maximum covariance analysis does. One other
PCA-based technique considered by Bretherton et al. (1992) is to look at
correlations between PCs of one set of variables and the variables them-
selves from the other set. This takes us back to a collection of simple PC
regressions.

Another technique from Section 8.4, partial least squares (PLS), can be
generalized to the case of more than one response variable (Wold, 1984).
Like single-response PLS, multiresponse PLS is often defined in terms of an
algorithm, but Frank and Friedman (1993) give an interpretation showing
that multiresponse PLS successively maximizes the covariance between lin-
ear functions of the two sets of variables. It is therefore similar to maximum
covariance analysis, which was discussed in Section 9.3.3, but differs from
it in not treating response and predictor variables symmetrically. Whereas
in maximum covariance analysis the vectors of coefficients of the linear
functions are orthogonal within each set of variables, no such restriction
is placed on the response variables in multiresponse PLS. For the predic-
tor variables there is a restriction, but it is that the linear functions are
uncorrelated, rather than having orthogonal vectors of coefficients.

The standard technique when one set of variables consists of responses
and the other is made up of predictors is multivariate linear regression.
Equation (8.1.1) generalizes to

Y = XB + E, (9.3.6)

where Y, X are (n×p1), (n×p2) matrices of n observations on p1 response
variables and p2 predictor variables, respectively, B is a (p2×p1) matrix of
unknown parameters, and E is an (n × p1) matrix of errors. The number
of parameters to be estimated is at least p1p2 (as well as those in B, there
are usually some associated with the covariance matrix of the error term).
Various attempts have been made to reduce this number by simplifying the
model. The reduced rank models of Davies and Tso (1982) form a general
class of this type. In these models B is assumed to be of rank m < p2. There
is more than one way to estimate the unknown parameters in a reduced
rank regression model. That recommended by Davies and Tso (1982) first
finds the least squares estimate B̂ of B in (9.3.6) and uses this to obtain
predicted values Ŷ = XB̂ for Y. Next a singular value decomposition (with
its usual meaning) is done on Ŷ and B is then projected onto the subspace
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spanned by the first m terms in the SVD. This is equivalent to projecting
the rows of Ŷ onto the subspace spanned by the first m PCs of Ŷ.

Two further equivalences are noted by ter Braak and Looman (1994),
namely that the reduced rank regression model estimated in this way is
equivalent to redundancy analysis, and also to PCA of instrumental vari-
ables, as introduced by Rao (1964) (see Section 14.3). Van den Brink and
ter Braak (1999) also refer to redundancy analysis as ‘PCA in which sample
scores are constrained to be linear combinations of the explanatory [pre-
dictor] variables.’ They extend redundancy analysis to the case where the
variables in X and Y are observed over several time periods and the model
changes with time. This extension is discussed further in Section 12.4.2.
Because of the link with PCA, it is possible to construct biplots (see Sec-
tion 5.3) of the regression coefficients in the reduced rank regression model
(ter Braak and Looman, 1994).

Aldrin (2000) proposes a modification of reduced rank regression, called
softly shrunk reduced-rank regression (SSRRR), in which the terms in the
SVD of Ŷ are given varying non-zero weights, rather than the all-or-nothing
inclusion/exclusion of terms in reduced rank regression. Aldrin (2000) also
suggests that a subset of PCs of the predictor variables may be used as
input for a reduced rank regression or SSRRR instead of the predictor
variables themselves. In a simulation study comparing least squares with a
number of biased multivariate regression procedures, SSRRR with PCs as
input seems to be the best method overall.

Reduced rank regression models essentially assume a latent structure
underlying the predictor variables, so that their dimensionality can be re-
duced below p2. Burnham et al. (1999) describe so-called latent variable
multivariate regression models, which take the idea of reduced rank regres-
sion further by postulating overlapping latent structures underlying both
the response and predictor variables. The model can be written

X = ZXΓX + EX

Y = ZY ΓY + EY ,

where ZX , ZY are of dimension (n × m) and contain values of m latent
variables for the n observations; ΓX , ΓY are (m × p1), (m × p2) matrices
of unknown parameters, and EX , EY are matrices of errors.

To fit this model, Burnham et al. (1999) suggest carrying out PCAs
on the data in X, on that in Y, and on the combined (n × (p1 + p2))
matrix containing both response and predictor variables. In each PCA, a
judgment is made of how many PCs seem to represent common underlying
structure and how many represent error or noise. Suppose that the numbers
of non-noisy PCs in the three analyses are mX , mY and mC , with obvious
notation. The implication is then that the overlapping part of the latent
structures has dimension mX + mY − mC . If mX = mY = mC there is
complete overlap, whereas if mC = mX + mY there is none. This model
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is very similar to that of (9.3.1). The difference is that the separation
into latent variables common to both sets of measured variables and those
specific to one set of measured variables is explicit in (9.3.1). Burnham
et al. (1999) successfully fit their model to a number of examples from
chemometrics.



10
Outlier Detection, Influential
Observations, Stability, Sensitivity,
and Robust Estimation of Principal
Components

This chapter deals with four related topics, which are all concerned with
situations where some of the observations may, in some way, be atypical of
the bulk of the data.

First, we discuss the problem of detecting outliers in a set of data. Out-
liers are generally viewed as observations that are a long way from, or
inconsistent with, the remainder of the data. Such observations can, but
need not, have a drastic and disproportionate effect on the results of var-
ious analyses of a data set. Numerous methods have been suggested for
detecting outliers (see, for example, Barnett and Lewis, 1994; Hawkins,
1980); some of the methods use PCs, and these methods are described in
Section 10.1.

The techniques described in Section 10.1 are useful regardless of the type
of statistical analysis to be performed, but in Sections 10.2–10.4 we look
specifically at the case where a PCA is being done. Depending on their
position, outlying observations may or may not have a large effect on the
results of the analysis. It is of interest to determine which observations do
indeed have a large effect. Such observations are called influential observa-
tions and are discussed in Section 10.2. Leaving out an observation is one
type of perturbation to a data set. Sensitivity and stability of PCA with
respect to other types of perturbation is the subject of Section 10.3.

Given that certain observations are outliers or influential, it may be
desirable to adapt the analysis to remove or diminish the effects of such
observations; that is, the analysis is made robust. Robust analyses have
been developed in many branches of statistics (see, for example, Huber
(1981); Hampel et al. (1986) for some of the theoretical background, and
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Hoaglin et al. (1983) for a more readable approach), and robustness with
respect to distributional assumptions, as well as with respect to outlying or
influential observations, may be of interest. A number of techniques have
been suggested for robustly estimating PCs, and these are discussed in the
fourth section of this chapter; the final section presents a few concluding
remarks.

10.1 Detection of Outliers Using Principal
Components

There is no formal, widely accepted, definition of what is meant by an ‘out-
lier.’ The books on the subject by Barnett and Lewis (1994) and Hawkins
(1980) both rely on informal, intuitive definitions, namely that outliers are
observations that are in some way different from, or inconsistent with, the
remainder of a data set. For p-variate data, this definition implies that out-
liers are a long way from the rest of the observations in the p-dimensional
space defined by the variables. Numerous procedures have been suggested
for detecting outliers with respect to a single variable, and many of these
are reviewed by Barnett and Lewis (1994) and Hawkins (1980). The lit-
erature on multivariate outliers is less extensive, with each of these two
books containing only one chapter (comprising less than 15% of their total
content) on the subject. Several approaches to the detection of multivariate
outliers use PCs, and these will now be discussed in some detail. As well as
the methods described in this section, which use PCs in fairly direct ways
to identify potential outliers, techniques for robustly estimating PCs (see
Section 10.4) may also be used to detect outlying observations.

A major problem in detecting multivariate outliers is that an observation
that is not extreme on any of the original variables can still be an outlier,
because it does not conform with the correlation structure of the remainder
of the data. It is impossible to detect such outliers by looking solely at the
original variables one at a time. As a simple example, suppose that heights
and weights are measured for a sample of healthy children of various ages
between 5 and 15 years old. Then an ‘observation’ with height and weight
of 175 cm (70 in) and 25 kg (55 lb), respectively, is not particularly extreme
on either the height or weight variables individually, as 175 cm is a plausible
height for the older children and 25 kg is a plausible weight for the youngest
children. However, the combination (175 cm, 25 kg) is virtually impossible,
and will be a clear outlier because it combines a large height with a small
weight, thus violating the general pattern of a positive correlation between
the two variables. Such an outlier is apparent on a plot of the two variables
(see Figure 10.1) but, if the number of variables p is large, it is quite possible
that some outliers will not be apparent on any of the 1

2p(p−1) plots of two
variables at a time. Thus, for large p we need to consider the possibility
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Figure 10.1. Example of an outlier that is not detectable by looking at one variable
at a time.

that outliers will manifest themselves in directions other than those which
are detectable from simple plots of pairs of the original variables.

Outliers can be of many types, which complicates any search for direc-
tions in which outliers occur. However, there are good reasons for looking
at the directions defined by either the first few or the last few PCs in order
to detect outliers. The first few and last few PCs will detect different types
of outlier, and in general the last few are more likely to provide additional
information that is not available in plots of the original variables.

As discussed in Gnanadesikan and Kettenring (1972), the outliers that
are detectable from a plot of the first few PCs are those which inflate
variances and covariances. If an outlier is the cause of a large increase
in one or more of the variances of the original variables, then it must be
extreme on those variables and thus detectable by looking at plots of single
variables. Similarly, an observation that inflates a covariance or correlation
between two variables will usually be clearly visible on a plot of these two
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variables, and will often be extreme with respect to one or both of these
variables looked at individually.

By contrast, the last few PCs may detect outliers that are not apparent
with respect to the original variables. A strong correlation structure be-
tween variables implies that there are linear functions of the variables with
small variances compared to the variances of the original variables. In the
simple height-and-weight example described above, height and weight have
a strong positive correlation, so it is possible to write

x2 = βx1 + ε,

where x1, x2 are height and weight measured about their sample means,
β is a positive constant, and ε is a random variable with a much smaller
variance than x1 or x2. Therefore the linear function

x2 − βx1

has a small variance, and the last (in this case the second) PC in an analysis
of x1, x2 has a similar form, namely a22x2 − a12x1, where a12, a22 > 0.
Calculation of the value of this second PC for each observation will detect
observations such as (175 cm, 25 kg) that are outliers with respect to the
correlation structure of the data, though not necessarily with respect to
individual variables. Figure 10.2 shows a plot of the data from Figure 10.1,
with respect to the PCs derived from the correlation matrix. The outlying
observation is ‘average’ for the first PC, but very extreme for the second.

This argument generalizes readily when the number of variables p is
greater than two; by examining the values of the last few PCs, we may be
able to detect observations that violate the correlation structure imposed
by the bulk of the data, but that are not necessarily aberrant with respect
to individual variables. Of course, it is possible that, if the sample size is
relatively small or if a few observations are sufficiently different from the
rest, then the outlier(s) may so strongly influence the last few PCs that
these PCs now reflect mainly the position of the outlier(s) rather than the
structure of the majority of the data. One way of avoiding this masking
or camouflage of outliers is to compute PCs leaving out one (or more)
observations and then calculate for the deleted observations the values of
the last PCs based on the reduced data set. To do this for each observation
is a heavy computational burden, but it might be worthwhile in small
samples where such camouflaging is, in any case, more likely to occur.
Alternatively, if PCs are estimated robustly (see Section 10.4), then the
influence of outliers on the last few PCs should be reduced and it may be
unnecessary to repeat the analysis with each observation deleted.

A series of scatterplots of pairs of the first few and last few PCs may
be useful in identifying possible outliers. One way of presentating each PC
separately is as a set of parallel boxplots. These have been suggested as a
means of deciding how many PCs to retain (see Section 6.1.5), but they
may also be useful for flagging potential outliers (Besse, 1994).
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Figure 10.2. The data set of Figure 10.1, plotted with respect to its PCs.

As well as simple plots of observations with respect to PCs, it is possible
to set up more formal tests for outliers based on PCs, assuming that the PCs
are normally distributed. Strictly, this assumes that x has a multivariate
normal distribution but, because the PCs are linear functions of p random
variables, an appeal to the Central Limit Theorem may justify approximate
normality for the PCs even when the original variables are not normal. A
battery of tests is then available for each individual PC, namely those for
testing for the presence of outliers in a sample of univariate normal data
(see Hawkins (1980, Chapter 3) and Barnett and Lewis (1994, Chapter 6)).
The latter reference describes 47 tests for univariate normal data, plus 23
for univariate gamma distributions and 17 for other distributions. Other
tests, which combine information from several PCs rather than examining
one at a time, are described by Gnanadesikan and Kettenring (1972) and
Hawkins (1974), and some of these will now be discussed. In particular, we
define four statistics, which are denoted d2

1i, d2
2i, d2

3i and d4i.
The last few PCs are likely to be more useful than the first few in de-

tecting outliers that are not apparent from the original variables, so one
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possible test statistic, d2
1i, suggested by Rao (1964) and discussed further

by Gnanadesikan and Kettenring (1972), is the sum of squares of the values
of the last q (< p) PCs, that is

d2
1i =

p∑

k=p−q+1

z2
ik, (10.1.1)

where zik is the value of the kth PC for the ith observation. The statis-
tics d2

1i, i = 1, 2, . . . , n should, approximately, be independent observations
from a gamma distribution if there are no outliers, so that a gamma prob-
ability plot with suitably estimated shape parameter may expose outliers
(Gnanadesikan and Kettenring, 1972).

A possible criticism of the statistic d2
1i is that it still gives insufficient

weight to the last few PCs, especially if q, the number of PCs contributing to
d2
1i, is close to p. Because the PCs have decreasing variance with increasing

index, the values of z2
ik will typically become smaller as k increases, and

d2
1i therefore implicitly gives the PCs decreasing weight as k increases. This

effect can be severe if some of the PCs have very small variances, and this
is unsatisfactory as it is precisely the low-variance PCs which may be most
effective in determining the presence of certain types of outlier.

An alternative is to give the components equal weight, and this can be
achieved by replacing zik by z∗ik = zik/l

1/2
k , where lk is the variance of the

kth sample PC. In this case the sample variances of the z∗ik will all be equal
to unity. Hawkins (1980, Section 8.2) justifies this particular renormaliza-
tion of the PCs by noting that the renormalized PCs, in reverse order,
are the uncorrelated linear functions ˜̃a′

px, ˜̃a′
p−1x, . . . ,

˜̃a′
1x of x which, when

constrained to have unit variances, have coefficients ˜̃ajk that successively
maximize the criterion

∑p
j=1

˜̃a2
jk, for k = p, (p− 1), . . . , 1. Maximization of

this criterion is desirable because, given the fixed-variance property, linear
functions that have large absolute values for their coefficients are likely to be
more sensitive to outliers than those with small coefficients (Hawkins,1980,
Section 8.2). It should be noted that when q = p, the statistic

d2
2i =

p∑

k=p−q+1

z2
ik

lk
(10.1.2)

becomes
∑p

k=1 z2
ik/lk, which is simply the (squared) Mahalanobis distance

D2
i between the ith observation and the sample mean, defined as D2

i =
(xi − x̄)′S−1(xi − x̄). This follows because S = AL2A′ where, as usual,
L2 is the diagonal matrix whose kth diagonal element is lk, and A is the
matrix whose (j, k)th element is ajk. Furthermore,

S−1 = AL−2A′

x′
i = z′iA

′

x̄′ = z̄′A′,
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so D2
i is

(xi − x̄)′S−1(xi − x̄) = (zi − z̄)′A′AL−2A′A(zi − z̄)

= (zi − z̄)′L−2(zi − z̄)

=
p∑

k=1

z2
ik

lk
,

where zik is the kth PC score for the ith observation, measured about the
mean of the scores for all observations. Flury (1997, p. 609-610) suggests
that a plot of (D2

i − d2
2i) versus d2

2i will reveal observations that are not
well represented by the first (p − q) PCs. Such observations are potential
outliers.

Gnanadesikan and Kettenring (1972) consider also the statistic

d2
3i =

p∑

k=1

lkz2
ik, (10.1.3)

which emphasizes observations that have a large effect on the first few
PCs, and is equivalent to (xi − x̄)′S(xi − x̄). As stated earlier, the first
few PCs are useful in detecting some types of outlier, and d2

3i emphasizes
such outliers. However, we repeat that such outliers are often detectable
from plots of the original variables, unlike the outliers exposed by the last
few PCs. Various types of outlier, including some that are extreme with
respect to both the first few and and the last few PCs, are illustrated in
the examples given later in this section.

Hawkins (1974) prefers to use d2
2i with q < p rather than q = p (again, in

order to emphasize the low-variance PCs), and he considers how to choose
an appropriate value for q. This is a rather different problem from that
considered in Section 6.1, as we now wish to decide how many of the PCs,
starting with the last rather than starting with the first, need to be retained.
Hawkins (1974) suggests three possibilities for choosing q, including the
‘opposite’ of Kaiser’s rule (Section 6.1.2)—that is, the retention of PCs with
eigenvalues less than unity. In an example, he selects q as a compromise
between values suggested by his three rules.

Hawkins (1974) also shows that outliers can be successfully detected
using the statistic

d4i = max
p−q+1≤k≤p

|z∗ik|, (10.1.4)

and similar methods for choosing q are again suggested. Fellegi (1975),
too, is enthusiastic about the performance of the statistic d4i. Hawkins
and Fatti (1984) claim that outlier detection is improved still further by
a series of transformations, including varimax rotation (see Sections 7.2
and 11.1), before computing d4i. The test statistic for the ith observation
then becomes the maximum absolute value of the last q renormalized and
rotated PCs evaluated for that observation.
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Note that d2
1i, computed separately for several populations, is also used

in a form of discriminant analysis (SIMCA) by Wold (1976) (see Sec-
tion 9.1). Mertens et al. (1994) use this relationship to suggest modifications
to SIMCA. They investigate variants in which d2

1i is replaced by d2
2i, d2

3i

or d4i as a measure of the discrepancy between a new observation and a
group. In an example they find that d2

2i, but not d2
3i or d4i, improves the

cross-validated misclassification rate compared to that for d2
1i.

The exact distributions for d2
1i, d2

2i, d2
3i and d4i can be deduced if we as-

sume that the observations are from a multivariate normal distribution with
mean µ and covariance matrix Σ, where µ, Σ are both known (see Hawkins
(1980, p. 113) for results for d2

2i, d4i). Both d2
3i and d2

2i when q = p, as well
as d2

1i, have (approximate) gamma distributions if no outliers are present
and if normality can be (approximately) assumed (Gnanadesikan and Ket-
tenring, 1972), so that gamma probability plots of d2

2i (with q = p) and d2
3i

can again be used to look for outliers. However, in practice µ, Σ are un-
known, and the data will often not have a multivariate normal distribution,
so that any distributional results derived under the restrictive assumptions
can only be approximations. Jackson (1991, Section 2.7.2) gives a fairly
complicated function of d2

1i that has, approximately, a standard normal
distribution when no outliers are present.

In order to be satisfactory, such approximations to the distributions of
d2
1i, d2

2i, d2
3i, d4i often need not be particularly accurate. Although there are

exceptions, such as detecting possible unusual patient behaviour in safety
data from clinical trials (see Penny and Jolliffe, 2001), outlier detection is
frequently concerned with finding observations that are blatantly different
from the rest, corresponding to very small significance levels for the test
statistics. An observation that is ‘barely significant at 5%’ is typically not
of interest, so that there is no great incentive to compute significance levels
very accurately. The outliers that we wish to detect should ‘stick out like
a sore thumb’ provided we find the right direction in which to view the
data; the problem in multivariate outlier detection is to find appropriate
directions. If, on the other hand, identification of less clear-cut outliers
is important and multivariate normality cannot be assumed, Dunn and
Duncan (2000) propose a procedure, in the context of evaluating habitat
suitability, for assessing ‘significance’ based on the empirical distribution of
their test statistics. The statistics they use are individual terms from d2

2i.
PCs can be used to detect outliers in any multivariate data set, regardless

of the subsequent analysis which is envisaged for that data set. For par-
ticular types of data or analysis, other considerations come into play. For
multiple regression, Hocking (1984) suggests that plots of PCs derived from
(p + 1) variables consisting of the p predictor variables and the dependent
variable, as used in latent root regression (see Section 8.4), tend to reveal
outliers together with observations that are highly influential (Section 10.2)
for the regression equation. Plots of PCs derived from the predictor vari-
ables only also tend to reveal influential observations. Hocking’s (1984)
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suggestions are illustrated with an example, but no indication is given of
whether the first few or last few PCs are more likely to be useful—his ex-
ample has only three predictor variables, so it is easy to look at all possible
plots. Mason and Gunst (1985) refer to outliers among the predictor vari-
ables as leverage points. They recommend constructing scatter plots of the
first few PCs normalized to have unit variance, and claim that such plots
are often effective in detecting leverage points that cluster and leverage
points that are extreme in two or more dimensions. In the case of multi-
variate regression, another possibility for detecting outliers (Gnanadesikan
and Kettenring, 1972) is to look at the PCs of the (multivariate) residuals
from the regression analysis.

Peña and Yohai (1999) propose a PCA on a matrix of regression diagnos-
tics that is also useful in detecting outliers in multiple regression. Suppose
that a sample of n observations is available for the analysis. Then an (n×n)
matrix can be calculated whose (h, i)th element is the difference ŷh − ŷh(i)

between the predicted value of the dependent variable y for the hth obser-
vation when all n observations are used in the regression, and when (n−1)
observations are used with the ith observation omitted. Peña and Yohai
(1999) refer to this as a sensitivity matrix and seek a unit-length vector
such that the sum of squared lengths of the projections of the rows of the
matrix onto that vector is maximized. This leads to the first principal com-
ponent of the sensitivity matrix, and subsequent components can be found
in the usual way. Peña and Yohai (1999) call these components principal
sensitivity components and show that they also represent directions that
maximize standardized changes to the vector of the regression coefficient.
The definition and properties of principal sensitivity components mean that
high-leverage outliers are likely to appear as extremes on at least one of
the first few components.

Lu et al. (1997) also advocate the use of the PCs of a matrix of regres-
sion diagnostics. In their case the matrix is what they call the standardized
influence matrix (SIM). If a regression equation has p unknown parame-
ters and n observations with which to estimate them, a (p × n) influence
matrix can be formed whose (j, i)th element is a standardized version of
the theoretical influence function (see Section 10.2) for the jth parame-
ter evaluated for the ith observation. Leaving aside the technical details,
the so-called complement of the standardized influence matrix (SIMc) can
be viewed as a covariance matrix for the ‘data’ in the influence matrix.
Lu et al. (1997) show that finding the PCs of these standardized data,
and hence the eigenvalues and eigenvectors of SIMc, can identify outliers
and influential points and give insights into the structure of that influence.
Sample versions of SIM and SIMc are given, as are illustrations of their
use.

Another specialized field in which the use of PCs has been proposed in
order to detect outlying observations is that of statistical process control,
which is the subject of Section 13.7. A different way of using PCs to detect
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outliers is proposed by Gabriel and Zamir (1979). This proposal uses the
idea of weighted PCs, and will be discussed further in Section 14.2.1.

Projection pursuit was introduced in Section 9.2.2 as a family of tech-
niques for finding clusters, but it can equally well be used to look for
outliers. PCA is not specifically designed to find dimensions which best
display either clusters or outliers. As with clusters, optimizing a criterion
other than variance can give better low-dimensional displays in which to
identify outliers. As noted in Section 9.2.2, projection pursuit techniques
find directions in p-dimensional space that optimize some index of ‘interest-
ingness,’ where ‘uninteresting’ corresponds to multivariate normality and
‘interesting’ implies some sort of ‘structure,’ such as clusters or outliers.

Some indices are good at finding clusters, whereas others are better at
detecting outliers (see Friedman (1987); Huber (1985); Jones and Sibson
(1987)). Sometimes the superiority in finding outliers has been observed
empirically; in other cases the criterion to be optimized has been chosen
with outlier detection specifically in mind. For example, if outliers rather
than clusters are of interest, Caussinus and Ruiz (1990) suggest replacing
the quantity in equation (9.2.1) by

Γ̂ =
∑n

i=1 K[‖xi − x∗‖2
S−1 ](xi − x∗)(xi − x∗)′

∑n
i=1 K[‖xi − x∗‖2

S−1 ]
, (10.1.5)

where x∗ is a robust estimate of the centre of the xi such as a multivariate
median, and K[.], S are defined as in (9.2.1). Directions given by the first
few eigenvectors of SΓ̂

−1
are used to identify outliers. Further theoretical

details and examples of the technique are given by Caussinus and Ruiz-
Gazen (1993, 1995). A mixture model is assumed (see Section 9.2.3) in
which one element in the mixture corresponds to the bulk of the data, and
the other elements have small probabilities of occurrence and correspond
to different types of outliers. In Caussinus et al. (2001) it is assumed that
if there are q types of outlier, then q directions are likely needed to detect
them. The bulk of the data is assumed to have a spherical distribution, so
there is no single (q+1)th direction corresponding to these data. The ques-
tion of an appropriate choice for q needs to be considered. Using asymptotic
results for the null (one-component mixture) distribution of a matrix which
is closely related to SΓ̂

−1
, Caussinus et al. (2001) use simulation to derive

tables of critical values for its eigenvalues. These tables can then be used
to assess how many eigenvalues are ‘significant,’ and hence decide on an
appropriate value for q. The use of the tables is illustrated by examples.

The choice of the value of β is discussed by Caussinus and Ruiz-Gazen
(1995) and values in the range 0.1 to 0.5 are recommended. Caussinus
et al. (2001) use somewhat smaller values in constructing their tables,
which are valid for values of β in the range 0.01 to 0.1. Penny and Jol-
liffe (2001) include Caussinus and Ruiz-Gazen’s technique in a comparative
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study of methods for detecting multivariate outliers. It did well compared to
other methods in some circumstances, particularly when there are multiple
outliers and p is not too large.

Before turning to examples, recall that an example in which outliers
are detected using PCs in a rather different way was given in Section 5.6.
In that example, Andrews’ curves (Andrews, 1972) were computed using
PCs and some of the observations stood out as different from the others
when plotted as curves. Further examination of these different observations
showed that they were indeed ‘outlying’ in some respects, compared to the
remaining observations.

10.1.1 Examples

In this section one example will be discussed in some detail, while three
others will be described more briefly.

Anatomical Measurements

A set of seven anatomical measurements on 28 students was discussed in
Section 5.1.1 and it was found that on a plot of the first two PCs (Fig-
ures 1.3, 5.1) there was an extreme observation on the second PC. When
the measurements of this individual were examined in detail, it was found
that he had an anomalously small head circumference. Whereas the other
27 students all had head girths in the narrow range 21–24 cm, this student
(no. 16) had a measurement of 19 cm. It is impossible to check whether
this was an incorrect measurement or whether student 16 indeed had an
unusually small head (his other measurements were close to average), but
it is clear that this observation would be regarded as an ‘outlier’ according
to most definitions of the term.

This particular outlier is detected on the second PC, and it was sug-
gested above that any outliers detected by high-variance PCs are usually
detectable on examination of individual variables; this is indeed the case
here. Another point concerning this observation is that it is so extreme on
the second PC that it may be suspected that it alone is largely responsible
for the direction of this PC. This question will be investigated at the end
of Section 10.2, which deals with influential observations.

Figure 1.3 indicates one other possible outlier at the extreme left of
the diagram. This turns out to be the largest student in the class—190
cm (6 ft 3 in) tall, with all measurements except head girth at least as
large as all other 27 students. There is no suspicion here of any incorrect
measurements.

Turning now to the last few PCs, we hope to detect any observations
which are ‘outliers’ with respect to the correlation structure of the data.
Figure 10.3 gives a plot of the scores of the observations for the last two
PCs, and Table 10.1 gives the values of d2

1i, d2
2i and d4i, defined in equa-

tions (10.1.1), (10.1.2) and (10.1.4), respectively, for the six ‘most extreme’
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Table 10.1. Anatomical measurements: values of d2
1i, d2

2i, d4i for the most extreme
observations.

Number of PCs used, q
q = 1 q = 2

d2
1i Obs. No. d2

1i Obs. No. d2
2i Obs. No. d4i Obs. No.

0.81 15 1.00 7 7.71 15 2.64 15
0.47 1 0.96 11 7.69 7 2.59 11
0.44 7 0.91 15 6.70 11 2.01 1
0.16 16 0.48 1 4.11 1 1.97 7
0.15 4 0.48 23 3.52 23 1.58 23
0.14 2 0.36 12 2.62 12 1.49 27

q = 3
d2
1i Obs. No. d2

2i Obs. No. d4i Obs. No.
1.55 20 9.03 20 2.64 15
1.37 5 7.82 15 2.59 5
1.06 11 7.70 5 2.59 11
1.00 7 7.69 7 2.53 20
0.96 1 7.23 11 2.01 1
0.93 15 6.71 1 1.97 7

observations on each statistic, where the number of PCs included, q, is 1, 2
or 3. The observations that correspond to the most extreme values of d2

1i,
d2
2i and d4i are identified in Table 10.1, and also on Figure 10.3.
Note that when q = 1 the observations have the same ordering for all

three statistics, so only the values of d2
1i are given in Table 10.1. When q

is increased to 2 or 3, the six most extreme observations are the same (in
a slightly different order) for both d2

1i and d2
2i. With the exception of the

sixth most extreme observation for q = 2, the same observations are also
identified by d4i. Although the sets of the six most extreme observations
are virtually the same for d2

1i, d2
2i and d4i, there are some differences in

ordering. The most notable example is observation 15 which, for q = 3, is
most extreme for d4i but only sixth most extreme for d2

1i.
Observations 1, 7 and 15 are extreme on all seven statistics given in Ta-

ble 10.1, due to large contributions from the final PC alone for observation
15, the last two PCs for observation 7, and the fifth and seventh PCs for
observation 1. Observations 11 and 20, which are not extreme for the final
PC, appear in the columns for q = 2 and 3 because of extreme behaviour
on the sixth PC for observation 11, and on both the fifth and sixth PCs
for observation 20. Observation 16, which was discussed earlier as a clear
outlier on the second PC, appears in the list for q = 1, but is not notably
extreme for any of the last three PCs.
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Figure 10.3. Anatomical measurements: plot of observations with respect to the
last two PCs.

Most of the observations identified in Table 10.1 are near the edge of the
plot given in Figure 10.3. Observations 2, 4, 5, 12, 16, 20, 23 and 27 are
close to the main body of the data, but observations 7, 11, 15, and to a
lesser extent 1, are sufficiently far from the remaining data to be worthy of
further consideration. To roughly judge their ‘significance,’ recall that, if no
outliers are present and the data are approximately multivariate normal,
then the values of d4i, are (approximately) absolute values of a normal
random variable with zero mean and unit variance. The quantities given in
the relevant columns of Table 10.1 are therefore the six largest among 28q
such variables, and none of them look particularly extreme. Nevertheless,
it is of interest to investigate the reasons for the outlying positions of some
of the observations, and to do so it is necessary to examine the coefficients
of the last few PCs. The final PC, accounting for only 1.7% of the total
variation, is largely a contrast between chest and hand measurements with
positive coefficients 0.55, 0.51, and waist and height measurements, which
have negative coefficients −0.55, −0.32. Looking at observation 15, we find



10.1. Detection of Outliers Using Principal Components 245

that this (male) student has the equal largest chest measurement, but that
only 3 of the other 16 male students are shorter than him, and only two
have a smaller waist measurement—perhaps he was a body builder? Similar
analyses can be done for other observations in Table 10.1. For example,
observation 20 is extreme on the fifth PC. This PC, which accounts for
2.7% of the total variation, is mainly a contrast between height and forearm
length with coefficients 0.67, −0.52, respectively. Observation 20 is (jointly
with one other) the shortest student of the 28, but only one of the other
ten women has a larger forearm measurement. Thus, observations 15 and
20, and other observations indicated as extreme by the last few PCs, are
students for whom some aspects of their physical measurements contradict
the general positive correlation among all seven measurements.

Household Formation Data

These data were described in Section 8.7.2 and are discussed in detail by
Garnham (1979) and Bassett et al. (1980). Section 8.7.2 gives the results of
a PC regression of average annual total income per adult on 28 other de-
mographic variables for 168 local government areas in England and Wales.
Garnham (1979) also examined plots of the last few and first few PCs of
the 28 predictor variables in an attempt to detect outliers. Two such plots,
for the first two and last two PCs, are reproduced in Figures 10.4 and 10.5.
An interesting aspect of these figures is that the most extreme observations
with respect to the last two PCs, namely observations 54, 67, 41 (and 47,
53) are also among the most extreme with respect to the first two PCs.
Some of these observations are, in addition, in outlying positions on plots
of other low-variance PCs. The most blatant case is observation 54, which
is among the few most extreme observations on PCs 24 to 28 inclusive, and
also on PC1. This observation is ‘Kensington and Chelsea,’ which must be
an outlier with respect to several variables individually, as well as being
different in correlation structure from most of the remaining observations.

In addition to plotting the data with respect to the last few and first few
PCs, Garnham (1979) examined the statistics d2

1i for q = 1, 2, . . . , 8 using
gamma plots, and also looked at normal probability plots of the values of
various PCs. As a combined result of these analyses, he identified six likely
outliers, the five mentioned above together with observation 126, which is
moderately extreme according to several analyses.

The PC regression was then repeated without these six observations. The
results of the regression were noticeably changed, and were better in two
respects than those derived from all the observations. The number of PCs
which it was necessary to retain in the regression was decreased, and the
prediction accuracy was improved, with the standard error of prediction
reduced to 77.3% of that for the full data set.
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Figure 10.4. Household formation data: plot of the observations with respect to
the first two PCs.
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Figure 10.5. Household formation data: plot of the observations with respect to
the last two PCs.
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Trace Element Concentrations

These data, which are discussed by Hawkins and Fatti (1984), consist of
measurements of the log concentrations of 12 trace elements in 75 rock-chip
samples. In order to detect outliers, Hawkins and Fatti simply look at the
values for each observation on each variable, on each PC, and on trans-
formed and rotated PCs. To decide whether an observation is an outlier, a
cut-off is defined assuming normality and using a Bonferroni bound with
significance level 0.01. On the original variables, only two observations sat-
isfy this criterion for outliers, but the number of outliers increases to seven
if (unrotated) PCs are used. Six of these seven outlying observations are
extreme on one of the last four PCs, and each of these low-variance PCs
accounts for less than 1% of the total variation. The PCs are thus again
detecting observations whose correlation structure differs from the bulk of
the data, rather than those that are extreme on individual variables. In-
deed, one of the ‘outliers’ on the original variables is not detected by the
PCs.

When transformed and rotated PCs are considered, nine observations are
declared to be outliers, including all those detected by the original variables
and by the unrotated PCs. There is a suggestion, then, that transfomation
and rotation of the PCs as advocated by Hawkins and Fatti (1984) provides
an even more powerful tool for detecting outliers.

Epidemiological Data

Bartkowiak et al. (1988) use PCs in a number of ways to search for potential
outliers in a large epidemiological data set consisting of 2433 observations
on 7 variables. They examine the first two and last two PCs from both
correlation and covariance matrices. In addition, some of the variables are
transformed to have distributions closer to normality, and the PCAs are re-
peated after transformation. The researchers report that (unlike Garnham’s
(1979) analysis of the household formation data) the potential outliers
found by the various analyses overlap only slightly. Different analyses are
capable of identifying different potential outliers.

10.2 Influential Observations in a Principal
Component Analysis

Outliers are generally thought of as observations that in some way are atyp-
ical of a data set but, depending on the analysis done, removal of an outlier
may or may not have a substantial effect on the results of that analysis.
Observations whose removal does have a large effect are called ‘influential,’
and, whereas most influential observations are outliers in some respect, out-
liers need not be at all influential. Also, whether or not an observation is
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influential depends on the analysis being done on the data set; observations
that are influential for one type of analysis or parameter of interest may
not be so for a different analysis or parameter. This behaviour is evident in
PCA where observations that are influential for the coefficients of a PC are
not necessarily influential for the variance of that PC, and vice versa. We
have seen in the Section 10.1 that PCA can be used to search for influen-
tial observations in a regression analysis. The present section concentrates
on looking for observations that are influential for some aspect of a PCA,
either the variances, the coefficients (loadings) or the PCs themselves (the
PC scores).

The intuitive definition of the influence of an observation on a statistic,
such as the kth eigenvalue lk or eigenvector ak of a sample covariance ma-
trix, is simply the change in lk or ak, perhaps renormalized in some way,
when the observation is deleted from the sample. For example, the sample
influence function for the ith observation on a quantity θ̂, which might be
lk or ak, is defined by Critchley (1985) as (n − 1)(θ̂ − θ̂(i)), where n is the
sample size and θ̂(i) is the quantity corresponding to θ̂ when the ith obser-
vation is omitted from the sample. Gnanadesikan and Kettenring (1972)
suggested similar leave-one-out statistics for the correlation coefficient and
for
∑p

k=1 lk. The problems with influence defined in this manner are: there
may be no closed form for the influence function; the influence needs to
be computed afresh for each different sample. Various other definitions of
sample influence have been proposed (see, for example, Cook and Weisberg,
1982, Section 3.4; Critchley, 1985); some of these have closed-form expres-
sions for regression coefficients (Cook and Weisberg, 1982, Section 3.4), but
not for the statistics of interest in PCA. Alternatively, a theoretical influ-
ence function may be defined that can be expressed as a once-and-for-all
formula and, provided that sample sizes are not too small, can be used to
estimate the influence of actual and potential observations within a sample.

To define the theoretical influence function, suppose that y is a p-variate
random vector, and let y have cumulative distribution function (c.d.f.)
F (y). If θ is a vector of parameters of the distribution of y (such as λk, αk,
respectively, the kth eigenvalue and eigenvector of the covariance matrix of
y) then θ can be written as a functional of F . Now let F (y) be perturbed
to become

F̃ (y) = (1 − ε)F (y) + εδx,

where 0 < ε < 1 and δx is the c.d.f. of the random variable that takes the
value x with certainty; let θ̃ be the value of θ when F becomes F̃ . Then
the influence function I(x;θ) for θ evaluated at a value x of the random
variable is defined to be (Hampel, 1974)

I(x;θ) = lim
ε→0

θ̃ − θ

ε
.
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Alternatively, if θ̃ is expanded about θ as a power series in ε, that is

θ̃ = θ + c1ε + c2ε
2 + · · · , (10.2.1)

then the influence function is the coefficient c1 of ε in this expansion.
Some of the above may appear somewhat abstract, but in many situa-

tions an expression can be derived for I(x;θ) without too much difficulty
and, as we shall see in examples below, I(x;θ) can provide valuable
guidance about the influence of individual observations in samples.

The influence functions for λk and αk are given by Radhakrishnan and
Kshirsagar (1981) and by Critchley (1985) for the case of covariance matri-
ces. Critchley (1985) also discusses various sample versions of the influence
function and considers the coefficients of ε2, as well as ε, in the expansion
(10.2.1). Pack et al. (1988) give the main results for correlation matri-
ces, which are somewhat different in character from those for covariance
matrices. Calder (1986) can be consulted for further details.

For covariance matrices, the theoretical influence function for λk can be
written very simply as

I(x;λk) = z2
k − λk, (10.2.2)

where zk is the value of the kth PC for the given value of x, that is, zk is
the kth element of z, where z = A′x, using the same notation as in earlier
chapters. Thus, the influence of an observation on λk depends only on its
score on the kth component; an observation can be extreme on any or all
of the other components without affecting λk. This illustrates the point
made earlier that outlying observations need not necessarily be influential
for every part of an analysis.

For correlation matrices, I(x;λk) takes a different form, which can be
written most conveniently as

I(x;λk) =
p∑

i=1

p∑

j=1

i�=j

αkiαkjI(x; ρij), (10.2.3)

where αkj is the jth element of αk, I(x; ρij) = − 1
2ρij(x2

i +x2
j )+xixj , and xi,

xj are elements of x standardized to zero mean and unit variance. I(x; ρij)
is the influence function for the correlation coefficient ρij , which is given
by Devlin et al. (1975). The expression (10.2.3) is relatively simple, and it
shows that investigation of the influence of an observation on the correlation
coefficients is useful in determining the influence of the observation on λk.

There is a corresponding expression to (10.2.3) for covariance matrices
that expresses I(x;λk) in terms of influence functions for the elements of
the covariance matrix. However, when I(x;λk) in (10.2.3) is written in
terms of x, or the PCs, by substituting for I(x; ρij), it cannot be expressed
in as simple a form as in (10.2.2). In particular, I(x;λk) now depends on
zj , j = 1, 2, . . . , p, and not just on zk. This result reflects the fact that a
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change to a covariance matrix may change one of the eigenvalues without
affecting the others, but that this cannot happen for a correlation matrix.
For a correlation matrix the sum of the eigenvalues is a constant, so that
if one of them is changed there must be compensatory changes in at least
one of the others.

Expressions for I(x;αk) are more complicated than those for I(x;λk);
for example, for covariance matrices we have

I(x;αk) = −zk

p∑

h�=k

zhαh(λh − λk)−1 (10.2.4)

compared with (10.2.2) for I(x;λk). A number of comments can be
made concerning (10.2.4) and the corresponding expression for correlation
matrices, which is

I(x;αk) =
p∑

h�=k

αh(λh − λk)−1

p∑

i=1

p∑

j=1

i�=j

αhiαkjI(x; ρij). (10.2.5)

First, and perhaps most important, the form of the expression is com-
pletely different from that for I(x;λk). It is possible for an observation
to be influential for λk but not for αk, and vice versa. This behaviour is
illustrated by the examples in Section 10.2.1 below.

A second related point is that for covariance matrices I(x;αk) depends
on all of the PCs, z1, z2, . . . , zp, unlike I(x;λk), which depends just on
zk. The dependence is quadratic, but involves only cross-product terms
zjzk, j �= k, and not linear or squared terms. The general shape of the
influence curves I(x;αk) is hyperbolic for both covariance and correlation
matrices, but the details of the functions are different. The dependence of
both (10.2.4) and (10.2.5) on eigenvalues is through (λh−λk)−1. This means
that influence, and hence changes to αk resulting from small perturbations
to the data, tend to be large when λk is close to λ(k−1) or to λ(k+1).

A final point is, that unlike regression, the influence of different ob-
servations in PCA is approximately additive, that is the presence of one
observation does not affect the influence of another (Calder (1986), Tanaka
and Tarumi (1987)).

To show that theoretical influence functions are relevant to sample data,
predictions from the theoretical influence function can be compared with
the sample influence function, which measures actual changes caused by
the deletion from a data set of one observation at a time. The theoret-
ical influence function typically contains unknown parameters and these
must be replaced by equivalent sample quantities in such comparisons.
This gives what Critchley (1985) calls the empirical influence function. He
also considers a third sample-based influence function, the deleted empir-
ical influence function in which the unknown quantities in the theoretical
influence function are estimated using a sample from which the observation



252 10. Outlier Detection, Influential Observations and Robust Estimation

whose influence is to be assessed is omitted. The first example given in Sec-
tion 10.2.1 below illustrates that the empirical influence function can give
a good approximation to the sample influence function for moderate sam-
ple sizes. Critchley (1985) compares the various influence functions from a
more theoretical viewpoint.

A considerable amount of work was done in the late 1980s and early 1990s
on influence functions in multivariate analysis, some of which extends the
basic results for PCA given earlier in this section. Benasseni in France and
Tanaka and co-workers in Japan were particularly active in various aspects
of influence and sensitivity for a wide range of multivariate techniques.
Some of their work on sensitivity will be discussed further in Section 10.3.

Tanaka (1988) extends earlier work on influence in PCA in two related
ways. The first is to explicitly consider the situation where there are equal
eigenvalues—equations (10.2.4) and (10.2.5) break down in this case. Sec-
ondly he considers influence functions for subspaces spanned by subsets
of PCs, not simply individual PCs. Specifically, if Aq is a matrix whose
columns are a subset of q eigenvectors, and Λq is the diagonal matrix of cor-
responding eigenvalues, Tanaka (1988) finds expressions for I(x;AqΛqA′

q)
and I(x;AqA′

q). In discussing a general strategy for analysing influence
in multivariate methods, Tanaka (1995) suggests that groups of observa-
tions with similar patterns of influence across a set of parameters may be
detected by means of a PCA of the empirical influence functions for each
parameter.

Benasseni (1990) examines a number of measures for comparing principal
component subspaces computed with and without one of the observa-
tions. After eliminating some possible measures such as the RV-coefficient
(Robert and Escoufier, 1976) and Yanai’s generalized coefficient of deter-
mination (Yanai, 1980) for being too insensitive to perturbations, he settles
on

ρ1(i) = 1 −
q∑

k=1

‖ak − P(i)ak‖
q

and

ρ2(i) = 1 −
q∑

k=1

‖ak(i) − Pak(i)‖
q

where ak,ak(i) are eigenvectors with and without the ith observation,
P,P(i) are projection matrices onto the subspaces derived with and without
the ith observation, and the summation is over the q eigenvectors within
the subspace of interest. Benasseni (1990) goes on to find expressions for
the theoretical influence functions for these two quantities, which can then
be used to compute empirical influences.

Reducing the comparison of two subspaces to a single measure inevitably
leads to a loss of information about the structure of the differences be-
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tween the two. Ramsier (1991) introduces a graphical method, using ideas
similar to those of Andrews’ curves (see Section 5.6), in which curves re-
presenting subspaces with and without individual observations omitted are
displayed. It is not easy to deduce exactly how a particular change in sub-
space structure is reflected in differences between curves. However, curves
plotted with an observation missing that are close to the curve for the full
data set imply negligible influence on the subspace for that observation,
and similarly shaped curves for different omitted observations suggest that
these observations have similar detailed effects on the subspace’s structure.

Krzanowski (1987a) notes that the algorithm used by Eastment and Krz-
anowski (1982) to decide how many components to retain (see Section 6.1.5)
calculates elements of the singular value decomposition of the data matrix
X with individual observations or variables omitted. It can therefore be
used to evaluate the influence of each observation on the subspace spanned
by however many components it has been decided to keep. Mertens et al.
(1995) similarly use a cross-validation algorithm to give easily computed
expressions for the sample influence of observations on the eigenvalues of
a covariance matrix. They also provide a closed form expression for the
angle between an eigenvector of that matrix using all the data and the
corresponding eigenvector when an observation is omitted. An example il-
lustrating the use of these expressions for spectroscopic data is given by
Mertens (1998), together with some discussion of the relationships between
measures of influence and outlyingness.

Wang and Nyquist (1991) provide a number of algebraic results, proofs
and approximations relating eigenvalues and eigenvectors of covariance ma-
trices with and without the removal of one of the n observations. Hadi and
Nyquist (1993) give improved approximations for eigenvalues, and Wang
and Liski (1993) extend the results for both eigenvalues and eigenvectors
to the situation where more than one observation is removed. Comparisons
are made with Critchley’s (1985) results for the special case of a single
deleted observation.

Brooks (1994) uses simulation to address the question of when an ap-
parently influential observation can be declared ‘significant.’ He points out
that the sample influence function (which he confusingly refers to as the
‘empirical influence function’) for an observation xi depends on all the
other observations in the sample, so that simulation of repeated values of
this function under some null hypothesis needs whole samples to be gen-
erated. The theoretical influence function can be evaluated more easily
because equations (10.2.2)—(10.2.5) depend only on the eigenvalues and
eigenvectors of the correlation or covariance matrix together with the single
observation whose influence is to be assessed. Thus, if the sample correlation
or covariance matrix is used as a surrogate for the corresponding population
matrix, it is only necessary to simulate individual observations, rather than
a whole new sample, in order to generate a value for this influence func-
tion. Of course, any simulation study requires some assumption about the
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distribution from which the simulated data are generated. Brooks (1994)
gives an example in which 1000 simulated observations are generated from
a 7-variable multivariate normal distribution whose parameters are those
estimated from the available sample of data. Empirical distributions of the
estimated theoretical influence functions for eigenvalues and eigenvectors of
the correlation matrix are constructed from the simulated observations by
computing the values of these functions for each of the 1000 observations.
The actual values of the functions for the same 7 anatomical variables as
were discussed in Sections 5.1.1 and 10.1, but for a different sample of 44
students, are then compared to these distributions. Observations whose val-
ues are in the upper 5% (1%) tails of the distributions can be considered to
be ‘significantly influential’ at the 5% (1%) level. Brooks (1994) finds that,
on this basis, 10 of the 44 observations are significant at the 5% level for
more than one of the 7 eigenvalues and/or eigenvectors. Brooks (1994) uses
the same reasoning to investigate ‘significantly influential’ observations in
a two-dimensional principal component subspace based on Tanaka’s (1988)
influence functions I(x;AqΛqA′

q) and I(x;AqA′
q).

10.2.1 Examples

Two examples are now given, both using data sets that have been discussed
earlier. In the first example we examine the usefulness of expressions for
theoretical influence in predicting the actual effect of omitting observations
for the data on artistic qualities of painters described in Section 5.1.1. As
a second illustration, we follow up the suggestion, made in Section 10.1,
that an outlier is largely responsible for the form of the second PC in the
student anatomical data.

Artistic Qualities of Painters

We consider again the set of four subjectively assessed variables for 54
painters, which was described by Davenport and Studdert-Kennedy (1972)
and discussed in Section 5.1.1. Tables 10.2 and 10.3 give some comparisons
between the values of the influence functions obtained from expressions
such as (10.2.2), (10.2.3), (10.2.4) and (10.2.5) by substituting sample quan-
tities lk, akj , rij in place of the unknown λk, αkj , ρij , and the actual changes
observed in eigenvalues and eigenvectors when individual observations are
omitted. The information given in Table 10.2 relates to PCs derived from
the covariance matrix; Table 10.3 gives corresponding results for the cor-
relation matrix. Some further explanation is necessary of exactly how the
numbers in these two tables are derived.

First, the ‘actual’ changes in eigenvalues are precisely that—the dif-
ferences between eigenvalues with and without a particular observation
included in the analysis. The tables give the four largest and four small-
est such changes for each PC, and identify those observations for which



Table 10.2. Artistic qualities of painters: comparisons between estimated (empirical) and actual (sample) influence of individual
observations for the first two PCs, based on the covariance matrix.

Component number 1 2

Influence Influence

Eigenvalue Eigenvector Eigenvalue Eigenvector

Estimated Actual Obs. no. Estimated Actual Obs. no. Estimated Actual Obs. no. Estimated Actual Obs. no.

2.490 2.486 31 6.791 6.558 34 1.759 1.854 44 11.877 13.767 34
2.353 2.336 7 5.025 4.785 44 1.757 1.770 48 5.406 5.402 44
2.249 2.244 28 3.483 4.469 42 1.478 1.491 34 3.559 4.626 42
2.028 2.021 5 1.405 1.260 48 1.199 1.144 43 2.993 3.650 43
...

...
...

...
...

...
...

...
...

...
...

...
0.248 0.143 44 0.001 0.001 53 −0.073 −0.085 49 0.016 0.017 24

−0.108 −0.117 52 0.000 0.000 17 −0.090 −0.082 20 0.009 0.009 1
−0.092 −0.113 37 0.000 0.000 24 0.039 0.045 37 0.000 0.001 30

0.002 −0.014 11 0.000 0.000 21 −0.003 −0.010 10 0.000 0.000 53
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Table 10.3. Artistic qualities of painters: comparisons between estimated (empirical) and actual (sample) influence of individual
observations for the first two PCs, based on the correlation matrix.

Component number 1 2

Influence Influence

Eigenvalue Eigenvector Eigenvalue Eigenvector

Estimated Actual Obs. no. Estimated Actual Obs. no. Estimated Actual Obs. no. Estimated Actual Obs. no.

−0.075 −0.084 34 1.406 1.539 26 0.075 0.080 34 5.037 7.546 34
0.068 0.074 31 1.255 1.268 44 0.064 0.070 44 4.742 6.477 43

−0.067 −0.073 43 0.589 0.698 42 0.061 0.062 43 4.026 4.333 26
0.062 0.067 28 0.404 0.427 22 0.047 0.049 39 1.975 2.395 42
...

...
...

...
...

...
...

...
...

...
...

...
−0.003 −0.003 6 0.001 0.001 33 −0.001 −0.002 45 0.011 0.012 21
−0.001 −0.001 32 0.000 0.000 53 −0.001 −0.001 14 0.010 0.012 38

0.001 0.001 11 0.000 0.000 30 −0.000 −0.001 42 0.001 0.001 30
0.001 0.001 13 0.000 0.000 21 −0.000 −0.000 11 0.001 0.001 53
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changes occur. The ‘estimated’ changes in eigenvalues given in Tables 10.2
and 10.3 are derived from multiples of I(·) in (10.2.2), (10.2.3), respectively,
with the value of the kth PC for each individual observation substituted for
zk, and with lk, akj , rij replacing λk, αkj , ρij . The multiples are required
because Change = Influence× ε, and we need a replacement for ε; here we
have used 1/(n − 1), where n = 54 is the sample size. Thus, apart from a
multiplying factor (n − 1)−1, ‘actual’ and ‘estimated’ changes are sample
and empirical influence functions, respectively.

In considering changes to an eigenvector, there are changes to each of
the p (= 4) coefficients in the vector. Comparing vectors is more difficult
than comparing scalars, but Tables 10.2 and 10.3 give the sum of squares
of changes in the individual coefficients of each vector, which is a plausible
measure of the difference between two vectors. This quantity is a mono-
tonically increasing function of the angle in p-dimensional space between
the original and perturbed versions of ak, which further increases its plau-
sibility. The idea of using angles between eigenvectors to compare PCs is
discussed in a different context in Section 13.5.

The ‘actual’ changes for eigenvectors again come from leaving out one
observation at a time, recomputing and then comparing the eigenvectors,
while the estimated changes are computed from multiples of sample ver-
sions of the expressions (10.2.4) and (10.2.5) for I(x;αk). The changes in
eigenvectors derived in this way are much smaller in absolute terms than
the changes in eigenvalues, so the eigenvector changes have been multiplied
by 103 in Tables 10.2 and 10.3 in order that all the numbers are of com-
parable size. As with eigenvalues, apart from a common multiplier we are
comparing empirical and sample influences.

The first comment to make regarding the results given in Tables 10.2 and
10.3 is that the estimated values are extremely good in terms of obtain-
ing the correct ordering of the observations with respect to their influence.
There are some moderately large discrepancies in absolute terms for the ob-
servations with the largest influences, but experience with this and several
other data sets suggests that the most influential observations are correctly
identified unless sample sizes become very small. The discrepancies in ab-
solute values can also be reduced by taking multiples other than (n− 1)−1

and by including second order (ε2) terms.
A second point is that the observations which are most influential for

a particular eigenvalue need not be so for the corresponding eigenvector,
and vice versa. For example, there is no overlap between the four most
influential observations for the first eigenvalue and its eigenvector in either
the correlation or covariance matrix. Conversely, observations can some-
times have a large influence on both an eigenvalue and its eigenvector (see
Table 10.3, component 2, observation 34).

Next, note that observations may be influential for one PC only, or affect
two or more. An observation is least likely to affect more than one PC in
the case of eigenvalues for a covariance matrix—indeed there is no over-
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lap between the four most influential observations for the first and second
eigenvalues in Table 10.2. However, for eigenvalues in a correlation matrix,
more than one value is likely to be affected by a very influential observa-
tion, because the sum of eigenvalues remains fixed. Also, large changes in
an eigenvector for either correlation or covariance matrices result in at least
one other eigenvector being similarly changed, because of the orthogonality
constraints. These results are again reflected in Tables 10.2 and 10.3, with
observations appearing as influential for both of the first two eigenvectors,
and for both eigenvalues in the case of the correlation matrix.

Comparing the results for covariance and correlation matrices in Ta-
bles 10.2 and 10.3, we see that several observations are influential for both
matrices. This agreement occurs because, in the present example, the orig-
inal variables all have similar variances, so that the PCs for correlation
and covariance matrices are similar. In examples where the PCs based on
correlation and covariance matrices are very different, the sets of influential
observations for the two analyses often show little overlap.

Turning now to the observations that have been identified as influential
in Table 10.3, we can examine their positions with respect to the first two
PCs on Figures 5.2 and 5.3. Observation 34, which is the most influential
observation on eigenvalues 1 and 2 and on eigenvector 2, is the painter indi-
cated in the top left of Figure 5.2, Fr. Penni. His position is not particularly
extreme with respect to the first PC, and he does not have an unduly large
influence on its direction. However, he does have a strong influence on both
the direction and variance (eigenvalue) of the second PC, and to balance the
increase which he causes in the second eigenvalue there is a compensatory
decrease in the first eigenvalue. Hence, he is influential on that eigenvalue
too. Observation 43, Rembrandt, is at the bottom of Figure 5.2 and, like
Fr. Penni, has a direct influence on PC2 with an indirect but substantial
influence on the first eigenvalue. The other two observations, 28 and 31,
Caravaggio and Palma Vecchio, which are listed in Table 10.3 as being in-
fluential for the first eigenvalue, have a more direct effect. They are the two
observations with the most extreme values on the first PC and appear at
the extreme left of Figure 5.2.

Finally, the observations in Table 10.3 that are most influential on the
first eigenvector, two of which also have large values of influence for the
second eigenvector, appear on Figure 5.2 in the second and fourth quadrants
in moderately extreme positions.

Student Anatomical Measurements

In the discussion of the data on student anatomical measurements in Sec-
tion 10.1 it was suggested that observation 16 is so extreme on the second
PC that it could be largely responsible for the direction of that component.
Looking at influence functions for these data enables us to investigate this
conjecture. Not surprisingly, observation 16 is the most influential observa-
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tion for the second eigenvector and, in fact, has an influence nearly six times
as large as that of the second most influential observation. It is also the
most influential on the first, third and fourth eigenvectors, showing that the
perturbation caused by observation 16 to the second PC has a ‘knock-on’
effect to other PCs in order to preserve orthogonality. Although observation
16 is very influential on the eigenvectors, its effect is less marked on the
eigenvalues. It has only the fifth highest influence on the second eigenvalue,
though it is highest for the fourth eigenvalue, second highest for the first,
and fourth highest for the third. It is clear that values of influence on eigen-
values need not mirror major changes in the structure of the eigenvectors,
at least when dealing with correlation matrices.

Having said that observation 16 is clearly the most influential, for eigen-
vectors, of the 28 observations in the data set, it should be noted that its
influence in absolute terms is not outstandingly large. In particular, the co-
efficients rounded to one decimal place for the second PC when observation
16 is omitted are

0.2 0.1 − 0.4 0.8 − 0.1 − 0.3 − 0.2.

The corresponding coefficients when all 28 observations are included are

−0.0 − 0.2 − 0.2 0.9 − 0.1 − 0.0 − 0.0.

Thus, when observation 16 is removed, the basic character of PC2 as mainly
a measure of head size is unchanged, although the dominance of head size
in this component is reduced. The angle between the two vectors defining
the second PCs, with and without observation 16, is about 24◦, which is
perhaps larger than would be deduced from a quick inspection of the sim-
plified coefficients above. Pack et al. (1988) give a more thorough discussion
of influence in the context of this data set, together with similar data sets
measured on different groups of students (see also Brooks (1994)). A prob-
lem that does not arise in the examples discussed here, but which does in
Pack et al.’s (1988) larger example, is the possibility that omission of an
observation causes switching or rotation of eigenvectors when consecutive
eigenvalues have similar magnitudes. What appear to be large changes in
eigenvectors may be much smaller when a possible reordering of PCs in
the modified PCA is taken into account. Alternatively, a subspace of two
or more PCs may be virtually unchanged when an observation is deleted,
but individual eigenvectors spanning that subspace can look quite different.
Further discussion of these subtleties in the context of an example is given
by Pack et al. (1988).

10.3 Sensitivity and Stability

Removing a single observation and estimating its influence explores one
type of perturbation to a data set, but other perturbations are possible. In
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one the weights of one or more observations are reduced, without removing
them entirely. This type of ‘sensitivity’ is discussed in general for multivari-
ate techniques involving eigenanalyses by Tanaka and Tarumi (1985, 1987),
with PCA as a special case. Benasseni (1986a) also examines the effect of
differing weights for observations on the eigenvalues in a PCA. He gives
bounds on the perturbed eigenvalues for any pattern of perturbations of
the weights for both covariance and correlation-based analyses. The work
is extended in Benasseni (1987a) to include bounds for eigenvectors as well
as eigenvalues. A less structured perturbation is investigated empirically
by Tanaka and Tarumi (1986). Here each element of a (4×4) ‘data’ matrix
has an independent random perturbation added to it.

In Tanaka and Mori (1997), where the objective is to select a subset
of variables reproducing all the p variables as well as possible and hence
has connections with Section 6.3, the influence of variables is discussed.
Fujikoshi et al. (1985) examine changes in the eigenvalues of a covariance
matrix when additional variables are introduced. Krzanowski (1987a) in-
dicates how to compare data configurations given by sets of retained PCs,
including all the variables and with each variable omitted in turn. The
calculations are done using an algorithm for computing the singular value
decomposition (SVD) with a variable missing, due to Eastment and Krza-
nowski (1982), and the configurations are compared by means of Procrustes
rotation (see Krzanowski and Marriott 1994, Chapter 5). Holmes-Junca
(1985) gives an extensive discussion of the effect of omitting observations
or variables from a PCA. As in Krzanowski (1987a), the SVD plays a promi-
nent rôle, but the framework in Holmes-Junca (1985) is a more general one
in which unequal weights may be associated with the observations, and a
general metric may be associated with the variables (see Section 14.2.2).

A different type of stability is investigated by Benasseni (1986b). He con-
siders replacing each of the n p-dimensional observations in a data set by
a p-dimensional random variable whose probability distribution is centred
on the observed value. He relates the covariance matrix in the perturbed
case to the original covariance matrix and to the covariance matrices of
the n random variables. From this relationship, he deduces bounds on the
eigenvalues of the perturbed matrix. In a later paper, Benasseni (1987b)
looks at fixed, rather than random, perturbations to one or more of the
observations. Expressions are given for consequent changes to eigenvalues
and eigenvectors of the covariance matrix, together with approximations
to those changes. A number of special forms for the perturbation, for ex-
ample where it affects only one of the p variables, are examined in detail.
Corresponding results for the correlation matrix are discussed briefly.

Dudziński et al. (1975) discuss what they call ‘repeatability’ of principal
components in samples, which is another way of looking at the stability
of the components’ coefficients. For each component of interest the angle
is calculated between the vector of coefficients in the population and the
corresponding vector in a sample. Dudziński et al. (1975) define a repeata-
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bility index as the proportion of times in repeated samples that this angle
has a cosine whose value is greater than 0.95. They conduct a simulation
study to examine the dependence of this index on sample size, on the ratio
of consecutive population eigenvalues, and on whether or not the data are
normally distributed. To generate non-normal samples, Dudziński and re-
searchers use the bootstrap idea of sampling with replacement from a data
set that is clearly non-normal. This usage predates the first appearance
of the term ‘bootstrap.’ Their simulation study is relatively small, but it
demonstrates that repeatability is often greater for normal than for non-
normal data with the same covariance structure, although the differences
are usually small for the cases studied and become very small as the re-
peatability increases with sample size. Repeatability, as with other forms
of stability, decreases as consecutive eigenvalues become closer.

Dudziński et al. (1975) implemented a bootstrap-like method for assess-
ing stability. Daudin et al. (1988) use a fully-fledged bootstrap and, in fact,
note that more than one bootstrapping procedure may be relevant in re-
sampling to examine the properties of PCA, depending in part on whether
a correlation-based or covariance- based analysis is done. They consider a
number of measures of stability for both eigenvalues and eigenvectors, but
the stability of subspaces spanned by subsets of PCs is deemed to be of
particular importance. This idea is used by Besse (1992) and Besse and de
Falguerolles (1993) to choose how many PCs to retain (see Section 6.1.5).
Stability indices based on the jackknife are also used by the latter au-
thors, and Daudin et al. (1989) discuss one such index in detail for both
correlation- and covariance-based PCA. Besse and de Falguerolles (1993)
describe the equally weighted version of the criterion (6.1.6) as a natural
criterion for stability, but prefer

Lq =
1
2
‖Pq − P̂q‖2

in equation (6.1.9). Either (6.1.6) or the expectation of Lq can be used as a
measure of the stability of the first q PCs or the subspace spanned by them,
and q is then chosen to optimize stability. Besse and de Falguerolles (1993)
discuss a variety of ways of estimating their stability criterion, including
some based on the bootstrap and jackknife. The bootstrap has also been
used to estimate standard errors of elements of the eigenvectors ak (see
Section 3.7.2), and these standard errors can be viewed as further measures
of stability of PCs, specifically the stability of their coefficients.

Stauffer et al. (1985) conduct a study that has some similarities to that of
Dudziński et al. (1975). They take bootstrap samples from three ecological
data sets and use them to construct standard errors for the eigenvalues of
the correlation matrix. The stability of the eigenvalues for each data set
is investigated when the full data set is replaced by subsets of variables
or subsets of observations. Each eigenvalue is examined as a percentage of
variation remaining after removing earlier PCs, as well as in absolute terms.



262 10. Outlier Detection, Influential Observations and Robust Estimation

Comparisons are made with corresponding results derived from ‘random,’
that is uncorrelated, data sets of the same size as the real data sets. This is
done with an objective similar to that of parallel analysis (see Section 6.1.3)
in mind.

A different approach to influence from that described in Section 10.2 was
proposed by Cook (1986) and called local influence. Shi (1997) develops
these ideas in the context of PCA. It is included in this section rather than
in 10.2 because, as with Tanaka and Tarumi (1985, 1987) and Benasseni
(1986a, 1987a) weights are attached to each observation, and the weights
are varied. In Shi’s (1997) formulation the ith observation is expressed as

xi(w) = wi(xi − x̄),

and w = (w1, w2, . . . , wn)′ is a vector of weights. The vector w0 =
(1, 1, . . . , 1)′ gives the unperturbed data, and Shi considers perturbations of
the form w = w0+εh, where h is a fixed unit-length vector. The generalized
influence function for a functional θ is defined as

GIF(θ,h) = lim
ε→0

θ(w0 + εh) − θ(w0)
ε

.

For a scalar θ, such as an eigenvalue, local influence investigates the di-
rection h in which GIF(θ,h) is maximized. For a vector θ, such as an
eigenvector, GIF(.) is converted into a scalar (a norm) via a quadratic
form, and then h is found for which this norm is maximized.

Yet another type of stability is the effect of changes in the PC coefficients
ak on their variances lk and vice versa. Bibby (1980) and Green (1977)
both consider changes in variances, and other aspects such as the non-
orthogonality of the changed ak when the elements of ak are rounded. This
is discussed further in Section 11.3.

Krzanowski (1984b) considers what could be thought of as the opposite
problem to that discussed by Bibby (1980). Instead of looking at the effect
of small changes in ak on the value of lk, Krzanowski (1984b) examines
the effect of small changes in the value of lk on ak, although he addresses
the problem in the population context and hence works with αk and λk.
He argues that this is an important problem because it gives information
on another aspect of the stability of PCs: the PCs can only be confidently
interpreted if their coefficients are stable with respect to small changes in
the values of the λk.

If λk is decreased by an amount ε, then Krzanowski (1984b) looks for
a vector αε

k that is maximally different from αk, subject to var(α
′ε
k x) =

λk − ε. He finds that the angle θ between αk and αε
k is given by

cos θ = [1 +
ε

(λk − λk+1)
]−1/2, (10.3.1)

and so depends mainly on the difference between λk and λk+1. If λk, λk+1

are close, then the kth PC, α′
kx = zk, is more unstable than if λk, λk+1 are
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well separated. A similar analysis can be carried out if λk is increased by
an amount ε, in which case the stability of zk depends on the separation
between λk and λk−1. Thus, the stability of a PC depends on the sepa-
ration of its variance from the variances of adjacent PCs, an unsurprising
result, especially considering the discussion of ‘influence’ in Section 10.2.
The ideas in Section 10.2 are, as here, concerned with how perturbations
affect αk, but they differ in that the perturbations are deletions of individ-
ual observations, rather than hypothetical changes in λk. Nevertheless, we
find in both cases that the changes in αk are largest if λk is close to λk+1

or λk−1 (see equations (10.2.4) and (10.2.5)).
As an example of the use of the sample analogue of the expression

(10.3.1), consider the PCs presented in Table 3.2. Rounding the coeffi-
cients in the PCs to the nearest 0.2 gives a change of 9% in l1 and changes
the direction of a1 through an angle of about 8◦ (see Section 11.3). We can
use (10.3.1) to find the maximum angular change in a1 that can occur if
l1 is decreased by 9%. The maximum angle is nearly 25◦, so that rounding
the coefficients has certainly not moved a1 in the direction of maximum
sensitivity.

The eigenvalues l1, l2 and l3 in this example are 2.792, 1.532 and 1.250,
respectively, so that the separation between l1 and l2 is much greater than
that between l2 and l3. The potential change in a2 for a given decrease in
l2 is therefore larger than that for a1, given a corresponding decrease in l1.
In fact, the same percentage decrease in l2 as that investigated above for
l1 leads to a maximum angular change of 35◦; if the change is made the
same in absolute (rather than percentage) terms, then the maximum angle
becomes 44◦.

10.4 Robust Estimation of Principal Components

It has been noted several times in this book that for PCA’s main (descrip-
tive) rôle, the form of the distribution of x is usually not very important.
The main exception to this statement is seen in the case where outliers
may occur. If the outliers are, in fact, influential observations, they will
have a disproportionate effect on the PCs, and if PCA is used blindly in
this case, without considering whether any observations are influential, then
the results may be largely determined by such observations. For example,
suppose that all but one of the n observations lie very close to a plane
within p-dimensional space, so that there are two dominant PCs for these
(n− 1) observations. If the distance of the remaining observation from the
plane is greater than the variation of the (n − 1) observations within the
plane, then the first component for the n observations will be determined
solely by the direction of the single outlying observation from the plane.
This, incidentally, is a case where the first PC, rather than last few, will
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detect the outlier (see Section 10.1), but if the distance from the plane is
larger than distances within the plane, then the observation is likely to
‘stick out’ on at least one of the original variables as well.

To avoid such problems, it is possible to use robust estimation of the
covariance or correlation matrix, and hence of the PCs. Such estimation
downweights or discards the effect of any outlying observations. Five ro-
bust estimators using three different approaches are investigated by Devlin
et al. (1981). The first approach robustly estimates each element of the
covariance or correlation matrix separately and then ‘shrinks’ the elements
to achieve positive-definiteness if this is not achieved with the initial esti-
mates. The second type of approach involves robust regression of xj on
(x1, x2, . . . , xj−1) for j = 2, 3, . . . , p. An illustration of the robust regression
approach is presented for a two-variable example by Cleveland and Guarino
(1976). Finally, the third approach has three variants; in one (multivariate
trimming) the observations with the largest Mahalanobis distances Di from
a robust estimate of the mean of x are discarded, and in the other two they
are downweighted. One of these variants is used by Coleman (1985) in the
context of quality control. Both of the downweighting schemes are examples
of so-called M-estimators proposed by Maronna (1976). One is the max-
imum likelihood estimator for a p-variate elliptical t distribution, which
has longer tails than the multivariate normal distribution for which the
usual non-robust estimate is optimal. The second downweighting scheme
uses Huber weights (1964, 1981) which are constant for values of Di up to
a threshold D∗

i , and equal to D∗
i /Di thereafter.

All but the first of these five estimates involve iteration; full details are
given by Devlin et al. (1981), who also show that the usual estimator of
the covariance or correlation matrix can lead to misleading PCs if outlying
observations are included in the analysis. Of the five possible robust alter-
natives which they investigate, only one, that based on robust regression,
is clearly dominated by other methods, and each of the remaining four may
be chosen in some circumstances.

Robust estimation of covariance matrices, using an iterative procedure
based on downweighting observations with large Mahalanobis distance from
the mean, also based on M -estimation, was independently described by
Campbell (1980). He uses Huber weights and, as an alternative, a so-called
redescending estimate in which the weights decrease more rapidly than Hu-
ber weights for values of Di larger than the threshold D∗

i . Campbell (1980)
notes that, as a by-product of robust estimation, the weights given to each
data point give an indication of potential outliers. As the weights are non-
increasing functions of Mahalanobis distance, this procedure is essentially
using the statistic d2

2i, defined in Section 10.1, to identify outliers, except
that the mean and covariance matrix of x are estimated robustly in the
present case.

Other methods for robustly estimating covariance or correlation matrices
have been suggested since Devlin et al.’s (1981) work. For example, Mehro-
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tra (1995) proposes a new elementwise estimate, and compares it to Devlin
et al.’s (1981) estimates via a simulation study whose structure is the same
as that of Devlin and co-workers. Maronna and Yohai (1998) review many
of the robust covariance estimators. As Croux and Haesbroek (2000) point
out, every new robust covariance matrix estimator has a new robust PCA
method associated with it.

Campbell (1980) also proposed a modification of his robust estimation
technique in which the weights assigned to an observation, in estimating
the covariance matrix, are no longer functions of the overall Mahalanobis
distance of each observation from the mean. Instead, when estimating the
kth PC, the weights are a decreasing function of the absolute value of
the score of each observation for the kth PC. As with most of the tech-
niques tested by Devlin et al. (1981), the procedure is iterative and the
algorithm to implement it is quite complicated, with nine separate steps.
However, Campbell (1980) and Matthews (1984) each give an example for
which the technique works well, and as well as estimating the PCs robustly,
both authors use the weights found by the technique to identify potential
outliers.

The discussion in Section 10.2 noted that observations need not be partic-
ularly ‘outlying’ in order to be influential. Thus, robust estimation methods
that give weights to each observation based on Mahalanobis distance will
‘miss’ any influential observations that are not extreme with respect to Ma-
halanobis distance. It would seem preferable to downweight observations
according to their influence, rather than their Mahalanobis distance. As yet,
no systematic work seems to have been done on this idea, but it should be
noted that the influence function for the kth eigenvalue of a covariance
matrix is an increasing function of the absolute score on the kth PC (see
equation (10.2.2)). The weights used in Campbell’s (1980) procedure there-
fore downweight observations according to their influence on eigenvalues
(though not eigenvectors) of the covariance (but not correlation) matrix.

It was noted above that Devlin et al. (1981) and Campbell (1980) use
M -estimators in some of their robust PCA estimates. A number of other
authors have also considered M -estimation in the context of PCA. For ex-
ample, Daigle and Rivest (1992) use it to construct a robust version of the
biplot (see Section 5.3). Ibazizen (1986) gives a thorough discussion of an
M -estimation approach to robust PCA in which the definition of the first
robust PC is based on a robust version of Property A5 in Section 2.1. This
property implies that the first PC minimizes the sum of residual variances
arising from predicting each variable from the same single linear function of
the variables. Each variance is an expected squared difference between the
variable and its mean. To robustify this quantity the mean is replaced by
a robust estimator of location, and the square of the difference is replaced
by another function, namely one of those typically chosen in M -estimation.
Ibazizen (1986) includes a substantial amount of underlying theory for this
robust PC, together with details of an algorithm to implement the proce-
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dure for both the first and suitably defined second, third, . . . robust PCs.
Xu and Yuille (1995) present a robust PCA using a ‘statistical physics’ ap-
proach within a neural network framework (see Sections 14.1.3, 14.6.1). The
function optimized in their algorithm can be regarded as a generalization
of a robust redescending M -estimator.

Locantore et al. (1999) discuss robust PCA for functional data (see Sec-
tion 12.3). In fact, their data are images rather than functions, but a
pre-processing step turns them into functions. Both means and covariance
matrices are robustly estimated, the latter by shrinking extreme observa-
tions to the nearest point on the surface of a hypersphere or hyperellipsoid
centred at the robustly estimated mean, a sort of multivariate Winsoriza-
tion. Locantore et al.’s (1999) paper is mainly a description of an interesting
case study in opthalmology, but it is followed by contributions from 9 sets
of discussants, and a rejoinder, ranging over many aspects of robust PCA
in a functional context and more generally.

A different type of approach to the robust estimation of PCs is discussed
by Gabriel and Odoroff (1983). The approach relies on the fact that PCs
may be computed from the singular value decomposition (SVD) of the
(n × p) data matrix X (see Section 3.5 and Appendix Al). To find the
SVD, and hence the PCs, a set of equations involving weighted means
of functions of the elements of X must be solved iteratively. Replacing
the weighted means by medians, weighted trimmed means, or some other
measure of location which is more robust than the mean leads to estimates
of PCs that are less sensitive than the usual estimates to the presence of
‘extreme’ observations.

Yet another approach, based on ‘projection pursuit,’ is proposed by Li
and Chen (1985). As with Gabriel and Odoroff (1983), and unlike Camp-
bell (1980) and Devlin et al. (1981), the PCs are estimated directly without
first finding a robustly estimated covariance matrix. Indeed, Li and Chen
suggest that it may be better to estimate the covariance matrix Σ from
the robust PCs via the spectral decomposition (see Property A3 of Sec-
tions 2.1 and 3.1), rather than estimating Σ directly. Their idea is to find
linear functions of x that maximize a robust estimate of scale, rather than
functions that maximize variance. Properties of their estimates are inves-
tigated, and the estimates’ empirical behaviour is compared with that of
Devlin et al. (1981)’s estimates using simulation studies. Similar levels of
performance are found for both types of estimate, although, as noted by
Croux and Haesbroeck (2000), methods based on robust estimation of co-
variance matrices have poor properties for large values of p and projection
pursuit-based techniques may be preferred in such cases. One disadvantage
of Li and Chen’s (1985) approach is that it is complicated to implement.
Both Xie et al. (1993) and Croux and Ruiz-Gazen (1995) give improved
algorithms for doing so.

Another way of ‘robustifying’ PCA directly, rather than doing so via
a robust covariance or correlation matrix, is described by Baccini et al.
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(1996). When the unweighted version of the fixed effects model of Sec-
tion 3.9 assumes a multivariate normal distribution for its error term
ei, maximum likelihood estimation of the model leads to the usual PCs.
However, if the elements of ei are instead assumed to be independent
Laplace random variables with probability density functions f(eij) =
1
2σ exp(− 1

σ |eij |), maximum likelihood estimation requires the minimization
of
∑n

i=1

∑p
j=1 |xij −zij |, leading to an L1-norm variant of PCA. Baccini et

al. (1996) show that the L1-norm PCs can be estimated using a canonical
correlation analysis (see Section 9.3) of the original variables and ranked
version of the variables. Although by no means a robust method, it seems
natural to note here the minimax approach to component analysis pro-
posed by Bargmann and Baker (1977). Whereas PCA minimizes the sum of
squared discrepancies between xij and a rank-m approximation, and Bac-
cini et al. (1996) minimize the sum of absolute discrepencies, Bargmann and
Baker (1977) suggest minimizing the maximum discrepancy. They provide
arguments to justify the procedure, but it is clearly sensitive to extreme
observations and could even be thought of as ’anti-robust.’

A different, but related, topic is robust estimation of the distribution of
the PCs, their coefficients and their variances, rather than robust estima-
tion of the PCs themselves. It was noted in Section 3.6 that this can be
done using bootstrap estimation (Diaconis and Efron, 1983). The ‘shape’
of the estimated distributions should also give some indication of whether
any highly influential observations are present in a data set (the distribu-
tions may be multimodal, corresponding to the presence or absence of the
influential observations in each sample from the data set), although the
method will not directly identify such observations.

The ideas of robust estimation and influence are brought together in
Jaupi and Saporta (1993), Croux and Haesbroeck (2000) and Croux and
Ruiz-Gazen (2001). Given a robust PCA, it is of interest to examine in-
fluence functions for the results of such an analysis. Jaupi and Saporta
(1993) investigate influence for M-estimators, and Croux and Haesbroek
(2000) extend these results to a much wider range of robust PCAs for both
covariance and correlation matrices. Croux and Ruiz-Gazen (2001) derive
influence functions for Li and Chen’s (1985) projection pursuit-based ro-
bust PCA. Croux and Haesbroeck (2000) also conduct a simulation study
using the same structure as Devlin et al. (1981), but with a greater range of
robust procedures included. They recommend the S-estimator, described
in Rousseeuw and Leroy (1987, p. 263) for practical use.

Naga and Antille (1990) explore the stability of PCs derived from robust
estimators of covariance matrices, using the measure of stability defined
by Daudin et al. (1988) (see Section 10.3). PCs derived from covariance
estimators based on minimum variance ellipsoids perform poorly with re-
spect to this type of stability on the data sets considered by Naga and
Antille (1990), but those associated with M -estimated covariance matrices
are much better.
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Finally, we mention that Ruymgaart (1981) discusses a class of robust PC
estimators. However, his discussion is restricted to bivariate distributions
(that is p = 2) and is entirely theoretical in nature. Ibazizen (1986) suggests
that it would be difficult to generalize Ruymgaart’s (1981) ideas to more
than two dimensions.

10.5 Concluding Remarks

The topics discussed in this chapter pose difficult problems in data analysis.
Much research has been done and is continuing on all of them. It is useful
to identify potentially outlying observations, and PCA provides a number
of ways of doing so. Similarly, it is important to know which observations
have the greatest influence on the results of a PCA.

Identifying potential outliers and influential observations is, however,
only part of the problem; the next, perhaps more difficult, task is to de-
cide whether the most extreme or influential observations are sufficiently
extreme or influential to warrant further action and, if so, what that action
should be. Tests of significance for outliers were discussed only briefly in
Section 10.1 because they are usually only approximate, and tests of signif-
icance for influential observations in PCA have not yet been widely used.
Perhaps the best advice is that observations that are much more extreme or
influential than most of the remaining observations in a data set should be
thoroughly investigated, and explanations sought for their behaviour. The
analysis could also be repeated with such observations omitted, although
it may be dangerous to act as if the deleted observations never existed.
Robust estimation provides an automatic way of dealing with extreme (or
influential) observations but, if at all possible, it should be accompanied
by a careful examination of any observations that have been omitted or
substantially downweighted by the analysis.



11
Rotation and Interpretation of
Principal Components

It was noted earlier, especially in Chapter 4, that PCs are particularly
useful if they can be simply interpreted. The word reification is sometimes
used for this process of interpretation, and a number of examples have been
seen in previous chapters for which this has been successful. However, the
construction of PCs as linear combinations of all the measured variables
means that interpretation is not always easy. Various suggestions have been
made to simplify the process of interpretation. These are the subject of this
chapter.

One way to aid interpretation is to rotate the components, as is done
with the factor loadings in factor analysis (see Chapter 7). Rotation of PCs
is discussed in Section 11.1. The approach can provide useful simplification
in some cases, but it has a number of drawbacks, and some alternative
approaches are described. In one the two steps of PCA followed by rotation
are replaced by a single optimization problem which takes into account both
variance maximization and simplicity. In others simplification criteria are
emphasized at the expense of variance maximization.

Section 11.2 describes some alternatives to PCA which aim to provide
simpler ‘components.’ Some techniques restrict the coefficients of the vari-
ables in each component to integer values, whilst another drives some of the
coefficients to zero. The purpose of these techniques is to provide replace-
ments for PCs that are simpler to interpret, but which do not sacrifice
much variance. In other circumstances, the objective may be to approx-
imate the PCs in a way which makes them simpler to interpret, again
without much loss of variance. The most common way of doing this is to
ignore (effectively set to zero) coefficients whose absolute values fall below
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some threshold. There are links here to variable selection (see Section 6.3).
This strategy and some of the problems associated with it are discussed
in Section 11.3, and the chapter concludes with a short section on the de-
sire in some disciplines to attach physical interpretations to the principal
components.

11.1 Rotation of Principal Components

In Chapter 7 it was seen that rotation is an integral part of factor analysis,
with the objective of making the rotated factors as simple as possible to
interpret. The same ideas can be used to simplify principal components.
A principal component is a linear function of all the p original variables.
If the coefficients or loadings for a PC are all of a similar size, or if a few
are large and the remainder small, the component looks easy to interpret,
although, as will be seen in Section 11.3, looks can sometimes be deceiving.
Several examples in Chapter 4 are like this, for instance, components 1 and
2 in Section 4.1. If there are intermediate loadings, as well as large and
small ones, the component can be more difficult to interpret, for example,
component 4 in Table 7.1.

Suppose that it has been decided that the first m components account
for most of the variation in a p-dimensional data set. It can then be ar-
gued that it is more important to interpret simply the m-dimensional space
defined by these m components than it is to interpret each individual com-
ponent. One way to tackle this objective is to rotate the axes within this
m-dimensional space in a way that simplifies the interpretation of the axes
as much as possible. More formally, suppose that Am is the (p×m) matrix
whose kth column is the vector of loadings for the kth PC. Following simi-
lar steps to those in factor analysis (see Section 7.2), orthogonally rotated
PCs have loadings given by the columns of Bm, where Bm = AmT, and
T is a (m × m) orthogonal matrix. The matrix T is chosen so as to opti-
mize one of many simplicity criteria available for factor analysis. Rotation
of PCs is commonplace in some disciplines, such as atmospheric science,
where there has been extensive discussion of its advantages and disadvan-
tages (see, for example Richman (1986, 1987); Jolliffe (1987b); Rencher
(1995, Section 12.8.2)). Oblique, instead of orthogonal, rotation is possible,
and this gives extra flexibility (Cohen, 1983; Richman, 1986). As noted in
Chapter 7, the choice of simplicity criterion is usually less important than
the choice of m, and in the examples of the present chapter only the well-
known varimax criterion is used (see equation (7.2.2)). Note, however, that
Jackson (1991, Section 8.5.1) gives an example in which the results from
two orthogonal rotation criteria (varimax and quartimax) have non-trivial
differences. He states that neither is helpful in solving the problem that he
wishes to address for his example.
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It is certainly possible to simplify interpretion of PCs by using rotation.
For example, Table 7.2 gives two versions of rotated loadings for the first
four PCs in a study of scores on 10 intelligence tests for 150 children from
the Isle of Wight. The two versions correspond to varimax rotation and
to an oblique rotation criterion, direct quartimin. The unrotated loadings
are given in Table 7.1. The type of simplicity favoured by almost all ro-
tation criteria attempts to drive loadings towards zero or towards their
maximum possible absolute value, which with most scalings of the loadings
is 1. The idea is that it should then be clear which variables are ‘impor-
tant’ in a (rotated) component, namely, those with large absolute values
for their loadings, and those which are not important (loadings near zero).
Intermediate-value loadings, which are difficult to interpret, are avoided
as much as possible by the criteria. Comparing Tables 7.1 and 7.2, it is
apparent that this type of simplicity has been achieved by rotation.

There are other types of simplicity. For example, the first unrotated
component in Table 7.1 has all its loadings of similar magnitude and the
same sign. The component is thus simple to interpret, as an average of
scores on all ten tests. This type of simplicity is shunned by most rotation
criteria, and it is difficult to devise a criterion which takes into account more
than one type of simplicity, though Richman (1986) attempts to broaden
the definition of simple structure by graphical means.

In the context of PCA, rotation has a number of drawbacks:

• A choice has to made from a large number of possible rotation criteria.
Cattell (1978) and Richman (1986), respectively, give non-exhaustive
lists of 11 and 19 such criteria. Frequently, the choice is made arbitrar-
ily, for example by using the default criterion in a computer package
(often varimax). Fortunately, as noted already, different choices of cri-
teria, at least within orthogonal rotation, often make little difference
to the results.

• PCA successively maximizes variance accounted for. When rotation
is done, the total variance within the rotated m-dimensional subspace
remains unchanged; it is still the maximum that can be achieved, but
it is redistributed amongst the rotated components more evenly than
before rotation. This means that information about the nature of
any really dominant components may be lost, unless they are already
‘simple’ in the sense defined by the chosen rotation criterion.

• The choice of m can have a large effect on the results after rotation.
This is illustrated in Tables 7.4 and 7.2 when moving from m = 3
to m = 4 for the children’s intelligence example. Interpreting the
‘most important dimensions’ for a data set is clearly harder if those
‘dimensions’ appear, disappear, and possibly reappear, as m changes.

• The choice of normalization constraint used for the columns in the
matrix Am changes the properties of the rotated loadings. From the
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theory of PCA, it is natural to expect the columns of Am to be
normalized so as to have unit length, but it is far more common
in computer packages to rotate a matrix Ãm whose columns have
lengths equal to their corresponding eigenvalues, as in the sample
version of equation (2.3.2). The main reason for this convention is
almost certainly due to the fact that it has been borrowed from factor
analysis. This is discussed further later in this section, but first the
properties associated with the rotated components under these two
normalizations are explored.

In PCA the components possess two ‘orthogonality’ properties. First

A′
mAm = Im, (11.1.1)

where Im is the identity matrix of order m. Hence, the vectors of loadings for
different components are orthogonal. Second, if A and Z are, as in previous
chapters, the (p×p) matrix of loadings or coefficients and the (n×p) matrix
of scores, respectively, for all p PCs, and L2, as in Chapter 5, is the diagonal
matrix whose elements are eigenvalues of X′X, then

Z′Z = A′X′XA = A′AL2A′A = L2. (11.1.2)

The second equality in (11.1.2) follows from the algebra below equation
(5.3.6), and the last equality is a result of the orthogonality of A. The
implication of this result is that all the p unrotated components, including
the first m, are uncorrelated with other.

The fact that orthogonality of vectors of loadings and uncorrelatedness
of component scores both hold for PCs is because the loadings are given by
eigenvectors of the covariance matrix S corresponding to the result for Σ
in Section 1.1. After rotation, one or both of these properties disappears.
Let Zm = XAm be the (n×m) matrix of PC scores for n observations on
the first m PCs, so that

ZR
m = XBm = XAmT = ZmT (11.1.3)

is the corresponding matrix of rotated PC scores. Consider

B′
mBm = T′A′

mAmT, (11.1.4)

and

Z′R
m ZR

m = T′Z′
mZmT. (11.1.5)

With the usual PCA normalization a′
kak = 1, or A′

mAm = Im, equation
(11.1.4) becomes T′T, which equals Im for orthogonal rotation. However,
if L2

m is the (m × m) submatrix of L2 consisting of its first m rows and
columns then, from (11.1.2), equation (11.1.5) becomes T′L2

mT, which is
not diagonal. Hence the rotated components using this normalization have
orthogonal loadings, but are not uncorrelated.

Next consider the common alternative normalization, corresponding to
equation (2.3.2), in which each column ak of Am is multiplied by the square
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root of the corresponding eigenvalue of S, giving

ãk =
(

lk
n − 1

) 1
2

ak

or

Ãm = (n − 1)−
1
2 AmLm

[Note that in this section we are using the notation of Section 5.3. Hence
the matrix L has elements l

1/2
k that are square roots of the eigenvalues of

X′X. As S = X′X/(n−1), the square roots of its eigenvalues are
(

lk
n−1

)1/2].
For this normalization, equation (11.1.4) becomes T′L2

mT/(n − 1) and
(11.1.5) is T′L4

mT/(n − 1). Neither of these matrices is diagonal, so the
rotated PCs are correlated and have loadings that are not orthogonal.
To obtain uncorrelated components a different normalization is needed in
which each column ak of Am is divided by the square root of the corre-
sponding eigenvalue of S. This normalization is used in the discussion of
outlier detection in Section 10.1. Here it gives

˜̃Am = (n − 1)
1
2 AmL−1

m

and equation (11.1.5) becomes (n− 1)T′T = (n− 1)Im, which is diagonal.
Hence, the components are uncorrelated when this normalization is used.
However, equation (11.1.4) is now (n − 1)T′L−2

m T, which is not diagonal,
so the loadings of the rotated components are not orthogonal.

It would seem that the common normalization Ãm = (n − 1)−
1
2 AmLm

should be avoided, as it has neither orthogonal loadings nor uncorrelated
components once rotation is done. However, it is often apparently used
in atmospheric science with a claim that the components are uncorrelated.
The reason for this is that rotation is interpreted in a factor analysis frame-
work rather than in terms of rotating PCA loadings. If the loadings Bm are
used to calculate rotated PC scores, then the properties derived above hold.
However, in a factor analysis context an attempt is made to reconstruct X
from the underlying factors. With notation based on that of Chapter 7, we
have X ≈ FΛ′, and if PCs are used as factors this becomes X ≈ ZR

mA′
m.

If a column of Am is multiplied by
(

lk
n−1

)1/2, then a corresponding column
of ZR

m must be divided by the same quantity to preserve the approxima-
tion to X. This is similar to what happens when using the singular value
decomposition (SVD) of X to construct different varieties of biplot (Sec-
tion 5.3). By contrast, in the PCA approach to rotation multiplication
of a column of Am by a constant implies that the corresponding column
of ZR

m is multiplied by the same constant. The consequence is that when
the factor analysis (or SVD) framework is used, the scores are found us-
ing the normalization ˜̃Am = (n − 1)1/2AmL−1

m when the normalization
Ãm = (n− 1)−

1
2 AmLm is adopted for the loadings, and vice versa. Jolliffe
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(1995) and Mestas-Nuñez (2000) discuss the effects of different normaliza-
tions. Mestas-Nuñez distinguishes between the PCA and factor analysis
approaches as corresponding to the ‘analysis’ and ‘synthesis’ formulae, re-
spectively. This terminology comes from Preisendorfer and Mobley (1988,
Section 2b). Other terminology used by Mestas-Nuñez is less helpful. He
refers to unit-length eigenvectors as defining the ‘EOF model,’ and eigen-
vectors with squared lengths equal to their eigenvalues as the ‘PCA model.’
This distinction, which was used by Richman (1986), is confusing—it is
more usual to refer to the eigenvectors as EOFs, and the derived variables
as PCs, whatever their normalization.

Von Storch and Zwiers (1999, Section 13.1.11) note a further implication
of the two approaches. In PCA using a covariance matrix with all variables
measured in the same units, it is clear that that the loadings in the PCs are
dimensionless, and the PCs themselves have the same units as the original
variables. For example, if each of the measured variables is a temperature,
so are the PCs. In the factor analysis approach, dividing each PC by its
standard deviation makes the resulting components dimensionless, and the
loadings are now measured in the same units as the original variables.
Things are different when PCA is done on a correlation matrix, as the
standardized variables forming the input to the analysis are themselves
dimensionless.

Arbuckle and Friendly (1977) describe a different way of rotating PCs.
Their data consist of p measurements over time of the same quantity, for
n individuals. There is an assumption that the measurements represent
discrete points on an underlying smooth curve, so that the coefficients in
any PC should also vary smoothly over time. Such data can be analysed
using functional PCA (see Section 12.3), but Arbuckle and Friendly (1997)
treat smoothness as a form of simplicity and attempt to rotate a chosen
subset of PCs towards smoothness rather than towards the more usual
form of simple structure. The criterion which they minimize over possible
rotations is the sum of squared first differences of the coefficients when they
are arranged in time order.

11.1.1 Examples

Mediterranean Sea Surface Temperatures

The data presented here were originally analysed by Bartzokas et al. (1994).
They consist of values of sea surface temperatures (SST) for sixteen 5◦×5◦

grid boxes covering most of the Mediterranean, averaged over 3-month sea-
sons, for each of the 43 years 1946–1988. Here we consider data for autumn.
Figure 11.1 shows the varimax rotated loadings of the ‘first’ rotated PC
when three PCs are rotated. The three plots within Figure 11.1 provide
results from analyses in which three different normalization constraints are
used, corresponding to Am, Ãm and ˜̃Am. Of course, the term ‘first’ ro-
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Figure 11.1. Loadings of first rotated autumn components for three normalization

constraints based on (a) Am; (b) Ãm; (c) ˜̃Am

tated PC has no clear meaning, as there is no longer a successive variance
maximization property after rotation, but these three rotated components
are matched in the sense that they all have large loadings in the Eastern
Mediterranean. The rotated loadings are rescaled after rotation for conve-
nience in making comparisons, so that their sums of squares are equal to
unity. The numbers given in Figure 11.1 are these rescaled loadings multi-
plied by 100. The darker shading in the figure highlights those grid boxes
for which the size of their loadings is at least 50% of the largest loading (in
absolute value) for that component.

In can be seen that the loadings in the first two plots of Figure 11.1
are similar, although those corresponding to Ãm emphasize a larger area
of the Eastern Mediterranean than those derived from Am. The rotated
loadings corresponding to ˜̃Am show more substantial differences, with a
clear negative area in the centre of the Mediterranean and the extreme
western grid-box having a large positive loading.

For the normalization based on Am, the vectors of rotated loadings are
orthogonal, but the correlations of the displayed component with the other
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two rotated components are 0.21 and 0.35. The rotated components cor-
responding to ˜̃Am are uncorrelated, but the angles between the vector of
loadings for the displayed component and those of the other two rotated
components are 61◦ and 48◦, respectively, rather than 90◦ as required for
orthogonality. For the normalization based on Ãm the respective correla-
tions between the plotted component and the other rotated components
are 0.30 and 0.25, with respective corresponding angles between vectors of
loadings equal to 61◦ and 76◦.

Artistic Qualities of Painters

In the SST example, there are quite substantial differences in the rotated
loadings, depending on which normalization constraint is used. Jolliffe
(1989) suggests a strategy for rotation that avoids this problem, and also
alleviates two of the other three drawbacks of rotation noted above. This
strategy is to move away from necessarily rotating the first few PCs, but
instead to rotate subsets of components with similar eigenvalues. The ef-
fect of different normalizations on rotated loadings depends on the relative
lengths of the vectors of loadings within the set of loadings that are rotated.
If the eigenvalues are similar for all PCs to be rotated, any normalization
in which lengths of loading vectors are functions of eigenvalues is similar to
a normalization in which lengths are constant. The three constraints above
specify lengths of 1, lk

n−1 , and n−1
lk

, and it therefore matters little which is
used when eigenvalues in the rotated set are similar.

With similar eigenvalues, there is also no dominant PC or PCs within
the set being rotated, so the second drawback of rotation is removed. The
arbitary choice of m also disappears, although it is replaced by another ar-
bitrary choice of which sets of eigenvalues are sufficiently similar to justify
rotation. However, there is a clearer view here of what is required (close
eigenvalues) than in choosing m. The latter is multifaceted, depending on
what the m retained components are meant to achieve, as evidenced by
the variety of possible rules described in Section 6.1. If approximate mul-
tivariate normality can be assumed, the choice of which subsets to rotate
becomes less arbitrary, as tests are available for hypotheses averring that
blocks of consecutive population eigenvalues are equal (Flury and Riedwyl,
1988, Section 10.7). These authors argue that when such hypotheses cannot
be rejected, it is dangerous to interpret individual eigenvectors—only the
subspace defined by the block of eigenvectors is well-defined, not individual
eigenvectors. A possible corollary of this argument is that PCs correspond-
ing to such subspaces should always be rotated in order to interpret the
subspace as simply as possible.

Jolliffe (1989) gives three examples of rotation for PCs with similar eigen-
values. One, which we summarize here, is the four-variable artistic qualities
data set described in Section 5.1. In this example the four eigenvalues are
2.27, 1.04, 0.40 and 0.29. The first two of these are well-separated, and
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Table 11.1. Unrotated and rotated loadings for components 3 and 4: artistic
qualities data.

PC3 PC4 RPC3 RPC4
Composition −0.59 −0.41 −0.27 0.66
Drawing 0.60 −0.50 0.78 −0.09
Colour 0.49 −0.22 0.53 0.09
Expression 0.23 0.73 −0.21 0.74

Percentage of 10.0 7.3 9.3 8.0
total variation

together they account for 83% of the total variation. Rotating them may
lose information on individual dominant sources of variation. On the other
hand, the last two PCs have similar eigenvalues and are candidates for ro-
tation. Table 11.1 gives unrotated (PC3, PC4) and rotated (RPC3, RPC4)
loadings for these two components, using varimax rotation and the normal-
ization constraints a′

kak = 1. Jolliffe (1989) shows that using alternative
rotation criteria to varimax makes almost no difference to the rotated load-
ings. Different normalization constraints also affect the results very little.
Using ã′

kãk = lk gives vectors of rotated loadings whose angles with the
vectors for the constraint a′

kak = 1 are only 6◦ and 2◦.
It can be seen from Table 11.1 that rotation of components 3 and 4 con-

siderably simplifies their structure. The rotated version of component 4 is
almost a pure contrast between expression and composition, and compo-
nent 3 is also simpler than either of the unrotated components. As well as
illustrating rotation of components with similar eigenvalues, this example
also serves as a reminder that the last few, as well as the first few, compo-
nents are sometimes of interest (see Sections 3.1, 3.7, 6.3, 8.4–8.6, 9.1 and
10.1).

In such cases, interpretation of the last few components may have as
much relevance as interpretation of the first few, and for the last few
components close eigenvalues are more likely.

11.1.2 One-step Procedures Using Simplicity Criteria

Kiers (1993) notes that even when a PCA solution is rotated to simple
structure, the result may still not be as simple as required. It may there-
fore be desirable to put more emphasis on simplicity than on variance
maximization, and Kiers (1993) discusses and compares four techniques
that do this. Two of these explicitly attempt to maximize one of the stan-
dard simplicity criteria, namely varimax and quartimax respectively, over
all possible sets of orthogonal components, for a chosen number of compo-
nents m. A third method divides the variables into non-overlapping clusters
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and associates exactly one component with each cluster. The criterion to
be optimized is the sum over variables of squared loadings for each variable
for the single component associated with that variable’s cluster. The final
method is similar to the one that maximizes the quartimax criterion, but
it relaxes the requirement of orthogonality of components.

Gains in simplicity achieved by any of the methods are paid for by a
loss of variance explained compared to rotated PCA, but none of the four
methods explicitly takes into account the desirability of minimizing the
variance lost. Kiers (1993) investigates the trade-off between simplicity gain
and variance loss for the four methods in a simulation study. He finds that
neither of the first two methods offers any advantage over rotated PCA.
The third and fourth methods show some improvement over rotated PCA
in recovering the simple structures that are built into the simulated data,
and the fourth is better than the third in terms of retaining variance.

Two of the disadvantages of standard rotation noted earlier are the loss of
the successive optimization property and the possible sensitivity of the re-
sults to the choice of m. All four techniques compared by Kiers (1993) share
these disadvantages. We now describe a method that avoids these draw-
backs and explicitly takes into account both variance and simplicity. Like
Kiers’ (1993) methods it replaces the two stages of rotated PCA by a sin-
gle step. Linear combinations of the p variables are successively found that
maximize a criterion in which variance is combined with a penalty func-
tion that pushes the linear combination towards simplicity. The method is
known as the Simplified Component Technique (SCoT) (Jolliffe and Uddin,
2000).

Let c′kxi be the value of the kth simplified component (SC) for the ith
observation. Suppose that Sim(ck) is a measure of simplicity for the vector
ck, for example the varimax criterion, and V ar(c′kx) denotes the sample
variance c′kSck of c′kx. Then SCoT successively maximizes

(1 − ψ)V ar(c′kx) + ψSim(ck) (11.1.6)

subject to c′kck = 1 and (for k ≥ 2, h < k) c′hck = 0. Here ψ is a sim-
plicity/complexity parameter, which needs to be chosen. The value ψ = 0
corresponds to PCA, and as ψ increases the SCs move away from the PCs
towards greater simplicity. When ψ = 1, each SC is identical to one of the
original variables, with zero loadings for all other variables.

Mediterranean SST

We return to the Mediterranean SST data, which were introduced earlier in
this section, but here we describe results for both autumn and winter. Fig-
ures 11.2–11.5, reproduced with permission from Jolliffe et al. (2002b), show
the loadings for the first two PCs, and the first two simplified components,
for each of the two seasons. Also included in the figures are two varimax
rotated PCs, using the normalization corresponding to Am, and the first
two components from the SCoTLASS and simple component techniques
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which are described in Section 11.2. The normalization of loadings and the
shading in Figures 11.2–11.5 follow the same conventions as in Figure 11.1,
except that any loadings which are exactly zero are unshaded in the figures.

For the autumn data, the first two SCoT components may be viewed
as slightly simpler versions of PC1 and PC2. The largest loadings become
larger and the smallest become smaller, as is often observed during rotation.
The strong similarity between SCoT and PCA components is reflected by
the fact that the first two SCoT components account for 78.0% of the
total variation compared to 78.2% for the first two PCs. Turning to the
winter data, the first two PCs and RPCs in Figures 11.4, 11.5 are not too
different from those in autumn (Figures 11.2, 11.3), but there are bigger
differences for SCoT. In particular, the second SCoT component is very
much dominated by a single grid box in the Eastern Mediterranean. This
extreme simplicity leads to a reduction in the total variation accounted for
by the first two SCoT components to 55.8%, compared to 71.0% for the
first two PCs.

Results are presented for only one value of the tuning parameter ψ, and
the choice of this value is not an easy one. As ψ increases, there is often
a rapid jump from components that are very close to the corresponding
PC, like those in autumn, to components that are dominated by a single
variable, as for SC2 in winter. This jump is usually accompanied by a large
drop in the proportion of variation accounted for, compared to PCA. This
behaviour as ψ varies can also be seen in a later example (Tables 11.3,
11.4), and is an unsatisfactory feature of SCoT. Choosing different values
ψ1, ψ2, . . . of ψ for SC1, SC2, . . . , only partially alleviates this problem.
The cause seems to be the presence of a number of local maxima for the
criterion defined by (11.1.6). As ψ changes, a different local maximum may
take over as the global maximum, leading to a sudden switch between
two quite different solutions. Further discussion of the properties of SCoT,
together with additional examples, is given by Jolliffe and Uddin (2000)
and Uddin (1999).

Filzmoser (2000) argues that sometimes there is simple structure in a
plane but not in any single direction within that plane. He derives a way
of finding such simply structured planes—which he calls principal planes.
Clearly, if a data set has such structure, the methods discussed in this
section and the next are unlikely to find simple single components without
a large sacrifice in variance.

11.2 Alternatives to Rotation

This section describes two ideas for constructing linear functions of the p
original variables having large variances; these techniques differ from PCA
in imposing additional constraints on the loadings or coefficients of the
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Figure 11.2. Loadings of first autumn components for PCA, RPCA, SCoT,
SCoTLASS and simple component analysis.
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Figure 11.3. Loadings of second autumn components for PCA, RPCA, SCoT,
SCoTLASS and simple component analysis.
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Figure 11.4. Loadings of first winter components for PCA, RPCA, SCoT,
SCoTLASS and simple component analysis.
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Figure 11.5. Loadings of second winter components for PCA, RPCA, SCoT,
SCoTLASS and simple component analysis.
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variables in the functions. The constraints are designed to make the result-
ing components simpler to interpret than PCs, but without sacrificing too
much of the variance accounted for by the PCs. The first idea, discussed
in Section 11.2.1, is a simple one, namely, restricting coefficients to a set of
integers, though it is less simple to put into practice. The second type of
technique, described in Section 11.2.2, borrows an idea from regression, that
of the LASSO (Least Absolute Shrinkage and Selection Operator). By im-
posing an additional constraint in the PCA optimization problem, namely,
that the sum of the absolute values of the coefficients in a component is
bounded, some of the coefficients can be forced to zero. A technique from
atmospheric science, empirical orthogonal teleconnections, is described in
Section 11.2.3, and Section 11.2.4 makes comparisons between some of the
techniques introduced so far in the chapter.

11.2.1 Components with Discrete-Valued Coefficients

A fairly obvious way of constructing simpler versions of PCs is to succes-
sively find linear functions of the p variables that maximize variance, as in
PCA, but with a restriction on the values of coefficients in those functions
to a small number of values. An extreme version of this was suggested by
Hausmann (1982), in which the loadings are restricted to the values +1,
−1 and 0. To implement the technique, Hausman (1982) suggests the use
of a branch-and-bound algorithm. The basic algorithm does not include
an orthogonality constraint on the vectors of loadings of successive ‘com-
ponents,’ but Hausmann (1982) adapts it to impose this constraint. This
improves interpretability and speeds up the algorithm, but has the impli-
cation that it may not be possible to find as many as p components. In the
6-variable example given by Hausmann (1982), after 4 orthogonal compo-
nents have been found with coefficients restricted to {−1, 0,+1} the null
vector is the only vector with the same restriction that is orthogonal to all
four already found. In a unpublished M.Sc. project report, Brooks (1992)
discusses some other problems associated with Hausmann’s algorithm.

Further information is given on Hausmann’s example in Table 11.2. Here
the following can be seen:

• The first component is a straightforward average or ‘size’ component
in both analyses.

• Despite a considerable simplication, and a moderately different inter-
pretation, for the second constrained component, there is very little
loss in variance accounted by the first two constrained components
compared to first two PCs.

A less restrictive method is proposed by Vines (2000), in which the co-
efficients are also restricted to integers. The algorithm for finding so-called
simple components starts with a set of p particularly simple vectors of
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Table 11.2. Hausmann’s 6-variable example: the first two PCs and constrained
components.

First component Second component

Variable PC Constrained PC Constrained

Sentence structure 0.43 1 −0.28 0
Logical relationships 0.44 1 0.12 0
Essay 0.32 1 −0.66 1
Composition 0.46 1 −0.18 1
Computation 0.39 1 0.53 −1
Algebra 0.40 1 0.40 −1

Percentage of total 74.16 74.11 16.87 16.66
variation

loadings chosen without worrying about the variances of the correspond-
ing components. Typically this is the set of vectors ak where akk = 1 and
akj = 0 (k = 1, 2, . . . , p; j = 1, 2, . . . , p; j �= k), akj being the jth element
of ak. A sequence of ‘simplicity-preserving’ transformations is then applied
to these vectors. Each transformation chooses a pair of the vectors and ro-
tates them orthogonally in such a way that the variance associated with the
currently higher variance component of the pair is increased at the expense
of the lower variance component. The algorithm stops when no non-trivial
simplicity-preserving transformation leads to an improvement in variance.

Simplicity is achieved by considering a restricted set of angles for each
rotation. Only angles that result in the elements of the transformed vec-
tors being proportional to integers are allowed. Thus, ‘simple’ vectors are
defined in this technique as those whose elements are proportional to in-
tegers. It is usually the case that the transformed vector associated with
the higher variance tends to be simpler (proportional to smaller magnitude
integers) than the other transformed vector. Cumulatively, this means that
when the algorithm terminates, all the vectors of loadings are simple, with
those for the first few components tending to be simpler than those for
later components. The choice of which pair of vectors to rotate at each
stage of the algorithm is that pair for which the increase in variance of
the higher-variance component resulting from a simplicity-preserving rota-
tion is maximized, although this strict requirement is relaxed to enable
more than one rotation of mutually exclusive pairs to be implemented
simultaneously.

The algorithm for simple components includes a tuning parameter c,
which determines the number of angles considered for each simplicity-
preserving transformation. This number is 2c+2 for c = 0, 1, 2, . . . . As c
increases, the simple components tend to become closer to the principal
components, but simplicity is sacrificed as the elements of the vectors of
loadings progressively become proportional to larger magnitude integers.



286 11. Rotation and Interpretation of Principal Components

In practice, it has been found that c = 0 usually gives the best balance
between simplicity and retention of variance. Examples of this technique’s
application are now given.

Mediterranean SST

Returning to the Mediterrean SST example of Section 11.1.2, Figures 11.2–
11.5 show that for autumn the simple components using c = 0 are very
simple indeed. In the figures the normalization a′

kak = 1 is used to aid
comparisons between methods, but when converted to integers all coeffi-
cients in the first simple component are equal to 1. The second component
is a straightforward contrast between east and west with all coefficients
equal to +1 or −1. The results for winter are slightly less simple. The first
simple component has four grid boxes with coefficients equal to 2 with the
remaining 12 coefficients equal to 1, and the second component has coeffi-
cients proportional to 3, 4, 5 and 6 in absolute value. The first two simple
components account for 70.1%, 67.4% of total variation in autumn and
winter, respectively, compared to 78.2%, 71.0% for the first two PCs.

Pitprops

Here we revisit the pitprop data, originally analysed by Jeffers (1967) and
discussed in Section 8.7.1. Tables 11.3 and 11.4 give the coefficients and
cumulative variance for the first and fourth simple components for these
data. Also given in the tables is corresponding information for SCoT and
SCoTLASS. The first simple component is, as in the SST example, very
simple with all its coefficients proportional to +1, 0 or −1. Its loss of
variance compared to the first PC is non-trivial, though not large. The
second component (not shown) is also simple, the third (also not shown)
is less so, and the fourth (Table 11.4) is by no means simple, reflecting
the pattern that higher variance simple components are simpler than later
ones. The cumulative loss of variance over 4 components compared to PCA
is similar to that over 2 components in the SST example.

11.2.2 Components Based on the LASSO

Tibshirani (1996) considers the difficulties associated with interpreting mul-
tiple regression equations with many predictor variables. As discussed in
Chapter 8, these problems may occur due to the instability of the regression
coefficients in the presence of collinearity, or may simply be as a conse-
quence of the large number of variables included in the regression equation.
Alternatives to least squares regression that tackle the instability are of two
main types. Biased regression methods such as PC regression keep all vari-
ables in the regression equation but typically shrink some of the regression
coefficients towards zero (see Section 8.3). On the other hand, variable se-
lection procedures (Section 8.5) choose a subset of variables and keep only
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Table 11.3. Jeffers’ pitprop data - coefficients and variance for the first component.

Variable PCA SCoT SCoTLASS Simple
1 0.40 0.44 0.50 1
2 0.41 0.44 0.51 1
3 0.12 0.10 0 0
4 0.17 0.14 0 0
5 0.06 0.04 0 1
6 0.28 0.25 0.05 1
7 0.40 0.40 0.35 1
8 0.29 0.27 0.23 1
9 0.36 0.35 0.39 1
10 0.38 0.38 0.41 1
11 −0.01 −0.01 0 0
12 −0.11 −0.09 0 −1
13 −0.11 −0.08 0 −1

Variance(%) 32.45 32.28 29.07 28.23

Table 11.4. Jeffers’ pitprop data - coefficients and cumulative variance for the
fourth component.

Variable PCA SCoT SCoTLASS Simple
1 −0.03 0.02 −0.07 −133
2 −0.02 0.02 −0.11 −133
3 0.02 −0.05 0.16 603
4 0.01 −0.00 0.08 601
5 0.25 −0.02 0 79
6 −0.15 −0.01 −0.02 −333
7 −0.13 −0.01 −0.05 −273
8 0.29 0.02 0.47 250
9 0.13 0.03 0 −68
10 −0.20 −0.04 0 224
11 0.81 1.00 0.51 20
12 −0.30 −0.00 −0.68 −308
13 −0.10 0.00 −0.04 −79

Cumulative
Variance (%) 74.0 59.9 70.0 68.7
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the selected variables in the equation. Tibshirani (1996) proposes a new
method, the ‘least absolute shrinkage and selection operator’ or LASSO,
which is a hybrid of variable selection and shrinkage estimators. The pro-
cedure shrinks the coefficients of some of the variables not simply towards
zero, but exactly to zero, giving an implicit form of variable selection. The
LASSO idea can be transferred to PCA, as will now be shown.

In standard multiple regression we have the equation

yi = β0 +
p∑

j=1

βjxij + εi, i = 1, 2, . . . , n,

where y1, y2, . . . , yn are measurements on a response variable y; xij , i =
1, 2, . . . , n, j = 1, 2, . . . , p, are corresponding values of p predictor variables;
β0, β1, β2, . . . , βp are parameters in the regression equation; and εi is an
error term. In least squares regression, the parameters are estimated by
minimizing the residual sum of squares,

n∑

i=1

(
yi − β0 −

p∑

j=1

βjxij

)2

.

The LASSO imposes an additional restriction on the coefficients, namely
p∑

j=1

|βj | ≤ t

for some ‘tuning parameter’ t. For suitable choices of t this constraint
has the interesting property that it forces some of the coefficients in the
regression equation to zero.

Now consider PCA, in which linear combinations a′
kx, k = 1, 2, . . . , p,

of the p measured variables x are found that successively have maximum
variance a′

kSak, subject to a′
kak = 1 (and, for k ≥ 2, a′

hak = 0, h < k).
Jolliffe et al. (2002a) suggest an adaptation of PCA, which they call

the Simplified Component Technique—LASSO (SCoTLASS), in which the
additional constraint

p∑

j=1

|akj | ≤ t (11.2.1)

is added to the PCA optimization problem, where akj is the jth element
of the kth vector ak, k = 1, 2, . . . , p, and t is a ‘tuning’ parameter.

SCoTLASS differs from PCA in the inclusion of the constraints defined in
(11.2.1), and a decision must be made on the value of the tuning parameter,
t. It is easy to see that

• for t ≥ √
p, we get PCA;

• for t < 1, there is no solution;

• for t = 1, we must have exactly one non-zero akj for each k.
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As t decreases from
√

p, the SCoTLASS components move progressively
away from PCA and some of the loadings become zero. Eventually, for t =
1, a solution is reached in which only one variable has a non-zero loading on
each component, as with ψ = 1 in SCoT (Section 11.1.2). Examples follow.

Mediterranean SST

We return to the Mediterranean SST example and Figures 11.2–11.5 once
more. As with SCoT in Section 11.1.2, results are given for one value of the
tuning parameter, in this case t, chosen to give a compromise between vari-
ance retention and simplicity. In the autumn, SCoTLASS behaves rather
like rotated PCA, except that its patterns are more clearcut, with sev-
eral grid boxes having zero rather than small loadings. Its first component
concentrates on the Eastern Mediterranean, as does rotated PCA, but its
second component is centred a little further west than the second rotated
PC. The patterns found in winter are fairly similar to those in autumn,
and again similar to those of rotated PCA except for a reversal in order.
In autumn and winter, respectively, the first two SCoTLASS components
account for 70.5%, 65.9% of the total variation. This compares with 78.2%,
71.0% for PCA and 65.8%, 57.9% for rotated PCA. The comparison with
rotated PCA is somewhat unfair to the latter as we have chosen to dis-
play only two out of three rotated PCs. If just two PCs had been rotated,
the rotated PCs would account for the same total variation as the first two
PCs. However, the fact that the first two SCoTLASS components are much
simplified versions of the two displayed rotated PCs, and at the same time
have substantially larger variances, suggests that SCoTLASS is superior to
rotated PCA in this example.

Pitprops

Tables 11.3 and 11.4 give coefficients and cumulative variances for the first
and fourth SCoTLASS components for Jeffers’ (1967) pitprop data. The
first component sacrifices about the same amount of variance compared
to PCA as the first simple component. Both achieve a greatly simplified
pattern of coefficients compared to PCA, but, as in the SST example, of
quite different types. For the fourth component, the cumulative variance
is again similar to that of the simple components, but the SCoTLASS
component is clearly simpler in this case. Further examples and discussion
of the properties of SCoTLASS can be found in Jolliffe et al. (2002a) and
Uddin (1999).

11.2.3 Empirical Orthogonal Teleconnections

Van den Dool et al. (2000) propose a technique, the results of which they
refer to as empirical orthogonal teleconnections (EOTs). The data they con-
sider have the standard atmospheric science form in which the p variables
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correspond to measurements of the same quantity at p different spatial lo-
cations and the n observations are taken at n different points in time (see
Section 12.2). Suppose that rjk is the correlation between the jth and kth
variables (spatial locations), and s2

k is the sample variance at location k.
Then the location j∗ is found for which the criterion

∑p
k=1 r2

jks2
k is maxi-

mized. The first EOT is then the vector whose elements are the coefficients
in separate regressions of each variable on the chosen variable j∗. The first
derived variable is not the linear combination of variables defined by this
EOT, but simply the time series at the chosen location j∗. To find a second
EOT, the residuals are calculated from the separate regressions that define
the first EOT, and the original analysis is repeated on the resulting matrix
of residuals. Third, fourth, . . . EOTs can be found in a similar way. At this
stage it should be noted that ‘correlation’ appears to be defined by van den
Dool et al. (2000) in a non-standard way. Both ‘variances’ and ‘covariances’
are obtained from uncentred products, as in the uncentred version of PCA
(see Section 14.2.3). This terminology is reasonable if means can be as-
sumed to be zero. However, it does not appear that this assumption can be
made in van den Dool and co-workers’ examples, so that the ‘correlations’
and ‘regressions’ employed in the EOT technique cannot be interpreted in
the usual way.

Leaving aside for the moment the non-standard definition of correlations,
it is of interest to investigate whether there are links between the procedure
for finding the optimal variable j∗ that determines the first EOT and ‘prin-
cipal variables’ as defined by McCabe (1984) (see Section 6.3). Recall that
McCabe’s (1984) idea is to find subsets of variables that optimize the same
criteria as are optimized by the linear combinations of variables that are
the PCs. Now from the discussion following Property A6 in Section 2.3 the
first correlation matrix PC is the linear combination of variables that max-
imizes the sum of squared correlations between the linear combination and
each of the variables, while the first covariance matrix PC similarly maxi-
mizes the corresponding sum of squared covariances. If ‘linear combination
of variables’ is replaced by ‘variable,’ these criteria become

∑p
k=1 r2

jk and∑p
k=1 r2

jks2
ks2

j , respectively, compared to
∑p

k=1 r2
jks2

k for the first EOT. In a
sense, then, the first EOT is a compromise between the first principal vari-
ables for covariance and correlation matrices. However, the non-standard
definitions of variances and correlations make it difficult to understand
exactly what the results of the analysis represent.

11.2.4 Some Comparisons

In this subsection some comparisons are made between the two main tech-
niques described in the section, and to other methods discussed earlier
in the chapter. Further discussion of the properties of SCoT and SCoT-
LASS can be found in Uddin (1999). Another approach to simplification is
described in Section 14.6.3.
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• SCoT, SCoTLASS and Vines’ (2000) simple components all have
tuning parameters which must be chosen. At present there is no pro-
cedure for choosing the tuning parameters automatically, and it is
advisable to try more than one value and judge subjectively when a
suitable compromise between simplicity and variance retention has
been achieved. For simple components c = 0 is often a good choice.
The sudden switching between solutions as ψ varies, noted for SCoT,
seems not to be a problem with respect to t or c for SCoTLASS or
simple components.

• Principal components have the special property that the vectors
of loadings are orthogonal and the component scores are uncor-
related. It was noted in Section 11.1 that rotated PCs lose at
least one of these properties, depending on which normalization
constraint is used. None of the new techniques is able to retain
both properties either. SCoT and SCoTLASS, as defined above
and implemented in the examples, retain orthogonality of the vec-
tors of loadings but sacrifice uncorrelatedness of the components.
It is straightforward, though a little more complicated computa-
tionally, to implement versions of SCoT and SCoTLASS that keep
uncorrelatedness rather than orthogonality. All that is required is to
substitute the conditions c′hSck = 0, h < k (or a′

hSak = 0, h < k)
for c′hck = 0, h < k (or a′

hak = 0, h < k) in the definitions
of the techniques in Sections 11.1.2 and 11.2.2. Because of the
presence of orthogonal rotations at the heart of the algorithm for
simple components, it is not obvious how a modification replac-
ing orthogonality by uncorrelatedness could be constructed for this
technique.

• As noted in Section 11.1, ordinary two-stage rotation of PCs
has a number of drawbacks. The nature of the new techniques
means that all four of the listed difficulties can be avoided, but
the fourth is replaced by a choice between orthogonal vectors of
loadings or uncorrelated components. The removal of the draw-
backs is paid for by a loss in variation accounted for, although
the reduction can be small for solutions that provide consider-
able simplification, as demonstrated in the examples above. One
way to quantify simplicity is to calculate the value of the vari-
max criterion, or whatever other criterion is used in rotated PCA,
for individual components derived from any of the methods. The
new techniques often do better than two-stage rotation with re-
spect to the latter’s own simplicity criterion, with only a small
reduction in variance, giving another reason to prefer the new
techniques.
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11.3 Simplified Approximations to Principal
Components

The techniques of the previous section are alternatives to PCA that sacri-
fice some variance in order to enhance simplicity. A different approach to
improving interpretability is to find the PCs, as usual, but then to approx-
imate them. In Chapter 4, especially its first section, it was mentioned that
there is usually no need to express the coefficients of a set of PCs to more
than one or two decimal places. Rounding the coefficients in this manner is
one way of approximating the PCs. The vectors of rounded coefficients will
no longer be exactly orthogonal, the rounded PCs will not be uncorrelated
and their variances will be changed, but typically these effects will not be
very great, as demonstrated by Green (1977) and Bibby (1980). The latter
paper presents bounds on the changes in the variances of the PCs (both in
absolute and relative terms) that are induced by rounding coefficients, and
shows that in practice the changes are quite small, even with fairly severe
rounding.

To illustrate the effect of severe rounding, consider again Table 3.2,
in which PCs for eight blood chemistry variables have their coefficients
rounded to the nearest 0.2. Thus, the coefficients for the first PC, for
example, are given as

0.2 0.4 0.4 0.4 − 0.4 − 0.4 − 0.2 − 0.2.

Their values to three decimal place are, by comparison,

0.195 0.400 0.459 0.430 − 0.494 − 0.320 − 0.177 − 0.171.

The variance of the rounded PC is 2.536, compared to an exact variance
of 2.792, a change of 9%. The angle between the vectors of coefficients
defining the exact and rounded PCs is about 8◦. For the second, third and
fourth PCs given in Table 3.2, the changes in variances are 7%, 11% and
11%, respectively, and the angles between vectors of coefficients for exact
and rounded PCs are 8◦ in each case. The angle between the vectors of
coefficients for the first two rounded PCs is 99◦ and their correlation is
−0.15. None of these changes or angles is unduly extreme considering the
severity of the rounding that is employed. However, in an example from
quality control given by Jackson (1991, Section 7.3) some of correlations
between PCs whose coefficients are approximated by integers are worringly
large.

Bibby (1980) and Jackson (1991, Section 7.3) also mention the pos-
sibility of using conveniently chosen integer values for the coefficients.
For example, the simplified first PC from Table 3.2 is proportional to
2(x2 +x3 +x4)+x1− (x7 +x8)−2(x5 +x6), which should be much simpler
to interpret than the exact form of the PC. This is in the same spirit as the
techniques of Section 11.2.1, which restrict coefficients to be proportional
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to integer values. The difference is that the latter methods provide simpler
alternatives to PCA, whereas Bibby’s (1980) suggestion approximates the
PCs. Both types of simplification increase the interpretability of individ-
ual components, but comparisons between components are more difficult
when integers are used, because different components have different values
of a′

kak.
It is possible to test whether a single simplified (rounded or otherwise)

PC is a plausible ‘population’ PC using the result in equation (3.7.5) (see
Jackson (1991, Section 7.4)) but the lack of orthogonality between a set
of simplified PCs means that it is not possible for them to simultaneously
represent population PCs.

Green (1977) investigates a different effect of rounding in PCA. Instead
of looking at the direct impact on the PCs, he looks at the proportions
of variance accounted for in each individual variable by the first m PCs,
and examines by how much these proportions are reduced by rounding. He
concludes that changes due to rounding are small, even for quite severe
rounding, and recommends rounding to the nearest 0.1 or even 0.2, as
this will increase interpretability with little effect on other aspects of the
analysis.

It is fairly common practice in interpreting a PC to ignore (set to zero),
either consciously or subconsciously, the variables whose coefficients have
the smallest absolute values for that principal component. A second stage
then focuses on these ‘truncated’ components to see whether the pattern of
non-truncated coefficients can be interpreted as a simple weighted average
or contrast for the non-ignored variables. Cadima and Jolliffe (1995) show
that the first ‘truncation’ step does not always do what might be expected
and should be undertaken with caution. In particular, this step can be
considered as choosing a subset of variables (those not truncated) with
which to approximate a PC. Cadima and Jolliffe (1995) show that

• for the chosen subset of variables, the linear combination given by
the coefficients in the untruncated PC may be far from the optimal
linear approximation to that PC using those variables;

• a different subset of the same size may provide a better approxima-
tion.

As an illustration of the first point, consider an example given by Cadima
and Jolliffe (1995) using data presented by Lebart et al. (1982). In this
example there are seven variables measuring yearly expenditure of groups of
French families on 7 types of foodstuff. The loadings on the variables in the
second PC to two decimal places are 0.58, 0.41,−0.10,−0.11,−0.24, 0.63
and 0.14, so a truncated version of this component is

ẑ2 = 0.58x1 + 0.41x2 + 0.63x6.

Thus, PC2 can be interpreted as a weighted average of expenditure on



294 11. Rotation and Interpretation of Principal Components

bread (x1), vegetables (x2) and milk (x6). However, a question that arises
is whether this truncated version of PC2 is the best linear approximation to
PC2 using only these three variables. The answer is an emphatic ‘No.’ The
best linear approximation in a least squares sense is obtained by regressing
PC2 on x1, x2 and x6. This gives ˆ̂z2 = 0.55x1 − 0.27x2 + 0.73x7, which
differs notably in interpretation from ẑ2, as the expenditure on vegetables
is now contrasted, rather than averaged, with expenditure on bread and
milk. Furthermore ˆ̂z2 has a correlation of 0.964 with PC2, whereas the
correlation between PC2 and ẑ2 is 0.766. Hence the truncated component
ẑ2 not only gives a misleading interpretation of PC2 in terms of x1, x2 and
x6, but also gives an inferior approximation compared to ˆ̂z2.

To illustrate Cadima and Jolliffe’s (1995) second point, the third PC in
the same example has coefficients 0.40,−0.29,−0.34, 0.07, 0.38,−0.23 and
0.66 on the 7 variables. If the 4 variables x1, x3, x5, x7 are kept, the best
linear approximation to PC3 has coefficients −0.06,−0.48, 0.41, 0.68, re-
spectively, so that x1 looks much less important. The correlation of the
approximation with PC3 is increased to 0.979, compared to 0.773 for the
truncated component. Furthermore, although x1 has the second highest
coefficient in PC3, it is not a member of the 3-variable subset {x3, x5, x7}
that best approximates PC3. This subset does almost as well as the best
4-variable subset, achieving a correlation of 0.975 with PC3.

Ali et al. (1985) also note that using loadings to interpret PCs can be
misleading, and suggest examining correlations between variables and PCs
instead. In a correlation matrix-based PCA, these PC-variable correlations
are equal to the loadings when the normalization ãk is used (see Section 2.3
for the population version of this result). The use of PCA in regionalization
studies in climatology, as discussed in Section 9.2, often uses these correla-
tions to define and interpret clusters. However, Cadima and Jolliffe (1995)
show that neither the absolute size of loadings in a PC nor the absolute size
of correlations between variables and components gives reliable guidance
on which subset of variables best approximates a PC (see also Rencher
(1995, Section 12.8.3)). Cadima and Jolliffe (2001) give further examples
of this phenomenon in the context of variable selection (see Section 6.3).

Richman and Gong (1999) present an extensive study, which starts from
the explicit premise that loadings greater than some threshold are retained,
while those below the threshold are set to zero. Their objective is to find
an optimal value for this threshold in a spatial atmospheric science con-
text. The loadings they consider are, in fact, based on the normalization
ãk, so for correlation matrix PCA they are correlations between PCs and
variables. Rotated PCs and covariance matrix PCs are also included in the
study. Richman and Gong (1999) use biserial correlation to measure how
well the loadings in a truncated PC (or truncated rotated PC) match the
pattern of correlations between the spatial location whose loading on the
PC (rotated PC) is largest, and all other spatial locations in a data set.
The optimum threshold is the one for which this match is best. Results
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are given that show how the optimum threshold changes as sample size
increases (it decreases) for unrotated, orthogonally rotated and obliquely
rotated PCs. The precision of the results is indicated by boxplots. The
paper provides useful guidance on choosing a threshold in the spatial at-
mospheric science setting if truncation is to be done. However, it largely
ignores the fact stressed above that neither the size of loadings nor that
of correlations are necessarily reliable indicators of how to interpret a PC,
and hence that truncation according to a fixed threshold should be used
with extreme caution.

Interpretation can play a rôle in variable selection. Section 6.3 defines a
number of criteria for choosing a subset of variables; these criteria are based
on how well the subset represents the full data set in one sense or another.
Often there will be several, perhaps many for large p, subsets that do almost
as well as the best in terms of the chosen criterion. To decide between them
it may be desirable to select those variables that are most easily measured
or, alternatively, those that can be most easily interpreted. Taking this train
of thought a little further, if PCs are calculated from a subset of variables,
it is preferable that the chosen subset gives PCs that are easy to interpret.
Al-Kandari and Jolliffe (2001) take this consideration into account in a
study that compares the merits of a number of variable selection methods
and also compares criteria for assessing the value of subsets. A much fuller
discussion is given by Al-Kandari (1998).

11.3.1 Principal Components with Homogeneous, Contrast
and Sparsity Constraints

Chipman and Gu (2001) present a number of related ideas that lead to
results which appear similar in form to those produced by the techniques
in Section 11.2. However, their reasoning is closely related to truncation
so they are included here. Components with homogeneous constraints have
their coefficients restricted to −1, 0 and +1 as with Hausmann (1982), but
instead of solving a different optimization problem we start with the PCs
and approximate them. For a threshold τH a vector of PC coefficients ak

is replaced by a vector aH
k with coefficients

aH
kj =

{
sign(akj) if akj ≥ τH

0 if akj < τH .

The threshold τH is chosen to minimize the angle between the vectors
aH

k and ak.
Contrast constraints allow coefficients aC

kj to take the values −c1, 0 and
c2, where c1, c2 > 0 and

∑p
j=1 aC

kj = 0. Again a threshold τC determines
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the coefficients. We have

aC
kj =






−c1 if akj ≤ −τC

0 if |akj | < τC

c2 if akj ≥ τC ,

and τC is chosen to minimize the angle between aC
k and ak.

The idea behind sparsity constraints as defined by Chipman and Gu
(2001) is different. An approximating vector aS

k is simply the vector ak

with all except its q largest coefficients in absolute value truncated to zero.
The value of q is chosen by minimizing the quantity (2θ

π + ηq
p ) with respect

to q, where θ is the angle between aS
k and ak and η is a tuning parameter.

As η increases, so the optimal value of q decreases and the component
becomes more ‘sparse.’

The three ideas of homogeneous, contrast and sparsity constraints for-
malize and extend the informal procedure of truncation, and Chipman and
Gu (2001) give interesting examples of their use. It must, however, be
remembered that these techniques implicitly assume that the sizes of coef-
ficients or loadings for a PC are a reliable guide to interpreting that PC.
As we have seen, this is not necessarily true.

11.4 Physical Interpretation of Principal
Components

There is often a desire to physically interpret principal components. In
psychology, for example, it is frequently assumed that there are certain
underlying factors that cannot be measured directly, but which can be
deduced from responses to questions or scores on tests of a sample of in-
dividuals. PCA can be used to look for such factors. In psychology, factor
analysis, which builds a model that includes the factors, is usually rightly
preferred to PCA, although the software used may be such that PCA is
actually done.

Atmospheric science is another area where it is believed that there are
fundamental modes of variation underlying a data set, and PCA or some
modification of it is often used to look for them. Preisendorfer and Mobley
(1988, Chapters 3 and 10) discuss at length the interplay between PCA and
the dominant modes of variation in physical systems, and use a version
of PCA for continuous variables (functional PCA—see Section 12.3) to
explore the relationships between EOFs (the vectors of coefficients) and
the physical modes of the atmosphere. Recent discussions of the North
Atlantic Oscillation and Arctic Oscillation (Ambaum et al., 2001) and the
Indian Ocean dipole (Allan et al., 2001) illustrate the controversy that
sometimes surrounds the physical interpretation of PCs.
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In practice, there may be a circularity of argument when PCA is used
to search for physically meaningful modes in atmospheric data. The form
of these modes is often assumed known and PCA is used in an attempt to
confirm them. When it fails to do so, it is ‘accused’ of being inadequate.
However, it has very clear objectives, namely finding uncorrelated derived
variables that in succession maximize variance. If the physical modes are
not expected to maximize variance and/or to be uncorrelated, PCA should
not be used to look for them in the first place.

One of the reasons why PCA ‘fails’ to find the expected physical modes
in some cases in atmospheric science is because of its dependence on the
size and shape of the spatial domain over which observations are taken.
Buell (1975) considers various spatial correlation functions, both circular
(isotropic) and directional (anisotropic), together with square, triangular
and rectangular spatial domains. The resulting EOFs depend on the size of
the domain in the sense that in a small domain with positive correlations
between all points within it, the first EOF is certain to have all its elements
of the same sign, with the largest absolute values near the centre of the
domain, a sort of ‘overall size’ component (see Section 13.2). For larger
domains, there may be negative as well as positive correlations, so that the
first EOF represents a more complex pattern. This gives the impression
of instability, because patterns that are present in the analysis of a large
domain are not necessarily reproduced when the PCA is restricted to a
subregion of this domain.

The shape of the domain also influences the form of the PCs. For ex-
ample, if the first EOF has all its elements of the same sign, subsequent
ones must represent ‘contrasts,’ with a mixture of positive and negative val-
ues, in order to satisfy orthogonality constraints. If the spatial correlation
is isotropic, the contrast represented by the second PC will be between
regions with the greatest geographical separation, and hence will be de-
termined by the shape of the domain. Third and subsequent EOFs can
also be predicted for isotropic correlations, given the shape of the domain
(see Buell (1975) for diagrams illustrating this). However, if the correlation
is anisotropic and/or non-stationary within the domain, things are less
simple. In any case, the form of the correlation function is important in
determining the PCs, and it is only when it takes particularly simple forms
that the nature of the PCs can be easily predicted from the size and shape
of the domain. PCA will often give useful information about the sources
of maximum variance in a spatial data set, over and above that available
from knowledge of the size and shape of the spatial domain of the data.
However, in interpreting PCs derived from spatial data, it should not be
forgotten that the size and shape of the domain can have a strong influence
on the results. The degree of dependence of EOFs on domain shape has
been, like the use of rotation and the possibility of physical interpretation,
a source of controversy in atmospheric science. For an entertaining and
enlightening exchange of strong views on the importance of domain shape,
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which also brings in rotation and interpretation, see Legates (1991, 1993)
and Richman (1993).

Similar behaviour occurs for PCA of time series when the autocorrelation
function (see Section 12.1) takes a simple form. Buell (1979) discusses this
case, and it is well-illustrated by the road-running data which are analysed
in Sections 5.3 and 12.3. The first PC has all its loadings of the same
sign, with the greatest values in the middle of the race, while the second
PC is a contrast between the race segments with the greatest separation
in time. If there are predictable patterns in time or in spatial data, it
may be of interest to examine the major sources of variation orthogonal
to these predictable directions. This is related to what is done in looking
for ‘shape’ components orthogonal to the isometric size vector for size and
shape data (see Section 13.2). Rao’s ‘principal components uncorrelated
with instrumental variables’ (Section 14.3) also have similar objectives.

A final comment is that even when there is no underlying structure in
a data set, sampling variation ensures that some linear combinations of
the variables have larger variances than others. Any ‘first PC’ which has
actually arisen by chance can, with some ingenuity, be ‘interpreted.’ Of
course, completely unstructured data is a rarity but we should always try
to avoid ‘overinterpreting’ PCs, in the same way that in other branches of
statistics we should be wary of spurious regression relationships or clusters,
for example.



12
Principal Component Analysis for
Time Series and Other
Non-Independent Data

12.1 Introduction

In much of statistics it is assumed that the n observations x1,x2, . . . ,xn

are independent. This chapter discusses the implications for PCA of non-
independence among x1,x2, . . . ,xn. Much of the chapter is concerned with
PCA for time series data, the most common type of non-independent data,
although data where x1,x2, . . . ,xn are measured at n points in space are
also discussed. Such data often have dependence which is more complicated
than for time series. Time series data are sufficiently different from ordinary
independent data for there to be aspects of PCA that arise only for such
data, for example, PCs in the frequency domain.

The results of Section 3.7, which allow formal inference procedures to
be performed for PCs, rely on independence of x1, x2, . . . ,xn, as well as
(usually) on multivariate normality. They cannot therefore be used if more
than very weak dependence is present between x1,x2, . . . ,xn. However,
when the main objective of PCA is descriptive, not inferential, complica-
tions such as non-independence do not seriously affect this objective. The
effective sample size is reduced below n, but this reduction need not be
too important. In fact, in some circumstances we are actively looking for
dependence among x1,x2, . . . ,xn. For example, grouping of observations in
a few small areas of the two-dimensional space defined by the first two PCs
implies dependence between those observations that are grouped together.
Such behaviour is actively sought in cluster analysis (see Section 9.2) and
is often welcomed as a useful insight into the structure of the data, rather
than decried as an undesirable feature.



300 12. PCA for Time Series and Other Non-Independent Data

We have already seen a number of examples where the data are time
series, but where no special account is taken of the dependence between
observations. Section 4.3 gave an example of a type that is common in
atmospheric science, where the variables are measurements of the same
meteorological variable made at p different geographical locations, and the
n observations on each variable correspond to different times. Section 12.2
largely deals with techniques that have been developed for data of this type.
The examples given in Section 4.5 and Section 6.4.2 are also illustrations of
PCA applied to data for which the variables (stock prices and crime rates,
respectively) are measured at various points of time. Furthermore, one of
the earliest published applications of PCA (Stone, 1947) was on (economic)
time series data.

In time series data, dependence between the x vectors is induced by
their relative closeness in time, so that xh and xi will often be highly
dependent if |h−i| is small, with decreasing dependence as |h−i| increases.
This basic pattern may in addition be perturbed by, for example, seasonal
dependence in monthly data, where decreasing dependence for increasing
|h − i| is interrupted by a higher degree of association for observations
separated by exactly one year, two years, and so on.

Because of the emphasis on time series in this chapter, we need to intro-
duce some of its basic ideas and definitions, although limited space permits
only a rudimentary introduction to this vast subject (for more information
see, for example, Brillinger (1981); Brockwell and Davis (1996); or Hamilton
(1994)). Suppose, for the moment, that only a single variable is measured at
equally spaced points in time. Our time series is then . . . x−1, x0, x1, x2, . . . .
Much of time series analysis is concerned with series that are stationary, and
which can be described entirely by their first- and second-order moments;
these moments are

µ = E(xi), i = . . . ,−1, 0, 1, 2, . . .

γk = E[(xi − µ)(xi+k − µ)], i = . . . ,−1, 0, 1, 2, . . . (12.1.1)
k = . . . ,−1, 0, 1, 2, . . . ,

where µ is the mean of the series and is the same for all xi in stationary
series, and γk, the kth autocovariance, is the covariance between xi and
xi+k, which depends on k but not i for stationary series. The information
contained in the autocovariances can be expressed equivalently in terms of
the power spectrum of the series

f(λ) =
1
2π

∞∑

k=−∞
γke−ikλ, (12.1.2)

where i =
√−1 and λ denotes angular frequency. Roughly speaking, the

function f(λ) decomposes the series into oscillatory portions with different
frequencies of oscillation, and f(λ) measures the relative importance of
these portions as a function of their angular frequency λ. For example, if a
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series is almost a pure oscillation with angular frequency λ0, then f(λ) is
large for λ close to λ0 and near zero elsewhere. This behaviour is signalled in
the autocovariances by a large value of γk at k = k0, where k0 is the period
of oscillation corresponding to angular frequency λ0 (that is k0 = 2π/λ0),
and small values elsewhere.

Because there are two different but equivalent functions (12.1.1) and
(12.1.2) expressing the second-order behaviour of a time series, there are
two different types of analysis of time series, namely in the time domain
using (12.1.1) and in the frequency domain using (12.1.2).

Consider now a time series that consists not of a single variable, but p
variables. The definitions (12.1.1), (12.1.2) generalize readily to

Γk = E[(xi − µ)(xi+k − µ)′], (12.1.3)

where

µ = E[xi]

and

F(λ) =
1
2π

∞∑

k=−∞
Γke−ikλ (12.1.4)

The mean µ is now a p-element vector, and Γk, F(λ) are (p× p) matrices.
Principal component analysis operates on a covariance or correlation

matrix, but in time series we can calculate not only covariances between
variables measured at the same time (the usual definition of covariance,
which is given by the matrix Γ0 defined in (12.1.3)), but also covariances
between variables at different times, as measured by Γk, k �= 0. This is in
contrast to the more usual situation where our observations x1,x2, . . . are
independent, so that any covariances between elements of xi,xj are zero
when i �= j. In addition to the choice of which Γk to examine, the fact that
the covariances have an alternative representation in the frequency domain
means that there are several different ways in which PCA can be applied
to time series data.

Before looking at specific techniques, we define the terms ‘white noise’
and ‘red noise.’ A white noise series is one whose terms are all identically
distributed and independent of each other. Its spectrum is flat, like that of
white light; hence its name. Red noise is equivalent to a series that follows
a positively autocorrelated first-order autoregressive model

xt = φxt−1 + εt, t = . . . 0, 1, 2 . . . ,

where φ is a constant such that 0 < φ < 1 and {εt} is a white noise series.
The spectrum of a red noise series decreases as frequency increases, like
that of red light in the range of visual radiation.

The next section of this chapter describes a range of approaches based
on PCA that have been used on time series data in atmospheric science.
Although many are inspired by the special nature of the data commonly
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encountered in this area, with observations corresponding to times and
variables to spatial position, they are not necessarily restricted to such
data.

Time series are usually measured at discrete points in time, but some-
times the series are curves. The analysis of such data is known as functional
data analysis (functional PCA is the subject of Section 12.3). The final sec-
tion of the chapter collects together a number of largely unconnected ideas
and references concerning PCA in the context of time series and other
non-independent data.

12.2 PCA-Related Techniques for (Spatio-)
Temporal Atmospheric Science Data

It was noted in Section 4.3 that, for a common type of data in atmospheric
science, the use of PCA, more often referred to as empirical orthogonal
function (EOF) analysis, is widespread. The data concerned consist of mea-
surements of some variable, for example, sea level pressure, temperature,
. . . , at p spatial locations (usually points on a grid) at n different times. The
measurements at different spatial locations are treated as variables and the
time points play the rôle of observations. An example of this type was given
in Section 4.3. It is clear that, unless the observations are well-separated
in time, there is likely to be correlation between measurements at adjacent
time points, so that we have non-independence between observations. Sev-
eral techniques have been developed for use in atmospheric science that take
account of correlation in both time and space, and these will be described
in this section. First, however, we start with the simpler situation where
there is a single time series. Here we can use a principal component-like
technique, called singular spectrum analysis (SSA), to analyse the autocor-
relation in the series. SSA is described in Section 12.2.1, as is its extension
to several time series, multichannel singular spectrum analysis (MSSA).

Suppose that a set of p series follows a multivariate first-order autore-
gressive model in which the values of the series at time t are linearly related
to the values at time (t − 1), except for a multivariate white noise term.
An estimate of the matrix defining the linear relationship can be subjected
to an eigenanalysis, giving insight into the structure of the series. Such an
analysis is known as principal oscillation pattern (POP) analysis, and is
discussed in Section 12.2.2.

One idea underlying POP analysis is that there may be patterns in the
maps comprising our data set, which travel in space as time progresses, and
that POP analysis can help to find such patterns. Complex (Hilbert) em-
pirical orthogonal functions (EOFs), which are described in Section 12.2.3,
are designed to achieve the same objective. Detection of detailed oscilla-
tory behaviour is also the aim of multitaper frequency-domain singular
value decomposition, which is the subject of Section 12.2.4.
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Some time series have cyclic behaviour with fixed periods, such as an
annual or diurnal cycle. Modifications of POP analysis and PCA that take
such cycles into account are discussed in Section 12.2.5. A brief discussion
of examples and comparative studies is given in Section 12.2.6.

12.2.1 Singular Spectrum Analysis (SSA)

Like a number of other statistical techniques, SSA appears to have been
‘invented’ independently in a number of different fields. Elsner and Tsonis
(1996) give references from the 1970s and 1980s from chaos theory, biolog-
ical oceanography and signal processing, and the same idea is described in
the statistical literature by Basilevsky and Hum (1979), where it is referred
to as the ‘Karhunen-Loève method,’ a term more often reserved for con-
tinuous time series (see Section 12.3). Other names for the technique are
‘Pisarenko’s method’ (Smyth, 2000) and ‘singular systems analysis’ (von
Storch and Zwiers, 1999, Section 13.6); fortunately the latter has the same
acronym as the most popular name. A comprehensive coverage of SSA is
given by Golyandina et al. (2001).

The basic idea in SSA is simple: a principal component analysis is done
with the variables analysed being lagged versions of a single time series
variable. More specifically, our p variables are xt, x(t+1), . . . , x(t+p−1) and,
assuming the time series is stationary, their covariance matrix is such that
the (i, j)th element depends only on |i − j|. Such matrices are known
as Töplitz matrices. In the present case the (i, j)th element is the au-
tocovariance γ|i−j|. Because of the simple structure of Töplitz matrices,
the behaviour of the first few PCs, and their corresponding eigenvalues
and eigenvectors (the EOFs) which are trigonometric functions (Brillinger,
1981, Section 3.7), can be deduced for various types of time series structure.
The PCs are moving averages of the time series, with the EOFs providing
the weights in the moving averages.

Töplitz matrices also occur when the p-element random vector x consists
of non-overlapping blocks of p consecutive values of a single time series. If
the time series is stationary, the covariance matrix Σ for x has Töplitz
structure, with the well-known pattern of trigonometric functions for its
eigenvalues and eigenvectors. Craddock (1965) performed an analysis of
this type on monthly mean temperatures for central England for the period
November 1680 to October 1963. The p (= 12) elements of x are mean
temperatures for the 12 months of a particular year, where a ‘year’ starts
in November. There is some dependence between different values of x, but
it is weaker than that between elements within a particular x; between-year
correlation was minimized by starting each year at November, when there
was apparently evidence of very little continuity in atmospheric behaviour
for these data. The sample covariance matrix does not, of course, have
exact Töplitz structure, but several of the eigenvectors have approximately
the form expected for such matrices.
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Durbin (1984) uses the structure of the eigenvectors of Töplitz matrices
in a different context. In regression analysis (see Chapter 8), if the de-
pendent variable and the predictor variables are all time series, then the
Töplitz structure for the covariance matrix of error terms in the regression
model can be used to deduce properties of the least squares estimators of
regression coefficients.

Returning to SSA, for a time series with an oscillatory component SSA
has an associated pair of EOFs with identical eigenvalues. Coefficients of
both EOFs have the same oscillatory pattern but are π

2 radians out of phase
with each other. Although Elsner and Tsonis (1996) describe a number of
other uses of SSA, the major application in atmospheric science has been to
‘discover’ dominant periodicities in a series (Allen and Smith, 1996). One
advantage that SSA has in this respect over traditional spectral analysis
is that the frequencies of oscillations detected by SSA can take any value
in a given range rather than be restricted to a fixed set of frequencies. A
disadvantage of SSA is, however, a tendency to find apparent periodicities
when none exists. Allen and Smith (1996) address this problem with a
carefully constructed hypothesis testing procedure for deciding whether or
not apparent periodicities are statistically significant in the presence of red
noise, a more realistic assumption than white noise for background variation
in many climatological series. Allen and Smith (1997) discuss what they
call a generalization of SSA for detecting ‘signal’ in the presence of red
noise.

The way that SSA has been introduced above is in a ‘population’ context,
although when talking about statistical significance in the last paragraph
it is clear that we are discussing samples. A sample consists of a series
x1, x2, . . . , xn, which is rearranged to give an (n′×p) matrix whose ith row
is

x′
i = (xi, x(i+1), . . . , x(i+p−1)) i = 1, 2, . . . , n′,

where n′ = n − p + 1.
A practical consideration is the choice of p - large values of p allow longer-

period oscillations to be resolved, but choosing p too large leaves too few
observations, n′, from which to estimate the covariance matrix of the p
variables. Elsner and Tsonis (1996, Section 5.2) give some discussion of,
and references to, the choice of p, and remark that choosing p = n

4 is a
common practice.

Estimation of the covariance matrix raises further questions. If the n′

observations on p variables are treated as an ‘ordinary’ data matrix, the
corresponding covariance matrix will generally have all its elements un-
equal. If the series is stationary, the covariance between the ith and jth
variables should only depend on |i− j|. Estimates can be constructed to be
constrained to give this Töplitz structure for the covariance matrix. There
is discussion of which estimates to use in Elsner and Tsonis (1996, Section
5.3). We now offer examples of SSA.
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Figure 12.1. Plots of loadings for the first two components in an SSA with p = 61
of the Southern Oscillation Index data.

Southern Oscillation Index

The data considered here are monthly values of the Southern Oscillation
Index (SOI) for the years 1876–2000, produced by the Australian Bureau
of Meteorology’s National Climate Centre. The number of observations in
the series is therefore n = 12 × 125 = 1500. The index is a measure of
the East-West pressure gradient between Tahiti in the mid-Pacific Ocean
and Darwin, Australia. It is a major source of climate variation. SSA was
carried on the data with p = 61, and Figure 12.1 gives a plot of the loadings
for the first two EOFs. Their eigenvalues correspond to 13.7% and 13.4%
of the total variation. The closeness of the eigenvalues suggests a quasi-
oscillatory pattern, and this is clearly present in the loadings of Figure 12.1.
Note, however, that the relationship between the two EOFs is not a simple
displacement by π

2 . Figure 12.2 shows time series plots of the scores for the
first two components (PCs) in the SSA. These again reflect the oscillatory
nature of the components. A reconstruction of the series using only the first
two PCs shown in Figure 12.3 captures some of the major features of the
original series, but a large amount of other variability remains, reflecting the
fact that the two components only account for 27.1% of the total variation.

Multichannel SSA

In multichannel SSA (MSSA) we have the more usual atmospheric science
set-up of p spatial locations and n time points, but rather than finding
a covariance matrix directly from the (n × p) data matrix, the data are
rearranged into a larger (n′ × p′) matrix, where n′ = n − m + 1, p′ = mp
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Figure 12.2. Plots of scores for the first two components in an SSA with p = 61
for Southern Oscillation Index data.

Figure 12.3. Southern Oscillation Index data together with a reconstruction using
the first two components from an SSA with p = 61.
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and a typical row of the matrix is

x′
i = (xi1, x(i+1)1, . . . , x(i+m−1)1, xi2, . . . , x(i+m−1)2, . . . , x(i+m−1)p),

i = 1, 2, . . . , n′, where xij is the value of the measured variable at the ith
time point and the jth spatial location, and m plays the same rôle in MSSA
as p does in SSA. The covariance matrix for this data matrix has the form








S11 S12 · · · S1p

S21 S22 · · · S2p

...
...

Sp1 Sp2 · · · Spp








,

where Skk is an (m × m) covariance matrix at various lags for the kth
variable (location), with the same structure as the covariance matrix in
an SSA of that variable. The off-diagonal matrices Skl, k �= l, have (i, j)th
element equal to the covariance between locations k and l at time lag |i−j|.
Plaut and Vautard (1994) claim that the ‘fundamental property’ of MSSA
is its ability to detect oscillatory behaviour in the same manner as SSA, but
rather than an oscillation of a single series the technique finds oscillatory
spatial patterns. Furthermore, it is capable of finding oscillations with the
same period but different spatially orthogonal patterns, and oscillations
with the same spatial pattern but different periods.

The same problem of ascertaining ‘significance’ arises for MSSA as in
SSA. Allen and Robertson (1996) tackle this problem in a similar manner
to that adopted by Allen and Smith (1996) for SSA. The null hypoth-
esis here extends one-dimensional ‘red noise’ to a set of p independent
AR(1) processes. A general multivariate AR(1) process is not appropriate
as it can itself exhibit oscillatory behaviour, as exemplified in POP analysis
(Section 12.2.2).

MSSA extends SSA from one time series to several, but if the number of
time series p is large, it can become unmanageable. A solution, which is used
by Benzi et al. (1997), is to carry out PCA on the (n×p) data matrix, and
then implement SSA separately on the first few PCs. Alternatively for large
p, MSSA is often performed on the first few PCs instead of the variables
themselves, as in Plaut and Vautard (1994).

Although MSSA is a natural extension of SSA, it is also equivalent to
extended empirical orthogonal function (EEOF) analysis which was intro-
duced independently of SSA by Weare and Nasstrom (1982). Barnett and
Hasselmann (1979) give an even more general analysis, in which different
meteorological variables, as well as or instead of different time lags, may be
included at the various locations. When different variables replace differ-
ent time lags, the temporal correlation in the data is no longer taken into
account, so further discussion is deferred to Section 14.5.

The general technique, including both time lags and several variables,
is referred to as multivariate EEOF (MEEOF) analysis by Mote et al.
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(2000), who give an example of the technique for five variables, and compare
the results to those of separate EEOFs (MSSAs) for each variable. Mote
and coworkers note that it is possible that some of the dominant MEEOF
patterns may not be dominant in any of the individual EEOF analyses,
and this may viewed as a disadvantage of the method. On the other hand,
MEEOF analysis has the advantage of showing directly the connections
between patterns for the different variables. Discussion of the properties of
MSSA and MEEOF analysis is ongoing (in addition to Mote et al. (2000),
see Monahan et al. (1999), for example). Compagnucci et al. (2001) propose
yet another variation on the same theme. In their analysis, the PCA is done
on the transpose of the matrix used in MSSA, a so-called T-mode instead of
S-mode analysis (see Section 14.5). Compagnucci et al. call their technique
principal sequence pattern analysis.

12.2.2 Principal Oscillation Pattern (POP) Analysis

SSA, MSSA, and other techniques described in this chapter can be viewed
as special cases of PCA, once the variables have been defined in a suitable
way. With the chosen definition of the variables, the procedures perform
an eigenanalysis of a covariance matrix. POP analysis is different, but it
is described briefly here because its results are used for similar purposes
to those of some of the PCA-based techniques for time series included
elsewhere in the chapter. Furthermore its core is an eigenanalysis, albeit
not on a covariance matrix.

POP analysis was introduced by Hasselman (1988). Suppose that we have
the usual (n×p) matrix of measurements on a meteorological variable, taken
at n time points and p spatial locations. POP analysis has an underlying
assumption that the p time series can be modelled as a multivariate first-
order autoregressive process. If x′

t is the tth row of the data matrix, we
have

(x(t+1) − µ) = Υ(xt − µ) + εt, t = 1, 2, . . . , (n − 1), (12.2.1)

where Υ is a (p × p) matrix of constants, µ is a vector of means for the p
variables and εt is a multivariate white noise term. Standard results from
multivariate regression analysis (Mardia et al., 1979, Chapter 6) lead to esti-
mation of Υ by Υ̂ = S1S−1

0 , where S0 is the usual sample covariance matrix
for the p variables, and S1 has (i, j)th element equal to the sample covari-
ance between the ith and jth variables at lag 1. POP analysis then finds the
eigenvalues and eigenvectors of Υ̂. The eigenvectors are known as princi-
pal oscillation patterns (POPs) and denoted p1,p2, . . . ,pp. The quantities
zt1, zt2, . . . , ztp which can be used to reconstitute xt as

∑p
k=1 ztkpk are

called the POP coefficients. They play a similar rôle in POP analysis to
that of PC scores in PCA.

One obvious question is why this technique is called principal oscil-
lation pattern analysis. Because Υ̂ is not symmetric it typically has a
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mixture of real and complex eigenvectors. The latter occur in pairs, with
each pair sharing the same eigenvalue and having eigenvectors that are
complex conjugate pairs. The real eigenvectors describe non-oscillatory,
non-propagating damped patterns, but the complex eigenvectors repre-
sent damped oscillations and can include standing waves and/or spatially
propagating waves, depending on the relative magnitudes of the real and
imaginary parts of each complex POP (von Storch et al., 1988).

As with many other techniques, the data may be pre-processed using
PCA, with x in equation (12.2.1) replaced by its PCs. The description of
POP analysis in Wu et al. (1994) includes this initial step, which provides
additional insights.

Kooperberg and O’Sullivan (1996) introduce and illustrate a technique
which they describe as a hybrid of PCA and POP analysis. The analo-
gous quantities to POPs resulting from the technique are called Predictive
Oscillation Patterns (PROPs). In their model, xt is written as a linear
transformation of a set of underlying ‘forcing functions,’ which in turn are
linear functions of xt. Kooperberg and O’Sullivan (1996) find an expression
for an upper bound for forecast errors in their model, and PROP analy-
sis minimizes this quantity. The criterion is such that it simultaneously
attempts to account for as much as possible of xt, as with PCA, and to
reproduce as well as possible the temporal dependence in xt, as in POP
analysis.

In an earlier technical report, Kooperberg and O’Sullivan (1994) mention
the possible use of canonical correlation analysis (CCA; see Section 9.3) in
a time series context. Their suggestion is that a second group of variables
is created by shifting the usual measurements at p locations by one time
period. CCA is then used to find relationships between the original and
time-lagged sets of variables.

12.2.3 Hilbert (Complex) EOFs

There is some confusion in the literature over the terminology ‘complex
EOFs,’ or ‘complex PCA.’ It is perfectly possible to perform PCA on com-
plex numbers, as well as real numbers, whether or not the measurements are
made over time. We return to this general version of complex PCA in Sec-
tion 13.8. Within the time series context, and especially for meteorological
time series, the term ‘complex EOFs’ has come to refer to a special type of
complex series. To reduce confusion, von Storch and Zwiers (1999) suggest
(for reasons that will soon become apparent) referring to this procedure
as Hilbert EOF analysis. We will follow this recommendation. Baines has
suggested removing ambiguity entirely by denoting the analysis as ‘com-
plex Hilbert EOF analysis.’ The technique seems to have originated with
Rasmusson et al. (1981), by whom it was referred to as Hilbert singular
decomposition.



310 12. PCA for Time Series and Other Non-Independent Data

Suppose that xt, t = 1, 2, . . . , n is a p-variate time series, and let

yt = xt + ixH
t , (12.2.2)

where i =
√−1 and xH

t is the Hilbert transform of xt, defined as

xH
t =

∞∑

s=0

2
(2s + 1)π

(x(t+2s+1) − x(t−2s−1)).

The definition assumes that xt is observed at an infinite number of times t =
. . . ,−1, 0, 1, 2, . . .. Estimation of xH

t for finite samples, to use in equation
(12.2.2), is discussed by von Storch and Zwiers (1999, Section 16.2.4) and
Bloomfield and Davis (1994).

If a series is made up of oscillatory terms, its Hilbert transform ad-
vances each oscillatory term by π

2 radians. When xt is comprised of a
single periodic oscillation, xH

t is identical to xt, except that it is shifted
by π

2 radians. In the more usual case, where xt consists of a mixture of
two or more oscillations or pseudo-oscillations at different frequencies, the
effect of transforming to xH

t is more complex because the phase shift of π
2

is implemented separately for each frequency.
A Hilbert EOF (HEOF) analysis is simply a PCA based on the covariance

matrix of yt defined in (12.2.2). As with (M)SSA and POP analysis, HEOF
analysis will find dominant oscillatory patterns, which may or may not be
propagating in space, that are present in a standard meteorological data
set of p spatial locations and n time points.

Similarly to POP analysis, the eigenvalues and eigenvectors (HEOFs) are
complex, but for a different reason. Here a covariance matrix is analysed,
unlike POP analysis, but the variables from which the covariance matrix is
formed are complex-valued. Other differences exist between POP analysis
and HEOF analysis, despite the similarities in the oscillatory structures
they can detect, and these are noted by von Storch and Zwiers (1999,
Section 15.1.7). HEOF analysis maximizes variances, has orthogonal com-
ponent scores and is empirically based, all attributes shared with PCA.
In direct contrast, POP analysis does not maximize variance, has non-
orthogonal POP coefficients (scores) and is model-based. As in ordinary
PCA, HEOFs may be simplified by rotation (Section 11.1), and Bloomfield
and Davis (1994) discuss how this can be done.

There is a connection between HEOF analysis and PCA in the frequency
domain which is discussed in Section 12.4.1. An example of HEOF analysis
is now given.

Southern Hemisphere Sea Surface Temperature

This example and its figures are taken, with permission, from Cai and
Baines (2001). The data are sea surface temperatures (SSTs) in the South-
ern Hemisphere. Figure 12.4 gives a shaded contour map of the coefficients
in the first four (ordinary) PCs for these data (the first four EOFs), to-
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gether with the variance accounted for by each PC. Figure 12.5 displays
similar plots for the real and imaginary parts of the first Hilbert EOF (la-
belled CEOFs on the plots). It can be seen that the real part of the first
Hilbert EOF in Figure 12.5 looks similar to EOF1 in Figure 12.4. There are
also similarities between EOF3 and the imaginary part of the first Hilbert
EOF.

Figures 12.6, 12.7 show plots of time series (scores), labelled temporal
coefficients in 12.7, for the first and third ordinary PCs, and the real and
imaginary parts of the first HEOF, respectively. The similarity between
the first PC and the real part of the first HEOF is obvious. Both represent
the same oscillatory behaviour in the series. The imaginary part of the
first HEOF is also very similar, but lagged by π

2 , whereas the scores on the
third EOF show a somewhat smoother and more regular oscillation. Cai and
Baines (2001) note that the main oscillations visible in Figures 12.6, 12.7
can be identified with well-known El Niño-Southern Oscillation (ENSO)
events. They also discuss other physical interpretations of the results of
the HEOF analysis relating them to other meteorological variables, and
they provide tests for statistical significance of HEOFs.

The main advantage of HEOF analysis over ordinary PCA is its ability
to identify and reconstruct propagating waves, whereas PCA only finds
standing oscillations. For the first and second Hilbert EOFs, and for their
sum, this propagating behaviour is illustrated in Figure 12.8 by the move-
ment of similar-valued coefficients from west to east as time progresses in
the vertical direction.

12.2.4 Multitaper Frequency Domain-Singular Value
Decomposition (MTM SVD)

In a lengthy paper, Mann and Park (1999) describe MTM-SVD, developed
earlier by the same authors. It combines multitaper spectrum estimation
methods (MTM) with PCA using the singular value decomposition (SVD).
The paper also gives a critique of several of the other techniques discussed in
the present section, together with frequency domain PCA which is covered
in Section 12.4.1. Mann and Park (1999) provide detailed examples, both
real and artificial, in which MTM-SVD is implemented.

Like MSSA, POP analysis, HEOF analysis and frequency domain PCA,
MTM-SVD looks for oscillatory behaviour in space and time. It is closest
in form to PCA of the spectral matrix F(λ) (Section 12.4.1), as it operates
in the frequency domain. However, in transferring from the time domain
to the frequency domain MTM-SVD constructs a set of different tapered
Fourier transforms (hence the ‘multitaper’ in its name). The frequency do-
main matrix is then subjected to a singular value decomposition, giving
‘spatial’ or ‘spectral’ EOFs, and ‘principal modulations’ which are analo-
gous to principal component scores. Mann and Park (1999) state that the
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Figure 12.4. The first four EOFs for Southern Hemisphere SST.

Figure 12.5. Real and imaginary parts of the first Hilbert EOF for Southern
Hemisphere SST.
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Figure 12.6. Plots of temporal scores for EOF1 and EOF3 for Southern
Hemisphere SST.
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Figure 12.7. Plots of temporal scores for real and imaginary parts of the first
Hilbert EOF for Southern Hemisphere SST.
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Figure 12.8. Propagation of waves in space and time in Hilbert EOF1, Hilbert
EOF2, and the sum of these two Hilbert EOFs.

distinction between MTM-SVD and standard frequency domain PCA is
that the former provides a local frequency domain decomposition of the
different spectral estimates given by the multitapers, whereas the latter
produces a global frequency domain decomposition over the spectral esti-
mates. Mann and Park (1999) describe tests for the statistical significance
of the oscillations found by MTM-SVD using a bootstrap approach, which,
it is claimed, is effective for a general, smoothly varying, coloured noise
background, and is not restricted to red noise as in Allen and Smith (1996)
and Allen and Robertson (1996).

12.2.5 Cyclo-Stationary and Periodically Extended EOFs
(and POPs)

The assumption of temporal stationarity is implicit for most of the methods
described in this chapter. In meteorological data there is often a cycle with
a fixed period, most commonly the annual cycle but sometimes a diurnal
cycle. There may then be stationarity for times at the same point in the
cycle but not across different points in the cycle. For example, for monthly
data the probability distribution may be same every April but different in
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April than in June. Similarly, the joint distribution for April and August,
which have a four-month separation, may be the same in different years,
but different from the joint distribution for June and October, even though
the latter are also separated by four months. Such behaviour is known as
cyclo-stationarity, and both PCA and POP analysis have been modified
for such data.

The modification is easier to explain for POP analysis than for PCA.
Suppose that τ is the length of the cycle; for example τ = 12 for monthly
data and an annual cycle. Then for a time series of length n = n′τ equation
(12.2.1) is replaced by

(x(sτ+t+1) − µ(t+1)) = Υt(x(sτ+t) − µt) + ε(sτ+t), (12.2.3)

t = 0, 1, . . . , (τ − 2); s = 0, 1, 2, . . . , (n′ − 1),

with (t + 1) replaced by 0, and s replaced by (s + 1) on the left-hand side
of (12.2.3) when t = (τ − 1) and s = 0, 1, 2, . . . , (n′ − 2). Here the mean µt

and the matrix Υt can vary within cycles, but not between cycles. Cyclo-
stationary POP analysis estimates Υ0,Υ1, . . . ,Υ(τ−1) and is based on an
eigenanalysis of the product of those estimates Υ̂0Υ̂1 . . . Υ̂(τ−1).

The cyclo-stationary variety of PCA is summarized by Kim and Wu
(1999) but is less transparent in its justification than cyclo-stationary
POP analysis. First, vectors a0t,a1t, . . . ,a(τ−1)t are found such that xt =
∑τ−1

j=0 ajte
2πijt

τ , and a new vector of variables is then constructed by
concatenating a0t,a1t, . . . ,a(τ−1)t. Cyclo-stationary EOFs (CSEOFs) are
obtained as eigenvectors of the covariance matrix formed from this vector
of variables. Kim and Wu (1999) give examples of the technique, and also
give references explaining how to calculate CSEOFs.

Kim and Wu (1999) describe an additional modification of PCA that
deals with periodicity in a time series, and which they call a periodically
extended EOF technique. It works by dividing a series of length n = n′τ
into n′ blocks of length τ . A covariance matrix, SEX , is then computed as








SEX
11 SEX

12 · · · SEX
1n′

SEX
21 SEX

22 · · · SEX
2n′

...
...

SEX
n′1 SEX

n′2 · · · SEX
n′n′








,

in which the (i, j)th element of SEX
kl is the sample covariance between

the measurements at the ith location at time k in each block and at the
jth location at time l in the same block. The description of the technique
in Kim and Wu (1999) is sketchy, but it appears that whereas in ordinary
PCA, covariances are calculated by averaging over all time points, here the
averaging is done over times at the same point within each block across
blocks. A similar averaging is implicit in cyclo-stationary POP analysis.
Examples of periodically extended EOFs are given by Kim and Wu (1999).
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12.2.6 Examples and Comparisons

Relatively few examples have been given in this section, due in part to their
complexity and their rather specialized nature. Several of the techniques
described claim to be able to detect stationary and propagating waves
in the standard type of spatio-temporal meteorological data. Each of the
methods has proponents who give nice examples, both real and artificial, in
which their techniques appear to work well. However, as with many other
aspects of PCA and related procedures, caution is needed, lest enthusiasm
leads to ‘over-interpretation.’ With this caveat firmly in mind, examples of
SSA can be found in Elsner and Tsonis (1996), Vautard (1995); MSSA in
Plaut and Vautard (1994), Mote et al. (2000); POPs in Kooperberg and
O’Sullivan (1996) with cyclo-stationary POPs in addition in von Storch
and Zwiers (1999, Chapter 15); Hilbert EOFs in Horel (1984), Cai and
Baines (2001); MTM-SVD in Mann and Park (1999); cyclo-stationary and
periodically extended EOFs in Kim and Wu (1999). This last paper com-
pares eight techniques (PCA, PCA plus rotation, extended EOFs (MSSA),
Hilbert EOFs, cyclo-stationary EOFs, periodically extended EOFs, POPs
and cyclo-stationary POPs) on artificial data sets with stationary pat-
terns, with patterns that are stationary in space but which have amplitudes
changing in time, and with patterns that have periodic oscillations in space.
The results largely confirm what might be expected. The procedures de-
signed to find oscillatory patterns do not perform well for stationary data,
the converse holds when oscillations are present, and those techniques
devised for cyclo-stationary data do best on such data.

12.3 Functional PCA

There are many circumstances when the data are curves. A field in which
such data are common is that of chemical spectroscopy (see, for exam-
ple, Krzanowski et al. (1995), Mertens (1998)). Other examples include
the trace on a continuously recording meteorological instrument such as a
barograph, or the trajectory of a diving seal. Other data, although mea-
sured at discrete intervals, have an underlying continuous functional form.
Examples include the height of a child at various ages, the annual cycle of
temperature recorded as monthly means, or the speed of an athlete during
a race.

The basic ideas of PCA carry over to this continuous (functional) case,
but the details are different. In Section 12.3.1 we describe the general
set-up in functional PCA (FPCA), and discuss methods for estimating func-
tional PCs in Section 12.3.2. Section 12.3.3 presents an example. Finally,
Section 12.3.4 briefly covers some additional topics including curve registra-
tion, bivariate FPCA, smoothing, principal differential analysis, prediction,
discrimination, rotation, density estimation and robust FPCA.
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A key reference for functional PCA is the book by Ramsay and Silver-
man (1997), written by two researchers in the field who, together with
Besse (see, for example, Besse and Ramsay, 1986), have been largely re-
sponsible for bringing these ideas to the attention of statisticians. We draw
heavily on this book in the present section. However, the ideas of PCA
in a continuous domain have also been developed in other fields, such as
signal processing, and the topic is an active research area. The terminology
‘Karhunen-Loève expansion’ is in common use in some disciplines to denote
PCA in a continuous domain. Diamantaras and Kung (1996, Section 3.2)
extend the terminology to cover the case where the data are discrete time
series with a theoretically infinite number of time points.

In atmospheric science the Karhunen-Loève expansion has been used in
the case where the continuum is spatial, and the different observations
correspond to different discrete times. Preisendorfer and Mobley (1988,
Section 2d) give a thorough discussion of this case and cite a number of
earlier references dating back to Obukhov (1947). Bouhaddou et al. (1987)
independently consider a spatial context for what they refer to as ‘principal
component analysis of a stochastic process,’ but which is PCA for a (two-
dimensional spatial) continuum of variables. They use their approach to
approximate both a spatial covariance function and the underlying spatial
stochastic process, and compare it with what they regard as the less flexible
alternative of kriging. Guttorp and Sampson (1994) discuss similar ideas
in a wider review of methods for estimating spatial covariance matrices.
Durbin and Knott (1972) derive a special case of functional PCA in the
context of goodness-of-fit testing (see Section 14.6.2).

12.3.1 The Basics of Functional PCA (FPCA)

When data are functions, our usual data structure xij , i = 1, 2, . . . , n; j =
1, 2, . . . , p is replaced by xi(t), i = 1, 2, . . . , n where t is continuous in some
interval. We assume, as elsewhere in the book, that the data are centred,
so that a mean curve x̄ = 1

n

∑n
i=1 x̃i(t) has been subtracted from each of

the original curves x̃i(t). Linear functions of the curves are now integrals
instead of sums, that is zi =

∫
a(t)xi(t)dt rather than zi =

∑p
j=1 ajxij . In

‘ordinary’ PCA the first PC has weights a11, a21, . . . , ap1, which maximize
the sample variance var(zi), subject to

∑p
j=1 a2

j1 = 1. Because the data are
centred,

var(zi1) =
1

n − 1

n∑

i=1

z2
i1 =

1
n − 1

n∑

i=1

[ p∑

j=1

aj1xij

]2
.

Analogously for curves, we find a1(t) which maximizes

1
n − 1

n∑

i=1

z2
i1 =

1
n − 1

n∑

i=1

[∫
a1(t)xi(t) dt

]2
,
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subject to
∫

a2
1(t)dt = 1. Here, and elsewhere, the integral is over the range

of values of t for which the data are observed. Subsequent FPCs are defined
successively, as with ordinary PCA, to maximise

var(zik) =
1

n − 1

n∑

i=1

[∫
ak(t)xi(t) dt

]2
,

subject to
∫

a2
k(t)dt = 1;

∫
ak(t)ah(t)dt = 0, k = 2, 3, . . . ; h = 1, 2, . . .;

h < k.
The sample covariance between x(s) and x(t) can be defined as S(s, t) =
1

(n−1)

∑n
i=1 xi(s)xi(t), with a corresponding definition for correlation, and

to find the functional PCs an eigenequation is solved involving this
covariance function. Specifically, we solve

∫
S(s, t)a(t)dt = la(s). (12.3.1)

Comparing (12.3.1) to the eigenequation Sa = la for ordinary PCA, the
pre-multiplication of a vector of weights by a matrix of covariances on the
left-hand side is replaced by an integral operator in which the covariance
function is multiplied by a weight function a(t) and then integrated. In
ordinary PCA the number of solutions to the eigenequation is usually p,
the number of variables. Here the p variables are replaced by a infinite
number of values for t but the number of solutions is still finite, because the
number of curves n is finite. The number of non-zero eigenvalues l1, l2, . . .,
and corresponding functions a1(t), a2(t), . . . cannot exceed (n − 1).

12.3.2 Calculating Functional PCs (FPCs)

Unless the curves are all fairly simple functional forms, it is not possible
to solve (12.3.1) exactly. Ramsay and Silverman (1997, Section 6.4) give
three computational methods for FPCA, but in most circumstances they
represent approximate solutions to (12.3.1). In the first of the three, the
data are discretized. The values xi(t1), xi(t2), . . . , xi(tp) form the ith row
of an (n×p) data matrix which is then analysed using standard PCA. The
times t1, t2, . . . , tp are usually chosen to be equally spaced in the range of
continuous values for t. To convert the eigenvectors found from this PCA
into functional form, it is necessary to renormalize the eigenvectors and
then interpolate them with a suitable smoother (Ramsay and Silverman,
1997, Section 6.4.1).

A second approach assumes that the curves xi(t) can be expressed lin-
early in terms of a set of G basis functions, where G is typically less
than n. If φ1(t), φ2(t), . . . , φG(t) are the basis functions, then xi(t) =∑G

g=1 cigφg(t), i = 1, 2, . . . , n or, in matrix form, x(t) = Cφ(t), where
x′(t) = (x1(t), x2(t), . . . , xn(t)), φ′(t) = (φ1(t), φ2(t), . . . , φG(t)) and C is
an (n × G) matrix with (i, g)th element cig.
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The sample covariance between x(s) and x(t) can be written

1
n − 1

x′(s)x(t) =
1

n − 1
φ′(s)C′Cφ(t).

Any eigenfunction a(t) can be expressed in terms of the basis func-
tions as a(t) =

∑G
g=1 bgφg(t) = φ′(t)b for some vector of coefficients

b′ = (b1, b2, . . . , bG). The left-hand-side of equation (12.3.1) is then
∫

S(s, t)a(t) dt =
∫

1
n − 1

φ′(s)C′Cφ(t)φ′(t)b dt

=
1

n − 1
φ′(s)C′C

[∫
φ(t)φ′(t) dt

]
b.

The integral is a (G×G) matrix W whose (g, h)th element is
∫

φg(t)φh(t)dt.
If the basis is orthogonal, W is simply the identity matrix IG. Hence choos-
ing an orthogonal basis in circumstances where such a choice makes sense,
as with a Fourier basis for periodic data, gives simplified calculations. In
general (12.3.1) becomes

1
n − 1

φ′(s)C′CWb = lφ′(s)b

but, because this equation must hold for all available values of s, it reduces
to

1
n − 1

C′CWb = lb. (12.3.2)

When
∫

a2(t)dt = 1 it follows that

1 =
∫

a2(t) dt =
∫

b′φ(t)φ′(t)b dt = b′Wb.

If ak(t) is written in terms of the basis functions as ak(t) =
∑G

g=1 bkgφg(t),
with a similar expression for al(t), then ak(t) is orthogonal to al(t) if
b′

kWbl = 0, where b′
k = (bk1, bk2, . . . , bkG), and b′

l is defined similarly.
In an eigenequation, the eigenvector is usually normalized to have unit

length (norm). To convert (12.3.2) into this form, define u = W
1
2 b. Then

u′u = 1 and (12.3.2) can be written

1
n − 1

W
1
2 C′CW

1
2 u = lu. (12.3.3)

Equation (12.3.3) is solved for l and u, b is obtained as W− 1
2 u, and finally

a(t) = φ′(t)b = φ′(t)W− 1
2 u.

The special case where the basis is orthogonal has already been men-
tioned. Here W = IG, so b = u is an eigenvector of 1

n−1C
′C. Another

special case, noted by Ramsay and Silverman (1997), occurs when the
data curves themselves are taken as the basis. Then C = In and u is
an eigenvector of 1

n−1W.
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The third computational method described by Ramsay and Silverman
(1997) involves applying numerical quadrature schemes to the integral on
the left-hand side of (12.3.1). Castro et al. (1986) used this approach in an
early example of functional PCA. Quadrature methods can be adapted to
cope with irregularly spaced data (Ratcliffe and Solo, 1998). Aguilera et al.
(1995) compare a method using a trigonometric basis with one based on
a trapezoidal scheme, and find that the behaviour of the two algorithms
is similar except at the extremes of the time interval studied, where the
trapezoidal method is superior.

Preisendorfer and Mobley (1988, Section 2d) have two interesting ap-
proaches to finding functional PCs in the case where t represents spatial
position and different observations correspond to different discrete times. In
the first the eigenequation (12.3.1) is replaced by a dual eigenequation, ob-
tained by using a relationship similar to that between X′X and XX′, which
was noted in the proof of Property G4 in Section 3.2. This dual problem is
discrete, rather than continuous, and so is easier to solve. Its eigenvectors
are the PC scores for the continuous problem and an equation exists for
calculating the eigenvectors of the original continuous eigenequation from
these scores.

The second approach is similar to Ramsay and Silverman’s (1997) use
of basis functions, but Preisendorfer and Mobley (1988) also compare the
basis functions and the derived eigenvectors (EOFs) in order to explore
the physical meaning of the latter. Bouhaddou et al. (1987) independently
proposed the use of interpolating basis functions in the implementation of
a continuous version of PCA, given what is necessarily a discrete-valued
data set.

12.3.3 Example - 100 km Running Data

Here we revisit the data that were first introduced in Section 5.3, but in
a slightly different format. Recall that they consist of times taken for ten
10 km sections by 80 competitors in a 100 km race. Here we convert the
data into speeds over each section for each runner. Ignoring ‘pitstops,’ it
seems reasonable to model the speed of each competitor through the race as
a continuous curve. In this example the horizontal axis represents position
in (one-dimensional) space rather than time. Figure 12.9 shows the speed
for each competitor, with the ten discrete points joined by straight lines.
Despite the congestion of lines on the figure, the general pattern of slowing
down is apparent. Figure 12.10 shows the coefficients for the first three
ordinary PCs of these speed data. In Figure 12.11 the piecewise linear plots
of Figure 12.10 are smoothed using a spline basis. Finally, Figure 12.12 gives
the eigenfunctions from a FPCA of the data, using spline basis functions,
implemented in S-Plus.

There are strong similarities between Figures 12.10–12.12, though some
differences exist in the details. The first PC, as with the ‘time taken’ version
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Figure 12.9. Plots of speed for 80 competitors in a 100 km race.
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Figure 12.10. Coefficients for first three PCs from the 100 km speed data.
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Figure 12.11. Smoothed version of Figure 12.10 using a spline basis; dots are
coefficients from Figure 12.10.
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of the data in Section 5.3, is a measure of overall speed throughout the
race. The second component in all cases represents the degree to which
runners slow down during the race. The pattern in Figure 12.10 is very
much like that in Table 5.2. Figures 12.11 and 12.12 have a similar shape
for this component, although the absolute values of the eigenfunction in
Figure 12.12 are slightly larger than the coefficients in Figure 12.11. The
reason for this is that the speed for the first 10 km section is plotted at
distance equal to 0.5 km, the speed for the second section at 1.5 km and so
on. The eigenfunctions for the FPCs are then calculated over the interval
0.5 to 9.5, a range of 9, whereas there are 10 elements in the ordinary
PC eigenvectors, leading to different normalizations. Calculating the FPCs
over the range 0 to 10 leads to erratic behaviour at the ends of the interval.
The pattern for the third PC is again similar in all three figures, except at
the extreme right-hand end.

12.3.4 Further Topics in FPCA

This subsection collects together briefly a number of topics that are relevant
to FPCA. As in the rest of this section, the main reference is Ramsay and
Silverman (1997).

Curve Registration

In some examples where the data are functions, the individual curves xi(t)
may be observed over different ranges for t. Most procedures for analysing
functional data assume the same range of t for all curves. Furthermore, it is
often the case that the horizontal extent of the curve is of less importance
than its shape. For example, suppose that the trajectory of underwater
dives made by seals is of interest (see Schreer et al. (1998)). Although the
lengths of the dives may be informative, so are their shapes, and to compare
these the curves should be aligned to start and finish at the same respective
times. This process is known as curve registration. Another example arises
when outlines of sliced carrots are examined in order to determine to which
variety of carrot an individual specimen belongs (Horgan et al., 2001).
More complicated situations are discussed by Ramsay and Silverman (1997,
Chapter 5), in which several landmarks along the curves must be aligned,
leading to differential stretching and expansion of ‘time’ for different parts
of the curves. Capra and Müller (1997) use an accelerated time model to
align mortality curves for medflies. They refer to their accelerated time as
‘eigenzeit.’

Sometimes alignment is desirable in the vertical, as well the horizontal,
direction. Consider again the dive trajectories of seals. If the shapes of the
dives are more important than their depths, then the dives can be aligned
vertically at their deepest points.

To analyse only the registered curves, without taking into account of
what was done in the registration process, is to throw away information.
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Keeping one or more parameters for each curve, defining how registration
was done, leads to what Ramsay and Silverman (1997) called ‘mixed data.’
Each observation for such data consists of a curve, together with p other
‘ordinary’ variables. Ramsay and Silverman (1997, Chapter 8) discuss the
analysis of such data.

Bivariate FPCA

In other cases, the data are not ‘mixed’ but there is more than one curve
associated with each individual. An example involving changes of angles in
both hip and knee during a gait cycle is described by Ramsay and Silverman
(1997, Section 6.5). They discuss the analysis of bivariate curves from this
example using bivariate FPCA. Suppose that the two sets of curves are
x1(t), x2(t), . . . , xn(t); y1(t), y2(t), . . . , yn(t). Define a bivariate covariance
function S(s, t) as

[
SXX(s, t) SXY (s, t)
SY X(s, t) SY Y (s, t)

]
,

where SXX(s, t), SY Y (s, t) are covariance functions defined, as earlier, for
(x(s), x(t)) and (y(s), y(t)), respectively, and SXY (s, t) has elements that
are covariances between x(s) and y(t). Suppose that

zXi =
∫

aX(t)xi(t) dt, zY i =
∫

aY (t)yi(t)dt.

Finding aX(t), aY (t) to maximize 1
n−1

∑n
i=1(z

2
Xi + z2

Y i) leads to the
eigenequations

∫
SXX(s, t)aX(t) dt +

∫
SXY (s, t)aY (t) dt = laX(t)

∫
SY X(s, t)aX(t) dt +

∫
SY Y (s, t)aY (t) dt = laY (t).

This analysis can be extended to the case of more than two curves per
individual.

Smoothing

If the data are not smooth, the weighting functions a(t) in FPCA may not
be smooth either. With most curves, an underlying smoothness is expected,
with the superimposed roughness being due to noise that should ideally
be removed. Ramsay and Silverman (1997, Chapter 7) tackle this prob-
lem. Their main approach incorporates a roughness penalty into FPCA’s
variance-maximizing problem. The second derivative of a curve is often
taken as a measure of its roughness and, if D2a(t) represents the second
derivative of a(t), a smooth curve requires a small value of D2a(t). Ramsay
and Silverman’s approach is to maximize

1
n−1

∑n
i=1[
∫

a(t)xi(t)dt]2
∫

a2(t)dt + λ
∫

(D2a(t))2dt
(12.3.4)
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subject to
∫

a2(t)dt = 1, where λ is a tuning parameter. Taking λ = 0
simply gives unsmoothed FPCA; as λ increases, so does the smoothness
of the optimal a(t). Ramsay and Silverman (1997, Section 7.3) show that
solving the optimization problem reduces to solving the eigenequation

∫
S(s, t)a(t)dt = l(1 + λD4)a(s), (12.3.5)

where D4a(s) is the fourth derivative of a(s). In their Section 7.4 they give
some computational methods for (approximately) solving equation (12.3.5),
with the choice of λ discussed in Section 7.5. Minimizing (12.3.4) by solving
(12.3.5) implies a form of orthogonality between successive ak(t) that is
different from the usual one. Ocaña et al. (1999) interpret this as a different
choice of norm and inner product, and discuss the choice of norm in FPCA
from a theoretical point of view. If (12.3.5) is solved by using basis functions
for the data, the number of basis functions and the smoothing parameter
λ both need to be chosen. Ratcliffe and Solo (1998) address the problem
of choosing both simultaneously and propose an improved cross-validation
procedure for doing so.

An alternative to incorporating smoothing directly into FPCA is to
smooth the data first and then conduct unsmoothed FPCA on the
smoothed curves. The smoothing step uses the well-known idea of minimi-
zing the sum of squares between fitted and observed curves, supplemented
by a penalty function based on lack of smoothness (a roughness penalty).
The quantity we wish to minimize can be written succicntly as

‖x(t) − x̂(t)‖2 + λ‖x̂(t)‖2, (12.3.6)

where x(t), x̂(t) denote observed and fitted curves, respectively, ‖ . ‖ de-
notes an appropriately chosen norm, not necessarily the same in the two
parts of the expression, and λ is a tuning parameter. The second norm is
often related to the second derivative, D2[x̂(t)], which is a commonly used
measure of roughness.

Besse et al. (1997) use a similar approach in which they optimize a crite-
rion which, like (12.3.6), is a sum of two terms, one a measure of fit and the
other a roughness penalty with a tuning parameter λ. Besse et al.’s model
assumes that, apart from noise, the curves lie in a q-dimensional space.
A version R̂q of the criterion Rq, suggested by Besse and de Falguerolles
(1993) and discussed in Section 6.1.5, is minimized with respect to q and
λ simultaneously. If smoothing of the data is done using splines, then the
PCA on the resulting interpolated data is equivalent to a PCA on the orig-
inal data, but with a different metric (Besse, 1988). We return to this topic
in Section 14.2.2.

A more complicated approach to smoothing followed by PCA, involving
different smoothing parameters for different FPCs, is discussed by Ram-
say and Silverman (1997, Section 7.8). Grambsch et al. (1995) also use a
smoothing process—though a different one—for the data, followed by PCA
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on the smoothed data. Kneip (1994) independently suggested smoothing
the data, followed by PCA on the smoothed data, in the context of fitting
a model in which a small number of functions is assumed to underlie a
set of regression curves. Theoretical properties of Kneip’s (1994) procedure
are examined in detail in his paper. Champely and Doledec (1997) use
lo(w)ess (locally weighted scatterplot smoothing—Cleveland, 1979, 1981)
to fit smooth trend and periodic curves to water quality data, and then
apply FPCA separately to the trend and periodic curves.

Principal Differential Analysis

Principal differential analysis (PDA), a term coined by Ramsay (1996) and
discussed in Ramsay and Silverman (1997, Chapter 14) is another method
of approximating a set of curves by a smaller number of functions. Although
PDA has some similarities to FPCA, which we note below, it concentrates
on finding functions that have a certain type of smoothness, rather than
maximizing variance. Define a linear differential operator

L = w0I + w1D + . . . + wm−1D
m−1 + Dm,

where Di, as before, denotes the ith derivative operator and I is the identity
operator. PDA finds weights w0, w1, . . . , wm−1 for which [Lxi(t)]2 is small
for each observed curve xi(t). Formally, we minimize

∑n
i=1

∫
[Lxi(t)]2 dt

with respect to w0, w1, . . . , wm−1.
Once w0, w1, . . . , wm−1 and hence L are found, any curve satisfying

Lx(t) = 0 can be expressed as a linear combination of m linearly inde-
pendent functions spanning the null space of the operator L. Any observed
curve xi(t) can be approximated by expanding it in terms of these m func-
tions. This is similar to PCA, where the original data can be approximated
by expanding them in terms of the first few (say m) PCs. The difference is
that PCA finds an m-dimensional space with a least squares fit to the orig-
inal data, whereas PDA finds a space which penalizes roughness. This last
interpretation follows because Lxi(t) is typically rougher than xi(t), and
PDA aims to make Lxi(t), or rather [Lxi(t)]2, as small as possible when
averaged over i and t. An application of PDA to the study of variations in
handwriting is presented by Ramsay (2000).

Prediction and Discrimination

Aguilera et al. (1997, 1999a) discuss the idea of predicting a continuous
time series by regressing functional PCs for the future on functional PCs
from the past. To implement this methodology, Aguilera et al. (1999b)
propose cutting the series into a number of segments n of equal length,
which are then treated as n realizations of the same underlying process.
Each segment is in turn divided into two parts, with the second, shorter,
part to be predicted from the first. In calculating means and covariance
functions, less weight is given to the segments from the early part of the
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series than to those closer to the present time from where the future is to
be predicted. Besse et al. (2000) also use functional PCA to predict time
series, but in the context of a smoothed first order autoregessive model.
The different replications of the function correspond to different years,
while the function ranges over the months within years. A ‘local’ version
of the technique is developed in which the assumption of stationarity is
relaxed.

Hall et al. (2001) advocate the use of functional PCA as a dimension-
reducing step in the context of discriminating between different types of
radar signal. Although this differs from the usual set-up for PCA in dis-
criminant analysis (see Section 9.1) because it notionally has an infinite
number of variables in a continuum, there is still the possibility that some
of the later discarded components may contain non-trivial discriminatory
power.

Rotation

As with ordinary PCA, the interpretation of FPCA may be improved by
rotation. In addition to the conventional rotation of coefficients in a sub-
set of PCs (see Section 11.1), Ramsay and Silverman (1997, Section 6.3.3)
suggest that the coefficients b1,b2, . . . ,bm of the first m eigenfunctions
with respect to a chosen set of basis functions, as defined in Section 12.3.2,
could also be rotated to help interpretation. Arbuckle and Friendly (1977)
propose a variation on the usual rotation criteria of Section 11.1 for vari-
ables that are measurements at discrete points on a continuous curve. They
suggest rotating the results of an ordinary PCA towards smoothness rather
than towards simplicity as usually defined (see Section 11.1).

Density Estimation

Kneip and Utikal (2001) discuss functional PCA as a means of examining
common structure and differences in a set of probability density functions.
The densities are first estimated from a number of data sets using kernel
density estimators, and these estimates are then subjected to functional
PCA. As well as a specific application, which examines how densities evolve
in data sets collected over a number of years, Kneip and Utikal (2001)
introduce some new methodology for estimating functional PCs and for
deciding how many components should be retained to represent the density
estimates adequately. Their paper is followed by published discussion from
four sets of discussants.

Robustness

Locantore et al. (1999) consider robust estimation of PCs for functional
data (see Section 10.4).
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12.4 PCA and Non-Independent Data—Some
Additional Topics

In this section we collect together a number of topics from time series,
and other contexts in which non-independent data arise, where PCA or
related techniques are used. Section 12.4.1 describes PCA in the frequency
domain, and Section 12.4.2 covers growth curves and longitudinal data. In
Section 12.4.3 a summary is given of another idea (optimal fingerprints)
from climatology, though one that is rather different in character from
those presented in Section 12.2. Section 12.4.4 discusses spatial data, and
the final subsection provides brief coverage of a few other topics, including
non-independence induced by survey designs.

12.4.1 PCA in the Frequency Domain

The idea of PCA in the frequency domain clearly has no counterpart for
data sets consisting of independent observations. Brillinger (1981, Chap-
ter 9) devotes a whole chapter to the subject (see also Priestley et al.
(1974)). To see how frequency domain PCs are derived, note that PCs for
a p-variate random vector x, with zero mean, can be obtained by finding
(p × q) matrices B, C such that

E[(x − Cz)′(x − Cz)]

is minimized, where z = B′x. This is equivalent to the criterion that defines
Property A5 in Section 2.1 It turns out that B = C and that the columns
of B are the first q eigenvectors of Σ, the covariance matrix of x, so that
the elements of z are the first q PCs for x. This argument can be extended
to a time series of p variables as follows. Suppose that our series is . . .x−1,
x0, x1, x2, . . . and that E[xt] = 0 for all t. Define

zt =
∞∑

u=−∞
B′

t−uxu,

and estimate xt by
∑∞

u=−∞ Ct−uzu, where

. . .Bt−1,Bt,Bt+1,Bt+2, . . . ,Ct−1,Ct,Ct+1,Ct+2, . . .

are (p × q) matrices that minimize

E
[(

xt −
∞∑

u=−∞
Ct−uzu

)∗(
xt −

∞∑

u=−∞
Ct−uzu

)]
,

where * denotes conjugate transpose. The difference between this formula-
tion and that for ordinary PCs above is that the relationships between z
and x are in terms of all values of xt and zt, at different times, rather than
between a single x and z. Also, the derivation is in terms of general complex
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series, rather than being restricted to real series. It turns out (Brillinger,
1981, p. 344) that

B′
u =

1
2π

∫ 2π

0

B̃(λ)eiuλdλ

Cu =
1
2π

∫ 2π

0

C̃(λ)eiuλdλ,

where C̃(λ) is a (p × q) matrix whose columns are the first q eigenvectors
of the matrix F(λ) given in (12.1.4), and B̃(λ) is the conjugate transpose
of C̃(λ).

The q series that form the elements of zt are called the first q PC series of
xt. Brillinger (1981, Sections 9.3, 9.4) discusses various properties and esti-
mates of these PC series, and gives an example in Section 9.6 on monthly
temperature measurements at 14 meteorological stations. Principal com-
ponent analysis in the frequency domain has also been used on economic
time series, for example on Dutch provincial unemployment data (Bartels,
1977, Section 7.7).

There is a connection between frequency domain PCs and PCs defined
in the time domain (Brillinger, 1981, Section 9.5). The connection involves
Hilbert transforms and hence, as noted in Section 12.2.3, frequency do-
main PCA has links to HEOF analysis. Define the vector of variables
yH

t (λ) = (x′
t(λ),x′H

t (λ))′, where xt(λ) is the contribution to xt at fre-
quency λ (Brillinger, 1981, Section 4.6), and xH

t (λ) is its Hilbert transform.
Then the covariance matrix of yH

t (λ) is proportional to
[

Re(F(λ)) Im(F(λ))
− Im(F(λ)) Re(F(λ))

]
,

where the functions Re(.), Im(.) denote the real and imaginary parts, re-
spectively, of their argument. A PCA of yH

t gives eigenvalues that are the
eigenvalues of F(λ) with a corresponding pair of eigenvectors

[
Re(C̃j(λ))
Im(C̃j(λ))

]
,

[ − Im(C̃j(λ))
Re(C̃j(λ))

]
,

where C̃j(λ) is the jth column of C̃(λ).
Horel (1984) interprets HEOF analysis as frequency domain PCA av-

eraged over all frequency bands. When a single frequency of oscillation
dominates the variation in a time series, the two techniques become the
same. The averaging over frequencies of HEOF analysis is presumably the
reason behind Plaut and Vautard’s (1994) claim that it is less good than
MSSA at distinguishing propagating patterns with different frequencies.

Preisendorfer and Mobley (1988) describe a number of ways in which
PCA is combined with a frequency domain approach. Their Section 4e
discusses the use of PCA after a vector field has been transformed into
the frequency domain using Fourier analysis, and for scalar-valued fields
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their Chapter 12 examines various combinations of real and complex-valued
harmonic analysis with PCA.

Stoffer (1999) describes a different type of frequency domain PCA, which
he calls the spectral envelope. Here a PCA is done on the spectral matrix
F(λ) relative to the time domain covariance matrix Γ0. This is a form of
generalized PCA for F(λ) with Γ0 as a metric (see Section 14.2.2), and
leads to solving the eigenequation [F(λ) − l(λ)Γ0]a(λ) = 0 for varying
angular frequency λ. Stoffer (1999) advocates the method as a way of dis-
covering whether the p series x1(t), x2(t), . . . xp(t) share common signals
and illustrates its use on two data sets involving pain perception and blood
pressure.

The idea of cointegration is important in econometrics. It has a technical
definition, but can essentially be described as follows. Suppose that the
elements of the p-variate time series xt are stationary after, but not before,
differencing. If there are one or more vectors α such that α′xt is stationary
without differencing, the p series are cointegrated. Tests for cointegration
based on the variances of frequency domain PCs have been put forward by
a number of authors. For example, Cubadda (1995) points out problems
with previously defined tests and suggests a new one.

12.4.2 Growth Curves and Longitudinal Data

A common type of data that take the form of curves, even if they are not
necessarily recorded as such, consists of measurements of growth for animals
or children. Some curves such as heights are monotonically increasing, but
others such as weights need not be. The idea of using principal components
to summarize the major sources of variation in a set of growth curves dates
back to Rao (1958), and several of the examples in Ramsay and Silverman
(1997) are of this type. Analyses of growth curves are often concerned with
predicting future growth, and one way of doing this is to use principal
components as predictors. A form of generalized PC regression developed
for this purpose is described by Rao (1987).

Caussinus and Ferré (1992) use PCA in a different type of analysis of
growth curves. They consider a 7-parameter model for a set of curves, and
estimate the parameters of the model separately for each curve. These 7-
parameter estimates are then taken as values of 7 variables to be analyzed
by PCA. A two-dimensional plot in the space of the first two PCs gives
a representation of the relative similarities between members of the set of
curves. Because the parameters are not estimated with equal precision, a
weighted version of PCA is used, based on the fixed effects model described
in Section 3.9.

Growth curves constitute a special case of longitudinal data, also known
as ‘repeated measures,’ where measurements are taken on a number of in-
dividuals at several different points of time. Berkey et al. (1991) use PCA
to model such data, calling their model a ‘longitudinal principal compo-
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nent model.’ As they are in Rao’s (1987) generalized principal component
regression, the PCs are used for prediction.

Growth curves are also the subject of James et al. (2000). Their objec-
tive is to model growth curves when the points at which the curves are
measured are possibly irregular, different for different individuals (obser-
vations), and sparse. Various models are proposed for such data and the
differences and connections between models are discussed. One of their
models is the reduced rank model

xi(t) = µ(t) +
q∑

k=1

ak(t)zik + εi(t), i = 1, 2, . . . , n, (12.4.1)

where xi(t) represents the growth curve for the ith individual, µ(t) is a
mean curve, εi(t) is an error term for the ith individual and ak(t), zik are
curves defining the principal components and PC scores, respectively, as in
Section 12.3.1. James et al. (2000) consider a restricted form of this model
in which µ(t) and ak(t) are expressed in terms of a spline basis, leading to
a model

xi = Φib0 + ΦiBz + εi, i = 1, 2, . . . , n. (12.4.2)

Here xi, εi are vectors of values xi(t), εi(t) at the times for which mea-
surements are made on the ith individual; b0,B contain coefficients in the
expansions of µ(t), ak(t), respectively in terms of the spline basis; and Φi

consists of values of that spline basis at the times measured for the ith indi-
vidual. When all individuals are measured at the same time, the subscript
i disappears from Φi in (12.4.2) and the error term has covariance matrix
σ2Ip, where p is the (common) number of times that measurements are
made. James et al. (2000) note that the approach is then equivalent to a
PCA of the spline coefficients in B. More generally, when the times of mea-
surement are different for different individuals, the analysis is equivalent to
a PCA with respect to the metric Φ′

iΦi. This extends the idea of metric-
based PCA described in Section 14.2.2 in allowing different (non-diagonal)
metrics for different observations. James et al. (2000) discuss how to choose
the number of knots in the spline basis, the choice of q in equation (12.4.1),
and how to construct bootstrap-based confidence intervals for the mean
function, the curves defining the principal components, and the individual
curves.

As noted in Section 9.3.4, redundancy analysis can be formulated as PCA
on the predicted responses in a multivariate regression. Van den Brink and
ter Braak (1999) extend this idea so that some of the predictor variables
in the regression are not included among the predictors on which the PCA
is done. The context in which they implement their technique is where
species abundances depend on time and on which ‘treatment’ is applied.
The results of this analysis are called principal response curves.
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12.4.3 Climate Change—Fingerprint Techniques

In climate change detection, the objective is not only to discover whether
change is taking place, but also to explain any changes found. If certain
causes are suspected, for example increases in greenhouse gases, variations
in solar output, or volcanic activity, then changes in these quantities can be
built into complex atmospheric models, and the models are run to discover
what happens to parameters of interest such as the global pattern of tem-
perature. Usually changes in one (or more) of the potential causal variables
will manifest themselves, according to the model, in different ways in differ-
ent geographical regions and for different climatic variables. The predicted
patterns of change are sometimes known as ‘fingerprints’ associated with
changes in the causal variable(s). In the detection of climate change it is
usually more productive to attempt to detect changes that resemble such
fingerprints than to search broadly over a wide range of possible changes.
The paper by Hasselmann (1979) is usually cited as the start of interest
in this type of climate change detection, and much research has been done
subsequently. Very similar techniques have been derived via a number of
different approaches. Zwiers (1999) gives a good, though not exhaustive,
summary of several of these techniques, together with a number of appli-
cations. North and Wu (2001) describe a number of recent developments,
again with applications.

The basic idea is that the observed data, which are often values of some
climatic variable xtj , where t indexes time and j indexes spatial position,
can be written

xtj = stj + etj .

Here stj is the deterministic response to changes in the potential causal
variables (the signal), and etj represents the stochastic noise associated
with ‘normal’ climate variation.

Suppose that an optimal detection variable At at time t is constructed as
a linear combination of the observed data xsj for s = t, (t−1), . . . , (t−l+1)
and j = 1, 2, . . . , m, where m is the number of spatial locations for which
data are available. The variable At can be written as At = w′x, where x is
an ml-vector of observed measurements at times t, (t − 1), . . . , (t − l + 1),
and all m spatial locations, and w is a vector of weights. Then w is chosen
to maximize the signal to noise ratio

[E(At)]2

var(At)
=

[w′st]2

w′Σew
,

where st is an ml-vector of known signal at time t and Σe is the spatio-
temporal covariance matrix of the noise term. It is straightforward to show
that the optimal detector, sometimes known as the optimal fingerprint, has
the form ŵ = Σ−1

e st. The question then arises: Where does PCA fit into
this methodology?
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Underlying the answer to this question is the fact that Σe needs to
be estimated, usually from a ‘control run’ of the atmospheric model in
which no changes are made to the potential causal variables. Because the
dimension ml of Σe is large, it may be nearly singular, and estimation of
Σ−1

e , which is required in calculating ŵ, will be unstable. To avoid this
instability, the estimate of Σe is replaced by the first few terms in its
spectral decomposition (Property A3 of Section 2.1), that is by using its
first few PCs. Allen and Tett (1999) discuss the choice of how many PCs
to retain in this context. ‘First few’ is perhaps not quite the right phrase in
some of these very large problems; North and Wu (2001) suggest keeping
up to 500 out of 3600 in one of their studies.

Expressing the optimal fingerprint in terms of the PCs of the estimate
of Σe also has advantages in interpretation, as in principal component
regression (Chapter 8), because of the uncorrelatedness of the PCs (Zwiers,
1999, equations (13), (14)).

12.4.4 Spatial Data

Many of the techniques discussed earlier in the chapter have a spatial di-
mension. In Section 12.2, different points in space mostly correspond to
different ‘variables.’ For MSSA, variables correspond to combinations of
time lag and spatial position, and Plaut and Vautard (1994) refer to the
output of MSSA as ‘space-time EOFs.’ North and Wu (2001) use the same
term in a different situation where variables also correspond to space-time
combinations, but with time in separated rather than overlapping blocks.

The possibility was also raised in Section 12.3 that the continuum of vari-
ables underlying the curves could be in space rather than time. The example
of Section 12.3.3 is a special case of this in which space is one-dimensional,
while Bouhaddou et al. (1987) and Guttorp and Sampson (1994) discuss
estimation of continuous (two-dimensional) spatial covariances. Extended
EOF analysis (see Sections 12.2.1, 14.5) has several variables measured
at each spatial location, but each space × variable combination is treated
as a separate ‘variable’ in this type of analysis. Another example in which
variables correspond to location is described by Boyles (1996). Here a qual-
ity control regime includes measurements taken on a sample of n parts
from a production line. The measurements are made at p locations form-
ing a lattice on each manufactured part. We return to this example in
Section 13.7.

In some situations where several variables are measured at each of n
spatial locations, the different spatial locations correspond to different ob-
servations rather than variables, but the observations are typically not
independent. Suppose that a vector x of p variables is measured at each of
n spatial locations. Let the covariance between the elements xj and xk of
x for two observations which are separated in space by a vector h be the
(j, k)th element of a matrix Σh. This expression assumes second order sta-
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tionarity in the sense that the covariances do not depend on the location of
the two observations, only on the vector joining them. On the other hand,
it does not require isotropy—the covariance may depend on the direction
of h as well as its length. The intrinsic correlation model (Wackernagel,
1995, Chapter 22) assumes that Σh = ρhΣ. Because all terms in Σ are
multiplied by the same spatial factor, this factor cancels when correlations
are calculated from the covariances and the correlation between xj and xk

does not depend on h. Wackernagel (1995, Chapter 22) suggests testing
whether or not this model holds by finding principal components based on
sample covariance matrices for the p variables. Cross-covariances between
the resulting PCs are then found at different separations h. For k �= l, the
kth and lth PCs should be uncorrelated for different values of h under the
intrinsic correlation model, because Σh has the same eigenvectors for all h.

An extension of the intrinsic correlation model to a ‘linear model of core-
gionalization’ is noted by Wackernagel (1995, Chapter 24). In this model
the variables are expressed as a sum of (S + 1) spatially uncorrelated
components, and the covariance matrix now takes the form

Σh =
S∑

u=0

ρuhΣu.

Wackernagel (1995, Chapter 25) suggests that separate PCAs of the esti-
mates of the matrices Σ0,Σ1, . . . ,ΣS may be informative, but it is not
clear how these matrices are estimated, except that they each represent
different spatial scales.

As well as dependence on h, the covariance or correlation between xj and
xk may depend on the nature of the measurements made (point measure-
ments, averages over an area where the area might be varied) and on the size
of the domain. Vargas-Guzmán et al. (1999) discuss each of these aspects,
but concentrate on the last. They describe a procedure they name growing
scale PCA, in which the nature of the measurements is fixed and averaging
(integration) takes place with respect to h, but the size of the domain is
allowed to vary continuously. As it does, the PCs and their variances also
evolve continuously. Vargas-Guzmán et al. illustrate this technique and also
the linear model of coregionalization with a three-variable example. The ba-
sic form of the PCs is similar at all domain sizes and stabilizes as the size
increases, but there are visible changes for small domain sizes. The example
also shows the changes that occur in the PCs for four different areal extents
of the individual measurements. Buell (1975) also discussed the dependence
of PCA on size and shape of spatial domains (see Section 11.4), but his
emphasis was on the shape of the domain and, unlike Vargas-Guzmán et
al. (1999), he made no attempt to produce a continuum of PCs dependent
on size.

Kaplan et al. (2001) consider optimal interpolation and smoothing of
spatial field data that evolve in time. There is a basic first-order autore-
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gressive structure relating the vector of true values of the field at time
(t + 1) to that at time t, as in equation (12.2.1), but in addition the values
are measured with error, so that there is a second equation, relating the
observed field yt to the true field xt, which is

yt = Ξxt + ξt, (12.4.3)

where Ξ is a (p × p) matrix and ξt is a vector of observational errors. In
the most general case the matrices Υ and Ξ in equations (12.2.1), (12.4.1)
may depend on t, and the covariance matrices of the error terms εt and ξt

need not be proportional to the identity matrix, or even diagonal. There
are standard procedures for optimal interpolation and smoothing, but these
become computationally prohibitive for the large data sets considered by
Kaplan and researchers. They therefore suggest projecting the data onto
the first few principal components of the covariance matrix of the anomaly
field, that is, the field constructed by subtracting the long-term climatic
mean from the measurements at each spatial location in the field. Kaplan et
al. (2001) describe a number of subtleties associated with the approach. The
main problem is the need to estimate the covariance matrices associated
with εt and ξt. Difficulties arise because of possible non-stationarity in
both means and covariance, and because of changing spatial coverage over
time, among other things, but Kaplan and his coworkers propose solutions
to overcome the difficulties.

Among the procedures considered computationally ‘extremely expensive’
by Kaplan et al. (2001) is the Kalman filter. Wikle and Cressie (1999)
propose a form of the Kalman filter in which there is an additional non-
dynamic term that captures small-scale spatial variability. Apart from this
term, their model is similar to that of Kaplan et al. and they, too, sug-
gest dimension reduction using principal components. Wikle and Cressie’s
model has space defined continuously but the principal components that
give their dimension reduction are derived from predicted values of the
spatial process on a regular grid.

In a spatial discriminant analysis example, Storvik (1993) suggests lin-
early transforming the data, but not to PCs. Instead, he finds linear
functions a′

kx of x that successively minimize autocorrelation between
a′

kx(s) and a′
kx(s + ∆), where the argument for x denotes spatial position

and ∆ is a fixed distance apart in space. It turns out that the functions are
derived via an eigenanalysis of S−1S∆, where S is the usual sample covari-
ance matrix for x and S∆ is the sample covariance matrix for x(s)−x(s+∆).
This analysis has some resemblance to the procedure for POP analysis
(Section 12.2.2), but in a spatial rather than time series context.

12.4.5 Other Aspects of Non-Independent Data and PCA

A different type of non-independence between observations is induced in
sample surveys for which the survey design is more complex than simple



336 12. PCA for Time Series and Other Non-Independent Data

random sampling. Skinner et al. (1986) consider what happens to PCA
when the selection of a sample of observations on p variables x depends
on a vector of covariates z. They use Taylor expansions to approximate
the changes (compared to simple random sampling) in the eigenvalues and
eigenvectors of the sample covariance matrix when samples are chosen in
this way. Skinner et al. present a simulation study in which stratified sam-
ples are taken, based on the value of a single covariate z, whose correlations
with 6 measured variables range from 0.48 to 0.60. Substantial biases arise
in the estimates of the eigenvalues and eigenvectors for some of the strat-
ification schemes examined, and these biases are well-approximated using
the Taylor expansions. By assuming multivariate normality, Skinner and
coworkers show that a maximum likelihood estimate of the covariance ma-
trix can be obtained, given knowledge of the survey design, and they show
that using the eigenvalues and eigenvectors of this estimate corrects for the
biases found for the usual covariance matrix. Tortora (1980) presents an
example illustrating the effect of a disproportionate stratified survey design
on some of the rules for variable selection using PCA that are described in
Section 6.3.

Similar structure to that found in sample surveys can arise in observa-
tional as well as design-based data sets. For example, Konishi and Rao
(1992) consider multivariate data, which could be genetic or epidemiologi-
cal, for samples of families. There are correlations between members of the
same family, and families may be of unequal sizes. Konishi and Rao (1992)
propose a model for the correlation structure in such familial data, which
they use to suggest estimates of the principal components underlying the
data.

Solow (1994) notes that when a trend is present in a set of time series, it is
often a major source of variation and will be found by an early PC. However,
he argues that to identify trends it is better to look for a linear combination
of the p series that has maximum autocorrelation, rather than maximum
variance. Solow (1994) solves this maximization problem by finding the
smallest eigenvalues and corresponding eigenvectors of S−1SD, where SD

is the covariance matrix of first differences of the series. This is the same
eigenproblem noted in the Section 12.4.4, which Storvik (1993) solved in a
spatial setting, but its objectives are different here so that autocorrelation
is maximized rather than minimized. Solow (1994) also modifies his proce-
dure to deal with compositional data, based on the approach suggested by
Aitchison (1983) for PCA (see Section 13.3).

Peña and Box (1987) consider a factor analysis model for time series
in which p time series are assumed to be derived linearly from a smaller
number m of underlying factors. Each factor follows an autoregressive
moving-average (ARMA) model. Peña and Box (1987) use the eigenvalues
and eigenvectors of covariance matrices between the series measured simul-
taneously (essentially a PCA) and at various lags to deduce the structure of
their factor model. They claim that considerable simplification is possible
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compared to a multivariate ARMA model involving all p of the original
series.

Wold (1994) suggests exponentially weighted moving principal compo-
nents in the context of process control (see Section 13.7), and Diamantaras
and Kung (1996, Section 3.5) advocate PCs based on weighted covariance
matrices for multivariate time series, with weights decreasing exponentially
for less recent observations.

Yet another rôle for PCs in the analysis of time series data is presented
by Doran (1976). In his paper, PCs are used to estimate the coefficients in a
regression analysis of one time series variable on several others. The idea is
similar to that of PC regression (see Section 8.1), but is more complicated
as it involves the frequency domain. Consider the distributed lag model,
which is a time series version of the standard regression model y = Xβ + ε
of equation (8.1.1), with the time series structure leading to correlation
between elements of ε. There is a decomposition of the least squares es-
timator of the regression coefficients β rather like equation (8.1.8) from
PC regression, except that the eigenvalues are replaced by ratios of spec-
tral density estimates for the predictors (signal) and error (noise). Doran
(1976) suggests using an estimate in which the terms corresponding to
the smallest values of this signal to noise ratio are omitted from the least
squares decomposition.



13
Principal Component Analysis for
Special Types of Data

The viewpoint taken in much of this text is that PCA is mainly a descrip-
tive tool with no need for rigorous distributional or model assumptions.
This implies that it can be used on a wide range of data, which can di-
verge considerably from the ‘ideal’ of multivariate normality. There are,
however, certain types of data where some modification or special care is
desirable when performing PCA. Some instances of this have been encoun-
tered already, for example in Chapter 9 where the data are grouped either
by observations or by variables, and in Chapter 12 where observations are
non-independent. The present chapter describes a number of other special
types of data for which standard PCA should be modified in some way, or
where related techniques may be relevant.

Section 13.1 looks at a number of ideas involving PCA for discrete data.
In particular, correspondence analysis, which was introduced as a graphical
technique in Section 5.4, is discussed further, and procedures for dealing
with data given as ranks are also described.

When data consist of measurements on animals or plants it is sometimes
of interest to identify ‘components’ of variation that quantify size and var-
ious aspects of shape. Section 13.2 examines modifications of PCA that
attempt to find such components.

In Section 13.3, compositional data in which the p elements of x are con-
strained to sum to the same constant (usually 1 or 100) for all observations
are discussed, and in Section 13.4 the rôle of PCA in analysing data from
designed experiments is described.

Section 13.5 looks at a number of ways of defining ‘common’ PCs, or
common subspaces, when the observations come from several distinct pop-
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ulations, and also examines how PCs from the different populations can be
compared.

Section 13.6 discusses possible ways of dealing with missing data in a
PCA, and Section 13.7 describes the use of PCs in statistical process con-
trol. Finally, Section 13.8 covers a number of other types of data rather
briefly. These include vector or directional data, data presented as intervals,
species abundance data and large data sets.

13.1 Principal Component Analysis for
Discrete Data

When PCA is used as a descriptive technique, there is no reason for the
variables in the analysis to be of any particular type. At one extreme, x
may have a multivariate normal distribution, in which case all the relevant
inferential results mentioned in Section 3.7 can be used. At the opposite
extreme, the variables could be a mixture of continuous, ordinal or even
binary (0/1) variables. It is true that variances, covariances and correlations
have especial relevance for multivariate normal x, and that linear functions
of binary variables are less readily interpretable than linear functions of
continuous variables. However, the basic objective of PCA—to summarize
most of the ‘variation’ that is present in the original set of p variables using
a smaller number of derived variables—can be achieved regardless of the
nature of the original variables.

For data in which all variables are binary, Gower (1966) points out that
using PCA does provide a plausible low-dimensional representation. This
follows because PCA is equivalent to a principal coordinate analysis based
on the commonly used definition of similarity between two individuals (ob-
servations) as the proportion of the p variables for which the two individuals
take the same value (see Section 5.2). Cox (1972), however, suggests an al-
ternative to PCA for binary data. His idea, which he calls ‘permutational
principal components,’ is based on the fact that a set of data consisting
of p binary variables can be expressed in a number of different but equiv-
alent ways. As an example, consider the following two variables from a
cloud-seeding experiment:

x1 =
{

1 if rain falls in seeded area,
0 if no rain falls in seeded area

x2 =
{

1 if rain falls in control area,
0 if no rain falls in control area.

Instead of x1, x2 we could define

x′
1 =
{

0 if both areas have rain or both areas dry
1 if one area has rain, the other is dry
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and x′
2 = x1. There is also a third possibility namely x′′

1 = x′
1, x′′

2 = x2. For
p > 2 variables there are many more possible permutations of this type,
and Cox (1972) suggests that an alternative to PCA might be to trans-
form to independent binary variables using such permutations. Bloomfield
(1974) investigates Cox’s suggestion in more detail, and presents an ex-
ample having four variables. In examples involving two variables we can
write

x′
1 = x1 + x2 (modulo 2), using the notation above.

For more than two variables, not all permutations can be written in
this way, but Bloomfield restricts his attention to those permutations
which can. Thus, for a set of p binary variables x1, x2, . . . , xp, he consid-
ers transformations to z1, z2, . . . , zp such that, for k = 1, 2, . . . , p, we have
either

zk = xj for some j,

or

zk = xi + xj (modulo 2) for some i, j, i �= j.

He is thus restricting attention to linear transformations of the variables
(as in PCA) and the objective in this case is to choose a transformation
that simplifies the structure between variables. The data can be viewed as
a contingency table, and Bloomfield (1974) interprets a simpler structure
as one that reduces high order interaction terms between variables. This
idea is illustrated on a 4-variable example, and several transformations are
examined, but (unlike PCA) there is no algorithm for finding a unique
‘best’ transformation.

A second special type of discrete data occurs when, for each observation,
only ranks and not actual values are given for each variable. For such data,
all the columns of the data matrix X have the same sum, so that the
data are constrained in a way similar to that which holds for compositional
data (see Section 13.3). Gower (1967) discusses some geometric implications
that follow from the constraints imposed by this type of ranked data and
by compositional data.

Another possible adaptation of PCA to discrete data is to replace vari-
ances and covariances by measures of dispersion and association that are
more relevant to discrete variables. For the particular case of contingency
table data, many different measures of association have been suggested
(Bishop et al., 1975, Chapter 11). It is also possible to define measures of
variation other than variance for such data, for example Gini’s measure
(see Bishop et al., 1975, Section 11.3.4). An approach of this sort is pro-
posed by Korhonen and Siljamäki (1998) for ordinal data. The objective
they tackle is to find an ‘optimal’ ordering or ranking of the multivariate
data so that, instead of assigning a score on a continuum to each of n ob-
servations, what is required is a rank between 1 and n. They note that the
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first PC maximizes the (weighted) sum of squared correlations between the
PC and each of the p variables. The weights are unity for correlation-based
PCA and equal to the sample variances for covariance-based PCA. These
results follow from the sample version of Property A6 in Section 2.3 and
the discussion that follows the property.

Korhonen and Siljamäki (1998) define the first ordinal principal compo-
nent as the ranking of the n observations for which the sum of squared
rank correlation coefficients between the ordinal PC and each of the p vari-
ables is maximized. They suggest that either Spearman’s rank correlation
or Kendall’s τ could be used as the ‘rank correlation’ in this definition. The
first ordinal PC can be computed when the data themselves are ordinal,
but it can also be obtained for continuous data, and may be useful if an
optimal ordering of the data, rather than a continuous derived variable that
maximizes variance, is of primary interest. Computationally the first ordi-
nal principal component may be found by an exhaustive search for small
examples, but the optimization problem is non-trivial for moderate or large
data sets. Korhonen and Siljamäki (1998) note that the development of a
fast algorithm for the procedure is a topic for further research, as is the
question of whether it is useful and feasible to look for 2nd, 3rd, . . . ordinal
PCs.

Baba (1995) uses the simpler procedure for ranked data of calculating
rank correlations and conducting an ordinary PCA on the resulting (rank)
correlation matrix. It is shown that useful results may be obtained for some
types of data.

Returning to contingency tables, the usual ‘adaptation’ of PCA to such
data is correspondence analysis. This technique is the subject of the remain-
der of this section. Correspondence analysis was introduced in Section 5.4
as a graphical technique, but is appropriate to discuss it in a little more
detail here because, as well as being used as a graphical means of displaying
contingency table data (see Section 5.4), the technique has been described
by some authors (for example, De Leeuw and van Rijckevorsel, 1980) as a
form of PCA for nominal data. To see how this description is valid, con-
sider, as in Section 5.4, a data set of n observations arranged in a two-way
contingency table, with nij denoting the number of observations that take
the ith value for the first (row) variable and the jth value for the second
(column) variable, i = 1, 2, . . . , r; j = 1, 2, . . . , c. Let N be the (r × c) ma-
trix with (i, j)th element nij , and define P = 1

nN, r = Plc, c = P′lr, and
X = P − rc′, where lc, lr, are vectors of c and r elements, respectively,
with all elements unity. If the variable defining the rows of the contingency
table is independent of the variable defining the columns, then the matrix
of ‘expected counts’ is given by nrc′. Thus, X is a matrix of the residuals
that remain when the ‘independence’ model is fitted to P.

The generalized singular value decomposition (SVD) of X, is defined by

X = VMB′, (13.1.1)
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where V′ΩV = I, B′ΦB = I, Ω and Φ are (r × r) and (c × c) matrices,
respectively, and M, I are diagonal and identity matrices whose dimensions
equal the rank of X (see Section 14.2.1). If Ω = D−1

r ,Φ = D−1
c , where Dr,

Dc are diagonal matrices whose diagonal entries are the elements of r, c,
respectively, then the columns of B define principal axes for the set of r ‘ob-
servations’ given by the rows of X. Similarly, the columns of V define prin-
cipal axes for the set of c ‘observations’ given by the columns of X, and from
the first q columns of B and V, respectively, we can derive the ‘coordinates’
of the row and column profiles of N in q-dimensional space (see Greenacre,
1984, p. 87) which are the end products of a correspondence analysis.

A correspondence analysis is therefore based on a generalized SVD of X,
and, as will be shown in Section 14.2.1, this is equivalent to an ‘ordinary’
SVD of

X̃ = Ω1/2XΦ1/2

= D−1/2
r XD−1/2

c

= D−1/2
r

(
1
n
N − rc′

)
D−1/2

c .

The SVD of X̃ can be written

X̃ = WKC′ (13.1.2)

with V, M, B of (13.1.1) defined in terms of W, K, C of (13.1.2) as

V = Ω−1/2W, M = K, B = Φ−1/2C.

If we consider X̃ as a matrix of r observations on c variables, then the coef-
ficients of the PCs for X̃ are given in the columns of C, and the coordinates
(scores) of the observations with respect to the PCs are given by the ele-
ments of WK (see the discussion of the biplot with α = 1 in Section 5.3).
Thus, the positions of the row points given by correspondence analysis are
rescaled versions of the values of the PCs for the matrix X̃. Similarly, the
column positions given by correspondence analysis are rescaled versions of
values of PCs for the matrix X̃′, a matrix of c observations on r variables.
In this sense, correspondence analysis can be thought of as a form of PCA
for a transformation X̃ of the original contingency table N (or a generalized
PCA for X; see Section 14.2.1).

Because of the various optimality properties of PCs discussed in Chap-
ters 2 and 3, and also the fact that the SVD provides a sequence of
‘best-fitting’ approximations to X̃ of rank 1, 2, . . . as defined by equa-
tion (3.5.4), it follows that correspondence analysis provides coordinates
for rows and columns of N that give the best fit in a small number of
dimensions (usually two) to a transformed version X̃ of N. This rather
convoluted definition of correspondence analysis demonstrates its connec-
tion with PCA, but there are a number of other definitions that turn out
to be equivalent, as shown in Greenacre (1984, Chapter 4). In particular,
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the techniques of reciprocal averaging and dual (or optimal) scaling are
widely used in ecology and psychology, respectively. The rationale behind
each technique is different, and differs in turn from that given above for
correspondence analysis, but numerically all three techniques provide the
same results for a given table of data.

The ideas of correspondence analysis can be extended to contingency
tables involving more than two variables (Greenacre, 1984, Chapter 5), and
links with PCA remain in this case, as will now be discussed very briefly.
Instead of doing a correspondence analysis using the (r× c) matrix N, it is
possible to carry out the same type of analysis on the [n··×(r+c)] indicator
matrix Z = (Z1 Z2). Here Z1 is (n·· × r) and has (i, j)th element equal
to 1 if the ith observation takes the jth value for the first (row) variable,
and zero otherwise. Similarly, Z2 is (n·· × c), with (i, j)th element equal
to 1 if the ith observation takes the jth value for the second (column)
variable and zero otherwise. If we have a contingency table with more
than two variables, we can extend the correspondence analysis based on
Z by adding further indicator matrices Z3,Z4, . . . , to Z, one matrix for
each additional variable, leading to ‘multiple correspondence analysis’ (see
also Section 14.1.1). Another alternative to carrying out the analysis on
Z = (Z1 Z2 Z3 . . .) is to base the correspondence analysis on the so-called
Burt matrix Z′Z (Greenacre, 1984, p. 140).

In the case where each variable can take only two values, Greenacre
(1984, p. 145) notes two relationships between (multiple) correspondence
analysis and PCA. He states that correspondence analysis of Z is closely
related to PCA of a matrix Y whose ith column is one of the two columns
of Zi, standardized to have unit variance. Furthermore, the correspondence
analysis of the Burt matrix Z′Z is equivalent to a PCA of the correlation
matrix 1

n··
Y′Y. Thus, the idea of correspondence analysis as a form of

PCA for nominal data is valid for any number of binary variables. A final
relationship between correspondence analysis and PCA (Greenacre, 1984,
p. 183) occurs when correspondence analysis is done for a special type of
‘doubled’ data matrix, in which each variable is repeated twice, once in its
original form, and the second time in a complementary form (for details,
see Greenacre (1984, Chapter 6)).

We conclude this section by noting one major omission, namely the non-
linear principal component analyses of Gifi (1990, Chapter 4). These are
most relevant to discrete data, but we defer detailed discussion of them to
Section 14.1.1.

13.2 Analysis of Size and Shape

In a number of examples throughout the book the first PC has all its co-
efficients of the same sign and is a measure of ‘size.’ The orthogonality
constraint in PCA then demands that subsequent PCs are contrasts be-
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tween variables or measures of ‘shape.’ When the variables are physical
measurements on animals or plants the terms ‘size’ and ‘shape’ take on
real meaning. The student anatomical measurements that were analysed in
Sections 1.1, 4.1, 5.1 and 10.1 are of this type, and there is a large literature
on the study of size and shape for non-human animals. Various approaches
have been adopted for quantifying size and shape, only some of which in-
volve PCA. We shall concentrate on the latter, though other ideas will be
noted briefly.

The study of relationships between size and shape during the growth of
organisms is sometimes known as allometry (Hills, 1982). The idea of using
the first PC as a measure of size, with subsequent PCs defining various as-
pects of shape, dates back at least to Jolicoeur (1963). Sprent (1972) gives
a good review of early work in the area from a mathematical/statistical
point of view, and Blackith and Reyment (1971, Chapter 12) provide ref-
erences to a range of early examples. It is fairly conventional, for reasons
explained in Jolicoeur (1963), to take logarithms of the data, with PCA
then conducted on the covariance matrix of the log-transformed data.

In circumstances where all the measured variables are thought to be
of equal importance, it seems plausible that size should be an weighted
average of the (log-transformed) variables with all weights equal. This is
known as isometric size. While the first PC may have roughly equal weights
(coefficients), sampling variability ensures that they are never exactly equal.
Somers (1989) argues that the first PC contains a mixture of size and shape
information, and that in order to examine ‘shape,’ an isometric component
rather than the first PC should be removed. A number of ways of ‘removing’
isometric size and then quantifying different aspects of shape have been
suggested and are now discussed.

Recall that the covariance matrix (of the log-transformed data) can be
written using the spectral decomposition in equation (3.1.4) as

S = l1a1a′
1 + l2a2a′

2 + . . . + lpapa′
p.

Removal of the first PC is achieved by removing the first term in this de-
composition. The first, second, . . . , PCs of the reduced matrix are then the
second, third, . . . PCs of S. Somers (1986) suggests removing l0a0a′

0 from
S, where a0 = 1√

p (1, 1, . . . , 1) is the isometric vector and l0 is the sample
variance of a′

0x, and then carrying out a ‘PCA’ on the reduced matrix. This
procedure has a number of drawbacks (Somers, 1989; Sundberg, 1989), in-
cluding the fact that, unlike PCs, the shape components found in this way
are correlated and have vectors of coefficients that are not orthogonal.

One alternative suggested by Somers (1989) is to find ‘shape’ components
by doing a ‘PCA’ on a doubly-centred version of the log-transformed data.
The double-centering is considered to remove size (see also Section 14.2.3)
because the isometric vector is one of the eigenvectors of its ‘covariance’
matrix, with zero eigenvalue. Hence the vectors of coefficients of the shape
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components are orthogonal to the isometric vector, but the shape compo-
nents themselves are correlated with the isometric component. Cadima and
Jolliffe (1996) quote an example in which these correlations are as large as
0.92.

Ranatunga (1989) introduced a method for which the shape components
are uncorrelated with the isometric component, but her technique sacri-
fices orthogonality of the vectors of coefficients. A similar problem, namely
losing either uncorrelatedness or orthogonality when searching for simple
alternatives to PCA, was observed in Chapter 11. In the present context,
however, Cadima and Jolliffe (1996) derived a procedure combining aspects
of double-centering and Ranatunga’s approach and gives shape components
that are both uncorrelated with the isometric component and have vectors
of coefficients orthogonal to a0. Unfortunately, introducing one desirable
property leads to the loss of another. As pointed out by Mardia et al.
(1996), if xh = cxi where xh, xi are two observations and c is a constant,
then in Cadima and Jolliffe’s (1996) method the scores of the two obser-
vations are different on the shape components. Most definitions of shape
consider two observations related in this manner to have the same shape.

Decomposition into size and shape of the variation in measurements
made on organisms is a complex problem. None of the terms ‘size,’ ‘shape,’
‘isometric’ or ‘allometry’ is uniquely defined, which leaves plenty of scope
for vigorous debate on the merits or otherwise of various procedures (see,
for example, Bookstein (1989); Jungers et al. (1995)).

One of the other approaches to the analysis of size and shape is to define
a scalar measure of size, and then calculate a shape vector as the orig-
inal vector x of p measurements divided by the size. This is intuitively
reasonable, but needs a definition of size. Darroch and Mosimann (1985)
list a number of possibilities, but home in on ga(x) =

∏p
k=1 xak

k , where
a′ = (a1, a2, . . . , ap) and

∑p
k=1 ak = 1. The size is thus a generalization

of the geometric mean. Darroch and Mosimann (1985) discuss a number
of properties of the shape vector x/ga(x) and its logarithm, and advo-
cate the use of PCA on the log-transformed shape vector, leading to shape
components. The log shape vector generalizes the vector v used by Aitchi-
son (1983) in the analysis of compositional data (see Section 13.3), but
the PCs are invariant with respect to the choice of a. As with Aitchison’s
(1983) analysis, the covariance matrix of the log shape data has the isomet-
ric vector a0 as an eigenvector, with zero eigenvalue. Hence all the shape
components are contrasts between log-transformed variables. Darroch and
Mosimann (1985) give an example in which both the first and last shape
components are of interest.

The analysis of shapes goes well beyond the size and shape of organisms
(see, for example, Dryden and Mardia (1998) and Bookstein (1991)). A
completely different approach to the analysis of shape is based on ‘land-
marks.’ These are well-defined points on an object whose coordinates define
the shape of the object, after the effects of location, scale and rotation have
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been removed. Landmarks can be used to examine the shapes of animals
and plants, but they are also relevant to the analysis of shapes of many
other types of object. Here, too, PCA can be useful and it may be im-
plemented in a variety of forms. Kent (1994) distinguishes four versions
depending on the choice of coordinates and on the choice of whether to use
real or complex PCA (see also Section 13.8).

Kent (1994) describes two coordinate systems due to Kendall (1984)
and to Bookstein (1991). The two systems arise because of the different
possible ways of removing location and scale. If there are p landmarks,
then the end result in either system of coordinates is that each object is
represented by a set of (p−1) two-dimensional vectors. There is now a choice
of whether to treat the data as measurements on 2(p− 1) real variables, or
as measurements on (p − 1) complex variables where the two coordinates
at each landmark point give the real and imaginary parts. Kent (1994)
discusses the properties of the four varieties of PCA thus produced, and
comments that complex PCA is rather uninformative. He gives an example
of real PCA for both coordinate systems.

Horgan (2000) describes an application of PCA to the comparison of
shapes of carrots. After bringing the carrots into the closest possible align-
ment, distances are calculated between each pair of carrots based on the
amount of non-overlap of their shapes. A principal coordinate analysis
(Section 5.2) is done on these distances, and Horgan (2000) notes that
this is equivalent to a principal component analysis on binary variables
representing the presence or absence of each carrot at a grid of points in two-
dimensional space. Horgan (2000) also notes the similarity between his tech-
nique and a PCA on the grey scale levels of aligned images, giving so-called
eigenimages. This latter procedure has been used to analyse faces (see, for
example Craw and Cameron, 1992) as well as carrots (Horgan, 2001).

13.3 Principal Component Analysis for
Compositional Data

Compositional data consist of observations x1,x2, . . . ,xn for which each
element of xi is a proportion, and the elements of xi are constrained to
sum to unity. Such data occur, for example, when a number of chemical
compounds or geological specimens or blood samples are analysed, and the
proportion in each of a number of chemical elements is recorded. As noted
in Section 13.1, Gower (1967) discusses some geometric implications that
follow from the constraints on the elements of x, but the major reference for
PCA on compositional data is Aitchison (1983). Because of the constraints
on the elements of x, and also because compositional data apparently of-
ten exhibit non-linear rather than linear structure among their variables,
Aitchison (1983) proposes that PCA be modified for such data.
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At first sight, it might seem that no real difficulty is implied by the
condition

xi1 + xi2 + · · · + xip = 1, (13.3.1)

which holds for each observation. If a PCA is done on x, there will be a PC
with zero eigenvalue identifying the constraint. This PC can be ignored be-
cause it is entirely predictable from the form of the data, and the remaining
PCs can be interpreted as usual. A counter to this argument is that corre-
lations and covariances, and hence PCs, cannot be interpreted in the usual
way when the constraint is present. In particular, the constraint (13.3.1)
introduces a bias towards negative values among the correlations, so that
a set of compositional variables that are ‘as independent as possible’ will
not all have zero correlations between them.

One way of overcoming this problem is to do the PCA on a subset of
(p−1) of the p compositional variables, but this idea has the unsatisfactory
feature that the choice of which variable to leave out is arbitrary, and
different choices will lead to different PCs. For example, suppose that two
variables have much larger variances than the other (p − 2) variables. If a
PCA is based on the covariance matrix for (p−1) of the variables, then the
result will vary considerably, depending on whether the omitted variable
has a large or small variance. Furthermore, there remains the restriction
that the (p−1) chosen variables must sum to no more than unity, so that the
interpretation of correlations and covariances is still not straightforward.

The alternative that is suggested by Aitchison (1983) is to replace x by
v = log[x/g(x)], where g(x) = (

∏p
i=1 xi)

1
p is the geometric mean of the

elements of x. Thus, the jth element of v is

vj = log xj − 1
p

p∑

i=1

log xi, j = 1, 2, . . . , p. (13.3.2)

A PCA is then done for v rather than x. There is one zero eigen-
value whose eigenvector is the isometric vector with all elements equal; the
remaining eigenvalues are positive and, because the corresponding eigen-
vectors are orthogonal to the final eigenvector, they define contrasts (that
is, linear functions whose coefficients sum to zero) for the log xj .

Aitchison (1983) also shows that these same functions can equivalently
be found by basing a PCA on the non-symmetric set of variables v(j), where

v(j) = log[x(j)/xj ] (13.3.3)

and x(j) is the (p−1)-vector obtained by deleting the jth element xj from x.
The idea of transforming to logarithms before doing the PCA can, of course,
be used for data other than compositional data (see also Section 13.2).
However, there are a number of particular advantages of the log-ratio trans-
formation (13.3.2), or equivalently (13.3.3), for compositional data. These
include the following, which are discussed further by Aitchison (1983)
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(i) It was noted above that the constraint (13.3.1) introduces a negative
bias to the correlations between the elements of x, so that any notion
of ‘independence’ between variables will not imply zero correlations. A
number of ideas have been put forward concerning what should con-
stitute ‘independence,’ and what ‘null correlations’ are implied, for
compositional data. Aitchison (1982) presents arguments in favour of
a definition of independence in terms of the structure of the covariance
matrix of v(j) (see his equations (4.1) and (5.1)). With this definition,
the PCs based on v (or v(j)) for a set of ‘independent’ variables are
simply the elements of v (or v(j)) arranged in descending size of their
variances. This is equivalent to what happens in PCA for ‘ordinary’
data with independent variables.

(ii) There is a tractable class of probability distributions for v(j) and for
linear contrasts of the elements of v(j), but there is no such tractable
class for linear contrasts of the elements of x when x is restricted by
the constraint (13.3.1).

(iii) Because the log-ratio transformation removes the effect of the con-
straint on the interpretation of covariance, it is possible to define
distances between separate observations of v in a way that is not
possible with x.

(iv) It is easier to examine the variability of subcompositions (sub-
sets of x renormalized to sum to unity) compared to that of the
whole composition, if the comparison is done in terms of v rather
than x.

Aitchison (1983) provides examples in which the proposed PCA of v
is considerably superior to a PCA of x. This seems to be chiefly because
there is curvature inherent in many compositional data sets; the proposed
analysis is very successful in uncovering correct curved axes of maximum
variation, whereas the usual PCA, which is restricted to linear functions of
x, is not. However, Aitchison’s (1983) proposal does not necessarily make
much difference to the results of a PCA, as is illustrated in the example
given below in Section 13.3.1. Aitchison (1986, Chapter 8) covers simi-
lar material to Aitchison (1983), although more detail is given, including
examples, of the analysis of subdecompositions.

A disadvantage of Aitchison’s (1983) approach is that it cannot handle
zeros for any of the xj (see equation (13.3.2)). One possibility is to omit
from the analysis any variables which have zeros, though discarding infor-
mation in this way is undesirable. Alternatively, any zeros can be replaced
by a small positive number, but the results are sensitive to the choice
of that number. Bacon-Shone (1992) proposes an approach to composi-
tional data based on ranks, which allows zeros to be present. The values of
xij , i = 1, 2, . . . , n; j = 1, 2, . . . , p are ranked either within rows or within
columns or across the whole data matrix, and the data values are then
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replaced by their ranks, which range from 1 to p, from 1 to n, or from 1 to
np, respectively, depending on the type of ranking. These ranks are then
scaled within each row so that each row sum equals 1, as is true for the
original data.

Bacon-Shone (1992) does not use PCA on these rank-transformed data,
but Baxter (1993) does. He looks at several approaches for a number of
compositional examples from archaeology, and demonstrates that for typ-
ical archaeological data, which often include zeros, Bacon-Shone’s (1992)
procedure is unsatisfactory because it is too sensitive to the ranked ze-
ros. Baxter (1993) also shows that both Aitchison’s and Bacon-Shone’s
approaches can be misleading when there are small but non-zero elements
in the data. He claims that simply ignoring the compositional nature of the
data and performing PCA on the original data is often a more informative
alternative in archaeology than these approaches.

Kaciak and Sheahan (1988) advocate the use of uncentred PCA
(see Section 14.2.3), apparently without a log transformation, for the
analysis of compositional data, and use it in a market segmentation
example.

13.3.1 Example: 100 km Running Data

In Sections 5.3 and 12.3.3, a data set was discussed which consisted of
times taken for each of ten 10 km sections by 80 competitors in a 100 km
race. If, instead of recording the actual time taken in each section, we look
at the proportion of the total time taken for each section, the data then
become compositional in nature. A PCA was carried out on these com-
positional data, and so was a modified analysis as proposed by Aitchison
(1983). The coefficients and variances for the first two PCs are given for
the unmodified and modified analyses in Tables 13.1, 13.2, respectively.
It can be seen that the PCs defined in Tables 13.1 and 13.2 have very
similar coefficients, with angles between corresponding vectors of coeffi-
cients equal to 8◦ for both first and second PCs. This similarity continues
with later PCs. The first PC is essentially a linear contrast between times
early and late in the race, whereas the second PC is a ‘quadratic’ con-
trast with times early and late in the race contrasted with those in the
middle.

Comparison of Tables 13.1 and 13.2 with Table 5.2 shows that convert-
ing the data to compositional form has removed the first (overall time)
component, but the coefficients for the second PC in Table 5.2 are very
similar to those of the first PC in Tables 13.1 and 13.2. This correspon-
dence continues to later PCs, with the third, fourth, . . . PCs for the ‘raw’
data having similar coefficients to those of the second, third,. . . PCs for the
compositional data.



350 13. Principal Component Analysis for Special Types of Data

Table 13.1. First two PCs: 100 km compositional data.

Coefficients Coefficients
Component 1 Component 2

First 10 km 0.42 0.19
Second 10 km 0.44 0.18
Third 10 km 0.44 0.00
Fourth 10 km 0.40 −0.23
Fifth 10 km 0.05 −0.56
Sixth 10 km −0.18 −0.53
Seventh 10 km −0.20 −0.15
Eighth 10 km −0.27 −0.07
Ninth 10 km −0.24 0.30
Tenth 10 km −0.27 0.41

Eigenvalue 4.30 2.31

Cumulative percentage
of total variation 43.0 66.1

Table 13.2. First two PCs: Aitchison’s (1983) technique for 100 km compositional
data.

Coefficients Coefficients
Component 1 Component 2

First 10 km 0.41 0.19
Second 10 km 0.44 0.17
Third 10 km 0.42 −0.06
Fourth 10 km 0.36 −0.31
Fifth 10 km −0.04 −0.57
Sixth 10 km −0.25 −0.48
Seventh 10 km −0.24 −0.08
Eighth 10 km −0.30 −0.01
Ninth 10 km −0.24 0.30
Tenth 10 km −0.25 0.43

Eigenvalue 4.38 2.29

Cumulative percentage
of total variation 43.8 66.6
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13.4 Principal Component Analysis in Designed
Experiments

In Chapters 8 and 9 we discussed ways in which PCA could be used as a pre-
liminary to, or in conjunction with, other standard statistical techniques.
The present section gives another example of the same type of application;
here we consider the situation where p variables are measured in the course
of a designed experiment. The standard analysis would be either a set of
separate analyses of variance (ANOVAs) for each variable or, if the variables
are correlated, a multivariate analysis of variance (MANOVA—Rencher,
1995, Chapter 6) could be done.

As an illustration, consider a two-way model of the form

xijk = µ + τ j + βk + εijk, i = 1, 2, . . . , njk; j = 1, 2, . . . , t; k = 1, 2, . . . , b,

where xijk is the ith observation for treatment j in block k of a p-variate
vector x. The vector xijk is therefore the sum of an overall mean µ, a
treatment effect τ j , a block effect βk and an error term εijk.

The most obvious way in which PCA can be used in such analyses is
simply to replace the original p variables by their PCs. Then either sepa-
rate ANOVAs can be done on each PC, or the PCs can be analysed using
MANOVA. Jackson (1991, Sections 13.5–13.7) discusses the use of sep-
arate ANOVAs for each PC in some detail. In the context of analysing
growth curves (see Section 12.4.2) Rao (1958) suggests that ‘methods of
multivariate analysis for testing the differences between treatments’ can be
implemented on the first few PCs, and Rencher (1995, Section 12.2) advo-
cates PCA as a first step in MANOVA when p is large. However, as noted
by Rao (1964), for most types of designed experiment this simple analy-
sis is often not particularly useful. This is because the overall covariance
matrix represents a mixture of contributions from within treatments and
blocks, between treatments, between blocks, and so on, whereas we usually
wish to separate these various types of covariance. Although the PCs are
uncorrelated overall, they are not necessarily so, even approximately, with
respect to between-group or within-group variation. This is a more compli-
cated manifestation of what occurs in discriminant analysis (Section 9.1),
where a PCA based on the covariance matrix of the raw data may prove
confusing, as it inextricably mixes up variation between and within pop-
ulations. Instead of a PCA of all the xijk, a number of other PCAs have
been suggested and found to be useful in some circumstances.

Jeffers (1962) looks at a PCA of the (treatment×block) means x̄jk, j =
1, 2, . . . , t; k = 1, 2, . . . , b, where

x̄jk =
1

njk

njk∑

i=1

xijk,

that is, a PCA of a data set with tb observations on a p-variate random vec-
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tor. In an example on tree seedlings, he finds that ANOVAs carried out on
the first five PCs, which account for over 97% of the variation in the orig-
inal eight variables, give significant differences between treatment means
(averaged over blocks) for the first and fifth PCs. This result contrasts
with ANOVAs for the original variables, where there were no significant
differences. The first and fifth PCs can be readily interpreted in Jeffers’
(1962) example, so that transforming to PCs produces a clear advantage in
terms of detecting interpretable treatment differences. However, PCs will
not always be interpretable and, as in regression (Section 8.2), there is no
reason to expect that treatment differences will necessarily manifest them-
selves in high variance, rather than low variance, PCs. For example, while
Jeffer’s first component accounts for over 50% of total variation, his fifth
component accounts for less than 5%.

Jeffers (1962) looked at ‘between’ treatments and blocks PCs, but the
PCs of the ‘within’ treatments or blocks covariance matrices can also pro-
vide useful information. Pearce and Holland (1960) give an example having
four variables, in which different treatments correspond to different root-
stocks, but which has no block structure. They carry out separate PCAs
for within- and between-rootstock variation. The first PC is similar in the
two cases, measuring general size. Later PCs are, however, different for the
two analyses, but they are readily interpretable in both cases so that the
two analyses each provide useful but separate information.

Another use of ‘within-treatments’ PCs occurs in the case where there are
several populations, as in discriminant analysis (see Section 9.1), and ‘treat-
ments’ are defined to correspond to different populations. If each population
has the same covariance matrix Σ, and within-population PCs based on
Σ are of interest, then the ‘within-treatments’ covariance matrix provides
an estimate of Σ. Yet another way in which ‘error covariance matrix PCs’
can contribute is if the analysis looks for potential outliers as suggested for
multivariate regression in Section 10.1.

A different way of using PCA in a designed experiment is described
by Mandel (1971, 1972). He considers a situation where there is only one
variable, which follows the two-way model

xjk = µ + τj + βk + εjk, j = 1, 2, . . . , t; k = 1, 2, . . . , b, (13.4.1)

that is, there is only a single observation on the variable x at each com-
bination of treatments and blocks. In Mandel’s analysis, estimates µ̂, τ̂j ,
β̂k are found for µ, τj , βk, respectively, and residuals are calculated as
ejk = xjk − µ̂− τ̂j − β̂k. The main interest is then in using ejk to estimate
the non-additive part εjk of the model (13.4.1). This non-additive part is
assumed to take the form

εjk =
m∑

h=1

ujhlhakh, (13.4.2)
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where m, lh, ujh, akh, are suitably chosen constants. Apart from slight
changes in notation, the right-hand side of (13.4.2) is the same as that of
the singular value decomposition (SVD) in (3.5.3). Thus, the model (13.4.2)
is fitted by finding the SVD of the matrix E whose (j, k)th element is
ejk, or equivalently finding the PCs of the covariance matrix based on the
data matrix E. This analysis also has links with correspondence analysis
(see Section 13.1). In both cases we find an SVD of a two-way table of
residuals, the difference being that in the present case the elements of the
table are residuals from an additive model for a quantitative variable, rather
than residuals from an independence (multiplicative) model for counts. As
noted in Section 1.2, R.A. Fisher used the SVD in a two-way analysis of an
agricultural trial, leading to an eigenanalysis of a multiple of a covariance
matrix as long ago as 1925.

A substantial amount of work has been done on the model defined by
(13.4.1) and (13.4.2). Freeman (1975) showed that Mandel’s approach can
be used for incomplete as well as complete two-way tables, and a number
of authors have constructed tests for the rank m of the interaction term.
For example, Boik (1986) develops likelihood ratio and union-intersection
tests, and Milliken and Johnson (1989) provide tables of critical points for
likelihood ratio statistics. Boik (1986) also points out that the model is a
reduced-rank regression model (see Section 9.3.4).

Shafii and Price (1998) give an example of a more complex design in
which seed yields of 6 rapeseed cultivars are measured in 27 environ-
ments spread over three separate years, with 4 replicates at each of the
(6 × 27) combinations. There are additional terms in the model compared
to (13.4.1), but the non-additive part is still represented as in (13.4.2).
The first two terms in (13.4.2) are deemed significant using Milliken and
Johnson’s (1989) tables; they account for 80% of the variability that would
be explained by taking m of full rank 5. The results of the analysis of the
non-additive term are interpreted using biplots (see Section 5.3).

Gower and Krzanowski (1999) consider the situation in which the data
have a MANOVA structure but where the assumptions that underlie formal
MANOVA procedures are clearly invalid. They suggest a number of graph-
ical displays to represent and interpret such data; one is based on weighted
PCA. Goldstein (1995, Section 4.5) notes the possibility of using PCA to
explore the structure of various residual matrices in a multilevel model.

Planned surveys are another type of designed experiment, and one par-
ticular type of survey design is based on stratified sampling. Pla (1991)
suggests that when the data from a survey are multivariate, the first PC
can be used to define the strata for a stratified sampling scheme. She shows
that stratification in this manner leads to reduced sampling variability com-
pared to stratification based on only one or two variables. Skinner et al.
(1986) and Tortora (1980) demonstrate the effect of the non-independence
induced by other methods of stratification on subsequently calculated PCs
(see Section 12.4.5).
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Observations of the atmosphere certainly do not constitute a designed
experiment, but a technique proposed by Zheng et al. (2001) is included
here because of its connections to analysis of variance. Measurements of
meteorological fields can be thought of as the sum of long-term variability
caused by external forcing and the slowly varying internal dynamics of the
atmosphere, and short-term day-to-day weather variability. The first term
is potentially predictable over seasonal or longer time scales, whereas the
second term is not. It is therefore of interest to separate out the potentially
predictable component and examine its major sources of variation. Zheng
et al. (2001) do this by estimating the covariance matrix of the day-to-day
variation and subtracting it from the ‘overall’ covariance matrix, which
assumes independence of short- and long-term variation. A PCA is then
done on the resulting estimate of the covariance matrix for the potentially
predictable variation, in order to find potentially predictable patterns.

Returning to designed experiments, in optimal design it is desirable to
know the effect of changing a design by deleting design points or augment-
ing it with additional design points. Jensen (1998) advocates the use of
principal components of the covariance matrix of predicted values at a cho-
sen set of design points to investigate the effects of such augmentation or
deletion. He calls these components principal predictors, though they are
quite different from the entities with the same name defined by Thacker
(1999) and discussed in Section 9.3.3. Jensen (1998) illustrates the use of
his principal predictors for a variety of designs.

13.5 Common Principal Components and
Comparisons of Principal Components

Suppose that observations on a p-variate random vector x may have come
from any one of G distinct populations, and that the mean and covariance
matrix for the gth population are, respectively, µg, Σg, g = 1, 2, . . . , G. This
is the situation found in discriminant analysis (see Section 9.1) although
in discriminant analysis it is often assumed that all the Σg are the same,
so that the populations differ only in their means. If the Σg are all the
same, then the ‘within-population PCs’ are the same for all G populations,
though, as pointed out in Section 9.1, within-population PCs are often
different from PCs found by pooling data from all populations together.

If the Σg are different, then there is no uniquely defined set of within-
population PCs that is common to all populations. However, a number of
authors have examined ‘common principal components,’ which can usefully
be defined in some circumstances where the Σg are not all equal. The idea
of ‘common’ PCs arises if we suspect that the same components underlie
the covariance matrices of each group, but that they have different weights
in different groups. For example, if anatomical measurements are made on
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different but closely related species of animals, then the same general ‘size’
and ‘shape’ components (see Section 13.2) may be present for each species,
but with varying importance. Similarly, if the same variables are measured
on the same individuals but at different times, so that ‘groups’ correspond
to different times as in longitudinal studies (see Section 12.4.2), then the
components may remain the same but their relative importance may vary
with time.

One way of formally expressing the presence of ‘common PCs’ as just
defined is by the hypothesis that there is an orthogonal matrix A that
simultaneously diagonalizes all the Σg so that

A′ΣgA = Λg, (13.5.1)

where Λg, g = 1, 2, . . . , G are all diagonal. The kth column of A gives the
coefficients of the kth common PC, and the (diagonal) elements of Λg give
the variances of these PCs for the gth population. Note that the order of
these variances need not be the same for all g, so that different PCs may
have the largest variance in different populations.

In a series of papers in the 1980s Flury developed ways of estimating and
testing the model implied by (13.5.1). Much of this work later appeared
in a book (Flury, 1988), in which (13.5.1) is the middle level of a 5-level
hierarchy of models for a set of G covariance matrices. The levels are these:

• Σ1 = Σ2 = . . . = ΣG (equality).

• Σg = ρgΣ1 for some positive constants ρ2, ρ3, . . . , ρg (proportional-
ity).

• A′ΣgA = Λg (the common PC model).

• Equation (13.5.1) can also be written, using spectral decompositions
(2.1.10) of each covariance matrix, as

Σg = λg1α1α
′
1 + λg2α2α

′
2 + . . . + λgpαpα

′
p.

Level 4 (the partial common PC model) replaces this by

Σg = λg1α1α
′
1+. . .+λgqαqα

′
q+λg(q+1)α

(g)
q+1α

′(g)
q+1+. . .+λgpα

(g)
p α

′(g)
p

(13.5.2)
Thus, q of the p PCs have common eigenvectors in the G groups,
whereas the other (p− q) do not. The ordering of the components in
(13.5.2) need not in general reflect the size of the eigenvalues. Any
subset of q components can be ‘common.’

• No restriction on Σ1,Σ2, . . . ,Σg.

The first and last levels of the hierarchy are trivial, but Flury (1988)
devotes a chapter to each of the three intermediate ones, covering maximum
likelihood estimation, asymptotic inference and applications. The partial
common PC model is modified to give an additional level of the hierarchy
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in which q of the components span a common subspace, but there is no
requirement that the individual components should be the same. Likelihood
ratio tests are described by Flury (1988) for comparing the fit of models at
different levels of the hierarchy. Model selection can also be made on the
basis of Akaike’s information criterion (AIC) (Akaike, 1974).

One weakness of the theory described in Flury (1988) is that it is only
really applicable to covariance-based PCA and not to the more frequently
encountered correlation-based analysis.

Lefkovitch (1993) notes that Flury’s (1988) procedure for fitting a com-
mon PC model can be time-consuming for moderate or large data sets. He
proposes a technique that produces what he calls consensus components,
which are much quicker to find. They are based on the so-called polar de-
composition of a data matrix, and approximately diagonalize two or more
covariance matrices simultaneously. In the examples that Lefkovitch (1993)
presents the consensus and common PCs are similar and, if the common
PCs are what is really wanted, the consensus components provide a good
starting point for the iterative process that leads to common PCs.

A number of topics that were described briefly by Flury (1988) in a
chapter on miscellanea were subsequently developed further. Schott (1988)
derives an approximate test of the partial common PC model for G = 2
when the common subspace is restricted to be that spanned by the first q
PCs. He argues that in dimension-reducing problems this, rather than any
q-dimensional subspace, is the subspace of interest. His test is extended to
G > 2 groups in Schott (1991), where further extensions to correlation-
based analyses and to robust PCA are also considered. Yuan and Bentler
(1994) provide a test for linear trend in the last few eigenvalues under the
common PC model.

Flury (1988, Section 8.5) notes the possibility of using models within his
hierarchy in the multivariate Behrens-Fisher problem of testing equality
between the means of two p-variate groups when their covariance matrices
cannot be assumed equal. Nel and Pienaar (1998) develop this idea, which
also extends Takemura’s (1985) decomposition of Hotelling’s T 2 statis-
tic with respect to principal components when equality of covariances is
assumed (see also Section 9.1). Flury et al. (1995) consider the same two-
group set-up, but test the hypothesis that a subset of the p means is the
same in the two groups, while simultaneously estimating the covariance
matrices under the common PC model. Bartoletti et al. (1999) consider
tests for the so-called allometric extension model defined by Hills (1982).
In this model, the size and shape of organisms (see Section 13.2) are such
that for two groups of organisms not only is the first PC common to both
groups, but the difference in means between the two groups also lies in the
same direction as this common PC.

In the context of discriminant analysis, Bensmail and Celeux (1996) use
a similar hierarchy of models for the covariance matrices of G groups to
that of Flury (1988), though the hierarchy is augmented to include special
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cases of interest such as identity or diagonal covariance matrices. Krzanow-
ski (1990) and Flury (1995) also discuss the use of the common principal
component model in discriminant analysis (see Section 9.1).

Flury and Neuenschwander (1995) look at the situation in which the as-
sumption that the G groups of variables are independent is violated. This
can occur, for example, if the same variables are measured for the same
individuals at G different times. They argue that, in such circumstances,
when G = 2 the common PC model can provide a useful alternative to
canonical correlation analysis (CCA) ( see Section 9.3) for examining rela-
tionships between two groups and, unlike CCA, it is easily extended to the
case of G > 2 groups. Neuenschwander and Flury (2000) discuss in detail
the theory underlying the common PC model for dependent groups.

Krzanowski (1984a) describes a simpler method of obtaining estimates
of A and Λg based on the fact that if (13.5.1) is true then the columns of A
contain the eigenvectors not only of Σ1,Σ2, . . . ,ΣG individually but of any
linear combination of Σ1,Σ2, . . . ,ΣG. He therefore uses the eigenvectors
of S1 +S2 + . . .+SG, where Sg is the sample covariance matrix for the gth
population, to estimate A, and then substitutes this estimate and Sg for A
and Σg, respectively, in (13.5.1) to obtain estimates of Λg, g = 1, 2, . . . , G.

To assess whether or not (13.5.1) is true, the estimated eigenvectors
of S1 + S2 + . . . + SG can be compared with those estimated for some
other weighted sum of S1,S2, . . . ,SG chosen to have different eigenvectors
from S1 +S2 + . . .+SG if (13.5.1) does not hold. The comparison between
eigenvectors can be made either informally or using methodology developed
by Krzanowski (1979b), which is now described.

Suppose that sample covariance matrices S1, S2 are available for two
groups of individuals, and that we wish to compare the two sets of PCs
found from S1 and S2. Let A1q,A2q be (p × q) matrices whose columns
contain the coefficients of the first q PCs based on S1,S2, respectively.
Krzanowski’s (1979b) idea is to find the minimum angle δ between the
subspaces defined by the q columns of A1q and A2q, together with asso-
ciated vectors in these two subspaces that subtend this minimum angle.
This suggestion is based on an analogy with the congruence coefficient,
which has been widely used in factor analysis to compare two sets of factor
loadings (Korth and Tucker, 1975) and which, for two vectors, can be in-
terpreted as the cosine of the angle between those vectors. In Krzanowski’s
(1979b) set-up, it turns out that δ is given by

δ = cos−1
(
ν

1/2
1

)
,

where ν1 is the first (largest) eigenvalue of A′
1qA2qA′

2qA1q, and the vec-
tors that subtend the minimum angle are related, in a simple way, to the
corresponding eigenvector.

The analysis can be extended by looking at the second, third,. . . , eigen-
values and corresponding eigenvectors of A′

1qA2qA′
2qA1q; from these can be
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found pairs of vectors, one each in the two subspaces spanned by A1q,A2q,
that have minimum angles between them, subject to being orthogonal
to previous pairs of vectors. Krzanowski (1979b) notes that the sum of
eigenvalues tr(A′

1qA2qA′
2qA1q) can be used as an overall measure of the

similarity between the two subspaces. Crone and Crosby (1995) define a
transformed version of this trace as an appropriate measure of subspace
similarity, examine some of its properties, and apply it to an example from
satellite meteorology.

Another extension is to G > 2 groups of individuals with covariance
matrices S1,S2, . . . ,SG and matrices A1q,A2q, . . . ,AGq containing the first
q eigenvectors (PC coefficients) for each group. We can then look for a
vector that minimizes

∆ =
G∑

g=1

cos2 δg,

where δg is the angle that the vector makes with the subspace defined by
the columns of Agq. This objective is achieved by finding eigenvalues and
eigenvectors of

G∑

g=1

AgqA′
gq,

and Krzanowski (1979b) shows that for g = 2 the analysis reduces to that
given above.

In Krzanowski (1979b) the technique is suggested as a descriptive tool—
if δ (for G = 2) or ∆ (for G > 2) is ‘small enough’ then the subsets of q
PCs for the G groups are similar, but there is no formal definition of ‘small
enough.’ In a later paper, Krzanowski (1982) investigates the behaviour of
δ using simulation, both when all the individuals come from populations
with the same covariance matrix, and when the covariance matrices are
different for the two groups of individuals. The simulation encompasses
several different values for p, q and for the sample sizes, and it also includes
several different structures for the covariance matrices. Krzanowski (1982)
is therefore able to offer some limited guidance on what constitutes a ‘small
enough’ value of δ, based on the results from his simulations.

As an example, consider anatomical data similar to those discussed in
Sections 1.1, 4.1, 5.1, 10.1 and 10.2 that were collected for different groups of
students in different years. Comparing the first three PCs found for the 1982
and 1983 groups of students gives a value of 2.02◦ for δ; the corresponding
value for 1982 and 1984 is 1.25◦, and that for 1983 and 1984 is 0.52◦.
Krzanowski (1982) does not have a table of simulated critical angles for the
sample sizes and number of variables relevant to this example. In addition,
his tables are for covariance matrices whereas the student data PCAs are
for correlation matrices. However, for illustration we note that the three
values quoted above are well below the critical angles corresponding to the
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values of p, q and sample size in his tables closest to those of the present
example. Hence, if Krzanowski’s tables are at all relevant for correlation
matrices, the sets of the first three PCs are not significantly different for
the three years 1982, 1983, 1984 as might be expected from such small
angles.

If all three years are compared simultaneously, then the angles between
the subspaces formed by the first three PCs and the nearest vector to all
three subspaces are

1982 1983 1984
1.17◦ 1.25◦ 0.67◦

Again, the angles are very small; although no tables are available for as-
sessing the significance of these angles, they seem to confirm the impression
given by looking at the years two at a time that the sets of the first three
PCs are not significantly different for the three years.

Two points should be noted with respect to Krzanowski’s technique.
First, it can only be used to compare subsets of PCs—if q = p, then
A1p,A2p will usually span p-dimensional space (unless either S1 or S2

has zero eigenvalues), so that δ is necessarily zero. It seems likely that the
technique will be most valuable for values of q that are small compared to p.
The second point is that while δ is clearly a useful measure of the closeness
of two subsets of PCs, the vectors and angles found from the second, third,
. . . , eigenvalues and eigenvectors of A′

1qA2qA′
2qA1q are successively less

valuable. The first two or three angles give an idea of the overall difference
between the two subspaces, provided that q is not too small. However, if we
reverse the analysis and look at the smallest eigenvalue and corresponding
eigenvector of A′

1qA2qA′
2qA1q, then we find the maximum angle between

vectors in the two subspaces (which will often be 90◦, unless q is small).
Thus, the last few angles and corresponding vectors need to be interpreted
in a rather different way from that of the first few. The general problem
of interpreting angles other than the first can be illustrated by again con-
sidering the first three PCs for the student anatomical data from 1982 and
1983. We saw above that δ = 2.02◦, which is clearly very small; the second
and third angles for these data are 25.2◦ and 83.0◦, respectively. These
angles are fairly close to the 5% critical values given in Krzanowski (1982)
for the second and third angles when p = 8, q = 3 and the sample sizes are
each 50 (our data have p = 7, q = 3 and sample sizes around 30), but it is
difficult to see what this result implies. In particular, the fact that the third
angle is close to 90◦ might intuitively suggest that the first three PCs are
significantly different for 1982 and 1983. Intuition is, however, contradicted
by Krzanowski’s Table I, which shows that for sample sizes as small as 50
(and, hence, certainly for samples of size 30), the 5% critical value for the
third angle is nearly 90◦. For q = 3 this is not particularly surprising—the
dimension of A′

1qA2qA′
2qA1q is (3 × 3) so the third angle is the maximum

angle between subspaces.
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Cohn (1999) considers four test statistics for deciding the equivalence
or otherwise of subspaces defined by sets of q PCs derived from each of
two covariance matrices corresponding to two groups of observations. One
of the statistics is the likelihood ratio test used by Flury (1988) and two
others are functions of the eigenvalues, or corresponding cosines, derived
by Krzanowski (1979b). The fourth statistic is based on a sequence of two-
dimensional rotations from one subspace towards the other, but simulations
show it to be less reliable than the other three. There are a number of
novel aspects to Cohn’s (1999) study. The first is that the observations
within the two groups are not independent; in his motivating example the
data are serially correlated time series. To derive critical values for the test
statistics, a bootstrap procedure is used, with resampling in blocks because
of the serial correlation. The test statistics are compared in a simulation
study and on the motivating example.

Keramidas et al. (1987) suggest a graphical procedure for comparing
eigenvectors of several covariance matrices S1,S2, . . . ,SG. Much of the pa-
per is concerned with the comparison of a single eigenvector from each
matrix, either with a common predetermined vector or with a ‘typical’
vector that maximizes the sum of squared cosines between itself and the
G eigenvectors to be compared. If agk is the kth eigenvector for the gth
sample covariance matrix, g = 1, 2, . . . , G, and a0k is the predetermined or
typical vector, then distances

kδ2
g = min[(agk − a0k)′(agk − a0k), (agk + a0k)′(agk + a0k)]

are calculated. If the sample covariance matrices are drawn from the same
population, then kδ2

g has an approximate gamma distribution, so Kerami-
das et al. (1987) suggest constructing gamma Q-Q plots to detect differences
from this null situation. Simulations are given for both the null and non-
null cases. Such plots are likely to be more useful when G is large than
when there is only a handful of covariance matrices to be compared.

Keramidas et al. (1987) extend their idea to compare subspaces spanned
by two or more eigenvectors. For two subspaces, their overall measure of
similarity, which reduces to kδ2

g when single eigenvectors are compared, is

the sum of the square roots ν
1/2
k of eigenvalues of A′

1qA2qA′
2qA1q. Recall

that Krzanowski (1979b) uses the sum of these eigenvalues, not their square
roots as his measure of overall similarity. Keramidas et al. (1987) stress
that individual eigenvectors or subspaces should only be compared when
their eigenvalues are well-separated from adjacent eigenvalues so that the
eigenvectors or subspaces are well-defined.

Ten Berge and Kiers (1996) take a different and more complex view of
common principal components than Flury (1988) or Krzanowski (1979b).
They refer to generalizations of PCA to G (≥ 2) groups of individuals, with
different generalizations being appropriate depending on what is taken as
the defining property of PCA. They give three different defining criteria and
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draw distinctions between the properties of principal components found by
each. Although the different criteria lead to a number of different general-
izations, it is arguable just how great a distinction should be drawn between
the three ungeneralized analyses (see Cadima and Jolliffe (1997); ten Berge
and Kiers (1997)).

The first property considered by ten Berge and Kiers (1996) corre-
sponds to Property A1 of Section 2.1, in which tr(B′ΣB) is minimized.
For G groups of individuals treated separately this leads to minimiza-
tion of

∑G
g=1 tr(B′

gΣgBg), but taking Bg the same for each group gives
simultaneous components that minimize

G∑

g=1

tr(B′ΣgB) = tr[B′(
G∑

g=1

Σg)B]

= G tr(B′Σ̄B),

where Σ̄ is the average of Σ1,Σ2, . . . ,ΣG.
Ten Berge and Kiers’ (1996) second property is a sample version of

Property A5 in Section 2.1. They express this property as minimizing
‖X − XBC′‖2. For G groups treated separately, the quantity

G∑

g=1

‖Xg − XgBgC′
g‖2 (13.5.3)

is minimized. Ten Berge and Kiers (1996) distinguish three different ways
of adapting this formulation to find simultaneous components.

• Minimize
∑G

g=1 ‖Xg − XgBC′
g‖2.

• Minimize
∑G

g=1 ‖Xg − XgBgC′‖2.

• Minimize (13.5.3) subject to ΣgBg = SDg, where Dg is diagonal and
S is a ‘common component structure.’

The third optimality criterion considered by Ten Berge and Kiers (1996)
is that noted at the end of Section 2.1, and expressed by Rao (1964) as
minimizing ‖Σ − ΣB(B′ΣB)−1B′Σ‖. Ten Berge and Kiers (1996) write
this as minimizing ‖Σ−FF′‖2, which extends to G groups by minimizing∑G

g=1 ‖Σg −FgF′
g‖2. This can then be modified to give simultaneous com-

ponents by minimizing
∑G

g=1 ‖Σg − FF′‖2. They show that this criterion
and the criterion based on Property A1 are both equivalent to the second
of their generalizations derived from Property A5.

Ten Berge and Kiers (1996) compare properties of the three generaliza-
tions of Property A5, but do not reach any firm conclusions as to which
is preferred. They are, however, somewhat dismissive of Flury’s (1988)
approach on the grounds that it has at its heart the simultaneous diag-
onalization of G covariance matrices and ‘it is by no means granted that
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components which diagonalize the covariance or correlation matrices reflect
the most important sources of variation in the data.’

Muller (1982) suggests that canonical correlation analysis of PCs (see
Section 9.3) provides a way of comparing the PCs based on two sets of
variables, and cites some earlier references. When the two sets of variables
are, in fact, the same variables measured for two groups of observations,
Muller’s analysis is equivalent to that of Krzanowski (1979b); the latter
paper notes the links between canonical correlation analysis and its own
technique.

In a series of five technical reports, Preisendorfer and Mobley (1982) ex-
amine various ways of comparing data sets measured on the same variables
at different times, and part of their work involves comparison of PCs from
different sets (see, in particular, their third report, which concentrates on
comparing the singular value decompositions (SVDs, Section 3.5) of two
data matrices X1,X2). Suppose that the SVDs are written

X1 = U1L1A′
1

X2 = U2L2A′
2.

Then Preisendorfer and Mobley (1982) define a number of statistics that
compare U1 with U2,A1 with A2,L1 with L2 or compare any two of the
three factors in the SVD for X1 with the corresponding factors in the SVD
for X2. All of these comparisons are relevant to comparing PCs, since A
contains the coefficients of the PCs, L provides the standard deviations of
the PCs, and the elements of U are proportional to the PC scores (see Sec-
tion 3.5). The ‘significance’ of an observed value of any one of Preisendorfer
and Mobley’s statistics is assessed by comparing the value to a ‘reference
distribution’, which is obtained by simulation. Preisendorfer and Mobley’s
(1982) research is in the context of atmospheric science. A more recent ap-
plication in this area is that of Sengupta and Boyle (1998), who illustrate
the use of Flury’s (1988) common principal component model to compare
different members of an ensemble of forecasts from a general circulation
model (GCM) and to compare outputs from different GCMs. Applications
in other fields of the common PC model and its variants can be found in
Flury (1988, 1997).

When the same variables are measured on the same n individuals in the
different data sets, it may be of interest to compare the configurations of
the points defined by the n individuals in the subspaces of the first few PCs
in each data set. In this case, Procrustes analysis (or generalized Procrustes
analysis) provides one possible way of doing this for two (more than two)
data sets (see Krzanowski and Marriott (1994, Chapter 5)). The technique
in general involves the SVD of the product of one data matrix and the
transpose of the other, and because of this Davison (1983, Chapter 8) links
it to PCA.
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13.6 Principal Component Analysis in the
Presence of Missing Data

In all the examples given in this text, the data sets are complete. However,
it is not uncommon, especially for large data sets, for some of the values
of some of the variables to be missing. The most usual way of dealing with
such a situation is to delete, entirely, any observation for which at least one
of the variables has a missing value. This is satisfactory if missing values are
few, but clearly wasteful of information if a high proportion of observations
have missing values for just one or two variables. To meet this problem, a
number of alternatives have been suggested.

The first step in a PCA is usually to compute the covariance or cor-
relation matrix, so interest often centres on estimating these matrices in
the presence of missing data. There are a number of what Little and Ru-
bin (1987, Chapter 3) call ‘quick’ methods. One option is to compute the
(j, k)th correlation or covariance element-wise, using all observations for
which the values of both xj and xk are available. Unfortunately, this leads to
covariance or correlation matrices that are not necessarily positive semidef-
inite. Beale and Little (1975) note a modification of this option. When
computing the summation

∑
i(xij − x̄j)(xik − x̄k) in the covariance or cor-

relation matrix, x̄j , x̄k are calculated from all available values of xj , xk,
respectively, instead of only for observations for which both xj and xk have
values present, They state that, at least in the regression context, the re-
sults can be unsatisfactory. However, Mehrota (1995), in discussing robust
estimation of covariance matrices (see Section 10.4), argues that the prob-
lem of a possible lack of positive semi-definiteness is less important than
making efficient use of as many data as possible. He therefore advocates
element-wise estimation of the variances and covariances in a covariance
matrix, with possible adjustment if positive semi-definiteness is lost.

Another quick method is to replace missing values for variable xj by the
mean value x̄j , calculated from the observations for which the value of xj

is available. This is a simple way of ‘imputing’ rather than ignoring missing
values. A more sophisticated method of imputation is to use regression of
the missing variables on the available variables case-by-case. An extension
to the idea of imputing missing values is multiple imputation. Each missing
value is replaced by a value drawn from a probability distribution, and
this procedure is repeated M times (Little and Rubin, 1987, Section 12.4;
Schafer, 1997, Section 4.3). The analysis, in our case PCA, is then done
M times, corresponding to each of the M different sets of imputed values.
The variability in the results of the analyses gives an indication of the
uncertainty associated with the presence of missing values.

A different class of procedures is based on maximum likelihood estima-
tion (Little and Rubin, 1987, Section 8.2). The well-known EM algorithm
(Dempster et al., 1977) can easily cope with maximum likelihood estimation
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of the mean and covariance matrix in the presence of missing values, under
the assumption of multivariate normality. Little and Rubin (1987, Section
8.2) describe three versions of the EM algorithm for solving this problem;
a number of other authors, for example, Anderson (1957), De Ligny et al.
(1981), tackled the same problem earlier by less efficient means.

The multivariate normal assumption is a restrictive one, and Little (1988)
relaxes it by adapting the EM algorithm to find MLEs when the data are
from a multivariate t-distribution or from a mixture of two multivariate nor-
mals with different covariance matrices. He calls these ‘robust’ methods for
dealing with missing data because they assume longer-tailed distributions
than multivariate normal. Little (1988) conducts a simulation study, the
results of which demonstrate that his robust MLEs cope well with missing
data, compared to other methods discussed earlier in this section. However,
the simulation study is limited to multivariate normal data, and to data
from distributions that are similar to those assumed by the robust MLEs.
It is not clear that the good performance of the robust MLEs would be
repeated for other distributions. Little and Rubin (1987, Section 8.3) also
extend their multivariate normal procedures to deal with covariance ma-
trices on which some structure is imposed. Whilst this may be appropriate
for factor analysis it is less relevant for PCA.

Another adaptation of the EM algorithm for estimation of covariance
matrices, the regularized EM algorithm, is given by Schneider (2001). It
is particularly useful when the number of variables exceeds the number
of observations. Schneider (2001) adds a diagonal matrix to the current
estimate of the covariance matrix before inverting the matrix, a similar
idea to that used in ridge regression.

Tipping and Bishop (1999a) take the idea of maximum likelihood estima-
tion using the EM algorithm further. They suggest an iterative algorithm
in which their EM procedure for estimating the probabilistic PCA model
(Section 3.9) is combined with Little and Rubin’s (1987) methodology for
estimating the parameters of a multivariate normal distribution in the pres-
ence of missing data. The PCs are estimated directly, rather than by going
through the intermediate step of estimating the covariance or correlation
matrix. An example in which data are randomly deleted from a data set is
used by Tipping and Bishop (1999a) to illustrate their procedure.

In the context of satellite-derived sea surface temperature measurements
with missing data caused by cloud cover, Houseago-Stokes and Challenor
(2001) compare Tipping and Bishop’s procedure with a standard inter-
polation technique followed by PCA on the interpolated data. The two
procedures give similar results but the new method is computationally
much more efficent. This is partly due to the fact that only the first few
PCs are found and that they are calculated directly, without the inter-
mediate step of estimating the covariance matrix. Houseago-Stokes and
Challenor note that the quality of interpolated data using probabilistic
PCA depends on the number of components q in the model. In the absence
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of prior knowledge about q, there is, at present, no procedure for choosing
its value without repeating the analysis for a range of values.

Most published work, including Little and Rubin (1987), does not ex-
plicitly deal with PCA, but with the estimation of covariance matrices in
general. Tipping and Bishop (1999a) is one of relatively few papers that
focus specifically on PCA when discussing missing data. Another is Wiberg
(1976). His approach is via the singular value decomposition (SVD), which
gives a least squares approximation of rank m to the data matrix X. In
other words, the approximation mx̃ij minimizes

n∑

i=1

p∑

j=1

(mxij − xij)2,

where mxij is any rank m approximation to xij (see Section 3.5). Principal
components can be computed from the SVD (see Section 3.5 and Appendix
Al). With missing data, Wiberg (1976) suggests minimizing the same quan-
tity, but with the summation only over values of (i, j) for which xij is not
missing; PCs can then be estimated from the modified SVD. The same idea
is implicitly suggested by Gabriel and Zamir (1979). Wiberg (1976) reports
that for simulated multivariate normal data his method is slightly worse
than the method based on maximum likelihood estimation. However, his
method has the virtue that it can be used regardless of whether or not the
data come from a multivariate normal distribution.

For the specialized use of PCA in analysing residuals from an addi-
tive model for data from designed experiments (see Section 13.4), Freeman
(1975) shows that incomplete data can be easily handled, although mod-
ifications to procedures for deciding the rank of the model are needed.
Michailidis and de Leeuw (1998) note three ways of dealing with miss-
ing data in non-linear multivariate analysis, including non-linear PCA
(Section 14.1).

A special type of ‘missing’ data occurs when observations or variables
correspond to different times or different spatial locations, but with irreg-
ular spacing between them. In the common atmospheric science set-up,
where variables correspond to spatial locations, Karl et al. (1982) examine
differences between PCAs when locations are on a regularly spaced grid,
and when they are irregularly spaced. Unsurprisingly, for the irregular data
the locations in areas with the highest density of measurements tend to in-
crease their loadings on the leading PCs, compared to the regularly spaced
data. This is because of the larger correlations observed in the high-density
regions. Kaplan et al. (2001) discuss methodology based on PCA for inter-
polating spatial fields (see Section 12.4.4). Such interpolation is, in effect,
imputing missing data.

Another special type of data in which some values are missing occurs
when candidates choose to take a subset of p′ out of p examinations, with
different candidates choosing different subsets. Scores on examinations not
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taken by a candidate are therefore ‘missing.’ Shibayama (1990) devises a
method for producing a linear combination of the examination scores that
represents the overall performance of each candidate. When p′ = p the
method is equivalent to PCA.

Anderson et al. (1983) report a method that they attribute to Dear
(1959), which is not for dealing with missing values in a PCA, but which
uses PCA to impute missing data in a more general context. The idea seems
to be to first substitute zeros for any missing cells in the data matrix, and
then find the SVD of this matrix. Finally, the leading term in the SVD,
corresponding to the first PC, is used to approximate the missing values.
If the data matrix is column-centred, this is a variation on using means of
variables in place of missing values. Here there is the extra SVD step that
adjusts the mean values using information from other entries in the data
matrix.

Finally, note that there is a similarity of purpose in robust estimation of
PCs (see Section 10.4) to that present in handling missing data. In both
cases we identify particular observations which we cannot use in unadjusted
form, either because they are suspiciously extreme (in robust estimation),
or because they are not given at all (missing values). To completely ignore
such observations may throw away valuable information, so we attempt
to estimate ‘correct’ values for the observations in question. Similar tech-
niques may be relevant in each case. For example, we noted above the
possibility of imputing missing values for a particular observation by re-
gressing the missing variables on the variables present for that observation,
an idea that dates back at least to Beale and Little (1975), Frane (1976)
and Gleason and Staelin (1975) (see Jackson (1991, Section 14.1.5)). A
similar idea, namely robust regression of the variables on each other, is
included in Devlin et al.’s (1981) study of robust estimation of PCs (see
Section 10.4).

13.7 PCA in Statistical Process Control

The topic of this section, finding outliers, is closely linked to that of Sec-
tion 10.1, and many of the techniques used are based on those described
in that section. However, the literature on using PCA in multivariate sta-
tistical process control (SPC) is sufficiently extensive to warrant its own
section. In various manufacturing processes improved technology means
that greater numbers of variables are now measured in order to monitor
whether or not a process is ‘in control.’ It has therefore become increas-
ingly relevant to use multivariate techniques for control purposes, rather
than simply to monitor each variable separately.

The main ways in which PCA is used in this context are (Martin et al.,
1999):
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• One- or two-dimensional plots of PC scores. It was noted in Sec-
tion 10.1 that both the first few and the last few PCs may be useful
for detecting (different types of) outliers, and plots of both are used
in process control. In the published discussion of Roes and Does
(1995), Sullivan et al. (1995) argue that the last few PCs are per-
haps more useful in SPC than the first few, but in their reply to
the discussion Roes and Does disagree. If p is not too large, such
arguments can be overcome by using a scatterplot matrix to display
all two-dimensional plots of PC scores simultaneously. Plots can be
enhanced by including equal-probability contours, assuming approx-
imate multivariate normality, corresponding to warning and action
limits for those points that fall outside them (Jackson, 1991, Section
1.7; Martin et al., 1999).

• Hotelling’s T 2. It was seen in Section 10.1 that this is a special case
for q = p of the statistic d2

2i in equation (10.1.2). If multivariate nor-
mality is assumed, the distribution of T 2 is known, and control limits
can be set based on that distribution (Jackson, 1991, Section 1.7).

• The squared prediction error (SPE). This is none other than the
statistic d2

1i in equation (10.1.1). It was proposed by Jackson and
Mudholkar (1979), who constructed control limits based on an
approximation to its distribution. They prefer d2

1i to d2
2i for com-

putational reasons and because of its intuitive appeal as a sum of
squared residuals from the (p − q)-dimensional space defined by the
first (p − q) PCs. However, Jackson and Hearne (1979) indicate that
the complement of d2

2i, in which the sum of squares of the first few
rather than the last few renormalized PCs is calculated, may be use-
ful in process control when the objective is to look for groups of
‘out-of-control’ or outlying observations, rather than single outliers.
Their basic statistic is decomposed to give separate information about
variation within the sample (group) of potentially outlying observa-
tions, and about the difference between the sample mean and some
known standard value. In addition, they propose an alternative statis-
tic based on absolute, rather than squared, values of PCs. Jackson
and Mudholkar (1979) also extend their proposed control procedure,
based on d2

1i, to the multiple-outlier case, and Jackson (1991, Figure
6.2) gives a sequence of significance tests for examining subgroups of
observations in which each test is based on PCs in some way.

Eggett and Pulsipher (1989) compare T 2, SPE, and the complement of
d2
2i suggested by Jackson and Hearne (1979), in a simulation study and find

the third of these statistics to be inferior to the other two. On the basis of
their simulations, they recommend Hotelling’s T 2 for large samples, with
SPE or univariate control charts preferred for small samples. They also
discussed the possibility of constructing CUSUM charts based on the three
statistics.
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The control limits described so far are all based on the assumption of
approximate multivariate normality. Martin and Morris (1996) introduce
a non-parametric procedure that provides warning and action contours
on plots of PCs. These contours can be very different from the normal-
based ellipses. The idea of the procedure is to generate bootstrap samples
from the data set and from each of these calculate the value of a (pos-
sibly vector-valued) statistic of interest. A smooth approximation to the
probability density of this statistic is then constructed using kernel density
estimation, and the required contours are derived from this distribution.
Coleman (1985) suggests that when using PCs in quality control, the PCs
should be estimated robustly (see Section 10.4). Sullivan et al. (1995) do
this by omitting some probable outliers, identified from an initial scan of
the data, before carrying out a PCA.

When a variable is used to monitor a process over time, its successive
values are likely to be correlated unless the spacing between observations is
large. One possibility for taking into account this autocorrelation is to plot
an exponentially weighted moving average of the observed values. Wold
(1994) suggests that similar ideas should be used when the monitoring
variables are PC scores, and he describes an algorithm for implementing
‘exponentially weighted moving principal components analysis.’

Data often arise in SPC for which, as well as different variables and differ-
ent times of measurement, there is a third ‘mode,’ namely different batches.
So-called multiway, or three-mode, PCA can then be used (see Section 14.5
and Nomikos and MacGregor (1995)). Grimshaw et al. (1998) note the
possible use of multiway PCA simultaneously on both the variables moni-
toring the process and the variables measuring inputs or initial conditions,
though they prefer a regression-based approach involving modifications of
Hotelling’s T 2 and the SPE statistic.

Boyles (1996) addresses the situation in which the number of variables
exceeds the number of observations. The sample covariance matrix S is
then singular and Hotelling’s T 2 cannot be calculated. One possibility is
to replace S−1 by

∑r
k=1 l−1

k aka′
k for r < n, based on the first r terms

in the spectral decomposition of S (the sample version of Property A3 in
Section 2.1). However, the data of interest to Boyles (1996) have variables
measured at points of a regular lattice on the manufactured product. This
structure implies that a simple pattern exists in the population covariance
matrix Σ. Using knowledge of this pattern, a positive definite estimate of
Σ can be calculated and used in T 2 in place of S. Boyles finds appropriate
estimates for three different regular lattices.

Lane et al. (2001) consider the case where a several products or processes
are monitored simultaneously. They apply Flury’s common PC subspace
model (Section 13.5) to this situation. McCabe (1986) suggests the use
of principal variables (see Section 6.3) to replace principal components in
quality control.
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Apley and Shi (2001) assume that a vector of p measured features from
a process or product can be modelled as in the probabilistic PCA model of
Tipping and Bishop (1999a), described in Section 3.9. The vector therefore
has covariance matrix BB′ + σ2Ip, where in the present context the q
columns of B are taken to represent the effects of q uncorrelated faults
on the p measurements. The vectors of principal component coefficients
(loadings) that constitute the columns of B thus provide information about
the nature of the faults. To allow for the fact that the faults may not
be uncorrelated, Apley and Shi suggest that interpreting the faults may
be easier if the principal component loadings are rotated towards simple
structure (see Section 11.1).

13.8 Some Other Types of Data

In this section we discuss briefly some additional types of data with special
features.

Vector-valued or Directional Data—Complex PCA

Section 12.2.3 discussed a special type of complex PCA in which the series
xt + ixH

t is analysed, where xt is a p-variate time series, xH
t is its Hilbert

transform and i =
√−1. More generally, if xt, yt are two real-valued p-

variate series, PCA can be done on the complex series xt + iyt, and this
general form of complex PCA is relevant not just in a time series context,
but whenever two variables are recorded in each cell of the (n × p) data
matrix. This is then a special case of three-mode data (Section 14.5) for
which the index for the third mode takes only two values.

One situation in which such data arise is for landmark data (see Sec-
tion 13.2). Another is when the data consist of vectors in two dimensions,
as with directional data. A specific example is the measurement of wind,
which involves both strength and direction, and can be expressed as a
vector whose elements are the zonal (x or easterly) and meridional (y or
northerly) components.

Suppose that X is an (n × p) data matrix whose (h, j)th element is
xhj + iyhj . A complex covariance matrix is defined as

S =
1

n − 1
X†X,

where X† is the conjugate transpose of X. Complex PCA is then done
by finding the eigenvalues and eigenvectors of S. Because S is Hermitian
the eigenvalues are real and can still be interpreted as proportions of total
variance accounted for by each complex PC. However, the eigenvectors are
complex, and the PC scores, which are obtained as in the real case by mul-
tiplying the data matrix by the matrix of eigenvectors, are also complex.
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Hence both the PC scores and their vectors of loadings have real and imag-
inary parts that can be examined separately. Alternatively, they can be
expressed in polar coordinates, and displayed as arrows whose lengths and
directions are defined by the polar coordinates. Such displays for loadings
are particularly useful when the variables correspond to spatial locations,
as in the example of wind measurements noted above, so that a map of the
arrows can be constructed for the eigenvectors. For such data, the ‘obser-
vations’ usually correspond to different times, and a different kind of plot
is needed for the PC scores. For example, Klink and Willmott (1989) use
two-dimensional contour plots in which the horizontal axis corresponds to
time (different observations), the vertical axis gives the angular coordinate
of the complex score, and contours represent the amplitudes of the scores.

The use of complex PCA for wind data dates back to at least Walton
and Hardy (1978). An example is given by Klink and Willmott (1989) in
which two versions of complex PCA are compared. In one, the real and
imaginary parts of the complex data are zonal (west-east) and meridional
(south-north) wind velocity components, while wind speed is ignored in the
other with real and imaginary parts corresponding to sines and cosines of
the wind direction. A third analysis performs separate PCAs on the zonal
and meridional wind components, and then recombines the results of these
scalar analyses into vector form. Some similarities are found between the
results of the three analyses, but there are non-trivial differences. Klink and
Willmott (1989) suggest that the velocity-based complex PCA is most ap-
propriate for their data. Von Storch and Zwiers (1999, Section 16.3.3) have
an example in which ocean currents, as well as wind stresses, are considered.

One complication in complex PCA is that the resulting complex eigenvec-
tors can each be arbitrarily rotated in the complex plane. This is different
in nature from rotation of (real) PCs, as described in Section 11.1, be-
cause the variance explained by each component is unchanged by rotation.
Klink and Willmott (1989) discuss how to produce solutions whose mean
direction is not arbitrary, so as to aid interpretation.

Preisendorfer and Mobley (1988, Section 2c) discuss the theory of
complex-valued PCA in some detail, and extend the ideas to quaternion-
valued and matrix-valued data sets. In their Section 4e they suggest that
it may sometimes be appropriate with vector-valued data to take Fourier
transforms of each element in the vector, and conduct PCA in the fre-
quency domain. There are, in any case, connections between complex PCA
and PCA in the frequency domain (see Section 12.4.1 and Brillinger (1981,
Chapter 9)).

PCA for Data Given as Intervals

Sometimes, because the values of the measured variables are imprecise or
because of other reasons, an interval of values is given for a variable rather
than a single number. An element of the (n × p) data matrix is then an
interval (xij , xij) instead of the single value xij . Chouakria et al. (2000)
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discuss two adaptations of PCA for such data. In the first, called the VER-
TICES method, the ith row of the (n × p) data matrix is replaced by the
2p distinct rows whose elements have either xij or xij in their jth column.
A PCA is then done on the resulting (n2p × p) matrix. The value or score
of a PC from this analysis can be calculated for each of the n2p rows of the
new data matrix. For the ith observation there are 2p such scores and an
interval can be constructed for the observation, bounded by the smallest
and largest of these scores. In plotting the observations, either with respect
to the original variables or with respect to PCs, each observation is repre-
sented by a rectangle or hyperrectangle in two or higher-dimensional space.
The boundaries of the (hyper)rectangle are determined by the intervals for
the variables or PC scores. Chouakria et al. (2000) examine a number of
indices measuring the quality of representation of an interval data set by
a small number of ‘interval PCs’ and the contributions of each observation
to individual PCs.

For large values of p, the VERTICES method produces very large matri-
ces. As an alternative, Chouakria et al. suggest the CENTERS procedure,
in which a PCA is done on the (n × p) matrix whose (i, j)th element is
(xij +xij)/2. The immediate results give a single score for each observation
on each PC, but Chouakria and coworkers use the intervals of possible val-
ues for the variables to construct intervals for the PC scores. This is done
by finding the combinations of allowable values for the variables, which,
when inserted in the expression for a PC in terms of the variables, give the
maximum and minimum scores for the PC. An example is given to compare
the VERTICES and CENTERS approaches.

Ichino and Yaguchi (1994) describe a generalization of PCA that can be
used on a wide variety of data types, including discrete variables in which a
measurement is a subset of more than one of the possible values for a vari-
able; continuous variables recorded as intervals are also included. To carry
out PCA, the measurement on each variable is converted to a single value.
This is done by first calculating a ‘distance’ between any two observations
on each variable, constructed from a formula that involves the union and
intersection of the values of the variable taken by the two observations.
From these distances a ‘reference event’ is found, defined as the observa-
tion whose sum of distances from all other observations is minimized, where
distance here refers to the sum of ‘distances’ for each of the p variables.
The coordinate of each observation for a particular variable is then taken
as the distance on that variable from the reference event, with a suitably
assigned sign. The coordinates of the n observations on the p variables thus
defined form a data set, which is then subjected to PCA.

Species Abundance Data

These data are common in ecology—an example was given in Section 5.4.1.
When the study area has diverse habitats and many species are included,
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there may be a large number of zeros in the data. If two variables xj

and xk simultaneously record zero for a non-trivial number of sites, the
calculation of covariance or correlation between this pair of variables is
likely to be distorted. Legendre and Legendre (1983, p. 285) argue that data
are better analysed by nonmetric multidimensional scaling (Cox and Cox,
2001) or with correspondence analysis (as in Section 5.4.1), rather than by
PCA, when there are many such ‘double zeros’ present. Even when such
zeros are not a problem, species abundance data often have highly skewed
distributions and a transformation; for example, taking logarithms, may be
advisable before PCA is contemplated.

Another unique aspect of species abundance data is an interest in the
diversity of species at the various sites. It has been argued that to exam-
ine diversity, it is more appropriate to use uncentred than column-centred
PCA. This is discussed further in Section 14.2.3, together with doubly
centred PCA which has also found applications to species abundance data.

Large Data Sets

The problems of large data sets are different depending on whether the
number of observations n or the number of variables p is large, with the
latter typically causing greater difficulties than the former. With large n
there may be problems in viewing graphs because of superimposed observa-
tions, but it is the size of the covariance or correlation matrix that usually
determines computational limitations. However, if p > n it should be
remembered (Property G4 of Section 3.2) that the eigenvectors of X′X cor-
responding to non-zero eigenvalues can be found from those of the smaller
matrix XX′.

For very large values of p, Preisendorfer and Mobley (1988, Chapter 11)
suggest splitting the variables into subsets of manageable size, performing
PCA on each subset, and then using the separate eigenanalyses to approx-
imate the eigenstructure of the original large data matrix. Developments
in computer architecture may soon allow very large problems to be tackled
much faster using neural network algorithms for PCA (see Appendix A1
and Diamantaras and Kung (1996, Chapter 8)).



14
Generalizations and Adaptations of
Principal Component Analysis

The basic technique of PCA has been generalized or adapted in many ways,
and some have already been discussed, in particular in Chapter 13 where
adaptations for special types of data were described. This final chapter dis-
cusses a number of additional generalizations and modifications; for several
of them the discussion is very brief in comparison to the large amount of
material that has appeared in the literature.

Sections 14.1 and 14.2 present some definitions of ‘non-linear PCA’ and
‘generalized PCA,’ respectively. In both cases there are connections with
correspondence analysis, which was discussed at somewhat greater length
in Section 13.1. Non-linear extensions of PCA (Section 14.1) include the
Gifi approach, principal curves, and some types of neural network, while
the generalizations of Section 14.2 cover many varieties of weights, metrics,
transformations and centerings.

Section 14.3 describes modifications of PCA that may be useful when
secondary or ‘instrumental’ variables are present, and in Section 14.4 some
possible alternatives to PCA for data that are are non-normal are discussed.
These include independent component analysis (ICA).

Section 14.5 introduces the ideas of three-mode and multiway PCA.
These analyses are appropriate when the data matrix, as well as having
two dimensions corresponding to individuals and variables, respectively,
has one or more extra dimensions corresponding, for example, to time.

The penultimate miscellaneous section (14.6) collects together some
ideas from neural networks and goodness-of-fit, and presents some other
modifications of PCA. The chapter ends with a few concluding remarks.
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14.1 Non-Linear Extensions of Principal
Component Analysis

One way of introducing non-linearity into PCA is what Gnanade-
sikan (1977) calls ‘generalized PCA.’ This extends the vector of p
variables x to include functions of the elements of x. For example,
if p = 2, so x′ = (x1, x2), we could consider linear functions of
x′

+ = (x1, x2, x
2
1, x

2
2, x1x2) that have maximum variance, rather than

restricting attention to linear functions of x′. In theory, any functions
g1(x1, x2, . . . , xp), g2(x1, x2, . . . , xp), . . . , gh(x1, x2, . . . , xp) of x1, x2, . . . , xp

could be added to the original vector x, in order to construct an extended
vector x+ whose PCs are then found. In practice, however, Gnanadesikan
(1977) concentrates on quadratic functions, so that the analysis is a proce-
dure for finding quadratic rather than linear functions of x that maximize
variance.

An obvious alternative to Gnanadesikan’s (1977) proposal is to replace
x by a function of x, rather than add to x as in Gnanadesikan’s analysis.
Transforming x in this way might be appropriate, for example, if we are
interested in products of powers of the elements of x. In this case, taking log-
arithms of the elements and doing a PCA on the transformed data provides
a suitable analysis. Another possible use of transforming to non-linear PCs
is to detect near-constant, non-linear relationships between the variables. If
an appropriate transformation is made, such relationships will be detected
by the last few PCs of the transformed data. Transforming the data is sug-
gested before doing a PCA for allometric data (see Section 13.2) and for
compositional data (Section 13.3). Kazmierczak (1985) also advocates log-
arithmic transformation followed by double-centering (see Section 14.2.3)
for data in which it is important for a PCA to be invariant to changes in
the units of measurement and to the choice of which measurement is used
as a ‘reference.’ However, as noted in the introduction to Chapter 4, trans-
formation of variables should only be undertaken, in general, after careful
thought about whether it is appropriate for the data set at hand.

14.1.1 Non-Linear Multivariate Data Analysis—Gifi and
Related Approaches

The most extensively developed form of non-linear multivariate data anal-
ysis in general, and non-linear PCA in particular, is probably the Gifi
(1990) approach. ‘Albert Gifi’ is the nom de plume of the members of the
Department of Data Theory at the University of Leiden. As well as the
1990 book, the Gifi contributors have published widely on their system
of multivariate analysis since the 1970s, mostly under their own names.
Much of it is not easy reading. Here we attempt only to outline the ap-
proach. A rather longer, accessible, description is provided by Krzanowski
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and Marriott (1994, Chapter 8), and Michailidis and de Leeuw (1998) give
a review.

Gifi’s (1990) form of non-linear PCA is based on a generalization of the
result that if, for an (n × p) data matrix X, we minimize

tr{(X − YB′)′(X − YB′)}, (14.1.1)

with respect to the (n× q) matrix Y whose columns are linear functions of
columns of X, and with respect to the (q×p) matrix B′ where the columns
of B are orthogonal, then the optimal Y consists of the values (scores) of
the first q PCs for the n observations, and the optimal matrix B consists
of the coefficients of the first q PCs. The criterion (14.1.1) corresponds to
that used in the sample version of Property A5 (see Section 2.1), and can
be rewritten as

tr






p∑

j=1

(xj − Ybj)′(xj − Ybj)





, (14.1.2)

where xj , bj are the jth columns of X, B′, respectively.
Gifi’s (1990) version of non-linear PCA is designed for categorical vari-

ables so that there are no immediate values of xj to insert in (14.1.2). Any
variables that are continuous are first converted to categories; then values
need to be derived for each category of every variable. We can express this
algebraically as the process minimizing

tr






p∑

j=1

(Gjcj − Ybj)′(Gjcj − Ybj)





, (14.1.3)

where Gj is an (n × gj) indicator matrix whose (h, i)th value is unity if
the hth observation is in the ith category of the jth variable and is zero
otherwise, and cj is a vector of length gj containing the values assigned
to the gj categories of the jth variable. The minimization takes place with
respect to both cj and Ybj , so that the difference from (linear) PCA is
that there is optimization over the values of the variables in addition to
optimization of the scores on the q components. The solution is found by
an alternating least squares (ALS) algorithm which alternately fixes the
cj and minimizes with respect to the Ybj , then fixes the Ybj at the new
values and minimizes with respect to the cj , fixes the cj at the new values
and minimizes over Ybj , and so on until convergence. This is implemented
by the Gifi-written PRINCALS computer program (Gifi, 1990, Section 4.6)
which is incorporated in the SPSS software.

A version of non-linear PCA also appears in another guise within the
Gifi system. For two categorical variables we have a contingency table that
can be analysed by correspondence analysis (Section 13.1). For more than
two categorical variables there is an extension of correspondence analysis,
called multiple correspondence analysis (see Section 13.1 and Greenacre,
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1984, Chapter 5). This technique has at its core the idea of assigning scores
to each category of each variable. It can be shown that if a PCA is done
on the correlation matrix of these scores, the first PC is equivalent to the
first non-trivial multiple correspondence analysis dimension (Bekker and
de Leeuw, 1988). These authors give further discussion of the relationships
between the different varieties of non-linear PCA.

Mori et al. (1998) combine the Gifi approach with the procedure de-
scribed by Tanaka and Mori (1997) for selecting a subset of variables (see
Section 6.3). Using the optimal values of the variables cj found by minimi-
zing (14.1.3), variables are selected in the same way as in Tanaka and Mori
(1997). The results can be thought of as either an extension of Tanaka and
Mori’s method to qualitative data, or as a simplication of Gifi’s non-linear
PCA by using only a subset of variables.

An approach that overlaps with—but differs from—the main Gifi ideas
underlying non-linear PCA is described by Meulman (1986). Categori-
cal data are again transformed to give optimal scores or values for each
category of each variable, and simultaneously a small number of opti-
mal dimensions is found within which to represent these scores. The
‘non-linearity’ of the technique becomes more obvious when a continuous
variable is fitted into this framework by first dividing its range of values
into a finite number of categories and then assigning a value to each cat-
egory. The non-linear transformation is thus a step function. Meulman’s
(1986) proposal, which is known as the distance approach to nonlinear
multivariate data analysis, differs from the main Gifi (1990) framework
by using different optimality criteria (loss functions) instead of (14.1.3).
Gifi’s (1990) algorithms concentrate on the representation of the variables
in the analysis, so that representation of the objects (observations) can
be suboptimal. The distance approach directly approximates distances be-
tween objects. Krzanowski and Marriott (1994, Chapter 8) give a readable
introduction to, and an example of, the distance approach.

An example of Gifi non-linear PCA applied in an agricultural context
and involving a mixture of categorical and numerical variables is given by
Kroonenberg et al. (1997). Michailidis and de Leeuw (1998) discuss various
aspects of stability for Gifi-based methods, and Verboon (1993) describes
a robust version of a Gifi-like procedure.

A sophisticated way of replacing the variables by functions of the vari-
ables, and hence incorporating non-linearity, is described by Besse and
Ferraty (1995). It is based on an adaptation of the fixed effects model
which was introduced in Section 3.9. The adaptation is that, whereas be-
fore we had E(xi) = zi, now E[f(xi)] = zi, where f(xi) is a p-dimensional
vector of functions of xi. As before, zi lies in a q-dimensional subspace Fq,
but var(ei) is restricted to be σ2Ip. The quantity to be minimized is similar
to (3.9.1) with xi replaced by f(xi). In the current problem it is necessary
to choose q and then optimize with respect to the q-dimensional subspace
Fq and with respect to the functions f(.). The functions must be restricted
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in some way to make the optimization problem tractable. One choice is to
use step functions, which leads back towards Gifi’s (1990) system of non-
linear PCA. Besse and Ferraty (1995) favour an approach based on splines.
They contrast their proposal, in which flexibility of the functional trans-
formation is controlled by the choice of smoothing parameters, with earlier
spline-based procedures controlled by the number and positioning of knots
(see, for example, van Rijckevorsel (1988) and Winsberg (1988)). Using
splines as Besse and Ferraty do is equivalent to adding a roughness penalty
function to the quantity to be minimized. This is similar to Besse et al.’s
(1997) approach to analysing functional data described in Section 12.3.4
using equation (12.3.6).

As with Gifi’s (1990) non-linear PCA, Besse and Ferraty’s (1995) pro-
posal is implemented by means of an alternating least squares algorithm
and, as in Besse and de Falgerolles (1993) for the linear case (see Sec-
tion 6.1.5), bootstrapping of residuals from a q-dimensional model is used
to decide on the best fit. Here, instead of simply using the bootstrap to
choose q, simultaneous optimization with respect q and with respect to the
smoothing parameters which determine the function f(x) is needed. At this
stage it might be asked ‘where is the PCA in all this?’ The name ‘PCA’
is still appropriate because the q-dimensional subspace is determined by
an optimal set of q linear functions of the vector of transformed random
variables f(x), and it is these linear functions that are the non-linear PCs.

14.1.2 Additive Principal Components and Principal Curves

Fowlkes and Kettenring (1985) note that one possible objective for trans-
forming data before performing a PCA is to find near-singularities in the
transformed data. In other words, x′ = (x1, x2, . . . , xp) is transformed to
f ′(x) = (f1(x1), f2(x2), . . . , fp(xp)), and we are interested in finding linear
functions a′f(x) of f(x) for which var[a′f(x)] ≈ 0. Fowlkes and Kettenring
(1985) suggest looking for a transformation that minimizes the determi-
nant of the correlation matrix of the transformed variables. The last few
PCs derived from this correlation matrix should then identify the required
near-constant relationships, if any exist.

A similar idea underlies additive principal components, which are dis-
cussed in detail by Donnell et al. (1994). The additive principal components
take the form

∑p
j=1 φj(xj) instead of

∑p
j=1 ajxj in standard PCA, and, as

with Fowlkes and Kettenring (1985), interest centres on components for
which var[

∑p
j=1 φj(xj)] is small. To define a non-linear analogue of PCA

there is a choice of either an algebraic definition that minimizes variance,
or a geometric definition that optimizes expected squared distance from
the additive manifold

∑p
j=1 φj(xj) = const. Once we move away from lin-

ear PCA, the two definitions lead to different solutions, and Donnell et
al. (1994) choose to minimize variance. The optimization problem to be
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solved is then to successively find p-variate vectors φ(k), k = 1, 2, . . . , whose
elements are φ

(k)
j (xj), which minimize

var
[ p∑

j=1

φ
(k)
j (xj)

]

subject to
∑p

j=1 var[φ(k)
j (xj)] = 1, and for k > 1, k > l,

p∑

j=1

cov[φ(k)
j (xj)φ

(l)
j (xj)] = 0.

As with linear PCA, this reduces to an eigenvalue problem. The main
choice to be made is the set of functions φ(.) over which optimization is to
take place. In an example Donnell et al. (1994) use splines, but their theo-
retical results are quite general and they discuss other, more sophisticated,
smoothers. They identify two main uses for low-variance additive principal
components, namely to fit additive implicit equations to data and to iden-
tify the presence of ‘concurvities,’ which play the same rôle and cause the
same problems in additive regression as do collinearities in linear regression.

Principal curves are included in the same section as additive principal
components despite the insistence by Donnell and coworkers in a response
to discussion of their paper by Flury that they are very different. One dif-
ference is that although the range of functions allowed in additive principal
components is wide, an equation is found relating the variables via the
functions φj(xj), whereas a principal curve is just that, a smooth curve
with no necessity for a parametric equation. A second difference is that
additive principal components concentrate on low-variance relationships,
while principal curves minimize variation orthogonal to the curve.

There is nevertheless a similarity between the two techniques, in that
both replace an optimum line or plane produced by linear PCA by an
optimal non-linear curve or surface. In the case of principal curves, a smooth
one-dimensional curve is sought that passes through the ‘middle’ of the data
set. With an appropriate definition of ‘middle,’ the first PC gives the best
straight line through the middle of the data, and principal curves generalize
this using the idea of self-consistency, which was introduced at the end of
Section 2.2. We saw there that, for p-variate random vectors x, y, the
vector of random variables y is self-consistent for x if E[x|y] = y. Consider
a smooth curve in the p-dimensional space defined by x. The curve can be
written f(λ), where λ defines the position along the curve, and the vector
f(λ) contains the values of the elements of x for a given value of λ. A curve
f(λ) is self-consistent, that is, a principal curve, if E[x | f−1(x) = λ] = f(λ),
where f−1(x) is the value of λ for which ‖x−f(λ)‖ is minimized. What this
means intuitively is that, for any given value of λ, say λ0, the average of all
values of x that have f(λ0) as their closest point on the curve is precisely
f(λ0).
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It follows from the discussion in Section 2.2 that for multivariate normal
and elliptical distributions the first principal component defines a principal
curve, though there may also be other principal curves which are differ-
ent from the first PC. Hence, non-linear principal curves may be thought
of as a generalization of the first PC for other probability distributions.
The discussion so far has been in terms of probability distributions, but a
similar idea can be defined for samples. In this case a curve is fitted itera-
tively, alternating between ‘projection’ and ‘conditional-expectation’ steps.
In a projection step, the closest point on the current curve is found for each
observation in the sample, and the conditional-expectation step then calcu-
lates the average of observations closest to each point on the curve. These
averages form a new curve to be used in the next projection step. In a
finite data set there will usually be at most one observation correspond-
ing to a given point on the curve, so some sort of smoothing is required
to form the averages. Hastie and Stuetzle (1989) provide details of some
possible smoothing schemes, together with examples. They also discuss the
possibility of extension from curves to higher-dimensional surfaces.

Tarpey (1999) describes a ‘lack-of-fit’ test that can be used to decide
whether or not a principal curve is simply the first PC. The test involves
the idea of principal points which, for populations, are defined as follows.
Suppose that x is a p-variate random vector and y is a discrete p-variate
random vector, taking only the k values y1,y2, . . . ,yk. If y is such that
E[ ‖x − y‖2] is minimized over all possible choices of the k values for
y, then y1,y2, . . . ,yk are the k principal points for the distribution of x.
There is a connection with self-consistency, as y is self-consistent for x
in this case. Flury (1993) discusses several methods for finding principal
points in a sample.

There is another link between principal points and principal components,
namely that if x has a multivariate normal or elliptical distribution, and the
principal points y1,y2, . . . ,yk for the distribution lie in a q (< p) subspace,
then the subspace is identical to that spanned by the vectors of coefficients
defining the first q PCs of x (Flury, 1995, Theorem 2.3). Tarpey (2000)
introduces the idea of parallel principal axes, which are parallel hyperplanes
orthogonal to the axis defined by the first PC that intersect that axis at the
principal points of the marginal distribution of x along the axis. He shows
that self-consistency of parallel principal axes characterizes multivariate
normal distributions.

14.1.3 Non-Linearity Using Neural Networks

A considerable amount of work has been done on PCA in the context of
neural networks. Indeed, there is a book on the subject (Diamantaras and
Kung, 1996) which gives a good overview. Here we describe only those
developments that provide non-linear extensions of PCA. Computational
matters are discussed in Appendix A1, and other aspects of the PCA/neural
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networks interface are covered briefly in Section 14.6.1.
Diamantaras and Kung (1996, Section 6.6) give a general definition of

non-linear PCA as minimizing

E[‖x − g(h(x))‖2], (14.1.4)

where y = h(x) is a q(< p)-dimensional function of x and g(y) is a p-
dimensional function of y. The functions g(.), h(.) are chosen from some
given sets of non-linear functions so as to minimize (14.1.4). When g(.)
and h(.) are restricted to be linear functions, it follows from Property A5
of Section 2.1 that minimizing (14.1.4) gives the usual (linear) PCs.

Diamantaras and Kung (1996, Section 6.6.1) note that for some types
of network allowing non-linear functions leads to no improvement in mi-
nimizing (14.1.4) compared to the linear case. Kramer (1991) describes a
network for which improvement does occur. There are two parts to the
network, one that creates the components zk from the p variables xj , and
a second that approximates the p variables given a reduced set of m (< p)
components. The components are constructed from the variables by means
of the formula

zk =
N∑

l=1

wlk2σ
[ p∑

j=1

wjl1xj + θl

]
,

where

σ
[ p∑

j=1

wjl1xj + θl

]
=
[
1 + exp

(
−

p∑

j=1

wjl1xj − θl

)]−1

, (14.1.5)

in which wlk2, wjl1, θl, j = 1, 2, . . . , p; k = 1, 2, . . . ,m; l = 1, 2, . . . , N are
constants to be chosen, and N is the number of nodes in the hidden layer.
A similar equation relates the estimated variables x̂j to the components zk,
and Kramer (1991) combines both relationships into a single network. The
objective is find the values of all the unknown constants so as to minimize
the Euclidean norm of the matrix of residuals formed by estimating n
values of each xj by the corresponding values of x̂j . This is therefore a
special case of Diamantaras and Kung’s general formulation with g(.),h(.)
both restricted to the class of non-linear functions defined by (14.1.5).

For Kramer’s network, m and N need to chosen, and he discusses various
strategies for doing this, including the use of information criteria such as
AIC (Akaike, 1974) and the comparison of errors in training and test sets
to avoid overfitting. In the approach just described, m components are
calculated simultaneously, but Kramer (1991) also discusses a sequential
version in which one component at a time is extracted. Two examples are
given of very different sizes. One is a two-variable artificial example in which
non-linear PCA finds a built-in non-linearity. The second is from chemical
engineering with 100 variables, and again non-linear PCA appears to be
superior to its linear counterpart.
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Since Kramer’s paper appeared, a number of authors in the neural net-
work literature have noted limitations to his procedure and have suggested
alternatives or modifications (see, for example, Jia et al., 2000), although
it is now used in a range of disciplines including climatology (Monahan,
2001). Dong and McAvoy (1996) propose an algorithm that combines the
principal curves of Section 14.1.2 (Hastie and Stuetzle, 1989) with the auto-
associative neural network set-up of Kramer (1991). Principal curves alone
do not allow the calculation of ‘scores’ with respect to the curves for new
observations, but their combination with a neural network enables such
quantities to be computed.

An alternative approach, based on a so-called input-training net, is sug-
gested by Tan and Mavrovouniotis (1995). In such networks, the inputs are
not fixed, but are trained along with the other parameters of the network.
With a single input the results of the algorithm are equivalent to principal
curves, but with a larger number of inputs there is increased flexibility to
go beyond the additive model underlying principal curves.

Jia et al. (2000) use Tan and Mavrovouniotis’s (1995) input-training
net, but have an ordinary linear PCA as a preliminary step. The non-
linear algorithm is then conducted on the first m linear PCs, where m
is chosen to be sufficiently large, ensuring that only PCs with very small
variances are excluded. Jia and coworkers suggest that around 97% of the
total variance should be retained to avoid discarding dimensions that might
include important non-linear variation. The non-linear components are used
in process control (see Section 13.7), and in an example they give improved
fault detection compared to linear PCs (Jia et al., 2000). The preliminary
step reduces the dimensionality of the data from 37 variables to 12 linear
PCs, whilst retaining 98% of the variation.

Kambhatla and Leen (1997) introduce non-linearity in a different way, us-
ing a piecewise-linear or ‘local’ approach. The p-dimensional space defined
by the possible values of x is partitioned into Q regions, and linear PCs
are then found separately for each region. Kambhatla and Leen (1997) note
that this local PCA provides a faster algorithm than a global non-linear
neural network. A clustering algorithm is used to define the Q regions.
Roweis and Saul (2000) describe a locally linear embedding algorithm that
also generates local linear reconstructions of observations, this time based
on a set of ‘neighbours’ of each observation. Tarpey (2000) implements a
similar but more restricted idea. He looks separately at the first PCs within
two regions defined by the sign of the first PC for the whole data set, as a
means of determining the presence of non-linear structure in the data.

14.1.4 Other Aspects of Non-Linearity

We saw in Section 5.3 that biplots can provide an informative way of dis-
playing the results of a PCA. Modifications of these ‘classical’ biplots to
become non-linear are discussed in detail by Gower and Hand (1996, Chap-
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ter 6), and a shorter description is given by Krzanowski and Marriott (1994,
Chapter 8). The link between non-linear biplots and PCA is somewhat
tenuous, so we introduce them only briefly. Classical biplots are based
on the singular value decomposition of the data matrix X, and provide
a best possible rank 2 approximation to X in a least squares sense (Sec-
tion 3.5). The distances between observations in the 2-dimensional space
of the biplot with α = 1 (see Section 5.3) give optimal approximations to
the corresponding Euclidean distances in p-dimensional space (Krzanow-
ski and Marriott, 1994). Non-linear biplots replace Euclidean distance by
other distance functions. In plots thus produced the straight lines or ar-
rows representing variables in the classical biplot are replaced by curved
trajectories. Different trajectories are used to interpolate positions of ob-
servations on the plots and to predict values of the variables given the
plotting position of an observation. Gower and Hand (1996) give examples
of interpolation biplot trajectories but state that they ‘do not yet have an
example of prediction nonlinear biplots.’

Tenenbaum et al. (2000) describe an algorithm in which, as with
non-linear biplots, distances between observations other than Euclidean
distance are used in a PCA-related procedure. Here so-called geodesic dis-
tances are approximated by finding the shortest paths in a graph connecting
the observations to be analysed. These distances are then used as input to
what seems to be principal coordinate analysis, a technique which is related
to PCA (see Section 5.2).

14.2 Weights, Metrics, Transformations and
Centerings

Various authors have suggested ‘generalizations’ of PCA. We have met ex-
amples of this in the direction of non-linearity in the previous section. A
number of generalizations introduce weights or metrics on either observa-
tions or variables or both. The related topics of weights and metrics make
up two of the three parts of the present section; the third is concerned with
different ways of transforming or centering the data.

14.2.1 Weights

We start with a definition of generalized PCA which was given by Greenacre
(1984, Appendix A). It can viewed as introducing either weights or metrics
into the definition of PCA. Recall the singular value decomposition (SVD)
of the (n × p) data matrix X defined in equation (3.5.1), namely

X = ULA′. (14.2.1)
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The matrices A, L give, respectively, the eigenvectors and the square roots
of the eigenvalues of X′X, from which the coefficients and variances of the
PCs for the sample covariance matrix S are easily found.

In equation (14.2.1) we have U′U = Ir,A′A = Ir, where r is the rank of
X, and Ir is the identity matrix of order r. Suppose now that Ω and Φ are
specified positive-definite symmetric matrices and that we replace (14.2.1)
by a generalized SVD

X = VMB′, (14.2.2)

where V, B are (n×r), (p×r) matrices, respectively satisfying V′ΩV = Ir,
B′ΦB = Ir, and M is a (r × r) diagonal matrix.

This representation follows by finding the ordinary SVD of X̃ =
Ω1/2XΦ1/2. If we write the usual SVD of X̃ as

X̃ = WKC′, (14.2.3)

where K is diagonal, W′W = Ir,C′C = Ir, then

X = Ω−1/2X̃Φ−1/2

= Ω−1/2WKC′Φ−1/2.

Putting V = Ω−1/2W,M = K,B = Φ−1/2C gives (14.2.2), where M is
diagonal, V′ΩV = Ir, and B′ΦB = Ir, as required. With this representa-
tion, Greenacre (1984) defines generalized PCs as having coefficients given
by the columns of B, in the case where Ω is diagonal. Rao (1964) sug-
gested a similar modification of PCA, to be used when oblique rather than
orthogonal axes are desired. His idea is to use the transformation Z = XB,
where B′ΦB = I, for some specified positive-definite matrix, Φ; this idea
clearly has links with generalized PCA, as just defined.

It was noted in Section 3.5 that, if we take the usual SVD and retain
only the first m PCs so that xij is approximated by

mx̃ij =
m∑

k=1

uikl
1/2
k ajk (with notation as in Section 3.5),

then mx̃ij provides a best possible rank m approximation to xij in the
sense of minimizing

∑n
i=1

∑p
j=1(mxij − xij)2 among all possible rank m

approximations mxij . It can also be shown (Greenacre, 1984, p. 39) that if
Ω, Φ are both diagonal matrices, with elements ωi, i = 1, 2, . . . , n; φj , j =
1, 2, . . . , p, respectively, and if m

˜̃xij =
∑m

k=1 vikmkbjk, where vik, mk, bjk

are elements of V, M, B defined in (14.2.2), then m
˜̃xij minimizes

n∑

i=1

p∑

j=1

ωiφj(mxij − xij)2 (14.2.4)

among all possible rank m approximations mxij to xij . Thus, the spe-
cial case of generalized PCA, in which Φ as well as Ω is diagonal, is
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a form of ‘weighted PCA,’ where different variables can have different
weights, φ1, φ2, . . . , φp, and different observations can have different weights
ω1, ω2, . . . , ωn. Cochran and Horne (1977) discuss the use of this type of
weighted PCA in a chemistry context.

It is possible that one set of weights, but not the other, is present. For
example, if ω1 = ω2 = · · · = ωn but the φj are different, then only the
variables have different weights and the observations are treated identi-
cally. Using the correlation matrix rather than the covariance matrix is
a special case in which φj = 1/sjj where sjj is the sample variance of
the jth variable. Deville and Malinvaud (1983) argue that the choice of
φj = 1/sjj is somewhat arbitrary and that other weights may be appropri-
ate in some circumstances, and Rao (1964) also suggested the possibility of
using weights for variables. Gower (1966) notes the possibility of dividing
the variables by their ranges rather than standard deviations, or by their
means (for positive random variables, leading to an analysis of coefficients
of variation), or ‘even [by] the cube root of the sample third moment.’ In
other circumstances, there may be reasons to allow different observations
to have different weights, although the variables remain equally weighted.

In practice, it must be rare that an obvious uniquely appropriate set of
the ωi or φj is available, though a general pattern may suggest itself. For
example, when data are time series Diamantaras and Kung (1996, Section
3.5) suggest basing PCA on a weighted estimate of the covariance matrix,
where weights of observations decrease geometrically as the distance in time
from the end of the series increases. In forecasting functional data, Aguil-
era et al. (1999b) cut a time series into segments, which are then treated
as different realizations of a single series (see Section 12.3.4). Those seg-
ments corresponding to more recent parts of the original series are given
greater weight in forming functional PCs for forecasting than are segments
further in the past. Both linearly decreasing and exponentially decreasing
weights are tried. These are examples of weighted observations. An example
of weighted variables, also from functional PCA, is presented by Ramsay
and Abrahamowicz (1989). Here the functions are varying binomial param-
eters, so that at different parts of the curves, weights are assigned that are
inversely proportional to the binomial standard deviation for that part of
the curve.

An even more general set of weights than that given in (14.2.4) is
proposed by Gabriel and Zamir (1979). Here X is approximated by
minimizing

n∑

i=1

p∑

j=1

wij(mx̂ij − xij)2, (14.2.5)

where the rank m approximation to X has elements mx̂ij of the form mx̂ij =∑m
k=1 gikhjk for suitably chosen constants gik, hjk, i = 1, 2, . . . , n, j =

1, 2, . . . , p, k = 1, 2, . . . ,m. This does not readily fit into the generalized
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PC framework above unless the wij can be written as products wij =
ωiφj , i = 1, 2, . . . , n; j = 1, 2, . . . , p, although this method involves similar
ideas. The examples given by Gabriel and Zamir (1979) can be expressed as
contingency tables, so that correspondence analysis rather than PCA may
be more appropriate, and Greenacre (1984), too, develops generalized PCA
as an offshoot of correspondence analysis (he shows that another special
case of the generalized SVD (14.2.2) produces correspondence analysis, a
result which was discussed further in Section 13.1). The idea of weighting
could, however, be used in PCA for any type of data, provided that suitable
weights can be defined.

Gabriel and Zamir (1979) suggest a number of ways in which special cases
of their weighted analysis may be used. As noted in Section 13.6, it can
accommodate missing data by giving zero weight to missing elements of X.
Alternatively, the analysis can be used to look for ‘outlying cells’ in a data
matrix. This can be achieved by using similar ideas to those introduced
in Section 6.1.5 in the context of choosing how many PCs to retain. Any
particular element xij of X is estimated by least squares based on a subset
of the data that does not include xij . This (rank m) estimate mx̂ij is
readily found by equating to zero a subset of weights in (14.2.5), including
wij , The difference between xij and mx̂ij provides a better measure of the
‘outlyingness’ of xij compared to the remaining elements of X, than does
the difference between xij and a rank m estimate, mx̃ij , based on the SVD
for the entire matrix X. This result follows because mx̂ij is not affected by
xij , whereas xij contributes to the estimate mx̃ij .

Commandeur et al. (1999) describe how to introduce weights for both
variables and observations into Meulman’s (1986) distance approach to
nonlinear multivariate data analysis (see Section 14.1.1).

In the standard atmospheric science set-up, in which variables correspond
to spatial locations, weights may be introduced to take account of uneven
spacing between the locations where measurements are taken. The weights
reflect the size of the area for which a particular location (variable) is
the closest point. This type of weighting may also be necessary when the
locations are regularly spaced on a latitude/longitude grid. The areas of the
corresponding grid cells decrease towards the poles, and allowance should
be made for this if the latitudinal spread of the data is moderate or large. An
obvious strategy is to assign to the grid cells weights that are proportional
to their areas. However, if there is a strong positive correlation within cells,
it can be argued that doubling the area, for example, does not double the
amount of independent information and that weights should reflect this.
Folland (1988) implies that weights should be proportional to (Area)c,
where c is between 1

2 and 1. Hannachi and O’Neill (2001) weight their data
by the cosine of latitude.

Buell (1978) and North et al. (1982) derive weights for irregularly spaced
atmospheric data by approximating a continuous version of PCA, based on
an equation similar to (12.3.1).
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14.2.2 Metrics

The idea of defining PCA with respect to a metric or an inner-product dates
back at least to Dempster (1969, Section 7.6). Following the publication of
Cailliez and Pagès (1976) it became, together with an associated ‘duality
diagram,’ a popular view of PCA in France in the 1980s (see, for example,
Caussinus, 1986; Escoufier, 1987). In this framework, PCA is defined in
terms of a triple (X,Q,D), the three elements of which are:

• the matrix X is the (n × p) data matrix, which is usually but not
necessarily column-centred;

• the (p × p) matrix Q defines a metric on the p variables, so that the
distance between two observations xj and xk is (xj −xk)′Q(xj −xk);

• the (n × n) matrix D is usually diagonal, and its diagonal elements
consist of a set of weights for the n observations. It can, however, be
more general, for example when the observations are not independent,
as in time series (Caussinus, 1986; Escoufier, 1987).

The usual definition of covariance-based PCA has Q = Ip the identity
matrix, and D = 1

nIn, though to get the sample covariance matrix with
divisor (n − 1) it is necessary to replace n by (n − 1) in the definition of
D, leading to a set of ‘weights’ which do not sum to unity. Correlation-
based PCA is achieved either by standardizing X, or by taking Q to be
the diagonal matrix whose jth diagonal element is the reciprocal of the
standard deviation of the jth variable, j = 1, 2, . . . , p.

Implementation of PCA with a general triple (X,Q,D) is readily
achieved by means of the generalized SVD, described in Section 14.2.1,
with Φ and Ω from that section equal to Q and D from this section. The
coefficients of the generalized PCs are given in the columns of the matrix
B defined by equation (14.2.2). Alternatively, they can be found from an
eigenanalysis of X′DXQ or XQX′D (Escoufier, 1987).

A number of particular generalizations of the standard form of PCA fit
within this framework. For example, Escoufier (1987) shows that, in addi-
tion to the cases already noted, it can be used to: transform variables; to
remove the effect of an observation by putting it at the origin; to look at
subspaces orthogonal to a subset of variables; to compare sample and theo-
retical covariance matrices; and to derive correspondence and discriminant
analyses. Maurin (1987) examines how the eigenvalues and eigenvectors of
a generalized PCA change when the matrix Q in the triple is changed.

The framework also has connections with the fixed effects model of Sec-
tion 3.9. In that model, the observations xi are such that xi = zi + ei,
where zi lies in a q-dimensional subspace and ei is an error term with zero
mean and covariance matrix σ2

wi
Γ. Maximum likelihood estimation of the

model, assuming a multivariate normal distribution for e, leads to a gener-
alized PCA, where D is diagonal with elements wi and Q (which is denoted
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M in (3.9.1)) is equal to Γ−1 (see Besse (1994b)). Futhermore, it can be
shown (Besse, 1994b) that Γ−1 is approximately optimal even without the
assumption of multivariate normality. Optimality is defined here as find-
ing Q for which E[ 1

n

∑n
i=1 ‖zi − ẑi‖2

A] is minimized, where A is any given
Euclidean metric. The matrix Q enters this expression because ẑi is the
Q-orthogonal projection of xi onto the optimal q-dimensional subspace.

Of course, the model is often a fiction, and even when it might be be-
lieved, Γ will typically not be known. There are, however, certain types of
data where plausible estimators exist for Γ. One is the case where the data
fall into groups or clusters. If the groups are known, then within-group
variation can be used to estimate Γ, and generalized PCA is equivalent
to a form of discriminant analysis (Besse, 1994b). In the case of unknown
clusters, Caussinus and Ruiz (1990) use a form of generalized PCA as a
projection pursuit technique to find such clusters (see Section 9.2.2). An-
other form of generalized PCA is used by the same authors to look for
outliers in a data set (Section 10.1).

Besse (1988) searches for an ‘optimal’ metric in a less formal manner. In
the context of fitting splines to functional data, he suggests several families
of metric that combine elements of closeness between vectors with closeness
between their smoothness. A family is indexed by a parameter playing
a similar rôle to λ in equation (12.3.6), which governs smoothness. The
optimal value of λ, and hence the optimal metric, is chosen to give the
most clear-cut decision on how many PCs to retain.

Thacker (1996) independently came up with a similar approach, which
he refers to as metric-based PCA. He assumes that associated with a set
of p variables x is a covariance matrix E for errors or uncertainties. If S
is the covariance matrix of x, then rather than finding a′x that maximizes
a′Sa, it may be more relevant to maximize a′Sa

a′Ea . This reduces to solving
the eigenproblem

Sak = lkEak (14.2.6)

for k = 1, 2, . . . , p.
Second, third, and subsequent ak are subject to the constraints a′

hEak =
0 for h < k. In other words, a′

1x,a′
2x, . . . are uncorrelated with respect

to the error covariance matrix. The eigenvalue lk corresponding to the
eigenvector ak is equal to the ratio of the variances a′

kSak, a′
kEak of a′

kx
calculated using the overall covariance matrix S and the error covariance
matrix E, respectively. To implement the technique it is necessary to know
E, a similar difficulty to requiring knowledge of Γ to choose an optimal
metric for the fixed effects model. Another way of viewing the optimization
problem is seeing that we maximize the variance a′

kSak of a′
kx subject to

the normalization constraint a′
kEak = 1, so that the normalization is in

terms of the error variance of a′
kx rather than in terms of the length of a,

as in ordinary PCA.
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Metric-based PCA, as defined by Thacker (1996), corresponds to the
triple (X,E−1, 1

nIn), and E plays the same rôle as does Γ in the fixed
effects model. Tipping and Bishop’s (1999a) model (Section 3.9) can be
fitted as a special case with E = σ2Ip. In this case the ak are simply
eigenvectors of S.

Consider a model for x in which x is the sum of a signal and an indepen-
dent noise term, so that the overall covariance matrix can be decomposed
as S = SS + SN , where SS , SN are constructed from signal and noise,
respectively. If SN = E, then SS = S − E and

SSak = Sak − Eak = lkEak − Eak = (lk − 1)Eak,

so the ak are also eigenvectors of the signal covariance matrix, using the
metric defined by E−1. Hannachi (2000) demonstrates equivalences between

• Thacker’s technique;

• a method that finds a linear function of x that minimizes the prob-
ability density of noise for a fixed value of the probability density of
the data, assuming both densities are multivariate normal;

• maximization of signal to noise ratio as defined by Allen and Smith
(1997).

Diamantaras and Kung (1996, Section 7.2) discuss maximization of signal
to noise ratio in a neural network context using what they call ‘oriented
PCA.’ Their optimization problem is again equivalent to that of Thacker
(1996). The fingerprint techniques in Section 12.4.3 also analyse signal to
noise ratios, but in that case the signal is defined as a squared expectation,
rather than in terms of a signal covariance matrix.

Because any linear transformation of x affects both the numerator and
denominator of the ratio in the same way, Thacker’s (1996) technique shares
with canonical variate analysis and CCA an invariance to the units of
measurement. In particular, unlike PCA, the results from covariance and
correlation matrices are equivalent.

14.2.3 Transformations and Centering

Data may be transformed in a variety of ways before PCA is carried out,
and we have seen a number of instances of this elsewhere in the book.
Transformations are often used as a way of producing non-linearity (Sec-
tion 14.1) and are a frequent preprocessing step in the analysis of special
types of data. For example, discrete data may be ranked (Section 13.1)
and size/shape data, compositional data and species abundance data (Sec-
tions 13.2, 13.3, 13.8) may each be log-transformed before a PCA is done.
The log transformation is particularly common and its properties, with and
without standardization, are illustrated by Baxter (1995) using a number
of examples from archaeology.
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Standardization, in the sense of dividing each column of the data matrix
by its standard deviation, leads to PCA based on the correlation matrix,
and its pros and cons are discussed in Sections 2.3 and 3.3. This can be
thought of a version of weighted PCA (Section 14.2.1). So, also, can dividing
each column by its range or its mean (Gower, 1966), in the latter case
giving a matrix of coefficients of variation. Underhill (1990) suggests a
biplot based on this matrix (see Section 5.3.2). Such plots are only relevant
when variables are non-negative, as with species abundance data.

Principal components are linear functions of x whose coefficients are
given by the eigenvectors of a covariance or correlation matrix or, equiva-
lently, the eigenvectors of a matrix X′X. Here X is a (n× p) matrix whose
(i, j)th element is the value for the ith observation of the jth variable,
measured about the mean for that variable. Thus, the columns of X have
been centred, so that the sum of each column is zero, though Holmes-Junca
(1985) notes that centering by either medians or modes has been suggested
as an alternative to centering by means.

Two alternatives to ‘column-centering’ are:

(i) the columns of X are left uncentred, that is xij is now the value for
the ith observation of the jth variable, as originally measured;

(ii) both rows and columns of X are centred, so that sums of rows, as well
as sums of columns, are zero.

In either (i) or (ii) the analysis now proceeds by looking at linear func-
tions of x whose coefficients are the eigenvectors of X′X, with X now
non-centred or doubly centred. Of course, these linear functions no longer
maximize variance, and so are not PCs according to the usual definition,
but it is convenient to refer to them as non-centred and doubly centred
PCs, respectively.

Non-centred PCA is a fairly well-established technique in ecology (Ter
Braak,1983). It has also been used in chemistry (Jackson, 1991, Section
3.4; Cochran and Horne, 1977) and geology (Reyment and Jöreskog, 1993).
As noted by Ter Braak (1983), the technique projects observations onto
the best fitting plane (or flat) through the origin, rather than through the
centroid of the data set. If the data are such that the origin is an important
point of reference, then this type of analysis can be relevant. However, if the
centre of the observations is a long way from the origin, then the first ‘PC’
will dominate the analysis, and will simply reflect the position of the cen-
troid. For data that consist of counts of a number of biological species (the
variables) at various sites (the observations), Ter Braak (1983) claims that
non-centred PCA is better than standard (centred) PCA at simultaneously
representing within-site diversity and between-site diversity of species (see
also Digby and Kempton (1987, Section 3.5.5)). Centred PCA is better at
representing between-site species diversity than non-centred PCA, but it is
more difficult to deduce within-site diversity from a centred PCA.
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Reyment and Jöreskog (1993, Section 8.7) discuss an application of the
method (which they refer to as Imbrie’s Q-mode method) in a similar con-
text concerning the abundance of various marine micro-organisms in cores
taken at a number of sites on the seabed. The same authors also suggest
that this type of analysis is relevant for data where the p variables are
amounts of p chemical constituents in n soil or rock samples. If the degree
to which two samples have the same proportions of each constituent is con-
sidered to be an important index of similarity between samples, then the
similarity measure implied by non-centred PCA is appropriate (Reyment
and Jöreskog, 1993, Section 5.4). An alternative approach if proportions are
of interest is to reduce the data to compositional form (see Section 13.3).

The technique of empirical orthogonal teleconnections (van den Dool
et al., 2000), described in Section 11.2.3, operates on uncentred data.
Here matters are confused by referring to uncentred sums of squares and
cross-products as ‘variances’ and ‘correlations.’ Devijver and Kittler (1982,
Section 9.3) use similar misleading terminology in a population derivation
and discussion of uncentred PCA.

Doubly centred PCA was proposed by Buckland and Anderson (1985) as
another method of analysis for data that consist of species counts at various
sites. They argue that centred PCA of such data may be dominated by
a ‘size’ component, which measures the relative abundance of the various
species. It is possible to simply ignore the first PC, and concentrate on later
PCs, but an alternative is provided by double centering, which ‘removes’ the
‘size’ PC. The same idea has been suggested in the analysis of size/shape
data (see Section 13.2). Double centering introduces a component with zero
eigenvalue, because the constraint xi1+xi2+. . .+xip = 0 now holds for all i.
A further alternative for removing the ‘size’ effect of different abundances
of different species is, for some such data sets, to record only whether a
species is present or absent at each site, rather than the actual counts for
each species.

In fact, what is being done in double centering is the same as Mandel’s
(1971, 1972) approach to data in a two-way analysis of variance (see Sec-
tion 13.4). It removes main effects due to rows/observations/sites, and due
to columns/variables/species, and concentrates on the interaction between
species and sites. In the regression context, Hoerl et al. (1985) suggest
that double centering can remove ‘non-essential ill-conditioning,’ which is
caused by the presence of a row (observation) effect in the original data.
Kazmierczak (1985) advocates a logarithmic transformation of data, fol-
lowed by double centering. This gives a procedure that is invariant to pre-
and post-multiplication of the data matrix by diagonal matrices. Hence it
is invariant to different weightings of observations and to different scalings
of the variables.

One reason for the suggestion of both non-centred and doubly-centred
PCA for counts of species at various sites is perhaps that it is not entirely
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clear which of ‘sites’ and ‘species’ should be treated as ‘variables’ and which
as ‘observations.’ Another possibility is to centre with respect to sites, but
not species, in other words, carrying out an analysis with sites rather than
species as the variables. Buckland and Anderson (1985) analyse their data
in this way.

Yet another technique which has been suggested for analysing some
types of site-species data is correspondence analysis (see, for example, Sec-
tion 5.4.1 and Gauch, 1982). As pointed out in Section 13.4, correspondence
analysis has some similarity to Mandel’s approach, and hence to doubly
centred PCA. In doubly centred PCA we analyse the residuals from an
additive model for row and column (site and species) effects, whereas in
correspondence analysis the residuals from a multiplicative (independence)
model are considered.

Both uncentred and doubly centred PCA perform eigenanalyses on ma-
trices whose elements are not covariances or correlations, but which can
still be viewed as measures of similarity or association between pairs of
variables. Another technique in the same vein is proposed by Elmore and
Richman (2001). Their idea is to find ‘distances’ between variables which
can then be converted into similarities and an eigenanalysis done on the
resulting similarity matrix. Although Elmore and Richman (2001) note
a number of possible distance measures, they concentrate on Euclidean
distance, so that the distance djk between variables j and k is

[ n∑

i=1

(xij − xik)2
] 1

2
.

If D is largest of the p2 djk, the corresponding similarity matrix is defined
to have elements

sjk = 1 − djk

D
.

The procedure is referred to as PCA based on ES (Euclidean similarity).
There is an apparent connection with principal coordinate analysis (Sec-
tion 5.2) but for ES-based PCA it is distances between variables, rather
than between observations, that are analysed.

The technique is only appropriate if the variables are all measured in the
same units—it makes no sense to compute a distance between a vector of
temperatures and a vector of heights, for example. Elmore and Richman
(2001) report that the method does better at finding known ‘modes’ in a
data set than PCA based on either a covariance or a correlation matrix.
However, as with uncentred and doubly centred PCA, it is much less clear
than it is for PCA what is optimized by the technique, and hence it is more
difficult to know how to interpret its results.
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14.3 Principal Components in the Presence of
Secondary or Instrumental Variables

Rao (1964) describes two modifications of PCA that involve what he calls
‘instrumental variables.’ These are variables which are of secondary im-
portance, but which may be useful in various ways in examining the
variables that are of primary concern. The term ‘instrumental variable’ is
in widespread use in econometrics, but in a rather more restricted context
(see, for example, Darnell (1994, pp. 197–200)).

Suppose that x is, as usual, a p-element vector of primary variables,
and that w is a vector of s secondary, or instrumental, variables. Rao
(1964) considers the following two problems, described respectively as ‘prin-
cipal components of instrumental variables’ and ‘principal components
. . . uncorrelated with instrumental variables’:

(i) Find linear functions γ′
1w,γ′

2w, . . . , of w that best predict x.

(ii) Find linear functions α′
1x,α′

2x, . . . with maximum variances that,
as well as being uncorrelated with each other, are also uncorrelated
with w.

For (i), Rao (1964) notes that w may contain some or all of the elements
of x, and gives two possible measures of predictive ability, corresponding to
the trace and Euclidean norm criteria discussed with respect to Property
A5 in Section 2.1. He also mentions the possibility of introducing weights
into the analysis. The two criteria lead to different solutions to (i), one
of which is more straightforward to derive than the other. There is a su-
perficial resemblance between the current problem and that of canonical
correlation analysis, where relationships between two sets of variables are
also investigated (see Section 9.3), but the two situations are easily seen to
be different. However, as noted in Sections 6.3 and 9.3.4, the methodology
of Rao’s (1964) PCA of instrumental variables has reappeared under other
names. In particular, it is equivalent to redundancy analysis (van den Wol-
lenberg, 1977) and to one way of fitting a reduced rank regression model
(Davies and Tso, 1982).

The same technique is derived by Esposito (1998). He projects the matrix
X onto the space spanned by W, where X,W are data matrices associated
with x,w, and then finds principal components of the projected data. This
leads to an eigenequation

SXW S−1
WW SWXak = lkak,

which is the same as equation (9.3.5). Solving that equation leads to re-
dundancy analysis. Kazi-Aoual et al. (1995) provide a permutation test,
using the test statistic tr(SWXS−1

XXSXW ) to decide whether there is any
relationship between the x and w variables.
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Inevitably, the technique has been generalized. For example, Sabatier
et al. (1989) do so using the generalization of PCA described in Sec-
tion 14.2.2, with triples (X,Q1,D), (W,Q2,D). They note that Rao’s
(1964) unweighted version of PCA of instrumental variables results from
doing a generalized PCA on W, with D = 1

nIn, and Q2 chosen to mini-
mize ‖XX′−WQ2W′‖, where ‖.‖ denotes Euclidean norm. Sabatier et al.
(1989) extend this to minimize ‖XQ1X′D − WQ2W′D‖ with respect to
Q2. They show that for various choices of Q1 and D, a number of other
statistical techniques arise as special cases. Another generalization is given
by Takane and Shibayama (1991). For an (n1×p1) data matrix X, consider
the prediction of X not only from an (n1 × p2) matrix of additional vari-
ables measured on the same individuals, but also from an (n2 × p1) matrix
of observations on a different set of n2 individuals for the same variables as
in X. PCA of instrumental variables occurs as a special case when only the
first predictor matrix is present. Takane et al. (1995) note that redundancy
analysis, and Takane and Shibayama’s (1991) extension of it, amount to
projecting the data matrix X onto a subspace that depends on the external
information W and then conducting a PCA on the projected data. This
projection is equivalent to putting constraints on the PCA, with the same
constraints imposed in all dimensions. Takane et al. (1995) propose a fur-
ther generalization in which different constraints are possible in different
dimensions. The principal response curves of van den Brink and ter Braak
(1999) (see Section 12.4.2) represent another extension.

One situation mentioned by Rao (1964) in which problem type (ii)
(principal components uncorrelated with instrumental variables) might be
relevant is when the data x1,x2, . . . ,xn form a multiple time series with p
variables and n time points, and it is required to identify linear functions
of x that have large variances, but which are uncorrelated with ‘trend’
in the time series (see Section 4.5 for an example where the first PC is
dominated by trend). Rao (1964) argues that such functions can be found
by defining instrumental variables which represent trend, and then solv-
ing the problem posed in (ii), but he gives no example to illustrate this
idea. A similar idea is employed in some of the techniques discussed in Sec-
tion 13.2 that attempt to find components that are uncorrelated with an
isometric component in the analysis of size and shape data. In the context
of neural networks, Diamantaras and Kung (1996, Section 7.1) describe a
form of ‘constrained PCA’ in which the requirement of uncorrelatedness in
Rao’s method is replaced by orthogonality of the vectors of coefficients in
the constrained PCs to the subspace spanned by a set of constraints (see
Section 14.6.1).

Kloek and Mennes (1960) also discussed the use of PCs as ‘instrumental
variables,’ but in an econometric context. In their analysis, a number of
dependent variables y are to be predicted from a set of predictor variables
x. Information is also available concerning another set of variables w (the
instrumental variables) not used directly in predicting y, but which can
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be used to obtain improved estimates of the coefficients B in the equation
predicting y from x. Kloek and Mennes (1960) examine a number of ways
in which PCs of w or PCs of the residuals obtained from regressing w on
x or PCs of the combined vector containing all elements of w and x, can
be used as ‘instrumental variables’ in order to obtain improved estimates
of the coefficients B.

14.4 Alternatives to Principal Component Analysis
for Non-Normal Distributions

We have noted several times that for many purposes it is not necessary to
assume any particular distribution for the variables x in a PCA, although
some of the properties of Chapters 2 and 3 rely on the assumption of
multivariate normality.

One way of handling possible non-normality, especially if the distribution
has heavy tails, is to use robust estimation of the covariance or correla-
tion matrix, or of the PCs themselves. The estimates may be designed
to allow for the presence of aberrant observations in general, or may be
based on a specific non-normal distribution with heavier tails, as in Bac-
cini et al. (1996) (see Section 10.4). In inference, confidence intervals or
tests of hypothesis may be constructed without any need for distributional
assumptions using the bootstrap or jackknife (Section 3.7.2). The paper
by Dudziński et al. (1995), which was discussed in Section 10.3, investi-
gates the effect of non-normality on repeatability of PCA, albeit in a small
simulation study.

Another possibility is to assume that the vector x of random variables
has a known distribution other than the multivariate normal. A number
of authors have investigated the case of elliptical distributions, of which
the multivariate normal is a special case. For example, Waternaux (1984)
considers the usual test statistic for the null hypothesis H0q, as defined in
Section 6.1.4, of equality of the last (p−q) eigenvalues of the covariance ma-
trix. She shows that, with an adjustment for kurtosis, the same asymptotic
distribution for the test statistic is valid for all elliptical distributions with
finite fourth moments. Jensen (1986) takes this further by demonstrating
that for a range of hypotheses relevant to PCA, tests based on a multivari-
ate normal assumption have identical level and power for all distributions
with ellipsoidal contours, even those without second moments. Things get
more complicated outside the class of elliptical distributions, as shown by
Waternaux (1984) for H0q.

Jensen (1987) calls the linear functions of x that successively maximize
‘scatter’ of a conditional distribution, where conditioning is on previously
derived linear functions, principal variables. Unlike McCabe’s (1984) usage
of the same phrase, these ‘principal variables’ are not a subset of the original
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variables, but linear functions of them. Jensen (1997) shows that when
‘scatter’ is defined as variance and x has a multivariate normal distribution,
then his principal variables turn out to be the principal components. This
result is discussed following the spectral decomposition of the covariance
matrix (Property A3) in Section 2.1. Jensen (1997) greatly extends the
result by showing that for a family of elliptical distributions and for a
wide class of definitions of scatter, his principal variables are the same as
principal components.

An idea which may be considered an extension of PCA to non-normal
data is described by Qian et al. (1994). They investigate linear transfor-
mations of the p-variable vector x to q (< p) derived variables y that
minimize what they call an index of predictive power. This index is based
on minimum description length or stochastic complexity (see, for example,
Rissanen and Yu (2000)) and measures the difference in stochastic com-
plexity between x and y. The criterion is such that the optimal choice of
y depends on the probability distribution of x, and Qian and coworkers
(1994) show that for multivariate normal x, the derived variables y are
the first q PCs. This can be viewed as an additional property of PCA, but
confusingly they take it as a definition of principal components. This leads
to their ‘principal components’ being different from the usual principal
components when the distribution of x is nonnormal. They discuss various
properties of their components and include a series of tests of hypotheses
for deciding how many components are needed to adequately represent all
the original variables.

Another possible extension of PCA to non-normal data is hinted at by
O’Hagan (1994, Section 2.15). For a multivariate normal distribution, the
covariance matrix is given by the negative of the inverse ‘curvature’ of the
log-probability density function, where ‘curvature’ is defined as the matrix
of second derivatives with respect to the elements of x. In the Bayesian set-
up where x is replaced by a vector of parameters θ, O’Hagan (1994) refers
to the curvature evaluated at the modal value of θ as the modal dispersion
matrix. He suggests finding eigenvectors, and hence principal axes, based
on this matrix, which is typically not the covariance matrix for non-normal
distributions.

14.4.1 Independent Component Analysis

The technique, or family of techniques, known as independent component
analysis (ICA) has been the subject of a large amount of research, starting
in the late 1980s, especially in signal processing. It has been applied to
various biomedical and imaging problems, and is beginning to be used in
other fields such as atmospheric science. By the end of the 1990s it had
its own annual workshops and at least one book (Lee, 1998). Although
it is sometimes presented as a competitor to PCA, the links are not par-
ticularly strong-as we see below it seems closer to factor analysis—so the
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description here is brief. Stone and Porrill (2001) provide a more detailed
introduction.

PCA has as its main objective the successive maximization of variance,
and the orthogonality and uncorrelatedness constraints are extras, which
are included to ensure that the different components are measuring sep-
arate things. By contrast, independent component analysis (ICA) takes
the ‘separation’ of components as its main aim. ICA starts from the view
that uncorrelatedness is rather limited as it only considers a lack of linear
relationship, and that ideally components should be statistically indepen-
dent. This is a stronger requirement than uncorrelatedness, with the two
only equivalent for normal (Gaussian) random variables. ICA can thus be
viewed as a generalization of PCA to non-normal data, which is the reason
for including it in the present section. However this may lead to the mis-
taken belief, as implied by Aires et al. (2000), that PCA assumes normality,
which it does not. Aires and coworkers also describe PCA as assuming a
model in which the variables are linearly related to a set of underlying
components, apart from an error term. This is much closer to the set-up
for factor analysis, and it is this ‘model’ that ICA generalizes.

ICA assumes, instead of the factor analysis model x = Λf + e given in
equation (7.1.1), that x = Λ(f), where Λ is some, not necessarily linear,
function and the elements of f are independent. The components (factors)
f are estimated by f̂ , which is a function of x. The family of functions from
which Λ can be chosen must be defined. As in much of the ICA litera-
ture so far, Aires et al. (2000) and Stone and Porrill (2001) concentrate
on the special case where Λ is restricted to linear functions. Within the
chosen family, functions are found that minimize an ‘objective cost func-
tion,’ based on information or entropy, which measures how far are the
elements of f̂ from independence. This differs from factor analysis in that
the latter has the objective of explaining correlations. Some details of a
‘standard’ ICA method, including its entropy criterion and an algorithm
for implementation, are given by Stone and Porrill (2001).

Typically, an iterative method is used to find the optimal f̂ , and like
projection pursuit (see Section 9.2.2), a technique with which Stone and
Porrill (2001) draw parallels, it is computationally expensive. As with pro-
jection pursuit, PCA can be used to reduce dimensionality (use the first m,
rather than all p) before starting the ICA algorithm, in order to reduce the
computational burden (Aires et al., 2000; Stone and Porrill, 2001). It is also
suggested by Aires and coworkers that the PCs form a good starting point
for the iterative algorithm, as they are uncorrelated. These authors give
an example involving sea surface temperature, in which they claim that
the ICs are physically more meaningful than PCs. The idea that physically
meaningful signals underlying a data set should be independent is a ma-
jor motivation for ICA. This is very different from the view taken in some
applications of factor analysis or rotated PCA, where it is believed that un-
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derlying factors will very often be correlated, and that it is too restrictive
to force them to be uncorrelated, let alone independent (see, for example
Cattell (1978, p. 128); Richman (1986)).

14.5 Three-Mode, Multiway and Multiple Group
Principal Component Analysis

Principal component analysis is usually done on a single (n×p) data matrix
X, but there are extensions to many other data types. In this section we
discuss briefly the case where there are additional ‘modes’ in the data. As
well as rows (individuals) and columns (variables) there are other layers,
such as different time periods.

The ideas for three-mode methods were first published by Tucker in the
mid-1960s (see, for example, Tucker, 1966) and by the early 1980s the topic
of three-mode principal component analysis was, on its own, the subject of
a 398-page book (Kroonenberg, 1983a). A 33-page annotated bibliogra-
phy (Kroonenberg, 1983b) gave a comprehensive list of references for the
slightly wider topic of three-mode factor analysis. The term ‘three-mode’
refers to data sets that have three modes by which the data may be classi-
fied. For example, when PCs are obtained for several groups of individuals
as in Section 13.5, there are three modes corresponding to variables, groups
and individuals. Alternatively, we might have n individuals, p variables and
t time points, so that ‘individuals,’ ‘variables’ and ‘time points’ define the
three modes. In this particular case we have effectively n time series of p
variables, or a single time series of np variables. However, the time points
need not be equally spaced, nor is the time-order of the t repetitions neces-
sarily relevant in the sort of data for which three-mode PCA is used, in the
same way that neither individuals nor variables usually have any particular
a priori ordering.

Let xijk be the observed value of the jth variable for the ith individual
measured on the kth occasion. The basic idea in three-mode analysis is to
approximate xijk by the model

x̃ijk =
m∑

h=1

q∑

l=1

s∑

r=1

aihbjlckrghlr.

The values m, q, s are less, and if possible very much less, than n, p,
t, respectively, and the parameters aih, bjl,ckr, ghlr, i = 1, 2, . . . , n, h =
1, 2, . . . ,m, j = 1, 2, . . . , p, l = 1, 2, . . . , q, k = 1, 2, . . . , t, r = 1, 2, . . . , s
are chosen to give a good fit of x̃ijk to xijk for all i, j, k. There are a
number of methods for solving this problem and, like ordinary PCA, they
involve finding eigenvalues and eigenvectors of cross-product or covariance
matrices, in this case by combining two of the modes (for example, combine
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individuals and observations to give a mode with np categories) before
finding cross-products. Details will not be given here (see Tucker (1966) or
Kroonenberg (1983a), where examples may also be found).

The substantial literature on the subject that existed at the time of
Kroonenberg’s (1983a) book has continued to grow. A key reference, col-
lecting together material from many of those working in the area in the late
1980s, is Coppi and Bolasco (1989). Research is still being done on various
extensions, special cases and properties of the three-mode model (see, for
example, Timmerman and Kiers (2000)). One particular extension is to the
case where more than three modes are present. Such data are usually called
‘multiway’ rather than ‘multimode’ data.

Although multiway analysis has its roots in the psychometric literature,
it has more recently been adopted enthusiastically by the chemometrics
community. Volume 14, Issue 3 of the Journal of Chemometrics, published
in 2000, is a special issue on multiway analysis. The issue contains relatively
little on multiway PCA itself, but there is no shortage of articles on it in
the chemometrics literature and in the overlapping field of process control
(see, for example, Dahl et al. (1999)). In process control the three most
commonly encountered modes are different control variables, different time
intervals and different batch runs (Nomikos and MacGregor, 1995).

Another context in which three-mode data arise is in atmospheric science,
where one mode is spatial location, a second is time and a third is a set of
different meteorological variables. It was noted in Section 12.2.1 that the
analysis of such data, which amalgamates the p locations and n different
meteorological variables into a combined set of np variables, is sometimes
known as extended EOF analysis.

An alternative strategy for analysing data of this type is to consider pairs
of two modes, fixing the third, and then perform some form of PCA on each
chosen pair of modes. There are six possible pairs, leading to six possible
analyses. These are known as O-, P-, Q-, R-, S- and T-mode analyses (Rich-
man, 1986), a terminology that has its roots in psychology (Cattell, 1978,
Chapter 12). In atmospheric science the most frequently used mode is S-
mode (locations = variables; times = observations; meteorological variable
fixed), but T-mode (times = variables; locations = observations; mete-
orological variable fixed) is not uncommon (see, for example, Salles et al.
(2001)). Richman (1986) discusses the other four possibilities. Weare (1990)
describes a tensor-based variation of PCA for data having four ‘dimen-
sions,’ three in space together with time. He notes a similarity between his
technique and three-mode factor analysis.

Some types of multiway data convert naturally into other forms. In some
cases one of the modes corresponds to different groups of individuals mea-
sured on the same variables, so that the analyses of Section 13.5 may be
relevant. In other circumstances, different modes may correspond to dif-
ferent groups of variables. For two such groups, Section 9.3 describes a
number of techniques with some connection to PCA, and many of these
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procedures can be extended to more than two groups. For example, Casin
(2001) reviews a number of techniques for dealing with K sets of variables,
most of which involve a PCA of the data arranged in one way or another.
He briefly compares these various methods with his own ‘generalization’ of
PCA, which is now described.

Suppose that Xk is an (n× pk) data matrix consisting of measurements
of pk variables on n individuals, k = 1, 2, . . . ,K. The same individuals are
observed for each k. The first step in Casin’s (2001) procedure is a PCA
based on the correlation matrix obtained from the (n × p) supermatrix

X = (X1 X2 . . . XK),

where p =
∑K

k=1 pk. The first PC, z(1), thus derived is then projected onto
the subspaces spanned by the columns of Xk, k = 1, 2, . . . ,K, to give a
‘first component’ z

(1)
k for each Xk. To obtain a second component, residual

matrices X(2)
k are calculated. The jth column of X(2)

k consists of residuals
from a regression of the jth column of Xk on z

(1)
k . A covariance matrix

PCA is then performed for the supermatrix

X(2) = (X(2)
1 X(2)

2 . . . X(2)
K ).

The first PC from this analysis is next projected onto the subspaces spanned
by the columns of X(2)

k , k = 1, 2, . . . ,K to give a second component z
(2)
k for

Xk. This is called a ‘second auxiliary’ by Casin (2001). Residuals from re-
gressions of the columns of X(2)

k on z
(2)
k give matrices X(3)

k , and a covariance
matrix PCA is carried out on the supermatrix formed from these matrices.
From this, third auxiliaries z

(3)
k are calculated, and so on. Unlike an ordi-

nary PCA of X, which produces p PCs, the number of auxiliaries for the
kth group of variables is only pk. Casin (2001) claims that this procedure is
a sensible compromise between separate PCAs for each Xk, which concen-
trate on within-group relationships, and extensions of canonical correlation
analysis, which emphasize relationships between groups.

Van de Geer (1984) reviews the possible ways in which linear relation-
ships between two groups of variables can be quantified, and then discusses
how each might be generalized to more than two groups (see also van de
Geer (1986)). One of the properties considered by van de Geer (1984) in
his review is the extent to which within-group, as well as between-group,
structure is considered. When within-group variability is taken into account
there are links to PCA, and one of van de Geer’s (1984) generalizations is
equivalent to a PCA of all the variables in the K groups, as in extended
EOF analysis. Lafosse and Hanafi (1987) extend Tucker’s inter-battery
model, which was discussed in Section 9.3.3, to more than two groups.
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14.6 Miscellanea

This penultimate section discusses briefly some topics involving PCA that
do not fit very naturally into any of the other sections of the book.

14.6.1 Principal Components and Neural Networks

This subject is sufficiently large to have a book devoted to it (Diaman-
taras and Kung, 1996). The use of neural networks to provide non-linear
extensions of PCA is discussed in Section 14.1.3 and computational as-
pects are revisited in Appendix A1. A few other related topics are noted
here, drawing mainly on Diamantaras and Kung (1996), to which the in-
terested reader is referred for further details. Much of the work in this
area is concerned with constructing efficient algorithms, based on neural
networks, for deriving PCs. There are variations depending on whether a
single PC or several PCs are required, whether the first or last PCs are
of interest, and whether the chosen PCs are found simultaneously or se-
quentially. The advantage of neural network algorithms is greatest when
data arrive sequentially, so that the PCs need to be continually updated.
In some algorithms the transformation to PCs is treated as deterministic;
in others noise is introduced (Diamantaras and Kung, 1996, Chapter 5). In
this latter case, the components are written as

y = B′x + e,

and the original variables are approximated by

x̂ = Cy = CB′x + Ce,

where B,C are (p × q) matrices and e is a noise term. When e = 0, mi-
nimizing E[(x̂ − x)′(x̂ − x)] with respect to B and C leads to PCA (this
follows from Property A5 of Section 2.1), but the problem is complicated
by the presence of the term Ce in the expression for x̂. Diamantaras and
Kung (1996, Chapter 5) describe solutions to a number of formulations of
the problem of finding optimal B and C. Some constraints on B and/or C
are necessary to make the problem well-defined, and the different formu-
lations correspond to different constraints. All solutions have the common
feature that they involve combinations of the eigenvectors of the covariance
matrix of x with the eigenvectors of the covariance matrix of e. As with
other signal/noise problems noted in Sections 12.4.3 and 14.2.2, there is
the necessity either to know the covariance matrix of e or to be able to
estimate it separately from that of x.

Networks that implement extensions of PCA are described in Diamanta-
ras and Kung (1996, Chapters 6 and 7). Most have links to techniques
developed independently in other disciplines. As well as non-linear
extensions, the following analysis methods are discussed:
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• Linear Approximation Asymmetric PCA. This leads to an equation
that is equivalent to (9.3.2). Hence the technique is the same as re-
dundancy analysis, one form of reduced rank regression and PCA of
instrumental variables (Sections 9.3.3, 9.3.4, 14.3).

• Cross-correlation Asymmetric PCA. This reduces to finding the SVD
of the matrix of covariances between two sets of variables, and so is
equivalent to maximum covariance analysis (Section 9.3.3).

• Constrained PCA. This technique finds ‘principal components’ that
are constrained to be orthogonal to a space defined by a set of con-
straint vectors. It is therefore closely related to the idea of projecting
orthogonally to the isometric vector for size and shape data (Sec-
tion 13.2) and is similar to Rao’s (1964) PCA uncorrelated with
instrumental variables (Section 14.3). A soft-constraint version of this
technique, giving a compromise between constrained PCA and or-
dinary PCA, is discussed in Diamantaras and Kung (1996, Section
7.3).

• Oriented PCA. In general terms, the objective is to find a1,a2, . . . ,

ak, . . . that successively maximize a′
kS1ak

a′
k
S2ak

, where S1,S2 are two covari-
ance matrices. Diamantaras and Kung (1996, Section 7.2) note that
special cases include canonical discriminant analysis (Section 9.1) and
maximization of a signal to noise ratio (Sections 12.4.3, 14.2.2).

Xu and Yuille (1992) describe a neural network approach based on statis-
tical physics that gives a robust version of PCA (see Section 10.4). Fancourt
and Principe (1998) propose a network that is tailored to find PCs for
locally stationary time series.

As well as using neural networks to find PCs, the PCs can also be
used as inputs to networks designed for other purposes. Diamantaras and
Kung (1996, Section 4.6) give examples in which PCs are used as inputs
to discriminant analysis (Section 9.1) and image processing. McGinnis
(2000) uses them in a neural network approach to predicting snowpack
accumulation from 700 mb geopotential heights.

14.6.2 Principal Components for Goodness-of-Fit Statistics

The context of this application of PCA is testing whether or not a (uni-
variate) set of data y1, y2, . . . , yn could have arisen from a given probability
distribution with cumulative distribution function G(y); that is, we want a
goodness-of-fit test. If the transformation

xi = G(yi), i = 1, 2, . . . , n

is made, then we can equivalently test whether or not x1, x2, . . . , xn are
from a uniform distribution on the range (0, 1). Assume, without loss of
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generality, that x1 ≤ x2 ≤ . . . ≤ xn, and define the sample distribution
function as Fn(x) = i/n for xi ≤ x < xi+1, i = 0, 1, . . . , n, where x0,
xn+1 are defined as 0, 1 respectively. Then a well-known test statistic is the
Cramér-von Mises statistic:

W 2
n = n

∫ 1

0

(Fn(x) − x)2 dx.

Like most all-purpose goodness-of-fit statistics, W 2
n can detect many differ-

ent types of discrepancy between the observations and G(y); a large value
of W 2

n on its own gives no information about what type has occurred. For
this reason a number of authors, for example Durbin and Knott (1972),
Durbin et al. (1975), have looked at decompositions of W 2

n into a number
of separate ‘components,’ each of which measures the degree to which a
different type of discrepancy is present.

It turns out that a ‘natural’ way of partitioning W 2
n is (Durbin and Knott,

1972)

W 2
n =

∞∑

k=1

z2
nk,

where

znk = (2n)1/2

∫ 1

0

(Fn(x) − x) sin (kπx) dx, k = 1, 2, . . . ,

are the PCs of
√

n(Fn(x) − x). The phrase ‘PCs of
√

n(Fn(x) − x)’ needs
further explanation, since

√
n(Fn(x) − x) is not, as is usual when defining

PCs, a p-variable vector. Instead, it is an infinite-dimensional random vari-
able corresponding to the continuum of values for x between zero and one.
Durbin and Knott (1972) solve an equation of the form (12.3.1) to obtain
eigenfunctions ak(x), and hence corresponding PCs

znk =
√

n

∫ 1

0

ak(x)(Fn(x) − x) dx,

where ak(x) =
√

2 sin(kπx).
The components znk, k = 1, 2, ... are discussed in considerable detail,

from both theoretical and practical viewpoints, by Durbin and Knott
(1972), and Durbin et al. (1975), who also give several additional references
for the topic.

Another use of PCA in goodness-of-fit testing is noted by Jackson (1991,
Section 14.3), namely using an extension to the multivariate case of the
Shapiro-Wilk test for normality, based on PCs rather than on the origi-
nal variables. Kaigh (1999) also discusses something described as ‘principal
components’ in the context of goodness-of-fit, but these appear to be related
to Legendre polynomials, rather than being the usual variance-maximizing
PCs.
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14.6.3 Regression Components, Sweep-out Components and
Extended Components

Ottestad (1975) proposed an alternative to PCA that he called regression
components. He developed this for standardized variables, and hence it is
a correlation-based analysis. The new variables, or regression components,
y1, y2, . . . , yp are defined in terms of the original (standardized) variables
x1, x2, . . . , xp as y1 = x1, y2 = x2 − b21x1, y3 = x3 − b31x1 − b32x2, . . . ,

yp = xp − bp1x1 − bp2x2 − . . . bp(p−1)x(p−1),

where bjk is the regression coefficient of xk in a regression of xj on all other
variables on the right hand-side of the equation defining yj . It should be
stressed that the labelling in these defining equations has been chosen for
simplicity to correspond to the order in which the y variables are defined. It
will usually be different from the labelling of the data as originally recorded.
The x variables can be selected in any order to define the y variables and
the objective of the technique is to choose a best order from the p! pos-
sibilities. This is done by starting with yp, for which xp is chosen to be
the original variable that has maximum multiple correlation with the other
(p − 1) variables. The next variable x(p−1), from which y(p−1) is defined,
minimizes (1 + bp(p−1))2(1 − R2), where R2 denotes the multiple correla-
tion of x(p−1) with x(p−2), x(p−3), . . . , x1, and so on until only x1 is left.
The reasoning behind the method, which gives uncorrelated components,
is that it provides results that are simpler to interpret than PCA in the
examples that Ottestad (1975) studies. However, orthogonality of vectors
of coefficients and successive variance maximization are both lost. Unlike
the techniques described in Chapter 11, no explicit form of simplicity is
targeted and neither is there any overt attempt to limit variance loss, so
the method is quite different from PCA.

A variation on the same theme is proposed by Atiqullah and Uddin
(1993). They also produce new variables y1, y2, . . . , yp from a set of mea-
sured variables x1, x2, . . . , xp in a sequence y1 = x1, y2 = x2 − b21x1,
y3 = x3 − b31x1 − b32x2, . . . ,

yp = xp − bp1x1 − bp2x2 − . . . bp(p−1)x(p−1),

but for a different set of bkj . Although the details are not entirely clear it
appears that, unlike Ottestad’s (1975) method, the ordering in the sequence
is not determined by statistical criteria, but simply corresponds to the
labels on the original x variables. Atiqullah and Uddin (1993) transform
the covariance matrix for the x variables into upper triangular form, with
diagonal elements equal to unity. The elements of this matrix above the
diagonal are then the bkj . As with Ottestad’s method, the new variables,
called sweep-out components, are uncorrelated.

Rather than compare variances of y1, y2, . . . , yp, which do not sum to∑p
j=1 var(xi), both Ottestad (1975) and Atiqullah and Uddin (1993) de-
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compose var(
∑p

j=1 xj) into parts due to each component. In this respect
there are similarities with a method proposed by Vermeiren et al. (2001),
which they call extended principal component analysis. This also decom-
poses var(

∑p
j=1 xj), but does so with rescaled PCs. Denote the kth such

component by zE
k = aE′

k x, where aE
k = ckak, ak is the usual vector of

coefficients for the kth PC with a′
kak = 1, and ck is a rescaling constant.

Vermeiren et al. (2001) stipulate that
∑p

k=1 zE
k =

∑p
j=1 xj and then show

that this condition is satisfied by c = A′1p, where the kth column of A
is ak and the kth element of c is ck. Thus ck is the sum of the coefficients
in ak and will be large when all coefficients in ak are of the same sign,
or when a PC is dominated by a single variable. The importance of such
PCs is enhanced by the rescaling. Conversely, ck is small for PCs that are
contrasts between groups of variables, and rescaling makes these compo-
nents less important. The rescaled or ‘extended’ components are, like the
unscaled PCs zk, uncorrelated, so that

var
[ p∑

j=1

xj

]
= var

[ p∑

k=1

zE
k

]
=

p∑

k=1

var(zE
k ) =

p∑

k=1

c2
k var(zk) =

p∑

k=1

c2
klk.

Hence var[
∑p

j=1 xj ] may be decomposed into contributions c2
klk, k =

1, 2, . . . , p from each rescaled component. Vermeiren et al. (2001) suggest
that such a decomposition is relevant when the variables are constituents
of a financial portfolio.

14.6.4 Subjective Principal Components

Korhonen (1984) proposes a technique in which a user has input into the
form of the ‘components.’ The slightly tenuous link with PCA is that it is
assumed that the user wishes to maximize correlation between the chosen
component and one or more of the original variables. The remarks following
the spectral decomposition (Property A3) in Section 2.1, Property A6 in
Section 2.3, and the discussion of different normalization constraints at the
end of that section, together imply that the first few PCs tend to have
large correlations with the variables, especially in a correlation matrix-
based PCA. Korhonen’s (1984) procedure starts by presenting the user
with the correlations between the elements of x and the ‘component’ a′

0x,
where a0 is the isometric vector 1√

p (1, 1, . . . , 1) (see Section 13.2). The user
is then invited to choose a variable for which the correlation is desired
to be larger. The implications for other correlations of modifying a0 so
as to increase the selected correlation are displayed graphically. On the
basis of this information, the user then chooses by how much to increase
the correlation and hence change a0, giving the first subjective principal
component.

If second, third, . . . , subjective components are desired, emphasizing
correlations with different variables, a similar procedure is repeated in the
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space orthogonal to the components found so far. Clearly, this technique
loses the variance maximization property of PCA but, like the techniques
of Section 11.2, it can be thought of as an alternative that simplifies inter-
pretation. In the present case simplification is in the direction of the user’s
expectations.

14.7 Concluding Remarks

It has been seen in this book that PCA can be used in a wide variety of dif-
ferent ways. Many of the topics covered, especially in the last four chapters,
are of recent origin and it is likely that there will be further advances in
the near future that will help to clarify the usefulness, in practice, of some
of the newer techniques. Developments range from an increasing interest in
model-based approaches on the one hand to the mainly algorithmic ideas of
neural networks on the other. Additional uses and adaptations of PCA are
certain to be proposed and, given the large number of fields of application
in which PCA is employed, it is inevitable that there are already some uses
and modifications of which the present author is unaware.

In conclusion, it should be emphasized again that, far from being an old
and narrow technique, PCA is the subject of much recent research and has
great versatility, both in the ways in which it can be applied, and in the
fields of application for which it is useful.
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Appendix A
Computation of Principal Components

This Appendix is the only part of the book that has shrunk compared to the
first edition, where it consisted of two sections. The first described efficient
methods for deriving PCs, that is efficient techniques from numerical anal-
ysis for calculating eigenvectors and eigenvalues of positive semi-definite
matrices; the second section discussed the facilities for computing PCs,
and performing related analyses, which were then available in five of the
best known statistical computer packages.

The first topic has been updated in this edition and some general com-
ments on the second topic are included. However much of the detail on
the latter topic has been removed from this edition, mainly because such
material rapidly becomes out of date. This is readily illustrated by two
quotations from the first edition.

Despite the likelihood that personal computers will become the
main tool for . . . users of PCA . . . [it] is still usually carried out
on mainframe computers . . . [T]he author has no experience yet
of PCA on personal computers.

MINITAB does not have any direct instructions for finding PCs.

Five packages were described in the first edition—BMDP, GENSTAT,
MINITAB, SAS and SPSSX . Since then a number a new packages or lan-
guages have appeared. Perhaps the biggest change is the greatly expanded
use by statisticians of S-PLUS and its ‘open source’ relative R. The MAT-
LAB software should also be mentioned. Although it is not primarily a
statistical package, it has found increasing favour among statisticians as a
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programming environment within which new statistical techniques can be
implemented. PCA is also included in some neural network software.

All the main statistical software packages incorporate procedures for find-
ing the basic results of a PCA. There are some variations in output, such as
the choice of normalization constraints used for the vectors of loadings or
coefficients. This can cause confusion for the unwary user (see Section 11.1),
who may also be confused by the way in which some software erroneously
treats PCA as a special case of factor analysis (see Chapter 7). However,
even with this misleading approach, numerically correct answers are pro-
duced by all the major statistical software packages, and provided that the
user is careful to ensure that he or she understands the details of how the
output is presented, it is usually adequate to use whichever software is most
readily available.

Most statistical packages produce the basic results of a PCA satisfacto-
rily, but few provide much in the way of extensions or add-ons as standard
features. Some allow (or even encourage) rotation, though not necessarily
in a sufficiently flexible manner to be useful, and some will display biplots.
With most it is fairly straightforward to use the output from PCA in an-
other part of the package so that PC regression, or discriminant or cluster
analysis using PCs instead of the measured variables (see Chapters 8 and
9) are easily done. Beyond that, there are two possibilities for many of the
extensions to PCA. Either software is available from the originator of the
technique, or extra functions or code can be added to the more flexible
software, such as S-PLUS or R.

A.1 Numerical Calculation of Principal
Components

Most users of PCA, whether statisticians or non-statisticians, have little
desire to know about efficient algorithms for computing PCs. Typically, a
statistical program or package can be accessed that performs the analysis
automatically. Thus, the user does not need to write his or her own pro-
grams; often the user has little or no interest in whether or not the software
available performs its analyses efficiently. As long as the results emerge, the
user is satisfied.

However, the type of algorithm used can be important, in particular if
some of the last few PCs are of interest or if the data set is very large.
Many programs for PCA are geared to looking mainly at the first few PCs,
especially if PCA is included only as part of a factor analysis routine. In
this case, several algorithms can be used successfully, although some will
encounter problems if any pairs of the eigenvalues are very close together.
When the last few or all of the PCs are to be calculated, difficulties are more
likely to arise for some algorithms, particularly if some of the eigenvalues
are very small.
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Finding PCs reduces to finding the eigenvalues and eigenvectors of a
positive-semidefinite matrix. We now look briefly at some of the possible
algorithms that can be used to solve such an eigenproblem.

The Power Method

A form of the power method was described by Hotelling (1933) in his
original paper on PCA, and an accelerated version of the technique was
presented in Hotelling (1936). In its simplest form, the power method is a
technique for finding the largest eigenvalue and the corresponding eigen-
vector of a (p × p) matrix T. The idea is to choose an initial p-element
vector u0, and then form the sequence

u1 = Tu0

u2 = Tu1 = T2u0

...
...

ur = Tur−1 = Tru0

...
...

lf α1,α2, . . . ,αp are the eigenvectors of T, then they form a basis for
p-dimensional space, and we can write, for arbitrary u0,

u0 =
p∑

k=1

κkαk

for some set of constants κ1, κ2, . . . , κp. Then

u1 = Tu0 =
p∑

k=1

κkTαk =
p∑

k=1

κkλkαk,

where λ1, λ2, . . . , λp are the eigenvalues of T. Continuing, we get for r =
2, 3, . . .

ur =
p∑

k=1

κkλr
kαk

and
ur

(κ1λr
1)

=
(

α1 +
κ2

κ1

(
λ2

λ1

)r

α2 + · · · + κp

κ1

(
λp

λ1

)r

αp

)
.

Assuming that the first eigenvalue of T is distinct from the remaining
eigenvalues, so that λ1 > λ2 ≥ · · · ≥ λp, it follows that a suitably nor-
malized version of ur → α1 as r → ∞. It also follows that the ratios of
corresponding elements of ur and ur−1 → λ1 as r → ∞.

The power method thus gives a simple algorithm for finding the first
(largest) eigenvalue of a covariance or correlation matrix and its corre-
sponding eigenvector, from which the first PC and its variance can be
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derived. It works well if λ1 � λ2, but converges only slowly if λ1 is not well
separated from λ2. Speed of convergence also depends on the choice of the
initial vector u0; convergence is most rapid if u0 is close to α1,

If λ1 = λ2 > λ3, a similar argument to that given above shows that a
suitably normalized version of ur → α1 + (κ2/κ1)α2 as r → ∞. Thus,
the method does not lead to α1, but it still provides information about
the space spanned by α1, α2. Exact equality of eigenvalues is extremely
unlikely for sample covariance or correlation matrices, so we need not worry
too much about this case.

Rather than looking at all ur, r = 1, 2, 3, . . . , attention can be restricted
to u1,u2,u4,u8, . . . (that is Tu0,T2u0,T4u0,T8u0, . . .) by simply squaring
each successive power of T. This accelerated version of the power method
was suggested by Hotelling (1936). The power method can be adapted to
find the second, third, . . . PCs, or the last few PCs (see Morrison, 1976,
p. 281), but it is likely to encounter convergence problems if eigenvalues
are close together, and accuracy diminishes if several PCs are found by the
method. Simple worked examples for the first and later components can be
found in Hotelling (1936) and Morrison (1976, Section 8.4) .

There are various adaptations to the power method that partially over-
come some of the problems just mentioned. A large number of such
adaptations are discussed by Wilkinson (1965, Chapter 9), although some
are not directly relevant to positive-semidefinite matrices such as covari-
ance or correlation matrices. Two ideas that are of use for such matrices
will be mentioned here. First, the origin can be shifted, that is the matrix
T is replaced by T − ρIp, where Ip is the identity matrix, and ρ is chosen
to make the ratio of the first two eigenvalues of T − ρIp much larger than
the corresponding ratio for T, hence speeding up convergence.

A second modification is to use inverse iteration (with shifts), in which
case the iterations of the power method are used but with (T − ρIp)−1

replacing T. This modification has the advantage over the basic power
method with shifts that, by using appropriate choices of ρ (different for
different eigenvectors), convergence to any of the eigenvectors of T can
be achieved. (For the basic method it is only possible to converge in the
first instance to α1 or to αp.) Furthermore, it is not necessary to explicitly
calculate the inverse of T−ρIp, because the equation ur = (T−ρIp)−1ur−1

can be replaced by (T − ρIp)ur = ur−1. The latter equation can then
be solved using an efficient method for the solution of systems of linear
equations (see Wilkinson, 1965, Chapter 4). Overall, computational savings
with inverse iteration can be large compared to the basic power method
(with or without shifts), especially for matrices with special structure, such
as tridiagonal matrices. It turns out that an efficient way of computing
PCs is to first transform the covariance or correlation matrix to tridiagonal
form using, for example, either the Givens or Householder transformations
(Wilkinson, 1965, pp. 282, 290), and then to implement inverse iteration
with shifts on this tridiagonal form.
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There is one problem with shifting the origin that has not yet been
mentioned. This is the fact that to choose efficiently the values of ρ that
determine the shifts, we need some preliminary idea of the eigenvalues
of T. This preliminary estimation can be achieved by using the method
of bisection, which in turn is based on the Sturm sequence property of
tridiagonal matrices. Details will not be given here (see Wilkinson, 1965,
pp. 300–302), but the method provides a quick way of finding approximate
values of the eigenvalues of a tridiagonal matrix. In fact, bisection could be
used to find the eigenvalues to any required degree of accuracy, and inverse
iteration implemented solely to find the eigenvectors.

Two major collections of subroutines for finding eigenvalues and eigen-
vectors for a wide variety of classes of matrix are the EISPACK package
(Smith et al., 1976), which is distributed by IMSL, and parts of the NAG
library of subroutines. In both of these collections, there are recommen-
dations as to which subroutines are most appropriate for various types of
eigenproblem. In the case where only a few of the eigenvalues and eigenvec-
tors of a real symmetric matrix are required (corresponding to finding just
a few of the PCs for a covariance or correlation matrix) both EISPACK
and NAG recommend transforming to tridiagonal form using Householder
transformations, and then finding eigenvalues and eigenvectors using bisec-
tion and inverse iteration respectively. NAG and EISPACK both base their
subroutines on algorithms published in Wilkinson and Reinsch (1971), as
do the ‘Numerical Recipes’ for eigensystems given by Press et al. (1992,
Chapter 11).

The QL Algorithm

If all of the PCs are required, then methods other than those just described
may be more efficient. For example, both EISPACK and NAG recommend
that we should still transform the covariance or correlation matrix to tridi-
agonal form, but at the second stage the so-called QL algorithm should now
be used, instead of bisection and inverse iteration. Chapter 8 of Wilkinson
(1965) spends over 80 pages describing the QR and LR algorithms (which
are closely related to the QL algorithm), but only a very brief outline will
be given here.

The basic idea behind the QL algorithm is that any non-singular matrix
T can be written as T = QL, where Q is orthogonal and L is lower
triangular. (The QR algorithm is similar, except that T is written instead
as T = QR, where R is upper triangular, rather than lower triangular.) If
T1 = T and we write T1 = Q1L1, then T2 is defined as T2 = L1Q1. This
is the first step in an iterative procedure. At the next step, T2 is written
as T2 = Q2L2 and T3 is defined as T3 = L2Q2. In general, Tr is written
as QrLr and Tr+1 is then defined as LrQr, r = 1, 2, 3, . . . , where Q1, Q2,
Q3, . . . are orthogonal matrices, and L1, L2, L3, . . . are lower triangular. It
can be shown that Tr converges to a diagonal matrix, with the eigenvalues
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of T in decreasing absolute size down the diagonal. Eigenvectors can be
found by accumulating the transformations in the QL algorithm (Smith et
al., 1976, p. 468).

As with the power method, the speed of convergence of the QL algorithm
depends on the ratios of consecutive eigenvalues. The idea of incorporating
shifts can again be implemented to improve the algorithm and, unlike the
power method, efficient strategies exist for finding appropriate shifts that
do not rely on prior information about the eigenvalues (see, for example,
Lawson and Hanson (1974, p. 109)). The QL algorithm can also cope with
equality between eigenvalues.

It is probably fair to say that the algorithms described in detail by
Wilkinson (1965) and Wilkinson and Reinsch (1971), and implemented in
various IMSL and NAG routines, have stood the test of time. They still
provide efficient ways of computing PCs in many circumstances. However,
we conclude the Appendix by discussing two alternatives. The first is imple-
mentation via the singular value decomposition (SVD) of the data matrix,
and the second consists of the various algorithms for PCA that have been
suggested in the neural networks literature. The latter is a large topic and
will be summarized only briefly.

One other type of algorithm that has been used recently to find PCs is
the EM algorithm (Dempster et al., 1977). This is advocated by Tipping
and Bishop (1999a,b) and Roweis (1997), and has its greatest value in cases
where some of the data are missing (see Section 13.6).

Singular Value Decomposition

The suggestion that PCs may best be computed using the SVD of the
data matrix (see Section 3.5) is not new. For example, Chambers (1977, p.
111) talks about the SVD providing the best approach to computation of
principal components and Gnanadesikan (1977, p. 10) states that ‘. . . the
recommended algorithm for . . . obtaining the principal components is either
the . . . QR method . . . or the singular value decomposition.’ In constructing
the SVD, it turns out that similar algorithms to those given above can
be used. Lawson and Hanson (1974, p. 110) describe an algorithm (see
also Wilkinson and Reinsch (1971)) for finding the SVD, which has two
stages; the first uses Householder transformations to transform to an upper
bidiagonal matrix, and the second applies an adapted QR algorithm. The
method is therefore not radically different from that described earlier.

As noted at the end of Section 8.1, the SVD can also be useful in com-
putations for regression (Mandel, 1982; Nelder, 1985), so the SVD has
further advantages if PCA is used in conjunction with regression. Nash
and Lefkovitch (1976) describe an algorithm that uses the SVD to provide
a variety of results for regression, as well as PCs.

Another point concerning the SVD is that it provides simultaneously not
only the coefficients and variances for the PCs, but also the scores of each
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observation on each PC, and hence all the information that is required
to construct a biplot (see Section 5.3). The PC scores would otherwise
need to be derived as an extra step after calculating the eigenvalues and
eigenvectors of the covariance or correlation matrix S = 1

n−1X
′X.

The values of the PC scores are related to the eigenvectors of XX′, which
can be derived from the eigenvectors of X′X (see the proof of Property G4
in Section 3.2); conversely, the eigenvectors of X′X can be found from
those of XX′. In circumstances where the sample size n is smaller than the
number of variables p, XX′ has smaller dimensions than X′X, so that it
can be advantageous to use the algorithms described above, based on the
power method or QL method, on a multiple of XX′ rather than X′X in such
cases. Large computational savings are possible when n � p, as in chemical
spectroscopy or in the genetic example of Hastie et al. (2000), which is
described in Section 9.2 and which has n = 48, p = 4673. Algorithms also
exist for updating the SVD if data arrive sequentially (see for example
Berry et al. (1995)).

Neural Network Algorithms

Neural networks provide ways of extending PCA, including some non-linear
generalizations (see Sections 14.1.3, 14.6.1). They also give alternative al-
gorithms for estimating ‘ordinary’ PCs. The main difference between these
algorithms and the techniques described earlier in the Appendix is that
most are ‘adaptive’ rather than ‘batch’ methods. If the whole of a data
set is collected before PCA is done and parallel processing is not possible,
then batch methods such as the QR algorithm are hard to beat (see Dia-
mantaras and Kung, 1996 (hereafter DK96), Sections 3.5.3, 4.4.1). On the
other hand, if data arrive sequentially and PCs are re-estimated when new
data become available, then adaptive neural network algorithms come into
their own. DK96, Section 4.2.7 note that ‘there is a plethora of alternative
[neural network] techniques that perform PCA.’ They describe a selection
of single-layer techniques in their Section 4.2, with an overview of these in
their Table 4.1. Different algorithms arise depending on

• whether the first or last few PCs are of interest;

• whether one or more than one PC is required;

• whether individual PCs are wanted or whether subspaces spanned by
several PCs will suffice;

• whether the network is required to be biologically plausible.

DK96, Section 4.2.7 treat finding the last few PCs as a different technique,
calling it minor component analysis.

In their Section 4.4, DK96 compare the properties, including speed, of
seven algorithms using simulated data. In Section 4.5 they discuss multi-
layer networks.
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Neural network algorithms are feasible for larger data sets than batch
methods because they are better able to take advantage of developments
in computer architecture. DK96, Chapter 8, discuss the potential for ex-
ploiting parallel VSLI (very large scale integration) systems, where the
most appropriate algorithms may be different from those for non-parallel
systems (DK96, Section 3.5.5). They discuss both digital and analogue
implementations and their pros and cons (DK96, Section 8.3). Classical
eigenvector-based algorithms are not easily parallelizable, whereas neural
network algorithms are (DK96 pp. 205–207).
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Université Libre de Bruxelles.

Cuadras, C.M. (1998). Comment on ‘Some cautionary notes on the use of
principal components regression’. Amer. Statistician, 52, 371.

Cubadda, G. (1995). A note on testing for seasonal co-integration using
principal components in the frequency domain. J. Time Series Anal.,
16, 499–508.

Dahl, K.S., Piovoso, M.J. and Kosanovich, K.A. (1999). Translating third-
order data analysis methods to chemical batch processes. Chemometrics
Intell. Lab. Syst., 46, 161–180.



426 References

Daigle, G. and Rivest, L.-P. (1992). A robust biplot. Canad. J. Statist., 20,
241–255.

Daling, J.R. and Tamura, H. (1970). Use of orthogonal factors for selection
of variables in a regression equation—an illustration. Appl. Statist., 19,
260–268.

Darnell, A.C. (1994). A Dictionary of Econometrics. Aldershot: Edward
Elgar.

Darroch, J.N. and Mosimann, J.E. (1985). Canonical and principal
components of shape. Biometrika, 72, 241–252.
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Dudziński, M.L., Norris, J.M., Chmura, J.T. and Edwards, C.B.H.
(1975). Repeatability of principal components in samples: Normal
and non-normal data sets compared. Multiv. Behav. Res., 10, 109–
117.



428 References

Dunn, J.E. and Duncan, L. (2000). Partitioning Mahalanobis D2 to
sharpen GIS classification. University of Arkansas Statistical Laboratory
Technical Report No. 29.

Dunteman, G.H. (1989). Principal Components Analysis. Beverly Hills:
Sage.

Durbin, J. (1984). Time series analysis. Present position and potential
developments: Some personal views. J. R. Statist. Soc. A, 147, 161–173.

Durbin, J. and Knott, M. (1972). Components of Cramér–von Mises
statistics I. J. R. Statist. Soc. B, 34, 290–307 (correction, 37, 237).

Durbin, J., Knott, M. and Taylor, C.C. (1975). Components of Cramér–von
Mises statistics II. J. R. Statist. Soc. B, 37, 216–237.

Eastment, H.T. and Krzanowski, W.J. (1982). Cross-validatory choice
of the number of components from a principal component analysis.
Technometrics, 24, 73–77.

Efron, B. and Tibshirani, R.J. (1993). An Introduction to the Bootstrap.
New York: Chapman and Hall.

Eggett, D.L. and Pulsipher, B.A. (1989). Principal components in mul-
tivariate control charts. Paper presented at the American Statistical
Association Annual Meeeting, August 1989, Washington, D.C.

Elmore, K.L. and Richman, M.B. (2001). Euclidean distance as a similarity
metric for principal component analysis. Mon. Weather Rev., 129, 540–
549.

Elsner, J.B. and Tsonis, A.A. (1996). Singular Spectrum Analysis: A New
Tool in Time Series Analyis. New York: Plenum Press.

Escoufier, Y. (1986). A propos du choix des variables en analyse des
données. Metron, 44, 31–47.

Escoufier, Y. (1987). The duality diagram: a means for better practical
application. In Developments in Numerical Ecology, eds. P. Legendre
and L. Legendre, 139-156. Berlin: Springer-Verlag.

Esposito, V. (1998). Deterministic and probabilistic models for symmetrical
and non symmetrical principal component analysis. Metron, 56, 139–
154.

Everitt, B.S. (1978). Graphical Techniques for Multivariate Data. London:
Heinemann Educational Books.

Everitt, B.S. and Dunn, G. (2001). Applied Multivariate Data Analysis,
2nd edition. London: Arnold.

Everitt, B.S., Landau, S. and Leese, M. (2001). Cluster Analysis, 4th
edition. London: Arnold.

Fancourt, C.L. and Principe, J.C. (1998). Competitive principal component
analysis for locally stationary time series. IEEE Trans. Signal Proc., 11,
3068–3081.

Farmer, S.A. (1971). An investigation into the results of principal com-
ponent analysis of data derived from random numbers. Statistician, 20,
63–72.



References 429

Feeney, G.J. and Hester, D.D. (1967). Stock market indices: A principal
components analysis. In Risk Aversion and Portfolio Choice, eds. D.D.
Hester and J. Tobin, 110–138. New York: Wiley.

Fellegi, I.P. (1975). Automatic editing and imputation of quantitative data.
Bull. Int. Statist. Inst., 46, (3), 249–253.
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Ferré, L. (1995b). Selection of components in principal component anal-
ysis: A comparison of methods. Computat. Statist. Data Anal., 19,
669–682.

Filzmoser, P. (2000). Orthogonal principal planes. Psychometrika, 65, 363–
376.

Fisher, R.A. and Mackenzie, W.A. (1923). Studies in crop variation II. The
manurial response of different potato varieties. J. Agri. Sci., 13, 311–320.

Flury, B. (1988). Common Principal Components and Related Models. New
York: Wiley.

Flury, B.D. (1993). Estimation of principal points. Appl. Statist., 42, 139–
151.

Flury B.D. (1995). Developments in principal component analysis. In
Recent Advances in Descriptive Multivariate Analysis, ed. W.J. Krza-
nowski, 14–33. Oxford: Clarendon Press.

Flury, B.D. (1997). A First Course in Multivariate Statistics. New York:
Springer.

Flury, B.D., Nel, D.G. and Pienaar, I. (1995). Simultaneous detection of
shift in means and variances. J. Amer. Statist. Assoc., 90, 1474–1481.

Flury, B.D. and Neuenschwander, B.E. (1995). Principal component mod-
els for patterned covariance matrices with applications to canonical
correlation analysis of several sets of variables. In Recent Advances in
Descriptive Multivariate Analysis, ed. W.J. Krzanowski, 90–112. Oxford:
Clarendon Press.

Flury, B. and Riedwyl, H. (1981). Graphical representation of multivariate
data by means of asymmetrical faces. J. Amer. Statist. Assoc., 76, 757–
765.

Flury, B. and Riedwyl, H. (1988). Multivariate Statistics. A Practical
Approach. London: Chapman and Hall.

Folland, C. (1988). The weighting of data in an EOF analysis. Met 0 13
Discussion Note 113. UK Meteorological Office.

Folland, C.K., Parker, D.E. and Newman, M. (1985). Worldwide marine
temperature variations on the season to century time scale. Proceedings
of the Ninth Annual Climate Diagnostics Workshop, 70–85.



430 References

Fomby, T.B., Hill, R.C. and Johnson, S.R. (1978). An optimal property of
principal components in the context of restricted least squares. J. Amer.
Statist. Assoc., 73, 191–193.

Foster, P. (1998). Exploring multivariate data using directions of high
density. Statist. Computing, 8, 347–355.

Fowlkes, E.B. and Kettenring, J.R. (1985). Comment on ‘Estimating op-
timal transformations for multiple regression and correlation’ by L.
Breiman and J.H. Friedman. J. Amer. Statist. Assoc., 80, 607–613.

Frane, J.W. (1976). Some simple procedures for handling missing data in
multivariate analysis. Psychometrika, 41, 409–415.

Frank, I.E. and Friedman, J.H. (1989). Classification: Oldtimers and
newcomers. J. Chemometrics, 3, 463–475.

Frank, I.E. and Friedman, J.H. (1993). A statistical view of some
chemometrics tools. Technometrics, 35, 109–148 (including discussion).

Franklin, S.B., Gibson, D.J., Robertson, P.A., Pohlmann, J.T. and Fral-
ish, J.S. (1995). Parallel analysis: A method for determining significant
principal components. J. Vegetat. Sci., 6, 99–106.

Freeman, G.H. (1975). Analysis of interactions in incomplete two-way
tables. Appl. Statist., 24, 46–55.

Friedman, D.J. and Montgomery, D.C. (1985). Evaluation of the predictive
performance of biased regression estimators. J. Forecasting, 4, 153-163.

Friedman, J.H. (1987). Exploratory projection pursuit. J. Amer. Statist.
Assoc., 82, 249–266.

Friedman, J.H. (1989). Regularized discriminant analysis. J. Amer. Statist.
Assoc., 84, 165–175.

Friedman, J.H. and Tukey, J.W. (1974). A projection pursuit algorithm for
exploratory data analysis. IEEE Trans. Computers C, 23, 881–889.

Friedman, S. and Weisberg, H.F. (1981). Interpreting the first eigenvalue
of a correlation matrix. Educ. Psychol. Meas., 41, 11–21.

Frisch, R. (1929). Correlation and scatter in statistical variables. Nordic
Statist. J., 8, 36–102.

Fujikoshi, Y., Krishnaiah, P.R. and Schmidhammer, J. (1985). Effect of
additional variables in principal component analysis, discriminant anal-
ysis and canonical correlation analysis. Tech. Report 85-31, Center for
Multivariate Analysis, University of Pittsburgh.

Gabriel, K.R. (1971). The biplot graphic display of matrices with
application to principal component analysis. Biometrika, 58, 453–467.

Gabriel, K.R. (1978). Least squares approximation of matrices by additive
and multiplicative models. J. R. Statist. Soc. B, 40, 186–196.

Gabriel, K.R. (1981). Biplot display of multivariate matrices for inspection
of data and diagnosis. In Interpreting Multivariate Data, ed. V. Barnett,
147–173. Chichester: Wiley.

Gabriel K.R. (1995a). Biplot display of multivariate categorical data,
with comments on multiple correspondence analysis. In Recent Advances



References 431

in Descriptive Multivariate Analysis, ed. W.J. Krzanowski, 190–226.
Oxford: Clarendon Press.

Gabriel K.R. (1995b). MANOVA biplots for two-way contingency ta-
bles. In Recent Advances in Descriptive Multivariate Analysis, ed. W.J.
Krzanowski, 227–268. Oxford: Clarendon Press.

Gabriel, K.R. (2002). Goodness of fit of biplots and correspondence
analysis. To appear in Biometrika.

Gabriel, K.R. and Odoroff C.L. (1983). Resistant lower rank approximation
of matrices. Technical report 83/02, Department of Statistics, University
of Rochester, New York.

Gabriel, K.R. and Odoroff, C.L. (1990). Biplots in biomedical research.
Statist. Med., 9, 469–485.

Gabriel, K.R. and Zamir, S. (1979). Lower rank approximation of matrices
by least squares with any choice of weights. Technometrics, 21, 489–
498.

Garnham, N. (1979). Some aspects of the use of principal components in
multiple regression. Unpublished M.Sc. dissertation. University of Kent
at Canterbury.

Garthwaite, P.H. (1994). An interpretation of partial least squares. J.
Amer. Statist. Assoc., 89, 122–127.

Gauch, H.G. (1982). Multivariate Analysis in Community Ecology. Cam-
bridge: Cambridge University Press.

Geladi, P. (1988). Notes on the history and nature of partial least squares
(PLS) modelling. J. Chemometrics, 2, 231–246.

Gifi, A. (1990). Nonlinear Multivariate Analysis. Chichester: Wiley.
Girshick, M.A. (1936). Principal components. J. Amer. Statist. Assoc., 31,

519–528.
Girshick, M.A. (1939). On the sampling theory of roots of determinantal

equations. Ann. Math. Statist., 10, 203–224.
Gittins, R. (1969). The application of ordination techniques. In Ecological

Aspects of the Mineral Nutrition of Plants, ed. I. H. Rorison, 37–66.
Oxford: Blackwell Scientific Publications.

Gittins, R. (1985). Canonical Analysis. A Review with Applications in
Ecology. Berlin: Springer.

Gleason, T.C. and Staelin, R. (1975). A proposal for handling missing data.
Psychometrika, 40, 229–252.

Gnanadesikan, R. (1977). Methods for Statistical Data Analysis of Multi-
variate Observations. New York: Wiley.

Gnanadesikan, R. and Kettenring, J.R. (1972). Robust estimates, residuals,
and outlier detection with multiresponse data. Biometrics, 28, 81–124.

Goldstein, H. (1995). Multilevel Statistical Models, 2nd edition. London:
Arnold.

Goldstein, M. and Dillon, W.R. (1978). Discrete Discriminant Analysis.
New York: Wiley.



432 References

Golyandina, N.E., Nekrutin, V.V. and Zhigljavsky, A.A. (2001). Analysis
of Time Series Structure. SSA and Related Techniques. Boca Raton:
Chapman and Hall.

Gonzalez, P.L., Evry, R., Cléroux, R. and Rioux, B. (1990). Selecting the
best subset of variables in principal component analysis. In COMP-
STAT 90, eds. K. Momirovic and V. Mildner, 115–120. Heidelberg:
Physica-Verlag.

Good, I.J. (1969). Some applications of the singular value decomposition
of a matrix. Technometrics, 11, 823–831.

Gordon, A.D. (1999). Classification, 2nd edition. Boca Raton: Chapman
and Hall/CRC.

Gower, J.C. (1966). Some distance properties of latent root and vector
methods used in multivariate analysis. Biometrika, 53, 325–338.

Gower, J.C. (1967). Multivariate analysis and multidimensional geometry.
Statistician, 17, 13–28.

Gower, J.C. and Hand, D.J. (1996). Biplots. London: Chapman and Hall.
Gower, J.C. and Krzanowski, W.J. (1999). Analysis of distance for struc-

tured multivariate data and extensions to multivariate analysis of
variance. Appl. Statist., 48, 505–519.

Grambsch, P.M., Randall, B.L., Bostick, R.M., Potter, J.D. and Louis,
T.A. (1995). Modeling the labeling index distribution: An application of
functional data analysis. J. Amer. Statist. Assoc., 90, 813–821.

Green, B.F. (1977). Parameter sensitivity in multivariate methods. J.
Multiv. Behav. Res., 12, 263–287.

Greenacre, M.J. (1984). Theory and Applications of Correspondence
Analysis. London: Academic Press.

Greenacre, M.J. (1993). Correspondence Analysis in Practice. London:
Academic Press.

Greenacre, M. and Hastie, T. (1987). The geometric interpretation of
correspondence analysis. J. Amer. Statist. Assoc., 82, 437–447.

Grimshaw, S.D., Shellman, S.D. and Hurwitz, A.M. (1998). Real-time
process monitoring for changing inputs. Technometrics, 40, 283–296.

Grossman, G.D., Nickerson, D.M. and Freeman, M.C. (1991). Principal
component analyses of assemblage structure data: Utility of tests based
on eigenvalues. Ecology, 72, 341–347.
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additive principal components 377,
378

agriculture 9, 353, 376
carrots 210, 323, 346
see also designed experiments

algebraic derivations of PCs 4–6,
10, 11, 13, 21, 30, 39

algebraic properties of PCs 10–21,
25, 26, 29–34, 86, 139, 158,
170, 174, 266, 328, 342, 361,
362, 375, 392, 394, 400, 404

statistical implications 10, 11,
13, 25, 26, 31

allometry 344, 345, 374
allometric extension 356

alternating least squares (ALS)
375, 377

analysis of variance (ANOVA) 122,
351–354, 390

blocks and treatments 351, 352
two-way models 351, 352, 390
see also multivariate analysis of

variance
anatomical measurements 22, 57,

58, 64–68, 81–83, 145–147,

214, 219, 233–236, 242–245,
254, 258, 259, 354, 358-359

children 233–236
criminals 68
reflexes 57-58
students 64–68, 81–83, 214,

242–245, 254, 258, 259,
358-359

Andrews’ curves 107–110, 242, 253
approximations to PCs 269,

292–296
see also discrete PC coefficients,

rounded PC coefficients,
truncation of PC coefficients

archaeology 349, 388
artistic qualities 83–85, 97, 98,

254-258, 276, 277
asymptotic probability

distributions, see
probability distributions

athletics
Olympic track records 42
road running 98-101, 298, 316,

320–323, 349, 350
atmospheric science 70–74, 80, 112,
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116, 127-130, 133, 270, 274,
284, 289, 294–297, 302–317,
332, 354, 362, 364, 385

see also meteorology and
climatology

autocorrelation/autocovariance
129, 149, 298, 335, 336

autoregressive processes
ARMA models 336, 337
first order 301, 327, 334, 335
multivariate first order 302, 308

auxiliaries 399

Bartlett’s test see hypothesis
testing for equality of PC
variances

basis functions 318–320, 325, 327
Fourier basis 319
spline basis 320, 322, 325, 331

Bayesian inference 222, 395
in factor analysis 155
in regression 177, 179
posterior distribution 56, 126
prior distribution 60, 126, 179
using PCs 56, 60

Behrens-Fisher problem,
multivariate 356

best-fitting
lines, planes and hyperplanes 7,

36, 189, 389
subspaces 34–36, 78, 80, 87, 342

best linear approximation to PCs
using subset of variables
294

best linear predictors 16, 17, 392
between–group variation 202, 203,

209, 220, 399
between–treatment (and –block)

PCs 352
biased regression methods 167,

168, 171, 172, 177–179,
183–185, 230, 286

see also PC regression, ridge
regression, shrinkage
methods

binary variables 68, 88, 339, 340,
343, 346

presence/absence data 105, 107,
390

biological applications 9, 57, 64,
90, 390

aphids 122, 145-147, 214, 219
birds

Irish wetland birds 105–106
seabird communities 214

diving seals 316, 323
see also ecology, size and shape

PCs
biplots 79, 90–103, 132, 230, 342,

353, 408
bimodel 91
classical 90, 101
coefficient of variation 102, 389
computation 413
correspondence analysis 95, 96
generalized 102
interpolation and prediction 102,

382
non-linear 102, 381, 382
robust 102, 265
symmetric 96

bisection method 411
Bonferroni bound 248
bootstrap estimation 49, 112, 117,

125, 126, 261, 267, 314, 394
confidence intervals 52, 118, 126,

331
in quality control 368
non-parametric 52
of residuals 125, 377
parametric 52
resampling in blocks 360

boxplots 295
of PC scores 125, 235

branch-and-bound algorithm 284
broken stick model 115, 130, 132,

143
Burt matrix 343

calibration 190
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canonical correlation analysis 157,
183, 199, 200, 222–229, 267,
309, 362, 392, 399

canonical correlations 139, 157,
224–225

canonical covariance analysis
see maximum covariance
analysis

canonical (factor) analysis 157
canonical variate (discriminant)

analysis 102, 199, 209, 210,
220, 223, 401

centering by medians or modes 389
Central Limit Theorem 236
centroid method 154, 157

see also point estimation for
factor loadings

chaos theory 303
chemistry 9, 90, 384, 389

blood chemistry 40, 41, 116,
133–134, 292, 346

chemical engineering 380
chemometrics 184, 231, 398
gas chromatography 134–137
properties of chemical

compounds 74–76, 346
properties of sand/mud/rock

samples 224, 248, 390
quantitative structure–activity

relationships (QSAR) 74
spectrophotometry 190
spectroscopy 184, 185, 253, 316,

413
Chernoff’s faces 107
children

heights and weights 233–236,
316, 330

intelligence tests 161–165, 271
chi-squared distance 105
Cholesky factorization 182, 186
classification, see cluster analysis
climate change/variation 73, 129,

183, 305
fingerprint techniques 328, 332,

333, 388

potentially predictable variation
354

climatology, see atmospheric
science, meteorology and
climatology

cluster analysis
complete linkage 217, 218
for observations 71, 84, 108–110,

199, 200, 210–222, 299, 381,
387, 408

for variables 138, 200, 213, 214
fuzzy clustering 212
see also dissection, minimum

spanning tree
clusters 80, 147, 241, 294, 298
coefficient of determination,

see multiple correlation
coefficient

coefficient of variation 102, 384,
389

combined PCA 228
common PCs 206, 209, 224, 338,

354–362, 368
estimation and hypothesis

testing 355, 357, 360
for dependent groups 357
partial common PC models 355

comparisons
between clusters 217
between covariance structures 92
between data configurations 125,

140, 141, 261
between PCs 22, 24, 201, 257,

259–263, 339, 349, 354–362
between subspaces 140, 141, 252

complex PCA 302, 309–314, 328,
329, 346, 369, 370

complex eigenval-
ues/eigenvectors
309, 310, 369, 370

compositional data 25, 39, 338,
340, 346–350, 374, 388

independence 347, 348
non-linear structure 346, 348
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computation
in (PC) regression 46, 168, 170,

173, 182, 412, 413
of factors 154, 364
of PCs 7, 8, 29, 46, 90, 364

efficient calculation 407–414
in computer packages 407, 408

parallel processing 413, 414
using neural networks 400, 413,

414
see also biplots, correspondence

analysis, principal co-
ordinate analysis, singular
value decomposition

computationally intensive methods
112, 120-127

see also bootstrap,
cross-validation, jackknife

computer languages 407-412
computer pack-

ages/libraries/software 25,
66, 150, 153, 162, 271, 407,
408

BMDP 407
EISPACK 411
IMSL 411
MATLAB 407
NAG 411
PRINCALS 375
R/S-PLUS 407-412
SAS 407
SPSS 375, 407

computer science 79
concentration ellipses 97, 102
concurvities 378
conditional covariance or

correlation matrix 15, 139
confidence intervals, see interval

estimation
congruence coefficient 357
consensus components 356
constraints on PCs 393, 401

constrained PCA 401
contrast, homogeneous and

sparsity constraints 295,

296
soft constraints 401

contingency tables 79, 103, 106,
107, 340–343, 375, 385

see also interactions, principal
axes

continuum regression 184
contours of constant probability

16, 18, 23, 33, 39, 54, 367,
368

enclosing maximum volume 16
contrasts between variables 42, 57,

58, 67, 76, 81, 99, 162, 217,
244, 245, 294, 297, 344, 347,
349

convex hulls 81, 82, 214
correlation between PCs and

variables 25, 141, 214, 404
correlation vs. covariance

for influence functions 250–251
in discriminant analysis 204
in factor analysis 156
in PCA 7, 10, 14, 21–26, 40, 42,

65, 74, 76, 83, 98, 134
see also conditional

covariance/correlation
matrices, influence
functions, maximum
likelihood estimation,
partial correlation, robust
estimation

correspondence analysis 46, 79,
102, 104–107, 338, 341–343,
353, 372, 373, 375, 385, 386,
391

multiple correspondence analysis
102, 343, 375, 376

Cramér–von Mises statistic 402
decomposition into ‘PCs’ 402

crime rates 147–149, 300
cross-correlation asymmetric PCA

401
cross-validation 112, 120–127, 131,

132, 175, 177, 185, 187, 239,
253
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cumulative percentage of total
variation 55, 112–114, 126,
130–137, 147, 166, 201, 211,
249

see also rules for selecting PCs
curve alignment/registration 316,

323, 324
cyclic subspace regression 184
cyclo-stationary EOFs and POPs

314-316

DASCO (discriminant analysis
with shrunken covariances)
207, 208

data given as intervals 339, 370,
371

data mining 200
definitions of PCs 1–6, 18, 30, 36,

377, 394
demography 9, 68–71, 108–110,

195–198, 215–219, 245–247
density estimation 316, 327, 368
derivation of PCs, see algebraic

derivations, geometric
derivations

descriptive use of PCs 19, 24, 49,
55, 59, 63–77, 130, 132, 159,
263, 299, 338, 339

see also first few PCs
designed experiments 336, 338,

351–354, 365
optimal design 354
see also analysis of variance,

between-treatment PCs,
multivariate analysis of
variance, optimal design,
PCs of residuals

detection of outliers 13, 168, 207,
211, 233–248, 263, 268, 352

masking or camouflage 235
tests and test statistics 236–241,

245, 251, 268
see also influential observations,

outliers

dimensionality reduction 1–4, 46,
74, 78, 107, 108, 111–150,
160

preprocessing using PCA 167,
199, 200, 211, 221, 223, 396,
401

redundant variables 27
dimensionless quantity 24
directional data 339, 369, 370
discrete PC coefficients 269,

284-286
see also rounded PC coefficients,

simplified PC coefficients
discrete variables 69, 88, 103, 145,

201, 339–343, 371, 388
categorical variables 79, 156,

375, 376
measures of association and

dispersion 340
see also binary variables,

contingency tables,
discriminant analysis, Gini’s
measure of dispersion,
ranked data

discriminant analysis 73, 111, 129,
137, 199–210, 212, 223, 335,
351, 354, 357, 386, 408

assumptions 200, 201, 206
for discrete data 201
for functional data 327
linear discriminant function 201,

203
non-linear 206
non-parametric 201
probability/cost of

misclassification 199, 201,
203, 209

quadratic discrimination 206
training set 200, 201
see also between-group

variation, canonical
variate (discriminant)
analysis, regularized
discriminant analysis,
SIMCA, within–groups PCs
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discriminant principal component
analysis 209

dissection 84, 210, 212, 214, 215,
217, 219

distance/dissimilarity measures
between observations 79, 86,

89, 90, 92, 93, 106, 200,
210-212, 215, 348

between variables 391
geodesic distance 382
see also Euclidean distance,

Mahalanobis distance,
similarity measures

dominant PCs 22, 40, 42, 113, 131,
134, 135, 263, 271, 276, 389

doubly-centred PCA 42, 344, 372,
374, 389-391

duality between PCA and principal
coordinate analysis 86-90

duality diagram 386

ecology 9, 117, 118, 130, 131, 224,
261, 343, 371, 389

habitat suitability 239
see also biological applications

economics and finance 9, 300, 329
econometrics 188, 330, 393
financial portfolio 404
stock market 76, 77, 300

eigenzeit 323
elderly at home 68–71, 110
ellipsoids, see concentration

ellipses, contours of
constant probability,
interval estimation,
principal axes of ellipsoids

elliptical distributions 20, 264, 379,
394

El Niño-Southern Oscillation
(ENSO) 73, 305, 306, 311

EM algorithm 60, 222, 363, 364,
412

regularized EM algorithm 364
empirical orthogonal functions

(EOFs) 72, 74, 274, 296,

297, 303, 320
space-time EOFs 333
see also cyclostationary EOFs,

extended EOFs, Hilbert
EOFs

empirical orthogonal telecon-
nections 284, 289, 290,
390

entropy 20, 219, 396
equal-variance PCs 10, 27, 28, 43,

44, 252, 410, 412
nearly equal variances, see

nearly equal eigenvalues
see also hypothesis testing for

equality of PC variances
error covariance matrix 59, 387,

400
errors-in-variables models 188
estimation, see bootstrap

estimation, interval
estimation, least
squares (LS) estimation,
maximum likelihood
estimation, method of
moments estimation,
point estimation, robust
estimation

Euclidean norm 17, 37, 46, 113,
380, 387, 392

exact linear relationships between
variables, see zero-variance
PCs

extended components 404
extended EOF analysis (EEOF

analysis) 307, 308, 333, 398,
399

multivariate EEOF analysis 307,
308

factor analysis 7, 8, 60, 115, 116,
122, 123, 126, 127, 130–132,
150–166, 269, 270, 272–274,
296, 336, 357, 364, 396, 408

comparisons with PCA 158–161
factor rotation, see rotation
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first few (high variance) PCs
computation 408–411, 413
dominated by single variables

22, 24, 41, 56
in canonical correlation analysis

223, 224, 362
in climate change detection 332,

333
in cluster analysis 211–219
in discriminant analysis 200–202,

207, 208
in factor analysis 157–162
in independent component

analysis 396
in outlier detection 234–236,

238, 239, 263, 367
in projection pursuit 221
in regression 171–174, 186–188,

191
in variable selection 138,

186-188, 191, 197
see also cumulative percentage of

total variation, descriptive
use of PCs, dimensionality
reduction, dominant PCs,
interpretation of PCs,
residuals after fitting first
few PCs, rotation, rules
for selecting PCs, size and
shape PCs, two-dimensional
PC plots

fixed effects model for PCA 59–61,
86, 96, 124, 125, 131, 158,
220, 267, 330, 376, 386

Fourier analysis/transforms 311,
329, 370

frequency domain PCs 299, 310,
328-330, 370

multitaper frequency
domain singular value
decomposition (MTM-SVD)
303, 311, 314

functional and structural
relationships 168, 188–190

functional data 61, 266, 302,

320–323, 331, 384, 387
functional PCA (FPCA) 274,

316-327, 384, 402
bivariate FPCA 324
estimating functional PCs 316,

318–320, 327
prediction of time series 316,

326, 327
robust FPCA 266, 316, 327
see also rotation

gamma distribution
probability plots 237, 239, 245

gas chromatography, see chemistry
Gaussian distribution, see normal

distribution
generalizations of PCA 60, 189,

210, 220, 342, 360, 361,
373–401

generalized linear models 61, 185
bilinear models 61

generalized SVD, see singular
value decomposition

generalized variance 16, 20
genetics 9, 336, 413

gene shaving 213
geology 9, 42, 346, 389, 390

trace element concentrations 248
geometric derivation of PCs 7, 8,

10, 36, 59, 87, 189
geometric properties of PCs 7, 8,

10, 18–21, 27, 29, 33–40, 46,
53, 78, 80, 87, 113, 189, 212,
320, 340, 347, 372

statistical implications 18, 33
Gini’s measure of dispersion 340
Givens transformation 410
goodness-of-fit tests 317, 373, 401,

402
lack-of-fit test 379

graphical representation
comparing covariance matrices

360
dynamic graphics 79
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of correlations between variables
and components 404

of data 63, 78–110, 130, 200,
201, 212, 214, 215, 217–219,
235–236, 242, 244–247, 338,
341, 353, 367

of intrinsically high-dimensional
data 107–110

group structure 80, 145, 299, 387,
398

see also cluster analysis,
discriminant analysis

growing scale PCA 334
growth curves 328, 330, 331

Hilbert EOF analysis see complex
PCA

Hilbert transforms 310, 329, 369
history of PCs 6–9
Hotelling’s T 2 205, 356, 367, 368
household formation 195–198,

245–247
Householder transformation 410,

412
how many factors? 116, 126, 130,

131, 159, 162
how many PCs? 43, 53, 54, 63, 78,

111–137, 159, 222, 230, 238,
253, 261, 271, 327, 332, 333,
338, 385, 387, 395

see also parallel analysis, rules
for selecting PCs

hypothesis testing
for common PCs 356–360
for cumulative proportion of

total variance 55
for equality of multivariate

means 205
for equality of PC variances

53–55, 118, 119, 128, 131,
132, 136, 276, 394

for equivalence of subspaces 360
for Hilbert EOFs 311
for linear trend in PC variances

120, 356

for normality 402
for outliers 236, 238, 239, 241,

367, 368
for periodicities 304, 314
for specified PC coefficients 53,

293, 394
for specified PC variances 53,

114, 394
see also likelihood ratio test,

minimum χ2 test

ill-conditioning 390
see also multicollinearity

image processing 56, 346, 395, 401
eigenimages 346

Imbrie’s Q-mode method 390
imputation of missing values 363,

366
independent component analysis

(ICA) 373, 395, 396
indicator matrices 343
inference for PCs see estimation,

hypothesis testing, interval
estimation

influence function
additivity 251
deleted empirical influence

function 251
empirical influence function 251

for PC coefficients and
variances 253–259

local 262
sample influence function 249,

250, 252
for PC coefficients and

variances 253–259
for regression coefficients 249

standardized influence matrix
240

theoretical influence function
for correlation coefficients 250
for PC coefficients and

variances 249–251, 253, 263
for robust PCA 267
for subspaces 252–254
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influential observations 43, 81, 123,
232, 235, 239, 242, 248–259,
265, 268

tests of significance 253, 254, 268
influential variables 145, 147, 260
information see entropy
instability see stability
instrumental variables 144, 230,

298, 373, 392–394, 401
integer-valued PC coefficients, see

discrete PC coefficients
intelligence tests, see children
interactions 104, 353, 390

see also PCs of residuals
inter-battery factor analysis 225,

399
interpolation see smoothing and

interpolation
interpretation of PCs and related

techniques 22, 25, 40, 43,
44, 56–58, 63–77, 84, 99,
142, 166, 191, 217–218, 225,
244, 245, 269–298, 333, 339,
347, 352, 370, 391, 403, 404

over-interpretation 298
interpretation of two-dimensional

plots
biplots 91–103, 106, 107
correspondence analysis 103–107
PC plots 80–85, 89, 106, 107
principal co-ordinate plots 89,

106, 107
interval data see data given as

intervals
interval estimation

for PC coefficients and variances
51–53, 394

invariance
scale invariance 26
under orthogonal

transformations
21

inverse of correlation matrix 32
irregularly-spaced data 320, 331,

365, 385

isometric vector 53, 344, 345, 347,
393, 401, 404

Isle of Wight 161, 271

jackknife 52, 125, 126, 131, 132,
261, 394

Kaiser’s rule 114, 115, 123, 126,
130–132, 238

Kalman filter 335
Karhunen-Loève expansion 303,

317
kriging 317
kurtosis 219

L1-norm PCA 267
Lagrange multipliers 5, 6
l’analyse des correspondances, see

correspondence analysis
landmark data 210, 323, 345, 346,

369
Laplace distribution 267
large data sets 72, 123, 221, 333,

339, 372, 408, 414
LASSO (Least Absolute Shrinkage

and Selection Operator)
167, 284, 286–291

last few (low variance) PCs 3, 27,
32, 34, 36, 56, 94, 112, 277,
347, 352, 374, 377, 378

computation 409, 410
examples 43, 44, 58, 242–248
in canonical correlation analysis

223
in discriminant analysis 202,

204, 205, 207, 208
in outlier detection 234, 235,

237–239, 242–248, 263, 367
in regression 171, 174, 180–182,

186–188, 191, 197
in variable selection 138,

186–188, 191, 197
minor component analysis 413
treated as noise 53, 118, 128
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see also hypothesis testing for
equality of PC variances,
near-constant relationships,
residuals after fitting first
few PCs, zero variance PCs

latent root regression 168, 178,
180–182, 185–187, 190, 191,
197, 239

latent semantic indexing 90
latent variables 151, 165, 226, 230,

231
latent variable multivariate

regression 230, 231
least squares estimation/estimators

32, 34, 59, 157, 167–173,
175–179, 181, 184, 185, 189,
208, 229, 286, 288, 294, 304,
326, 382, 385

see also partial least squares
leverage points 240

see also influential observations
likelihood ratio test 54, 55, 120,

353, 356, 360
linear approximation asymmetric

PCA 401
loadings see factor loadings, PC

coefficients
local authorities

British towns 71, 215
England and Wales 195–198,

245–247
English counties 108–110,

215–219
local PCA 381
log-eigenvalue (LEV) diagram

115–118, 128, 134-136
log transform see transformed

variables
longitudinal data 328, 330, 331,

355
lower (or upper) triangular

matrices 182, 411, 412
lower rank approximations to

matrices 38, 46, 113, 120,
342, 365, 383, 385

LR algorithm 411

M -estimators 264, 265, 267
Mahalanobis distances 33, 93, 94,

104, 203, 204, 209, 212, 237,
264, 265

manufacturing processes 366–368
matrix correlation 96, 140, 141
matrix-valued data 370
maximum covariance analysis 225,

226, 229, 401
maximum likelihood estimation

220, 264
for common PCs 355
for covariance matrices 50, 336,

363, 364
for factor loadings 155–157
for functional and structural

relationships 189
for PC coefficients and variances

8, 50, 365
in PC models 60, 222, 267, 364,

386
measurement errors 151, 188, 189
medical applications

biomedical problems 395
clinical trials 40, 239
epidemiology 248, 336
opthalmology 266
see also chemistry (blood

chemistry)
meteorology and climatology 8, 9,

90, 183, 213, 381
atmospheric pressure 71–73, 401
cloudbase heights 211
cloud-seeding 339
monsoon onset date 174
satellite meteorology 358
wind data 369, 370
see also atmospheric science,

climate change/variation,
ENSO, NAO, temperatures

method of moments estimation
for PC coefficients and
variances 50
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metrics 42, 59, 60, 185, 189, 210,
220, 260, 325, 331, 373, 382,
386–388

optimal metric 387
minimax components 267
minimum χ2 test 120
minimum description length 19,

39, 395
minimum spanning tree (MST)

81–83, 130
minimum variance ellipsoids 267
misclassification probabilities, see

discriminant analysis
missing data 60, 61, 83, 134, 339,

363–366, 412
estimating covari-

ance/correlation
matrices 363–365

estimating PCs 365, 385
in biplots 103, 104
in designed experiments 353, 365
in regression 363

mixtures of distributions 61, 165,
200, 221, 222, 241, 364

modal dispersion matrix 395
models for PCA 50, 54, 59–61, 119,

124–126, 132, 151, 158–160,
220, 364, 369, 405

see also fixed effects model for
PCA

modified principal components 144
most correlated components 26
multichannel singular spectrum

analysis (MSSA) 302, 305,
307, 308, 310, 311, 316, 329

multicollinearities 167, 168,
170–173, 177, 180, 181, 185,
188, 196, 286, 378

predictive and non-predictive
multicollinearities 180, 181,
185, 188

variance inflation factors (VIFs)
173, 174

see also ill-conditioning

multidimensional scaling see
scaling or ordination
techniques

multilevel models 353
multiple correlation coefficient 25,

141, 143, 174, 177, 191, 197,
198, 403

multiple correspondence analysis,
see correspondence analysis

multiple regression, see regression
analysis

multivariate analysis of variance
(MANOVA) 102, 351, 353

multivariate normal distribution 8,
16, 18, 20, 22, 33, 39, 47–55,
60, 69, 119, 152, 155–157,
160, 201, 207, 220–222, 236,
239, 244, 254, 264, 267, 276,
299, 338, 339, 365, 367, 368,
379, 386, 388

curvature 395
see also contours of constant

probability, inference for
PCs

multivariate regression 17, 183,
223, 228–230, 331, 352

multiway PCA, see three-mode
PCA

near-constant relationships
between variables 3, 13, 27,
28, 42–44, 119, 138, 167,
181, 182, 189, 235, 374, 377,
378

nearly equal eigenvalues 43, 262,
263, 276, 277, 360, 408, 410

see also stability
neural networks 200, 266, 373,

379–381, 388, 400, 401, 405,
408, 412–414

analogue/digital 414
autoassociative 381
biological plausibility 413
first or last PCs 400, 413
input training net 381



Index 469

PC algorithms with noise 400
sequential or simultaneous 380
single layer/multi-layer 413, 414
see also computation, cross-

correlation asymmetric
PCA, linear approximation
asymmetric PCA, oriented
PCA

nominal data, see binary variables,
contingency tables, discrete
variables

non-additive part of a two-way
model, see interactions in a
two-way model

non-centred PCA, see uncentred
PCA

non-independent data, see sample
surveys, spatial data, time
series

non-linear PCA 20, 102, 343, 365,
373–382, 388, 400, 413

distance approach 376, 385
Gifi approach 343, 374–377

non-linear relationships 80, 85
non-metric multidimensional

scaling, see scaling or
ordination techniques

non-normal data/distributions 49,
261, 373, 394–396

normal (Gaussian) distribution 68,
114, 131, 186, 189, 261

probability plots 245
see also multivariate normal

distribution
normalization constraints on PC

coefficients 6, 14, 25, 30, 72,
154, 162, 211, 237, 271, 277,
278, 286, 291, 297, 323, 387,
404, 408, 410

North Atlantic Oscillation (NAO)
73, 296

oblique factors/rotation 152–154,
156, 162–165, 270, 271, 295,
383

see also rotation
oceanography 8, 9, 303, 370
O-mode to T-mode analyses 398
optimal algebraic properties, see

algebraic properties
ordinal principal components 341
ordination or scaling techniques,

see scaling or ordination
techniques

oriented PCA 401
orthogonal factors/rotation

153–155, 161–165, 166,
270-274, 291

see also rotation
orthogonal projections, see

projections onto a subspace
orthonormal linear transformations

10, 11, 31, 37
oscillatory behaviour in time series

302-316, 329
propagating waves 309, 311, 314,

316, 329
standing waves 309, 311, 316

outliers 81, 98, 101, 134, 137, 219,
232–248, 262–265, 268, 387,
394

Andrews’ curves 110, 242
cells in a data matrix 385
in quality control 240, 366–368
with respect to correlation

structure 233–239, 242, 244,
245, 248

with respect to individual
variables 233–239, 242, 245,
248

see also detection of outliers,
influential observations

painters, see artistic qualities
parallel analysis 117, 127–129, 131,

262
parallel principal axes 379
partial correlations 127, 157
partial least squares (PLS) 167,

168, 178, 183–185, 208, 229
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pattern recognition 200
patterned correlation/covariance

matrices 27, 30, 56–58
all correlations equal 27, 55, 56
all correlations positive 57, 58,

67, 84, 99, 145, 148, 162,
174, 245

all correlations (near) zero 54,
55, 206, 348

groups of correlated variables
56–58, 114, 138, 167, 196,
213

widely differing variances 22, 40,
56, 115, 134, 135

see also structure of PCs,
Töplitz matrices

PC coefficients
alternative terminology 6, 72
arbitrariness of sign 67
hypothesis testing 53
interval estimation 52
maps of coefficients 72, 73, 80,

275, 284–283
point estimation 50, 66
use in variable selection 138,

138, 141
see also comparisons between

PCs, computation of PCs,
discrete PC coefficients, first
few PCs, influence functions
for PC coefficients, last
few PCs, normalization
constraints, probability
distributions, rounded
PC coefficients, sampling
variation, simplified PC
coefficients, stability of
PCs, structure of PCs

PC loadings see PC coefficients
PC regression 32, 123, 167–199,

202, 245, 337, 352
computation 46, 173, 408, 412
interpretation 170, 173
locally weighted 185

PC scores 30, 31, 36, 39, 45, 72,
169, 238, 265, 342, 362, 413

PC series, see point estimation
PC variances

hypothesis testing 53–55, 114,
117–120, 128, 129, 136

interval estimation 51, 52
lower bounds 57
point estimation 50
tests for equality 53–55, 118,

119, 128, 134
see also Bartlett’s test,

computation of PCs,
first few PCs, influence
functions for PC variances,
last few PCs, probability
distributions, rules for
selecting PCs, sampling
variation

PCA based on Euclidean similarity
391

PCA of residuals/errors 240, 304,
352, 353, 365, 391, 394

see also interactions
penalty function 278

roughness penalty 325, 326, 377
periodically extended EOFs

314-316
permutational PCs 339, 340
perturbed data 259–262
physical interpretion

in ICA 396
of PCs 132, 270, 296–298, 320
modes of the atmosphere 132,

296, 297, 391
Pisarenko’s method 303
pitprops 190–194, 286, 287, 289
point estimation

for factor loadings 151–157
for factor scores 153, 160
for PC coefficients 50, 66
for PC series 329
for PC variances 50
in econometrics 393, 394
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in functional and structural
relationships 189

in functional PCA 318–320
in regression 167–173, 175–186,

304, 337
see also bootstrap estimation,

least squares estimation,
maximum likelihood
estimation, method of
moments estimation, robust
estimation

power method 8, 409–411
accelerated version 8, 410
convergence 410
with inverse iteration 410
with shifts 410, 411

prediction sum of squares (PRESS)
121–124, 145, 175

predictive oscillation patterns
(PROPs) 309

predictor variables 227–230
see also regression analysis

pre-processing data using PCA see
dimensionality reduction

principal axes
for contingency table data 342
of ellipsoids 18, 22, 27, 39

principal co-ordinate analysis 39,
79, 85–90, 93, 106, 107, 209,
339, 346, 382

principal curves 373, 377–379, 381
principal differential analysis 316,

326
principal factor analysis 159, 160

see also point estimation for
factor loadings

principal Hessian directions 185
principal oscillation pattern (POP)

analysis 302, 303, 307–311,
314-316, 335

principal planes 279
principal points 379
principal predictors 227, 228, 354
principal response curves 331, 393

principal sensitivity components
240

principal sequence pattern analysis
308

principal variables 139–141, 144,
146–149, 368, 394, 395

see also selection of variables
probabilistic PCA, see models for

PCA
probability distributions 59

asymptotic distributions 9,
47–49, 51, 53

empirical distributions 49, 128,
129

exact distributions 48
for noise 388
for PC coefficients and variances

8, 9, 29, 47–49, 51, 53, 128,
129

see also models for PCA
process control, see statistical

process control
Procrustes rotation 143, 145, 221,

260, 362
projection pursuit 79, 200, 219-221,

241, 266, 387, 396
projections

in a biplot 94, 95
onto a subspace 20, 21, 34–37,

61, 140–141, 393, 399
onto rotated axes 154

properties of PCs, see algebraic
properties, geometric
properties

psychology/psychometrics 7, 9,
117, 130, 133, 225, 296, 343,
398

QL algorithm 411–413
convergence 412
incorporating shifts 412

QR algorithm 411–413
quality control, see statistical

process control
quantitative structure-activity
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relationships (QSAR), see
chemistry

quartimin/quartimax rotation 153,
154, 162–165, 270, 271, 277,
278

quaternion valued data 370

ranked data 267, 338, 340, 341,
348, 349, 388

rank correlation 341
reciprocal averaging, see scaling or

ordination
red noise 301, 304, 307, 314
reduced rank regression 229, 230,

331, 353, 392, 401
softly shrunk reduced rank

regression 230
reduction of dimensionality, see

dimensionality reduction
redundancy analysis 225–230, 331,

393, 401
redundancy coefficient/index 226,

227
redundant variables, see

dimensionality reduction
regionalization studies 213, 294
regression analysis 13, 32, 33, 74,

111, 112, 121, 127, 129, 137,
144, 145, 157, 167–199, 202,
205, 223, 227, 239, 240, 284,
286, 288, 290, 294, 304, 326,
337, 352, 363, 366, 368, 378,
390, 399, 412

computation 46, 168, 170, 173,
182, 412

influence function 249, 250
interpretation 46, 168, 170, 173,

182, 412
residuals 127, 399
variable selection 111, 112, 137,

145, 167, 172, 182, 185–188,
190, 191, 194, 197, 198, 286

see also biased regression
methods, econometrics,
influence functions,

latent root regression,
least squares estimation,
multivariate regression, PC
regression, point estimation,
reduced rank regression,
ridge regression, robust
regression, selection of
variables

regression components 403
regression tree 185
regularized discriminant analysis

205, 207, 208
reification 269
repeatability of PCA 261, 394
repeated measures, see longitudinal

data
rescaled PCs 403, 404
residual variation 16, 17, 108, 114,

129, 220, 240, 290, 399
see also error covariance matrix,

PCA of residuals
residuals in a contingency table,

see interactions
response variables 227–230

PCs of predicted responses 228,
230

see also regression analysis
restricted PC regression 184
ridge regression 167, 178, 179, 181,

185, 190, 364
road running, see athletics
robust estimation 232, 262–268

in functional PCA 266, 316, 327
in non-linear PCA 376
in regression 264, 366
of biplots 102, 265
of covariance/correlation

matrices 264, 265–267, 363,
364, 394

of distributions of PCs 267
of means 241, 264, 265
of PCs 50, 61, 233, 235, 263–268,

356, 366, 368, 394, 401
of scale 266
see also M-estimators, minimum
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variance ellipsoids,
S-estimators

rotation
of factors 116, 153–156, 159,

162–165
of functional PCs 316, 327
of PCs 43, 74, 151, 154, 162,

163, 165, 166, 182, 185, 188,
191, 213, 238, 248, 269–279,
291, 295, 297, 298, 370, 396,
407

of subsets of PCs with similar
variances 276, 277

rotation/switching of PCs 259
to simple components 285, 291
to simple structure 153, 154,

182, 185, 270, 271, 276, 277,
369

see also oblique factors,
orthogonal factors,
quartimin rotation, varimax
rotation

rounded PC coefficients 40, 42–44,
67, 259, 263, 292, 293

see also discrete PC coefficients,
simplified PC coefficients

row-centered data 89
rules for selecting PCs 54, 111–137,

159, 162, 217
ad hoc rules 112–118, 130–135,

136, 138, 147, 149, 238
based on cross-validation 112,

120–127, 130–132, 135–137
based on cumulative variances of

PCs 112–114, 117, 130–136,
138, 147, 147

based on gaps between
eigenvalues 126, 127, 129,
133

based on individual variances of
PCs 114–118, 123, 130–136,
138, 147, 149, 238

based on partial correlation 127
from atmospheric science 112,

116, 118, 127–130, 132–136

statistically based rules 112,
118–137

see also broken stick model,
equal variance PCs, how
many PCs, Kaiser’s rule,
log eigenvalue diagram,
parallel analysis, scree
graph, selection of a subset
of PCs

RV-coefficient 38, 143–145, 147,
252

S-estimators 267
S-mode analysis 308, 398
sample sizes

effective/equivalent 129, 148,
299

large see large data sets
moderate 249, 252
small 65, 68, 148, 235, 257
smaller than number of variables

90, 148, 207, 413
sample surveys 49, 328, 335, 336,

353, 353
stratified survey design 336, 353

sampling variation
PC coefficients 65
PC variances 115, 123

scale dependence of covariance
matrices 24, 26

see also invariance (scale
invariance)

scaling or ordination techniques
85–90, 102, 106, 107, 200

classical scaling 85
dual scaling 103, 343
non-metric multidimensional

scaling 86, 372
reciprocal averaging 103, 343
see also principal co-ordinate

analysis
scatter, definitions of 395
scores for PCs, see PC scores
SCoT (simplified component

technique) 278–279, 287,
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289, 290, 291
SCoTLASS (simplified component

technique - LASSO)
280–283, 287–291

scree graph 115–118, 125, 126,
130–132, 134, 135

selection of subsets of PCs
in discriminant analysis 201,

202, 204–206
in latent root regression 180, 181
in PC regression 168, 170–177,

196–198, 202, 205, 245
see also how many PCs, rules

for selecting PCs
selection of variables

in non-regression contexts 13,
27, 38, 111, 137–149, 186,
188, 191, 198, 220, 221, 260,
270, 286, 288, 290, 293–295,
376

stepwise selection/backward
elimination algorithms 142,
144, 145, 147

see also principal variables,
regression analysis (variable
selection)

self-consistency 20, 378, 379
sensible PCA 60
sensitivity matrix 240
sensitivity of PCs 232, 252,

259–263, 278
shape and size PCs, see size and

shape PCs
Shapiro-Wilk test 402
shrinkage methods 167, 178–181,

264, 288
signal detection 130, 304, 332
signal processing 303, 317, 395
signal to noise ratio 337, 388, 401
SIMCA 207–208, 239
similarity measures

between configurations 38
between observations 79, 89,

106, 210-212, 339, 390
between variables 89, 213, 391

see also distance/dissimilarity
measures

simple components 280–287, 291
simplicity/simplification 269–271,

274, 277–286, 403, 405
simplified PC coefficients 66, 67,

76, 77
see also approximations to PCs,

discrete PC coefficients,
rounded PC coefficients

simultaneous components 361
singular spectrum analysis (SSA)

302–308, 310, 316
singular value decomposition

(SVD) 7, 29, 44–46, 52, 59,
101, 104, 108, 113, 120, 121,
129, 172, 173, 226, 229, 230,
253, 260, 266, 273, 353, 365,
366, 382, 383

comparison of SVDs 362
computation based on SVD 46,

173, 412, 413
generalized SVD 46, 342, 383,

385, 386
multitaper frequency domain

SVD (MTM-SVD) 302, 311,
314, 316

size and shape PCs 53, 57, 64, 67,
68, 81, 104, 297, 298, 338,
343–346, 355, 356, 388, 393,
401

see also contrasts between
variables, interpretation
of PCs, patterned
correlation/covariance
matrices

skewness 219, 372
smoothing and interpolation 274,

316, 318, 320, 322, 324–326,
334, 335, 377–379

of spatial data 334, 335, 364, 365
lo(w)ess 326
splines 320, 322, 331, 377, 378,

387
sparse data 331
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spatial correlation/covariance 297,
302, 317, 333–335

intrinsic correlation model 334
isotropy and anisotropy 297, 334
linear model of co-regionalization

334
non-stationarity 297

spatial data 71–74, 130, 274, 275,
278–283, 289, 294, 295, 300,
302, 307–317, 320, 328, 329,
332–339, 364, 365, 370, 385,
398

spatial lattice 368
spatial domain, size and shape

297, 334
species abundance data 105–107,

224–225, 339, 371, 372,
389–391

between- and within-site species
diversity 372, 389

spectral decomposition of a matrix
13, 14, 31, 37, 44, 46, 86,
87, 101, 113, 170, 171, 266,
333, 344, 355, 368, 395, 404

weighted 207
spectral/spectrum analysis of a

time series 300, 301, 311,
337

spectrophotometry, see chemistry
sphering data 219
splines see smoothing and

interpolation
stability/instability

of PC subspaces 42, 53, 259, 261
of PCs and their variances 76,

81, 118, 126, 127, 232,
259–263, 267, 297

of spatial fields 130
see also influence function,

influential variables
standard errors for PC coefficients

and variances 50, 52
standardized variables 21, 24–27,

42, 112, 169, 211, 250, 274,
388, 389

statistical physics 266, 401
statistical process control 114, 184,

240, 333, 337, 339, 366–369,
381, 398

CUSUM charts 367
exponentially-weighted moving

principal components 337,
368

squared prediction error (SPE)
367, 368

stochastic complexity 19, 39, 395
strategies for selecting PCs in

regression
see selection of subsets of PCs

structural relationships, see
functional and structural
relationships

structure of PCs 24, 27, 28, 30,
56–59

PCs similar to original variables
22, 24, 40, 41, 43, 56, 115,
127, 134, 135, 146, 149, 159,
211, 259

see also contrasts between
variables, interpretation
of PCs, patterned
correlation/covariance
matrices, PC coefficients,
size and shape PCs

student anatomical measurements,
see anatomical
measurements

Sturm sequences 411
subjective PCs 404
subset selection, see selection of

subsets of PCs, selection of
variables

subspaces
spanned by subsets of PCs 43,

53, 140, 141, 144, 229, 230,
259, 261, 276, 357–361

spanned by subsets of variables
140, 141, 144

see also comparisons between
subspaces
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supervised/unsupervised learning
200

SVD analysis, see maximum
covariance analysis

SVD see singular value
decomposition

sweep-out components 403
switching of components 259

t-distribution/t-tests 186, 187, 191,
193, 196, 197, 204, 205

multivariate t-distribution 264,
364

T -mode analysis 308, 398
temperatures 22, 274, 316, 332

air temperatures 71, 211, 302,
303, 329

sea-surface temperatures 73,
211, 274, 275, 278–283, 286,
289, 310–314, 364, 396

tensor-based PCA 398
three-mode factor analysis 397
three-mode PCA 368, 397, 398
time series 49, 56, 72, 74, 76, 128,

129, 148, 274, 290, 298–337,
360, 365, 369, 370, 384, 393,
397, 398, 401

co-integration 330
distributed lag model 337
moving averages 303, 368
seasonal dependence 300, 303,

314, 315
stationarity 300, 303, 304, 314,

316, 327, 330
tests for randomness (white

noise) 128
see also autocorrelation,

autoregressive processes,
frequency domain PCs, red
noise, spectral analysis,
trend, white noise

Töplitz matrices 56, 303, 304
transformed variables 64, 248, 374,

376, 377, 382, 386
logarithmic transformation 24,

248, 344, 345, 347–349, 372,
388, 390

trend 148, 326, 336
removal of trend 76, 393

tri-diagonal matrices 410
truncation of PC coefficients 67,

293–296
two-dimensional PC plots 2–4,

78–85, 130, 201–203, 212,
214–219, 234–236, 242–247,
258, 299

see also biplots, correspondence
analysis, interpretation
of two-dimensional plots,
principal co-ordinate
analysis, projection pursuit

two-stage PCA 209, 223

uncentred ‘covariances’ 290, 390
uncentred PCA 41, 42, 349, 372,

389, 391
units of measurement 22, 24, 65,

74, 211, 274, 374, 388, 391
upper triangular matrices, see

lower triangular matrices

variable selection, see selection of
variables

variance inflation factors (VIFs),
see multicollinearities

variances for PCs, see PC
variances

variation between means 60, 85,
96, 158

varimax rotation 153, 154,
162–165, 182, 188, 191, 238,
270, 271, 274, 277–278

vector-valued data 129, 369, 370

weighted PCA 21, 209, 241, 330,
353, 382–385

weights
exponentially decreasing 337,

368, 384
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for covariance matrices 264, 265,
337, 384

for observations 103, 260–262,
264–266, 268, 373, 383-386,
390

for PCs 354
for variables 21, 383–385
in fixed effects model 60, 96,

124, 220, 267, 330, 386
in singular value decomposition

230, 266, 383, 384
well separated eigenvalues, see

nearly equal eigenvalues
white noise 128, 301, 304

multivariate white noise 302

Winsorization 266
Wishart distribution 47
within-group PCs 201–209,

212–214, 352
within-group variation 201–209,

212, 220, 351, 399
within-treatment (or block) PCs,

see PCs of residuals

Yanai’s generalized coefficient of
determination (GCD) 96,
140, 141, 144, 252

zeros in data 348, 349, 372
zero-variance PCs 10, 27, 42, 43,

345, 347, 359, 390
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