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Abstract

We perform an empirical assessment of the rational expectations
commodity storage model, with the specific aim of resolving the model’s
apparent inability to explain the high autocorrelation historically ex-
hibited by primary commodity prices. In contrast to recent empirical
tests of the model, we employ a classical supply of storage formula-
tion to explain speculative and precautionary storage. To estimate
the model, we develop a nested maximum likelihood estimation pro-
cedure that relies on numerical nonlinear functional equation methods
to solve for the implied rational expectations equilibrium. Our results
indicate that the rational expectations storage model can explain the
autocorrelation exhibited by commodity prices extremely well, chal-
lenging recent findings to the contrary.
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1 Introduction

In recent years, there has been a resurgence of interest in commodity price

and storage dynamics following the development of the modern rational ex-

pectations commodity storage model (Williams and Wright). The central

tenet of the modern storage model is that commodity price dynamics are

governed mainly by the speculative and precautionary storage activity of ra-

tional commodity storers and processors. Modern storage theory can trace

its origins to the classical “supply of storage” theory first introduced by

Williams (1935) and later extended by Kaldor (1939) and Working (1949).

Recent work on the rational expectations storage model includes papers by

Salant (1983), Sheinkman and Schectman (1983), Wright and Williams (1982,

1984), and Miranda and Helmberger (1988).

Despite the intense interest in the rational expectations commodity stor-

age model, few publications have been devoted to its empirical estimation

and validation. Econometric estimation of the model has been hampered

mainly by the absence of an analytically tractable closed form solution. Re-

cently, however, Deaton and Larocque (1992, 1994), in a series of pathbreak-

ing papers, employed numerical methods to estimate the rational expecta-

tions storage model and to assess its ability to explain the stylized facts of

primary commodity price dynamics. Deaton and Larocque’s analyses gen-

erated a series of interesting, but ultimately troubling, results: The rational

expectations storage model, they concluded, can adequately explain the high

volatility and positive skewness historically exhibited by primary commodity

prices. The model, however, cannot adequately explain their high autocor-

relation.

This paper is devoted to an empirical reassessment of the modern rational
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expectations commodity storage model, with the specific aim of resolving the

model’s apparent inability to explain the high autocorrelation historically ex-

hibited by primary commodity prices. In so doing, we challenge Deaton and

Larocque’s assumption that storage costs arise solely from decay at a fixed

rate. We argue that this formulation is unrealistic, largely because it fails to

capture the coincidence of negative spot-futures price spreads and positive

stock levels, a common occurrence in practice. As an alternative, we posit

a classical supply of storage function, which admits negative intertemporal

price spreads at positive stocks. With this formulation, we find that the

rational expectations storage model can explain the high autocorrelation of

commodity prices extremely well, reversing Deaton and Larocque’s negative

results.

In our empirical analysis, we encounter a series of methodological chal-

lenges that we address by developing novel econometric estimation tech-

niques. The absence of reliable quantity data renders our rational expec-

tations storage model unestimable by the generalized method of moments.

As an alternative estimation strategy, we turn to full information maximum

likelihood methods. In this context, however, we encounter the difficulty that

rational expectations imposes a series of parametric restrictions that take the

form of an infinite-dimensional nonlinear functional equation. To address this

problem, we employ the orthogonal polynomial collocation method recently

introduced to economists by Judd. The orthogonal collocation method re-

places the functional equation with an approximating finite-dimensional sys-

tem of nonlinear algebraic equations, converting the likelihood maximization

problem into an unconstrained nonlinear programming problem with differ-

entiable objective function.

Our paper is arranged as follows. In section 2, we present the modern ra-
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tional expectations commodity storage model and discuss alternative supply

of storage specifications. In section 3, we discuss how numerical functional

equation methods can be used to derive the Markov probability transition

rule followed by commodity prices under rational expectations. In section

4, we simulate the storage model under different parametric specifications

and explore how the supply of storage affects autocorrelation in prices. In

section 5, we discuss how to estimate the rational expectations storage model

using nested full information maximum likelihood methods. In section 6, we

empirically estimate the rational expectations storage model using historical

price data for thirteen commodities and confirm that the model, when en-

dowed with a classical supply of storage function, can satisfactorily explain

high autocorrelation in commodity prices. We conclude the paper with a

discussion of possible model extensions.

2 The Modern Storage Model

The centerpiece of the modern theory of storage is the competitive intertem-

poral arbitrage equation:

1
1 + r

Etpt+1 − pt = ct.(1)

The intertemporal arbitrage equation asserts that, in equilibrium, expected

appreciation in the commodity price pt, discounted at the interest rate r,

must equal the marginal cost of storage ct. Dynamic equilibrium in the com-

modity market is enforced by competitive expected-profit-maximizing stor-

ers. Whenever expected appreciation exceeds the marginal cost of storage,

the attendant profits motivate storers to increase their stockholdings until

the equilibrium is restored. Conversely, whenever the cost of storage exceeds
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expected appreciation, the attendant loses motivate storers to decrease their

stockholdings until the equilibrium is restored. Stockholding links supply

and demand across time, inducing serial dependence in prices, even when

production and consumption are serially independent.

The modern storage model is completed by the introduction of demand

and production functions, a supply of storage function, a market clearing

condition, and a theory of how price expectations are formed.1 Denote avail-

able supply at the beginning of period t by st, quantity consumed in period

t by qt, stocks at the end of period t by xt, and new production at the begin-

ning of period t by yt. In this paper, as in Deaton and Larocque’s papers, we

work with the simplest version of the storage model. Specifically, in addition

to (1) we assume:

• available supply is the sum of initial stocks and new production:

st = xt−1 + yt;(2)

• available supply is either consumed or stored:

st = qt + xt;(3)

• the market clearing price is a decreasing function p(·) of the quantity

consumed:

pt = p(qt);(4)

• the marginal cost of storage is a function c(·) of the quantity stored:

ct = c(xt);(5)
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• production yt is exogenous, stochastic, and independently and identi-

cally distributed over time;

• and expectations are formed rationally in the sense of Muth.

Different versions of the modern rational expectations storage model as-

sume different forms for the marginal cost, or “supply”, of storage function

c(·). Models that draw directly from the classical supply of storage literature

assume that the marginal cost of storage comprises a marginal physical cost

of storage and a marginal “convenience yield” (Williams; Kaldor; Working).

According to classical supply of storage theory, the marginal convenience

yield represents the amount processors are willing to pay to avoid the cost of

revising their production schedules plus the option value of being in a posi-

tion to take advantage of potential price increases (see in figure 1). If stock

levels are high, the convenience yield is zero and the storage cost equals the

physical storage cost, which is positive. As stock levels approach zero, how-

ever, the marginal convenience yield rises, eventually resulting in a negative

storage cost. The classical supply of storage function has received strong

empirical support over the years (e.g., Brennan; Fama and French).2

In contrast to classical supply of storage theory, Deaton and Larocque

posit a simple storage technology in which storage costs arise exclusively

from stock spoilage or decay at a fixed rate γ. Under this formulation, one

unit of commodity stored in the current period will yield (1− γ) units in the

following period. This effectively implies that the marginal cost of storage is

a constant multiple of the expected future price:

c(xt) =
γ

1 + r
Etpt+1.(6)

The expected price, however, falls with the level of stocks. Thus, under the

constant decay assumption, the supply of storage function is decreasing in the
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stock level xt. The constant decay supply of storage function is illustrated in

figure 1. The main difference between the constant decay and classical supply

of storage functions is evident: for low stock levels, the former is decreasing

and positive, the latter is increasing and negative.

3 Deriving the Price Process

The commodity price pt in the modern rational expectations storage model

(1)-(5) follows a stationary first-order Markovian stochastic process. More

specifically, price pt in period t is a function of the lagged price pt−1 and the

contemporaneous realization of an exogenous i.i.d. driving process, namely

production yt. To establish this fact and to uncover the Markov probability

transition rule, let λ(·) denote the function that gives the equilibrium price

pt implied by the model for a given supply st. Given the equilibrium price

function λ(·), the Markov probability transition rule that governs equilibrium

market price dynamics can be derived as follows:

pt = λ[st](7)

= λ[xt−1 + yt]

= λ[st−1 − qt−1 + yt]

= λ[λ−1(pt−1)− p−1(pt−1) + yt].

Here, we use the fact that pt−1 = λ(st−1) = p(qt−1), where st−1 is supply, qt−1

is consumption, and xt−1 = st−1 − qt−1 is carryout in period t− 1.

To fully describe the Markov transition rule followed by the commodity

price, one must derive the equilibrium price function λ(·). The equilibrium

price function is characterized by a nonlinear functional equation, which stip-
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ulates that for every realizable supply s

λ(s) = p(s− x)(8)

where x solves

1
1 + r

Eyλ(x+ y)− p(s− x) = c(x).(9)

Under mild regularity conditions, the functional equation (8)-(9) has an

unique solution λ(·) (Scheinkman and Schectman). The equilibrium price

function λ(·), however, does not generally possess a closed form.

Figure 2 illustrates the equilibrium price function λ(·) and its relation

to the inverse consumption demand function p(·), which for the purposes

of illustration is assumed to be linear. As can be seen in figure 2, for low

initial supply, high prices discourage storage and supply is entirely consumed

in the current period. Accordingly, the equilibrium price function λ(·) and

the inverse demand function p(·) essentially coincide. For higher supplies,

however, low prices encourage stockholding, raising prices above what they

would otherwise have to be for consumers to completely clear the market of

available supplies. Accordingly, the equilibrium price function λ(·) lies above

the inverse demand function p(·).
Although an exact representation of the equilibrium price function typ-

ically cannot be derived analytically, an arbitrarily precise approximation

can always be derived using numerical functional equation techniques. One

particularly efficient technique for computing an approximation for the equi-

librium price function is the Chebychev orthogonal collocation method. The

efficacy of the Chebychev orthogonal collocation method is guaranteed by the

Chebychev approximation theorems, which assert that a continuous function

can be optimally approximated to any degree of accuracy by the polynomials
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that interpolate the function at the Chebychev nodes. Chebychev approx-

imation is discussed in most numerical analysis textbooks (e.g., Atkinson;

Press et al.). Chebychev orthogonal collocation and its application to non-

linear rational expectations models is extensively described and illustrated

in Judd (1991, 1992) and Miranda.

The Chebychev orthogonal collocation method calls for the unknown equi-

librium price function λ(·) to be approximated using a finite linear combina-

tion of the first n+ 1 Chebychev polynomials φ0, φ1, . . . , φn:

λ(s) ≈
n∑
j=0

ajφj(s).(10)

In order to fix the n+1 coefficients aj of the polynomial approximant, (8)-(9)

are required to hold exactly, not at all possible supply points, but rather only

at the n+ 1 Chebychev nodes s0, s1, . . . , sn of the interval containing all the

supply points.3 To compute an approximate expectation in (9), Gaussian

quadrature principles are used, effectively replacing the continuous distri-

bution of production y with an m-point discrete distribution that assumes

values y1, y2, . . . , ym with probabilities w1, w2, . . . , wm, respectively.4

The practical value of the orthogonal collocation method is that it con-

verts the original infinite-dimensional nonlinear functional equation problem

into a finite-dimensional nonlinear equation problem that can be solved ef-

ficiently using standard numerical rootfinding techniques. Specifically, the

approximation to λ(·) in (10) is obtained by solving for the 2n+ 2 roots, ai,

xi, i = 0, 1, 2, . . . , n, of the 2n+ 2 equations

f(a, x; θ) = 0(11)

g(a, x; θ) = 0(12)
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where

fi(a, x; θ) =
n∑
j=0

ajφj(si)− p(si − xi)(13)

gi(a, x; θ) = δ
m∑
k=1

n∑
j=0

wkajφj(xi + yk)− p(si − xi)− c(xi).(14)

Here, δ = 1/(1 + r) is the discount rate and θ denotes the vector of model

demand, supply, and storage function parameters.

The 2n+ 2 roots of equations (11)-(12) can be computed relatively easily

using successive approximation methods (Miranda 1994). The roots can also

be computed by the less stable, but ultimately faster, Newton method. In

the context of maximum likelihood estimation, the speed offered by Newton’s

method is highly desirable because the model must be re-solved every time

the model parameters are perturbed by the hill-climbing routine seeking the

maximum of the likelihood function. Using Newton’s method to solve the

model also has the added advantage that it generates information useful in

computing the derivatives of the likelihood function, a feature that further

accelerates and stabilizes the likelihood maximization procedure. Newton’s

method for solving equations (11)-(12) is discussed in greater detail in Ap-

pendix A.

4 Properties of the Price Process

Using Monte Carlo simulation methods, we now compare the behavior of

commodity prices implied by the two competing versions of the rational ex-

pectations storage model: Deaton and Larocque’s constant decay supply of

storage model and the classical supply of storage model. In our analysis,

we simulate the two models under alternative parametric specifications. For
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each specification, we derive the equilibrium price function λ(·) and simulate

a representative price series of 100,000 years by sequentially generating ran-

dom production levels yt and applying the Markov transition rule (7). Using

these price series, we compute estimates of the steady-state coefficient of vari-

ation, skewness, and first-order autocorrelation coefficient of prices implied

by the different specifications.

Table 1 reports the results of simulations performed with the constant

decay supply of storage model. In the first four cases, the demands are lin-

ear and production is normally distributed; in the last four, the demands

are iso-elastic and production is log-normally distributed. In all cases, we

assume a per-period interest rate of r = 5%. The results in table 1 are essen-

tially identical to those reported by Deaton and Larocque. With relatively

elastic demand, there is little price volatility and limited storage; correla-

tion and skewness are low, but positive. With relatively inelastic demand,

price becomes more volatile, carryover becomes more prominent, and au-

tocorrelation in prices becomes more significant as the intertemporal price

link is strengthened. Higher storage costs (higher γ) discourages storage,

weakening the intertemporal price link, raising price volatility, and reducing

autocorrelation.

Table 1 also reveals the result that disappointed Deaton and Larocque:

Although a broad range of parametric specifications is simulated, the price

autocorrelation given a constant decay supply of storage never exceeds 0.47,

although actual commodity prices typically exhibit substantially higher levels

of autocorrelation.

Table 2 reports the results of simulations performed assuming a semi-

log marginal cost of storage function that conforms to the classical supply

of storage formulation. As seen in table 2, the classical supply of storage
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model behaves similarly to the constant decay model in some respects: rela-

tively inelastic demand and lower storage costs imply higher price volatility

and autocorrelation. However, the classical supply of storage model differs

markedly from the constant decay model in one critical respect: the classical

supply of storage model generates autocorrelations as high as 0.80, values

that are comparable to those observed in practice.

The reason why price autocorrelation differs markedly between the two

competing versions of the storage model can be explained with the aid of

figure 3. Figure 3 shows the price expected in period t + 1 conditional on

the price in period t. The relationship is computed by solving the functional

equation (8)-(9) for the equilibrium price function λ and taking expectations

with respect to production in equation (7) at different price levels pt. The

more linear the relationship, the higher price autocorrelation can be expected

to be.

As seen in figure 3, low current prices imply abundant supplies, substan-

tial stockholding, and a strong link between successive prices. Over this

range, as the price rises, stocks fall and the expected future price rises con-

comitantly. This is true for both the constant decay and classical supply of

storage models. The implications of the two storage models, however, diverge

as prices rise. In the constant decay model, high prices induce a stockout,

that is, a depletion of all stocks. Once a stockout occurs, the link between

the current and expected future price is completely severed. Over this range,

the expected future price remains constant, regardless of the current market

price. In the classical supply of storage model, on the other hand, stocks

never fall to zero and thus the link between the current and future price

is never completely severed. In the classical supply of storage model, higher

prices always induce some reduction in stocks and an increase in the expected
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future price. The constant decay model’s inability to capture the high au-

tocorrelation in prices is attributable to its implicit assumption of frequent

market level stockouts — a phenomenon that is never observed in practice.

5 Estimation Method

The illustrative simulations presented in the preceding section demnostrated

the rational expectation storage model’s ability to generate realistically high

price autocorrelations, provided the model is endowed with a classical supply

of storage function. However, the question remains whether this version of

the storage model can replicate the observed behavior of specific commodity

price series. In this and the following section, we put the classical cost of

storage version of the rational expectations model to the empirical test by

estimating the model for thirteen commodities. In this section, we develop

the method for estimating the model.

Two methods have been promoted for estimating nonlinear rational ex-

pectations models: the generalized method of moments (GMM) and the max-

imum likelihood method (Hansen and Singleton; Fair and Taylor; Miranda

and Rui; Miranda and Glauber). GMM estimation is based on the model

implication that ex-post errors in the intertemporal arbitrage condition at

time t+ 1,

zt+1 =
1

1 + r
pt+1 − pt − c(xt),(15)

must be uncorrelated with all information available at time t. GMM tech-

niques, however, are not appropriate for estimating the rational expectations

storage model. In order to perform GMM estimation, stock levels xt must be

observable. Unfortunately, reliable commodity stock data are often unavail-

able or, when available, are of questionable quality, making commodity prices
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the only reliably observed endogenous variable. Furthermore, even if reli-

able data were available, GMM estimation leaves critical model parameters

unidentified, making it impossible to assess the storage model’s predictions

regarding the distribution of prices, particularly their autocorrelation.

The method of maximum likelihood, on the other hand, can explicitly

treat the case of unobserved stocks and recovers sufficient model parame-

ters to completely identify the Markov probability transition rule (7) that

describes price dynamics.5 In order to perform maximum likelihood estima-

tion, we must introduce specific functional forms for the demand function,

the cost of storage function, and the production probability density function.

Following Deaton and Larocque, we posit a linear demand function

p(q) = a− bq(16)

and a production level that is normally distributed with mean µ and standard

deviation σ. To capture the stylized facts of the classical supply of storage

function, we introduce a semi-log cost of storage function

c(x) = α + β log(x).(17)

We denote the vector of model parameters by θ = (a, b, α, β, µ, σ). In esti-

mation, we fix the annual discount factor at δ = 1/1.05, indicating an annual

interest rate of r = 5%.

Before developing our maximum likelihood estimation procedure, it must

noted that the model is over-identified when quantity data are not explic-

itly observed. It can be shown that the storage model with parameter

vector θ = (a, b, α, β, µ, σ) posited above implies the same Markov transi-

tion rule for prices (7) as a second storage model with parameter vector

θ′ = (a′, b′, α′, β, 0, 1) where a′ = a + bµ, b′ = σb, and α′ = α + β log(σ).
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The intuition is simple: if prices but not quantities are observed, then we

are free to use any unit of measure for quantity that we wish — that is, we

can shift and rescale quantities in our model arbitrarily. For convenience, we

assume that µ = 0 and σ = 1. Under this assumption, the remaining model

parameters are just-identified.

Given that yt is normally distributed with mean 0 and variance 1 by

assumption, it follows from Markov transition rule (7) that the log-likelihood

of any observed sequence of commodity prices p0, p1, . . . , pT is

L(θ) =
T

2
log(2π)−

T∑
t=1

log |Jt| −
1
2

T∑
t=1

y2
t(18)

where

yt = λ−1(pt)− λ−1(pt−1)− p−1(pt−1)(19)

is the “fitted” or implied production level in period t and

Jt =
∂pt
∂yt

(20)

is the Jacobian of the transformation yt 7→ pt.

In order to evaluate the log-likelihood function L at a specified vector of

model parameters θ, we must compute the production level yt and Jacobian

Jt implied by the parameters, for each observed price. To accomplish this,

we use the orthogonal collocation methods developed in Section 3 to solve for

the equilibrium price function λ(·) implied by the parameter vector θ. Given

the implied equilibrium price function, we then apply standard rootfinding

methods to (10) and simple Algebra to (17) to compute the implied supplies

st = λ−1(pt) and consumptions qt = p−1(pt) for every period t. We then

compute the implied production levels yt:

yt = st − st−1 + qt−1(21)
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and Jacobians:

Jt =
∂pt
∂yt

=
∂pt
∂st

=
n∑
j=0

ajφ
′
j(st).(22)

For the present study, we employ a quadratic hill-climbing routine to

maximize the log-likelihood L function (Gill et al.). In order to accelerate

convergence of the likelihood maximization routine, we compute the ana-

lytic derivatives of the log-likelihood function with respect to the model pa-

rameters θ. Computation of the derivatives of the log-likelihood function is

discussed in Appendix B.

The nested functional equation algorithm was custom coded by the au-

thors in standard Fortran 77, and was implemented using the Lahey For-

tran Compiler 5.1 under MS-DOS 6.22 on a 90 megahertz Pentium personal

computer.6 In all instances, the equilibrium price function λ(·) was approx-

imated using a 300th-order polynomial expressed as a linear combination of

the Chebychev polynomials. A 3-point Gaussian-Hermite quadrature rule

was used to approximate the distribution of yield shock y. The maximum

likelihood algorithm was assumed to converge if the derivatives in all direc-

tions were less than 10−8.

6 Estimation Results

In this section, we assess how well the modern rational expectations storage

model can explain the stylized facts of commodity market price dynamics,

particularly the autocorrelation exhibited by prices. Using the nested func-

tional equation full information maximum likelihood methods developed in

the preceding section, we estimated the classical cost of storage model for

the same thirteen commodities examined by Deaton and Larocque: bananas,
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cocoa, coffee, copper, cotton, jute, maize, palm oil, rice, sugar, tea, tin, and

wheat. We then used Monte Carlo simulation techniques to compute the

autocorrelation implied by the models and compared the implied values to

the historical values.

Commodity price data were obtained from the Commodity Division of

World Bank, and consists of world prices for the thirteen commodities from

1900-1987, deflated by the U.S. consumer price index to 1980 constant dollars—

these are the same data and deflation procedure as employed by Deaton and

Larocque in their studies. In the present study, each deflated price series was

further normalized to have a historical mean of one 1 by dividing by the sam-

ple average—this was done solely to allow easier comparisons of parameters

estimates across commodity price series.

The parameter estimates for the thirteen commodities are given in table

3 with asymptotic t-statistic in parentheses. All 52 parameters were signifi-

cant at the 0.01 level and possessed the expected signs: The cost of storage

function is increasing β > 0, the inverse demand function is decreasing b < 0,

and the intercept of the inverse demand function is positive a > 0.

Though the parameter estimates are of independent interest, our main

goal is to assess the rational expectations storage model’s ability to ex-

plain actual commodity prices behavior, particularly autocorrelation. Table

4 presents the first-order price autocorrelations implied by the classical sup-

ply of storage model and the price autocorrelation exhibited by the historical

price series. For comparison, we present the autocorrelations predicted by

Deaton and Larocque’s constant decay supply of storage model.

As seen in table 4, there is a striking difference between the two competing

models’ ability to explain observed autocorrelation in commodity prices. The

constant decay supply of storage model examined by Deaton and Larocque
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provides a very poor fit. In particular, the model consistently predicts au-

tocorrelations that are substantially lower than those actually observed in

practice. The classical supply of storage model, on the other hand, provides

an excellent fit. The classical supply of storage model predicts autocorre-

lations that are as high as those observed in practice. Across the thirteen

price series, the classical supply of storage model predicts the highest (lowest)

autocorrelation for the commodities exhibiting the highest (lowest) histori-

cal autocorrelation. For ten of the thirteen commodities, the predicted and

actual price autocorrelations differ by 0.04 or less; for six of the ten, the

predicted and actual autocorrelations differ by less than 0.02.

7 Conclusion

The modern rational expectations commodity storage model explains the his-

torical autocorrelation exhibited by commodity prices extremely well, pro-

vided that it is endowed with a classical supply of storage function. The

closeness of the fit obtained in our empirical estimation is specially remark-

able, given the conceptual simplicity of the model and the fact that only price

data were used to estimate it. Our results refute Deaton and Larocque’s

earlier negative findings, which were obtained using a constant decay sup-

ply storage model. The discrepancy between our findings and Deaton and

Larocque’s findings are clearly attributable to differences in assumptions re-

garding the coincidence of negative intertemporal price spreads and positive

stocks. Our results underscore the importance of accurately representing the

supply of storage when modeling commodity price dynamics and suggest that

further research be conducted on the microfoundations of the market-level

supply of storage relationship.
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The method that we developed to estimate the storage model provides a

good example of how numerical functional equation methods can be used to

compute full information maximum likelihood estimates of analytically in-

soluble nonlinear dynamic economic models. Our nested functional equation

algorithm should be applicable, with only a few alterations, to the maximum

likelihood estimation of other nonlinear rational expectations models and to

dynamic decision models with continuous state and decision spaces.

Endnotes

1. Classical supply of storage theory focused on the form of the marginal

cost of storage function, without addressing how prices and price ex-

pectations are formed. The modern theory of storage is characterized

by the introduction of sufficient additional structure, including the as-

sumption of rational expectations, to yield a complete, soluble partial

equilibrium model of commodity market behavior.

2. Wright and Williams (1989) do not dispute the existence of a market-

level supply of storage function like the one described in the classical

storage literature. They do, however, dispute its microfoundations.

They reject the convenience yield explanation, arguing instead that

apparent negative storage costs are a consequence of spatial aggrega-

tion.

3. Deaton and Larocque (1994) used linear spline approximation, not

orthogonal collocation, to solve the storage model. Both techniques

are specific implementations of the Galerkin collocation method (Judd

1991). The former technique differs from the latter in that it uses
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tent functions with finite support, not Chebychev polynomials, as ba-

sis functions φi in the approximation (10).

4. Guassian quadrature calls for the m probability mass points and the

m probabilities to be chosen so that the discrete random variable has

the same 2m lower moments as the continuous random variable being

discretized. The quadrature rule exactly computes the expectation of

a function of the original random variable, provided the function is a

polynomial of exact degree 2m− 1 or less.

5. Deaton and Larocque use a pseudo maximum likelihood estimation

method, which assumes that equilibrium prices are normally distributed.

This approach imposes a distributional structure on prices that is in-

consistent with that predicted by the underlying structural model and

further ignores information about third and higher moments of the

price distribution. Our maximum likelihood method, on the other

hand, does not impose a contradictory distributional assumption on

prices and uses all available moment information consistently with the

underlying model specification.

6. After the model is solved the first time, the likelihood function and its

derivatives can be subsequently computed in less than three seconds

with each perturbation of the model parameters. The amount of time

required to estimate the model varied across commodities, but never

exceeded thirty minutes of computer time.
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Appendix A: Solving the Storage Model Using
Newton’s Method

The 2n + 2 roots of equations (11)-(12) can be computed using Newton’s

method:

0. Initialization Step: Guess the values of the coefficients a0, a1, · · · , an
and the equilibrium stock levels x0, x1, · · · , xn.

1. Linearization Step: At the incumbent coefficients a0, a1, · · · , an and

stocks x0, x1, · · · , xn, compute the increments ∆a0,∆a1, · · · ,∆an and
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∆x0,∆x1, · · · ,∆xn by solving the linear equation system[
∂f
∂a

∂f
∂x

∂g
∂a

∂g
∂x

] [
∆a
∆x

]
=
[
−f
−g

]
(23)

where

∂fi
∂aj

= φj(si)

∂gi
∂aj

= δ
m∑
k=1

wkφj(xi + yk)

∂fi
∂xi

= p′(si − xi)

∂gi
∂xi

= δ
m∑
k=1

wkaiφ
′
j(xi + yk) + p′(si − xi)− c′(xi)

∂fi
∂xj

=
∂gi
∂xj

= 0 for i 6= j.

and fi and gi are defined in (13)-(14).

2. Update Step: Update the coefficients and stock levels by setting aj =

aj + ∆aj and xj = xj + ∆xj for j = 0, 1, · · · , n.

3. Convergence Check: If the norms of ∆a and ∆x are tolerably small,

stop; otherwise, return to step 1.

Appendix B: Computing the Derivatives of the
Likelihood Function

To compute the derivative of the log-likelihood function requires that we

compute the derivatives of the random shock yt and the Jacobian Jt with

respect to θ:

∂yt
∂θ

=
∂st
∂θ
− ∂st−1

∂θ
+
∂qt−1

∂θ
(24)
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and

∂Jt
∂θ

=
∂2pt
∂θ∂st

+
∂2pt
∂s2

t

∂st
∂θ

(25)

where

∂st
∂θ

= −∂pt
∂θ

/
∂pt
∂st

(26)

and

∂qt
∂θ

=
∂p−1(pt)
∂θ

+
∂p−1(pt)
∂pt

+
∂pt
∂θ

(27)

Most of the terms in (24)-(27) can be computed analytically after deriving

the implied availability levels st. The only terms that cannot be computed

directly are the derivatives of pt and ∂pt
∂st

with respect to θ. Differentiating

(10) and (24) with respect to θ, we obtain

∂pt
∂θ

=
∂λ

∂θ
(st; θ) =

n∑
j=0

∂aj
∂θ

φj(st)(28)

and

∂2pt
∂θ∂st

=
∂2λ

∂θ∂st
(yt; θ) =

n∑
j=0

∂aj
∂θ

φ′j(st).(29)

Thus, computing the derivatives of the log-likelihood function L reduces to

computing the derivatives of the Chebychev coefficients aj with respect to θ.

The derivatives of the coefficients aj with respect to θ are obtained by im-

plicitly differentiating (15) with respect to θ, which gives rise to the following

linear equation system[
∂f
∂a

∂f
∂x

∂g
∂a

∂g
∂x

] [
∂a/∂θ
∂x/∂θ

]
=
[
−∂f
∂θ

(a, x; θ)
−∂g
∂θ

(a, x; θ).

]
(30)

Most of the expense in solving linear equation system (30) comes from com-

puting and factoring the matrix of partial derivatives of f and g with respect
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to a and x. This operation, however, is performed naturally during the New-

ton algorithm used to compute the coefficients aj of the equilibrium price

function λ(·) function and thus does not have to be repeated. Thus, the

analytic derivatives of the likelihood function can be computed at little ad-

ditional cost once the equilibrium price function λ(·) has been derived.
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Table 1: Distribution of Prices for Constant Decay Supply of Storage Model.

p(q) = a− bq p(q) = aq−b

y ∼ N(1, 0.01) log y ∼ N(0, 0.01)
Parameters
γ 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00
a 2.00 2.00 6.00 6.00 1.00 1.00 1.00 1.00
b 1.00 1.00 5.00 5.00 1.00 1.00 5.00 5.00

Percent Variation 0.09 0.08 0.28 0.24 0.09 0.08 0.36 0.30
Autocorrelation 0.08 0.20 0.34 0.47 0.10 0.19 0.29 0.40
Skewness 0.47 0.86 1.63 2.01 0.67 1.00 3.08 3.64
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Table 2: Distribution of Prices for Classical Supply of Storage Model.

p(q) = a− bq p(q) = aq−b

c(x) = α− 0.1 log x c(x) = α− 0.1 log x
y ∼ N(1, 0.01) log y ∼ N(0, 0.01)

Parameters
α 0.30 0.05 0.30 0.05 0.30 0.05 0.30 0.05
a 2.00 2.00 6.00 6.00 1.00 1.00 1.00 1.00
b 1.00 1.00 5.00 5.00 1.00 1.00 5.00 5.00

Percent Variation 0.08 0.05 0.30 0.16 0.08 0.05 0.36 0.17
Autocorrelation 0.20 0.60 0.41 0.80 0.19 0.60 0.33 0.80
Skewness 0.27 0.16 0.98 0.37 0.42 0.15 2.60 0.84
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Table 3: Parameter Estimates for Classical Supply of Storage Model.∗

Commodity α β a b

Bananas -0.222 0.072 0.941 -1.518
(0.013) (0.005) (0.056) (0.173)

Cocoa -0.150 0.112 0.948 -1.614
(0.049) (0.030) (0.175) (0.516)

Coffee -0.175 0.116 1.003 -1.589
(0.050) (0.033) (0.170) (0.616)

Copper -0.121 0.074 0.934 -1.013
(0.033) (0.018) (0.109) (0.260)

Cotton -0.162 0.071 0.887 -2.772
(0.007) (0.004) (0.041) (0.261)

Jute -0.126 0.121 0.976 -0.840
(0.047) (0.033) (0.090) (0.237)

Maize -0.112 0.100 0.957 -1.034
(0.046) (0.030) (0.112) (0.289)

Palm Oil -0.149 0.087 0.889 -1.736
(0.049) (0.024) (0.191) (0.704)

Rice -0.169 0.083 0.771 -2.480
(0.014) (0.009) (0.055) (0.337)

Sugar -0.091 0.101 0.924 -1.475
(0.039) (0.022) (0.161) (0.384)

Tea -2.207 0.733 0.938 -0.834
(4.302) (1.102) (0.093) (0.306)

Tin -0.147 0.070 1.334 -4.225
(0.008) (0.006) (0.073) (0.702)

Wheat -0.155 0.082 0.918 -1.967
(0.024) (0.015) (0.209) (0.544)

∗Standard error in parentheses.
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Table 4: Actual Versus Predicted Autocorrelation under Alternative Supply
of Storage Formulations.

Classical Constant Decay
Commodity Actual Predicted Predicted

Bananas 0.94 0.95 0.35

Cocoa 0.82 0.79 0.30

Coffee 0.80 0.80 0.24

Copper 0.84 0.81 0.39

Cotton 0.90 0.88 0.19

Jute 0.73 0.72 0.30

Maize 0.78 0.74 0.36

Palm Oil 0.75 0.83 0.42

Rice 0.85 0.87 0.22

Sugar 0.62 0.71 0.26

Tea 0.82 0.83 0.23

Tin 0.89 0.80 0.26

Wheat 0.88 0.85 0.26
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