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Abstract 

The theory of commodity price with speculative storage predicts that prices are 
a two-regime process depending on whether or not inventories are held. The price 
process is nonlinear in that it is nondifferentiable at some p* which separates the data 
into a history independent regime and an autoregressive process. This paper looks for 
evidence of nonlinearity in the price data and tests the theory in the context of threshold 
autoregressive models under the assumption that shocks to harvest are i.i.d. While we 
find evidence for regime-specific behavior, we also find the degree of persistence in the 
stockout regime to be much stronger than that predicted by theory. 
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1. Introduction 

Theory predicts that under the assumptions of rational expectations and i.i.d. 
shocks to harvest, inventories are the only link between the market for commod- 
ities in successive periods. Speculative inventories will be held only when prices 
are expected to rise by carrying cost. Prices are an autoregressive process when 
the demand for speculative inventories is positive but a linear function of white 
noise shocks when no inventory is held. Although the price series is a nonlinear 
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first-order Markov process, persistence is derived solely from speculative stock- 
holding. As well, large price hikes are possible in the event of a stockout. 

Although the model is well accepted at the theoretical level, there is little 
empirical work which explicitly tests the speculative storage model under 
rational expectations. While the recent attempts of Deaton and Laroque 
(1992a,b) found some support for the theory, the authors also found aspects of 
the theory that are inconsistent with the data. 

This paper is another attempt to fit the rational expectations variant of the 
commodity price model. The present study adopts a time series, nonstructural 
approach. Theory predicts that the price process for the stockholding and 
stockout regimes should have different stochastic properties. Our objective is to 
look for evidence of regime-specific behavior in the context of self-exciting 
threshold autoregressive models which explicitly allow the behavior of the price 
process to be regime-dependent. While such a reduced form analysis precludes 
the identification of structural parameters, they also avoid having to make 
specific assumptions about demand functions, for example, and provide a less 
restrictive platform for assessing the theory. 

The rest of this paper is structured as follows. The key features of the 
commodity price model with speculative storage are summarized in the next 
subsection. This is followed by a brief review of the empirical literature. Section 
2 tests for nonlinearity in thirteen commodity price series using a battery of 
statistics. Section 3 summarizes the basic structure of a threshold autoregressive 
model with one threshold. Section 4 presents the results based on a Kalman 
filter which allows the regime-specific parameters and the threshold value to be 
estimated jointly. An overview of the results and possible extensions to the 
analysis are discussed in the conclusion. 

I. 1. A simple commodity price model 

Our goal is to analyze the behavior of prices for commodities such as copper, 
wheat, and cotton. The market for commodities is a well-developed one, with 
almost continuous trading occurring on a worldwide basis. Commodity prices 
do not exhibit obvious trends, but they are highly persistent and tend to be 
interrupted by large and positive spikes. 

The demand for commodities can be derived from one of two sources. First, 
commodities can be used as input in the production process or they can be 
consumed. To the extent that consumption/production demand is closely tied to 
economic development, such nonspeculative demand is strictly positive but 
could be cyclical. 

Second, commodities are also assets and therefore speculative demand may 
exist. An important feature of commodities is that most of them are storable, 
albeit at a nonzero cost. When there are profits to be made from storing 
a commodity, risk-neutral speculators will enter the market and drive up prices 
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until all profit opportunities are arbitraged away. However, when the holding 
cost exceeds expected capital gains, speculators will refrain from entering the 
market. Thus, unlike consumption demand, speculative demand can be zero but 
can also be quite volatile. 

On the supply side, commodities can be made available to the market from 
one of two sources. They can come from new harvest or be supplied by 
speculative stockholders. In the absence of speculative storage, the market- 
clearing price will be a function of harvest, and hence the stochastic process of 
shocks to harvest. If harvest innovations are i.i.d. and consumption demand is 
linear and autonomous, then the price will be a linear function of contempo- 
raneous harvest shocks. Allowing consumption demand to be stochastic will not 
change the simple dependency of price on current shocks as long as shocks to the 
linear demand function are also i.i.d. However, when there is speculative storage, 
the market-clearing price will depend on the availability of total supply (harvest 
plus inventories) relative to total demand (consumption cum speculative demand). 
It is the behavior of prices under the latter conditions that we wish to investigate. 

The determination of commodity prices with speculative storage is a well- 
researched area. The idea that speculative stockholding is bounded from below 
by zero was discussed in Williams (1937) and Samuelson (1957), and a model 
incorporating rational expectations was formalized by Gustafson (1958). The 
original theory has since been much refined. See Deaton and Laroque (1992a) 
and the references therein for related work. 

We are interested in testing the rational expectations version of the competi- 
tive storage model. Let r be the real interest rate and ri be the depreciation cost. 
The convenience yield is assumed to be zero so that there is no demand for 
inventories other than for speculative purposes. It is assumed that 
(1 - d)/( 1 + r) < 1 which implies that speculative inventories, I,, are costly to 
hold. If Z, is harvest, then total supply available to the market is given by 

s, = z, +(l - 6)1,_,. 

Let P(X) be the inverse demand function corresponding to the demand function 
D(p), where pr is the price. The expectation of p f + 1 given information on supply 
and demand available at time t is denoted E,p,+ *. It is assumed that expecta- 
tions are rational. The main predictions of the model can be summarized as 
follows: 

Lemma 1. Assume that the regularity conditions on D(p) given in Assumption I 

of Deaton and Laroque (1992a) hold and let shocks to harvest he i.i.d. Let 
p* = (1 - S)/(l + r)Ef(z) wheref( .) is the equilibrium price,function satkfying 

.f(&) = max $$ E,f {z,+ , + (1 - s)r,j, P(x,) 1 . 
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If Pt 2 p*, then I, = 0 and 

P I+ 1 =f(zz+ 1). 

If pt < p*, then I, > 0 and 

Pt+1 = ( ) (l-4 -lp +r 
(1 +r) f 

t+ 3 
1 

(2) 

(3) 

where vt+ I =f(x,+ 1) - P,U + r)l(l - 6) and WI,+ 1) = 0. 

A formal proof of the lemma is given in Deaton and Laroque (1992a) where it 
was shown that the price process is ergodic under the assumptions of their 
analysis. Since 6 > 0 by hypothesis, a stockout will occur and prices exceed 
p* with probability one in finite time. The long-run distribution of prices will 
oscillate between the distribution corresponding to the case of no storage and 
the distribution corresponding to the case when inventories increase without 
bounds. The price series is therefore a renewal process with a stationary and 
invariant distribution. 

The above model which emphasizes the importance of shocks to harvest is 
evidently more appropriate for agricultural than for industrial commodities. 
However, reinterpreting x above as the total (industrial and speculative) demand 
for an industrial commodity, one can construct a model such that (i) speculative 
demand is zero when industrial demand is high, in which case price equates the 
production of the commodity to noninventory demand, but (ii) speculative 
demand is positive when industrial demand is low, in which case price equates 
supply and total demand. The model will also have state-dependent features as 
summarized in the above lemma.’ 

The essential features of the speculative storage model are as follows. First, 
since shocks to harvest are i.i.d., they reveal no information about future events. 
Thus, E,f(z,+ 1) is constant, and the expectation also holds unconditionally. 

Second, expected profits of speculators are bounded from below by zero since 
they have the option not to enter the market. There will exist a critical value, p*, 
such that no inventory will be held if the current price exceeds that critical level. 
The variable p* is the price (after discounting) that is expected to prevail if 
harvests were the only source of supply. When the current price is too high and 
expected capital gains are low or negative, speculators will not enter the market. 
When no inventory is brought to the market, the price will be a sole function of 

’ See Gilbert (1993) for a structural model for industrial commodities. 
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harvest. Thus, the price following the period when no inventory is held is 
history-independent and is given by (2). 

Third, when speculative demand is positive, total supply in period t + 1 will 
be the sum of harvest in t + 1 plus inventories held over from period t. The price 
in period t and t + 1 are linked to the extent that speculative demand in period 
t depends on the price that clears the market at time t. Thus, the supply of 
inventories in t + 1 will also depend on the price at time t. In that case, the 
evolution of price is given by (3), a first-order Markov process with an autore- 
gressive coefficient [( 1 - 6)/( 1 + r)] - ’ that is greater than one by assumption. If 
inventories are to be held, the price must be expected to rise at the rate of 
carrying cost. 

Fourth, the model has specific statistical implications. The conditional mean 
of prices is 

(1 -6) 

[ 1 -I 
VP,+ I IPJ = min(p*, pt) (1 + rI . (4) 

The price function is nondifferentiable at p*. This induces a kink, and therefore 
a source of nonlinearity in the conditional mean of the price process. Further- 
more, it can be seen from the definition of qr+ 1 and the i.i.d. assumption on 
z, + 1 that the conditional variance of prices is heteroskedastic in pr when stocks 
are held but homoskedastic otherwise. Intuitively, fewer inventories are being 
stored at higher level of prices, and the increasing probability of being unable to 
satisfy demand causes the conditional variance of pt+ 1 to increase with pt. In 
consequence, the overall price process is also conditionally heteroskedastic.* 
More generally, the higher-order conditional moments of pt also have non- 
Gaussian properties. 

1.2. Empirical evidence 

There exist many attempts in the literature to test the commodity price model 
assuming myopic expectations and using ad hoc distributed lags to track the 
serial correlation in the data. Ghosh, Gilbert, and Hughes Hallett (1987) provide 
a review of work along these lines. The rational expectations version of the 
model with speculative stockholding is conceptually more appealing, but it is 
numerically more complex. The problem is that there is no simple closed form 
for the equilibrium price function. Any test of the structural model has to rely on 
numerical approximations for f(x), as in Newbery and Stiglitz (1982) and 
Williams and Wright (1991) or exploit the idea that f(x) has an invariant 

2 The policy implications of conditional heteroskedasticity in terms of risk management is discussed 

in Beven, Collier, and Gunning (1987). 
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distribution, as in Deaton and Laroque (1992a), and then simulate the model to 
examine its reasonableness. Such modeling strategies also rely on assumptions 
about demand functions, the variance of the shocks, and the carrying cost. As 
Deaton and Laroque (1992a) have shown, there are qualitative differences in the 
simulation results for the linear and the iso-elastic demand case, with the latter 
generating more skewness and kurtosis and a higher frequency of stockout than 
the former. Furthermore, the data simulated under the maintained structural 
assumptions exhibit a much lower degree of serial correlation than the actual 
data. 

An alternative to testing the model on data simulated from a given set of 
parameters is to obtain the full-information estimates of those parameters. To 
do so, it would be necessary to solve out f(x) for each observation. Although 
numerical methods can be used to resolve this problem once a tractable demand 
function is assumed, the procedure is computationally costly. An attempt along 
these lines was undertaken by Deaton and Laroque (1992b) albeit with mixed 
success. While their storage model outperformed a model which implies prices 
are i.i.d. draws from a normal distribution, the structural model was also found 
to be beaten by a simple first-order autoregressive model. However, it is not 
clear whether the problem lies in the structural assumptions (such as linearity of 
the demand function) or with the theory itself. 

There exists yet another way of testing the theory. The idea is not to impose 
assumptions about the demand function or solve for f(x) but to test for 
consistency between the data and the reduced form model while maintaining 
only that there are two regimes governing the behavior of prices if the theory 
was true. For example, one can test the overidentifying restrictions imposed on 
the first moment condition (4) such as in Deaton and Laroque (1992a). Although 
this is a weaker test of the theory, reduced form estimations require less 
restrictive assumptions and are easier to implement. 

The present analysis is in the same spirit as Deaton and Laroque (1992a) but 
has a broader scope. One cannot tell from testing the first moment condition 
alone whether it is the stockholding or the stockout part of the theory that is 
inadequate. Our analysis supplements this information by explicitly modeling 
the behavior of prices in both regimes. Such regime-specific information not 
only allows us to examine previously untested aspects of the theory, it also 
isolates features in the data not captured by the basic competitive storage model. 
Before proceeding to such an analysis, we shall perform a basic test of the theory, 
namely, that commodity prices are nonlinear processes. 

2. Testing for nonlinearity 

Theory suggests that the price of a commodity should have a conditional 
mean and variance that depend on whether or not inventories are held, and the 
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kink at p* in turn implies a specific form of nonlinearity on the price process3 

To test for nonlinearity without prejudging its nature, we apply six tests to the 
data: the Neural-Network, Macleod-Li, Keenan, RESET, Tsay, and ARCH. 
Thus, given a series y,, and x, = ( y, 1 . y, _ P), the null hypothesis of linearity is 
y, = x;o + r,. 

The neural network statistic tests the null hypothesis against the alternative 
that y, = xi0 + Cy= 1 pj$(Yjx,) + e,. The idea is to extract nonlinearity using an 
augmented single hidden layer network as modeled by the logistic function 
Ic/ and random variables y drawn from a uniform distribution. It can detect 
general forms of nonlinearity and is found to have good size and power in Lee. 
White, and Granger (1993). 

The Macleod-Li statistic is based on the correlation coefficients between 
y: and its lags since for a linear stationary process, corr( y:, Y:_~) = 
corr(y,, y,_,J’. The statistic will pick up nonlinearity in the conditional mean 
but will also detect nonlinearity in variance such as due to ARCH effects. The 
ARCH test is the by now familiar Lagrange multiplier test due to Engle (1982). It 
specifically tests for nonlinearity in the conditional variance. 

The Keenan, RESET, and Tsay tests are F tests which detect departures from 
linearity in mean. Denoting ft = xio, the Keenan test checks to see .ff has 
additional forecasting ability for y,. Both the RESET and the Tsay tests 

are generalizations of this idea. The former checks to see if higher orders off; 
have additional forecasting power while the latter looks for the significance of 
cross-product terms such as y,_ jyt-k, j, k = 1 . . p, in the null model. Formal 
definitions of all six statistics are given in Lee et al. (1993). 

The regressions used to produce the neural network and the RESET tests are 
susceptible to collinearity in the regressors. In practice, the problem is circum- 
vented by using the main principal components (but not the largest) instead of 
all the regressors. We let 4 = 15 and q* = 2 (principal components) in the neural 
network test, while the RESET test is based on one principal component. The 
Macleod-Li statistic has 15 degrees of freedom. The data are prewhitened, or 
the lag order chosen, where necessary, using the Akaike information criteria. 
The tests are robust to the choice of these parameters. Since the neural network 
test is based on randomly generated uniform variates, it is repeated several times 
with the same parameterization to ensure stability of the results. We therefore 
report three sets of the neural network test for reference. The statistics are 
programmed in Gauss and the exact size of each test is simulated to ensure that 
it is close to the nominal size. 

The tests are applied to the thirteen commodity prices used in Deaton and 
Laroque (1992a). The data are indices of average commodity prices for each 

3 The model predicts nonlinearity and conditional non-Gaussianity, but since features of nonnor- 

mality are induced by nonlinearity, we focus on identifying nonlinearity in the data. 
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Table 1 

Tests for nonlinearity 

Commodity 

Neural Keenan Reset Tsay Arch(l) TAR 

x2(2) F(L 84) x2(l) F(l, 85) x2(l) F(l, 85) 

Bananas 

Cocoa 

Coffee 

Copper 

Cotton 

Jute 

Maize 

Palm oil 

Rice 

Sugar 

Tea 

Tin 

Wheat 

0.50 
2.25 

5.31** 

2.65 

1.81 

2.60 

2.83 

9.96* 

10.46* 

8.60* 

7.28* 

12.10* 

4.87* * 

5.85* 

6.19* 

7.40* 

8.44* 

0.88 

3.68 

2.23 

4.47** 

16.91* 

10.98* 

13.73* 

0.23 

4.50 

1.25 

14.70* 

15.29* 

16.71* 

2.74 

1.50 

2.16 

0.47 

0.71 

0.23 

0.98 

2.79 

3.06 

0.0005 0.03 o.ooo5 0.50 0.63 

1.956 1.78 1.98 0.89 0.80 

4.78* 5.44* 4.83* 23.83; 0.82 

3.98’ 4.06* 4.03* 1.52 1.45 

1.08 0.82 1.92 0.53 1.14 

7.47* 9.39* 7.56* 4.17* 2.68** 

2.98 1.64 3.02* * 0.008 1.49 

18.26* 31.93* 18.48* 24.42* 2.59* * 

0.99 2.07 2.79* 5.308 0.50 

16.6s s.os* 1.66 5.18** 

0.01 0.28 1.13 0.04 

0.11 3.01** 0.29 

0.85 

1.09 

1.10 

16.85* 

0.01 

0.11 

0.86 0.08 0.14 

* (**) Denotes significance at the 5 (10) percent level. 
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calendar year, prepared by the World Bank Commodities Division, and are 
deflated by the U.S. consumer price index. The results are reported in Table 1. 
Tests which are statistically significant at the five and the ten percent levels are 
marked with one and two asterisks respectively. We cannot reject the null 
hypothesis of linearity at all in three series, namely, cocoa, tea, and wheat. Very 
weak evidence of nonlinearity can be detected in bananas, cotton, maize, rice, 
and tin. However, there is convincing evidence of nonlinearity in the price of 
coffee, copper, jute, palm oil, and sugar. 

With the exception of the ARCH test, the statistics used essentially test the 
null hypothesis of linearity against an unspecified form of nonlinearity and are 
therefore portmanteau tests. Together with the small sample size on hand, one 
might expect the power of the tests to be low. Yet, our results still show signs of 
nonlinearity in many of the commodity prices examined. As nonlinearity is 
a prerequisite of the data if the theory of speculative stockholding was to hold, 
we therefore proceed to test the specific implications of the theory. 

3. Threshold autoregressive models 

A distinct prediction of the speculative storage model is that commodity 
prices are a nonlinear, two-regime, process with the switch in regime occurring 

at P * = (1 - 6)/( 1 + r)Ef(z). Although there exist many nonlinear time series 
models in the literature - see, for example, Priestley (1988) - it seems appropriate 
to work with a model that exploits the two-regime nature of the price function. 
This suggests using a Self Exciting Threshold Autoregressive model due to Tong 
(1978) and further developed in Tong and Lim (1980). A SETAR(r, q, c, d) model 
is summarized by a set of autoregressions: 

Pt= iUij&_i+ejt if Cj-1 IPt-d<Cj, j=l,...,r, 
i=l 

where ej,mi.i.d.(O, a;), Cj is the threshold characterizing regime j, pt_d is the 
threshold variable, q is the order of autoregression, and r is the number of 
thresholds identifying the r + 1 regimes.4 Readers are referred to Tong (1990) for 
a systemmatic analysis of the SETAR model. 

4The term ‘regime switching’ is used in a casual sense and is to be distinguished from the type of 

regime switching models such as developed by Hamilton (1989). In self-exciting threshold models, 

regime switching is determined by the value of the variable’s own past, and a shift in regime is certain 

once the threshold level is reached. In Hamilton’s model, regime shifting is probabilistic as 

determined by the fundamentals (possibly variables other than the own lag) underlying the Markov 

transition matrix. 
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Under the threshold principle, the parameters of the model are allowed to 
vary according to past values of pt or values associated to lags of pt. Hence, the 
terminology ‘self-exciting’. Within each regime, pt is a linear autoregressive 
process, but pt itself is the sum of r Gaussian processes and therefore exhibits 
non-Gaussian and nonlinear behavior. The threshold model given by (5) can 
therefore be regarded as a ‘piecewise linear approximation’ to a general, first- 
order, nonlinear model of the form pt =f(p,_ r) + e,. 

While a general SETAR model has many parameters, namely, Y, q, c, and d, 

the empirical model that we will use to analyze commodity prices is simpler than 
that written down in (5). This is because theory tells us what the values of I, q, 

and d should be. Rational expectations and white noise shocks dictate that d, the 
delay parameter, and q, the order of autoregression, be one. Since there are only 
two regimes possible, r is unity. Furthermore, since shocks are i.i.d., the thresh- 
old, c, is p*, a constant. The model of interest is therefore a SETAR(1, 1, p*, 1) 

with p* as the threshold. If pt_ 1 < p*, inventories are held and prices are 
intertemporally related. When pt_ 1 2 p*, pt is entirely determined by harvest in 
period t. The empirical model which will be used to test the theory is 

PI = al + blp,-I + el, if ptel 5 p*, 

pt = a2 + b2p,- 1 + e2, otherwise. (6) 

Under the null hypothesis, prices should be expected to rise in the stockholding 
regime but be history-independent in the stockout regime. This implies bl > 1 
and b2 = 0. Furthermore, prices should be higher and more variable in the 
stockout regime because of the absence of inventories to buffer excess demand. 
These are testable implications regardless of the assumptions about demand 
functions. The only maintained assumptions are that shocks to harvest are i.i.d. 
and that there are two regimes underlying the data. 

It is interesting to note that (6) can be used to test if commodity markets are 
efficient in the sense that the conditional expectation of pt from the two 
autoregressions in (6) should converge as pt_ 1 ---f p*. This ensures no arbitrage 
opportunities arising from jumps in the expectation of prices. A model with 
market efficiency imposed should therefore satisfy a, + blp* = a2 + b,p*. 

Note, however, that market efficiency so defined does not imply and is not 
implied by rational speculative stockholding which requires b, > 1 and b, = 0. 

Tsay (1989) proposed a simple test of linearity against the alternative of 
threshold nonlinearity using a rearranged autoregression with the data ordered 
according to the threshold variable. The idea is that the orthogonality between 
the predictive residuals and the regressors in the recursive ordered autoregres- 
sion will be destroyed if there is a regime change. We compute the test statistic 
for the thirteen series setting q, r, and d to unity. The results are reported in the 
last column of Table 1. The test finds evidence for threshold nonlinearity in three 
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series only, namely, jute, palm oil, and sugar. While such results are somewhat 
discouraging, it could be the case that the test has low power because of the 
small number of observations. To further investigate the properties of the data, 
we proceed to estimate the parameters for the two regimes. 

4. Estimation issues 

In a stationary SETAR context, the state is always known at time t since the 
value of pt - 1 determines the regime the series will belong each period, and hence 
the process driving the series in that period. Given this structure, normality of 
the error process, and stationarity of the regime-specific autoregressions, least 
squares should produce estimates of the autoregressive parameters that are 

@-consistent and asymptotically normal. This result was formally proved in 

Chan (1993). 
In practice, estimation of the SETAR parameters is quite involved especially 

when the threshold value is unknown because there are many free parametersa 

Although it is not necessary to estimate Y, d, and LJ in our case because they are 
already pinned down by theory, our empirical model also has two nonstandard 
features. The first arises from the fact that the errors are conditionally hetero- 
skedastic in the regime in which stocks are held. The second relates to the fact 

that the autoregressive coefficient in the stockholding regime exceeds one under 
the null hypothesis. 

As for the first problem, omitting conditional heteroskedasticity should be an 
issue of efficiency and not consistency, and one would expect approaches 
developed for homoskedastic errors to continue to be valid when the errors are 
conditionally heteroskedastic.6 As for the second problem, little is known about 
the properties of the least squares estimator when the root of the autoregression 
is unstable in one or more regimes. Pham, Chan, and Tong (1991) show in the 
case of two regimes that the least squares estimator is strongly consistent when 
one and/or both regimes have a unit root with d and r known. Results for more 
general forms of nonergodicity are unavailable, but Pham et al. (1991) noted that 
‘recurrence’ might be necessary for strong consistency to hold when there is 
nonstationarity of other forms in some of the regimes. 

’ Tong and Lim (1980) proposed an iterative search over r, q, c, and d for 

proposed a graphical method that is computationally less demanding. 

the best model. Tsay (1989) 

‘Commodity prices are conditionally heteroskedastic in its own lag and cannot, strictly speaking, be 

parameterized as an ARCH or a GARCH process. We cannot therefore appeal to the results of 

Gourieroux and Monfort (1992) for qualitative threshold models (QTARCH) and ZakoYan (1994) 

for threshold ARCH and GARCH models. 



134 S. Ng /Journal of Economic Dynamics and Control 20 (1996) 123-143 

The statistical result that is ultimately required for our analysis is consistency 
of the estimator with unknown thresholds and with possible nonstationarity 
and conditional heteroskedasticity in one of the two regimes. The issue of 
whether the estimator converges at the usual rate of fi or faster is also an issue 
to be resolved. The ambiguity arises because commodity prices are renewal 
processes which are ergodic by assumption. Since prices in the nonstationary 
regime are bounded from above by p*, the sample moments of the process in 
that regime will not accumulate as fast as those of a strictly nonstationary 
process. Therefore, although there is nonstationarity in one regime, results 
relevant for nonergodic and nonstationary processes would seem overly strin- 
gent. A formal statistical analysis would be beyond the scope of this paper, but 
we will use simulations to examine the properties of the quasi-maximum- 
likelihood estimator under the assumptions of the speculative storage model. 
This numerical analysis is carried out using a Kalman filter framework, to which 
we now turn. 

4.1. The Kalman filter 

In this section, we use a Kalman filter to set up the two-regime autoregres- 
sions. The threshold value is a parameter to be estimated by maximizing the 
likelihood function of the threshold model. The approach is more mechanical 
than the graphical approach of Tsay (1989) and seems appropriate for modeling 
a battery of series such as in this study. We will cast the two-regime threshold 
model in state space form and will follow the analysis of Harvey (198 1) closely. 
Let a, = (1, pt) be the state vector and 2 = [0 l] be a fixed matrix. The measure- 
ment and transition equations are 

The transitional matrix at time t depends on the state in t - 1, hence denoted 
T,,,_ 1. More precisely, if pt_ 1 < p*, the transition equation is 

If P,_ 1 > p*, the transition equation is 
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Let &,_ 1 be the minimum mean-squared estimator for a given all the informa- 
tion up to t - 1 with covariance of_ i V, _ 1, where a:_ 1 is either a: or tr: depend- 
ing on the regime. Then the prediction equations given information at t - 1 are 

The updating rule is given by 

0, = Pr - Z&-l, 

The objective is to maximize the pseudo-log-likelihood function 

L= -$log2rc-f i logo:&+ i logv:/(o:f:). (7) 
I=1 f=l 

The threshold, p*, enters the objective function since the transition matrix in 
each period depends on the state, and hence on the value of p*. We have seven 
parameters to estimate, namely, a,, bi, of, u2, b,, o:, and p*. 

A key feature of the commodity price model is that there is a kink in the 
price process at the threshold value. Accordingly, the likelihood function is 
nondifferentiable at the kink point. The approach taken here is to use the 
downhill simplex method of Nelder-Mead which is derivatives-free. Briefly, if 
there are n parameters to be estimated, the algorithm requires as input n + 1 sets 
of initial values to form a simplex. The algorithm seeks to move a point in the 
simplex towards the direction where the objective function is minimized (in this 
case, the negative of L). The algorithm is repeated several times with updated 
starting values to ensure that a global maximum is achieved. The routine is 
taken from Press, Teukolsky, Vetterling, and Flannery (1992) and recoded in 
Gauss. 

Since the algorithm is derivatives-free, it does not compute the gradient or the 
Hessian. In consequence the standard errors for the estimates have to be 
computed by alternative means. As a matter of practice, this is achieved as 
follows. Given a set of initial values, the Nelder-Mead algorithm provides 
an estimate of p*. This allows us to separate the sample according to 
p^* and construct the regime-specific moment matrix of regressors and regression 
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residuals. These are then used to construct the heteroskedastic-consistent 
standard errors of White (1980).’ 

4.2. A Monte Carlo experiment 

As noted earlier, the theoretical properties of the quasi-maximum-likelihood 
estimator for a model with features such as ours are not known. We therefore 
perform a Monte Carlo experiment to assess the adequacy of the estimator. To 
this end, we simulated data using the model: 

Pr=O.l + l.O2p,_i +clt if pt_l <p*=O.7, 

-k - -h ,elf, h: = 0.1 + 0.4& 1, 

pt = 0.812 + ezt otherwise, 

el,, ezt -N(O, 1). 

This is a two-regime threshold model with an explosive root and ARCH effects 
in one regime. It is set up to broadly mimic the theoretical properties of 
commodity prices. The price process is continuous at p* by construction. We set 
the sample size to 88, the length of the commodity price series used in the 
empirical analysis, and estimated the model 100 times using the Nelder-Mead 
algorithm to maximize the quasi-maximum-likelihood function described in the 
previous section. The mean and standard error of the estimates in the 100 
simulations are as follows: 

Mean 

SD. 

aI b, 

0.1076 0.9638 

0.0722 0.0914 

a2 b2 

0.7255 0.0417 

0.3058 0.0391 

01 c2 P* 

0.3779 1.0252 0.7263 

0.0604 0.3345 0.1131 

The true values of the parameters in the autoregressions are within one 
standard error of the estimates. Of special interest is that p* is estimated with 
high precision even with the small sample size on hand. It has been shown in 

‘This is as though we run an autoregression for each regime using $* to split the sample. The least 

squares estimates of the two autoregressions provide a check for the reasonableness of the quasi- 

maximum-likelihood estimates. By Theorem 2.1 of Tsay (1989), given the threshold value, the least 

squares estimator should converge almost surely to the true, regime-specific, parameters. Thus, 

conditional on p*, the quasi-maximum-likelihood estimates should be close to those of the condi- 

tional least squares estimates because the sample is divided on the basis of the same threshold value. 

However, the conditional least squares approach takes p* as given but the maximum-likelihood 
approach treats p* as parametric. In practice, the two sets of estimates are very similar. 



S. Ng J Journal of Economic Dynamics and Control 20 (1996) 123-143 I37 

Chart (1993) that for stationary ergodic cases, the least squares estimator for 

p* is super (order T) consistent. The intuition for that result is that given a series 
ordered according to plmd, p* can be identified from the observations in the 
neighborhood of p*, the location of the discontinuity of the autoregressive 
function. Precise estimates can therefore be obtained without using data on 
pt over a large range. This allows p* to be consistently estimated at an accelerated 
rate. It appears that this fast rate of convergence will continue under the stochastic 
assumptions of our model, although this conjecture needs to be formalized. 

The regression model used in the Monte Carlo analysis has ignored condi- 

tional heteroskedasticity in one of the regimes and the estimated variances 
resemble the unconditional variance of the respective regimes. The issue of 
interest is the properties of&r, bz, and ;* when conditional heteroskedasticity is 
ignored, and our results suggest that these parameters are still estimated with 
high precision. The result that the gain in modeling conditional heteroscedastic- 
ity is one of efficiency rather than consistency appears to carry over from 
piecewise linear to threshold models8 

There is an explanation for our seemingly favorable Monte Carlo results. If 
the autoregressive coefficient was outside the unit circle in the stockout rather 
than the stockholding regime, then prices would grow forever and would exceed 
p* with probability one. Ergodicity would be violated. But such is not the case 
here. Nonstationarity occurs in the autoregression for the regime in which 
stocks are held. Since carrying costs are positive, prices will rise (in expectations) 
and will eventually hit p*. Thus, there must exist periods when no speculative 
inventory is held. The market-clearing mechanism is such that prices are 
prevented from moving in one direction forever. This makes commodity price 
a renewal and an ergodic process with a nonzero probability of falling into one 
of the two regimes. For this reason, although there is nonstationarity in one 
regime, the empirical properties of the quasi-maximum-likelihood estimator 

behaves as though the price process is stationary and ergodic. 

4.3. Estimates&w the commodity prices 

The quasi-maximum-likelihood estimates for the model without market effi- 
ciency imposed are reported in Table 2. Evidence of regime-specific behavior 
can be seen from the fact that the conditional mean in the stockholding regime is 
uniformly lower than in the stockout regime. With the exceptions of cocoa, rice. 
and tea, the variances are also higher in the stockout regime. 

Using the estimated values of p* to separate the sample, the highest incidence 
of stockout is found in the case of cotton (twenty-five percent) and the lowest in 

‘Generalizing the model to handle GARCH effects within regimes is, in theory, straightforward. In 
practice, this additional source of nonlinearity poses convergence problems a& the optimization level. 
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the case of rice and wheat (three percent), but there is evidence of infrequent 
stockouts in every commodity. The estimated values of p* are in line with those 
reported in Deaton and Laroque (1992a) with the exception of cotton and palm 
oil. In their analysis, palm oil is estimated to have the lowest (one percent) 
incidence of stockout. Our estimated value of p* is less extreme and suggests 
stockouts occurring in the palm oil market eight percent of the time. For 
the case of cotton, our estimate of p* is lower than theirs and implies stockouts 
happening twenty-five percent of the time. By contrast, Deaton and Laroque 
(1992a) reports a more modest eight percent incidence of stockout. Thus, 
cases when the results of the two analyses do not accord pertain to situations 
when the frequency of stockouts is estimated to be either extremely high or 
extremely low. 

An implication of the speculative storage model is that speculators expect 
prices to increase since carrying costs are positive. The point estimate of 
b, exceeds one in nine cases with the estimated coefficient in the remaining four 
cases within one standard deviation of unity. If stockouts are indeed infrequent 
events, the number of observations in the stockout regime will be small, and the 
standard errors for the estimates in that regime will likely be large. The 
parameters in the stockout regime will not be estimated with as much precision 
as those of the stockholding regime. We therefore also consider the absolute size 
of the estimates in assessing whether the stockout regime has zero degree of 
persistence with 8, = 0. The estimates suggest that in nine of the thirteen cases, 
strong persistence is found in the stockout regime. This is one aspect of theory 
most rejected by the data. 

The empirical properties of commodity prices can therefore be subdivided 
into three categories depending on the values of 8, and ^b,. For coffee, copper, 
jute, and sugar, bi is close to or exceed one and &, is statistically and numerically 
insignificant. All aspects of the theory are therefore supported. For banana, 
cotton, maize, palm, and wheat,^b, is less than one and in some cases statistically 
insignificant, but the validity of the theory is still of some concern because the 
numerically large estimates for b2 imply nonnegligible persistence in the stock- 
out regime. As for cocoa, rice, tea, and tin, the values of 8, and ^b2 are close to or 
exceed one. This is incompatible with an assumption underlying our Monte 
Carlo experiment and the estimates should therefore be interpreted with some 
caution. However, taking the estimates at face value would imply that these four 
price processes are not ergodic and cannot therefore be renewal processes as 
predicted by theory. 

Turning now to the results reported in Table 3 with market efficiency 
imposed, the constrained estimates generally suggest a lower degree of persist- 
ence in the stockout regime than in the model without market efficiency 
imposed. The data for coffee, copper, jute, and sugar continue to be the only 
commodities that show decisive support for the speculative storage model. The 
efficient market hypothesis is rejected in four case: cocoa, rice, tea, and tin. Of 
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these, the price of tea and tin are also strongly persistent in the stockout regime. 
This is inconsistent with rational storage behavior. 

Together with the results of the nonlinearity tests, coffee, copper, jute, and 
sugar appear to be the only commodities supporting all aspects of the theory. 
The remaining prices either exhibit weak or no evidence of nonlinearity, or the 
estimates of ^b2 are more persistent than predicted by theory. Interestingly, cases 
when evidence for nonlinearity and market efficiency is weakest are also cases 
when ^b2 is both numerically and statistically significant and not too different 
from 6 1. Indeed, a key distinction between the regimes would be lost if the two 
regimes have the same degree of persistence. Unless the intercepts in the two 
autoregressions are sufficiently different, the processes defining the two regimes 
would be approximately identical, in which case, the price process can be viewed 
as piecewise linear. The failure to reject linearity in cocoa, tea, and tin reinforces 
the similarities in the stochastic properties of the two regimes. 

5. Concluding comments 

The assumption of i.i.d. shocks to harvest imposes a strong identification 
restriction on the behavior of prices across regimes. Prices should be autocor- 
related in one regime but not the other. The finding that in eight of the thirteen 
cases, the autoregressive coefficient in the stockout regime is numerically and/or 
statistically significant suggests that prices are serially correlated whether or not 
stocks are held. Indeed, the degree of persistence found in the stockout regime is 
rather strong; the autoregressive coefficient exceeds 0.8 in many cases. Given 
that the data exhibit such high level of serial correlation, a model which 
constrains the stockout regime to have zero persistence is clearly inappropriate. 
It is therefore not surprising that Deaton and Laroque (1992b) found a one- 
regime AR(l) model to track the data better than a two-regime model with no 
persistence in one regime. 

Serial correlation in commodity prices can arise for a variety of reasons. One 
explanation in the case of tree crops such as cotton and tea is the long gestation 

lag between planting and harvest. A supply shock can lead to prolonged periods 
of excess demand which in turn induces autocorrelation in prices. In the same 
vein, cyclical but serially correlated shocks to the demand for industrial com- 
modities such as tin will also generate a similar persistent effect. In these cases, 
the assumption that shocks to commodity markets are i.i.d. will not be appropri- 
ate. 

This paper suggests further work in two areas. The first is a rigorous statistical 
analysis to formalize the properties of our threshold model. This would require 
integrating results for nonstationary variables and conditional heteroskedas- 
ticity with those of SETAR models. The results will be useful not just for 
analyzing commodity prices, but more generally when threshold modeling of 
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nonstationary and conditional heteroskedastic data is appropriate. The second 
line of research is to generalize the speculative storage model to allow for serial 
correlation, establish the theoretical properties, and test the model predictions. 
On this, some progress has been made. 

The theoretical properties of commodity prices when shocks are time-depen- 
dent is the subject of research in a recent paper by Chambers and Bailey (1993). 
A conclusion from that analysis is that while pt will still be ergodic, p* will no 
longer be a constant once the i.i.d. assumption is relaxed. From the standpoint 
of hypothesis testing, the time-varying nature of p* raises an econometric 
problem since prices in both regimes will be serially correlated whether or not 
speculative inventories are held. The feature which allows us to identify the two 
regimes in the i.i.d. case is no longer valid. One would need to isolate the effects 
of serially correlated shocks from persistence due to speculative stockholding to 
test the competitive storage model. This issue is currently under investigation by 
the author. 
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