Controllo dei Processi

A.A. 2007/08

Docente: Ing. Carlo Cosentino

Lab. Di Biomeccatronica

Email: carlo.cosentino@unicz.it

Tel: 0961-369-4051

http://bioingegneria.unicz.it

Informazioni sul corso

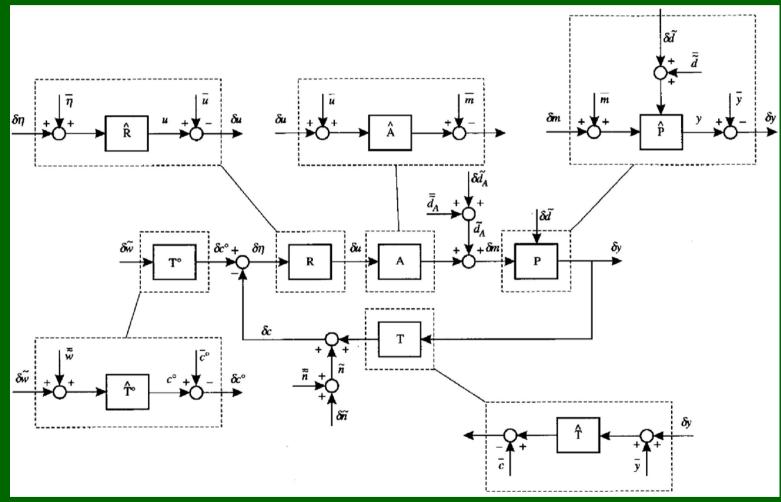
- ▲ E-mail: carlo.cosentino@unicz.it
- A Ricevimento: appuntamento via e-mail
- ▲ Materiale Didattico:
 - ♦ P. Bolzern, R. Scattolini, N. Schiavoni, Fondamenti di Controlli Automatici, Mc Graw-Hill
 - ♦ Riferimenti durante il corso
 - ✦ Integrazione con i lucidi del corso (http://bioingegneria.unicz.it)
- ▲ Modalità esame
 - ♦ Tesina Sperimentale
 - **♦** Esame orale

Programma del Corso

- A Richiami di controlli automatici
- ▲ Implementazione dei regolatori standard
- ▲ Schemi di controllo avanzati
- ▲ Controllo ottimo LQ
- ▲ Identificazione
- ▲ Sensori e attuatori per il controllo
- ▲ Tecnologie dei sistemi di controllo
- A Rappresentazione schematica di sistemi di controllo

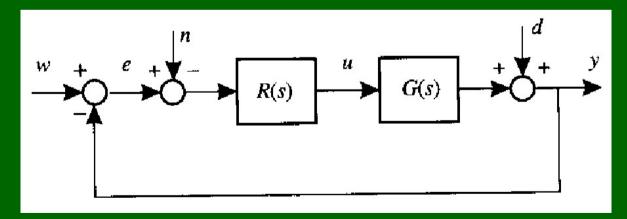
Richiami di Controlli Automatici

Schema generale di controllo in retroazione



Schema semplificato

- A Trascurando le dinamiche e i guadagni degli attuatori
- A Trascurando le dinamiche e i guadagni dei sensori
- A Riportando tutti i disturbi a valle dell'impianto



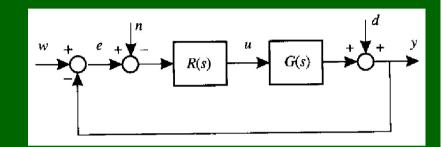
Requisiti di un sistema di controllo

- ▲ Stabilità
 - ♦ in condizioni nominali
 - † in condizioni perturbate (stabilità robusta)
- ▲ Prestazioni statiche
 - \Rightarrow Errore limitato (o nullo) per $t \rightarrow \infty$ a fronte di ingressi/disturbi persistenti
- ▲ Prestazioni dinamiche
 - ♦ Tempo di assestamento, sovraelongazione, smorzamento
- Anche le prestazioni vanno garantite per condizioni perturbate (prestazioni robuste)

Funzioni di sensitività

▲ Funzione di **Sensitività**

$$S(s) = \frac{1}{1 + R(s)G(s)}$$



▲ Funzione di **Sensitività Complementare**

$$F(s) = \frac{R(s)G(s)}{1 + R(s)G(s)}$$

▲ Funzione di Sensitività del Controllo

$$Q(s) = \frac{R(s)}{1 + R(s)G(s)} = F(s)G(s)^{-1} = R(s)S(s)$$

Funzioni di trasferimento tra ingressi e uscite

A Si può calcolare facilmente

$$\begin{bmatrix} Y(s) \\ U(s) \\ E(s) \end{bmatrix} = \begin{bmatrix} F(s) & S(s) & -F(s) \\ Q(s) & -Q(s) & -Q(s) \\ S(s) & -S(s) & F(s) \end{bmatrix} \begin{bmatrix} W(s) \\ D(s) \\ N(s) \end{bmatrix}$$

 \blacktriangle Si noti che un inseguimento perfetto del segnale di riferimento, con reiezione perfetta del disturbo, d(t), richiederebbe

$$F(s)=1, S(s)=0$$

- \land Tuttavia questo comporterebbe anche una trasmissione non attenuata del rumore, n(t), sull'uscita e sull'errore
- ▲ Inoltre risulterebbe $Q(s)=G(s)^{-1}$, quindi , essendo G(s) in genere strettamente propria, la Q(s) divergerebbe per $s \rightarrow \infty$

Sintesi in frequenza

 \triangle Bisogna tenere presente che F(s) e S(s) non sono indipendenti

$$F(s)+S(s)=1$$
 water-bed effect

- △ Da queste considerazioni deriva l'approccio di sintesi in frequenza
- L'idea di base consiste nel cercare di imporre

$$F(j\omega)=1$$
, $S(j\omega)=0$, $0 \le \omega \le \omega_c$

$$F(j\omega) = 0$$
, $S(j\omega) = 1$, $\omega_c \le \omega \le \infty$

assumendo che il disturbo e il rumore abbiano spettri frequenziali non sovrapposti

Sintesi in frequenza

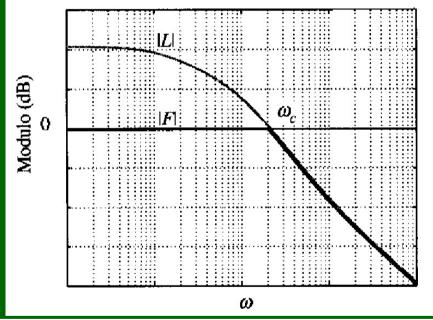
- $^{\perp}$ In tal caso il sistema a ciclo chiuso sarà un passa-basso, con pulsazione di taglio approssimativamente pari a ω_c
- A Per ottenere tale risultato si agisce sulla funzione di anello

$$L(s) = G(s)R(s)$$

mediante la fdt del controllore, R(s).

Loop-shaping

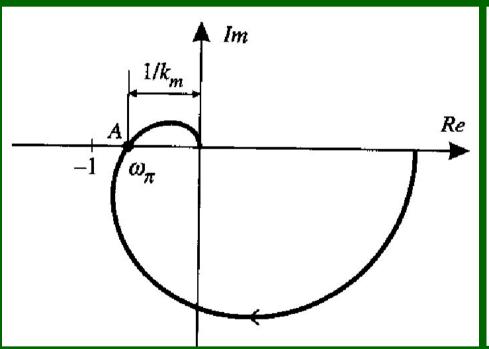
La f. di anello deve avere modulo grande alle basse pulsazioni e piccolo alle alte pulsazioni

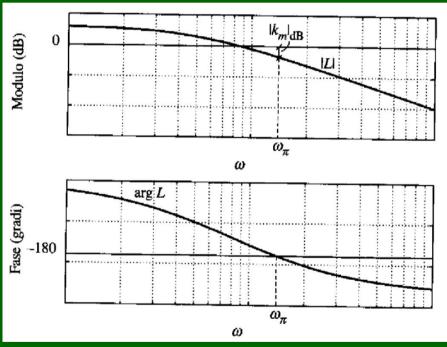


$$|F(s)| = \frac{|L(s)|}{|1 + L(s)|} \approx \begin{cases} 1 & \omega \le \omega_c \\ |L(j\omega)| & \omega > \omega_c \end{cases}$$

Margini di guadagno e fase

▲ Dal **criterio di Nyquist** si derivano i seguenti indicatori di robustezza della stabilità del sistema a ciclo chiuso

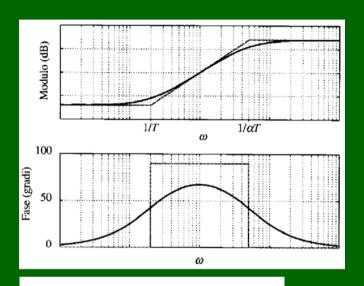


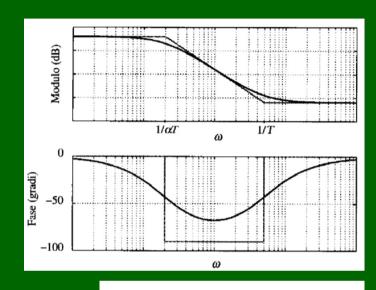


Progetto secondo specifiche

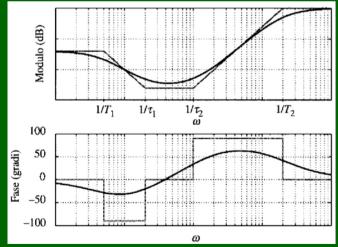
- ▲ Siano assegnate un certo insieme di specifiche per il sistema di controllo da progettare, ad es.
 - + errore a regime nullo per ingresso a gradino
 - + tempo massimo di assestamento
 - ♦ massima sovraelongazione
- ▲ Tali specifiche si possono tradurre in requisiti sulla f. di anello, ad es.
 - ♦ Presenza di un polo nell'origine
 - ♦ Limite inferiore sulla pulsazione critica
 - ♦ Limite inferiore sul margine di fase

Reti stabilizzatrici





Rete anticipatrice



Rete ritardatrice

Rete a sella

Esercizio Matlab

A Si progetti un regolatore per il sistema con fdt

$$G(s) = \frac{10}{(1+10s)(1+5s)(1+s)}$$

- ▲ Specifiche di progetto:
 - $|e_{\infty}| \le 0.1$ in corrispondenza di w(t)=A·1(t) e d(t)=B·1(t), con $|A| \le 1$ e $|B| \le 5$
 - $\phi \omega_c \ge 0.2$
 - $\phi_{\rm m} \ge 60^{\circ}$

Esercizio Matlab

A Si progetti un regolatore per il sistema con fdt

$$G(s) = \frac{0.1(1-2s)}{s(1+10s)(1+0.1s)}$$

- ▲ Specifiche di progetto:
 - $\phi_{\rm m} \ge 40^{\circ}$
 - ♦ Massimizzare la pulsazione critica

Regolatori Standard

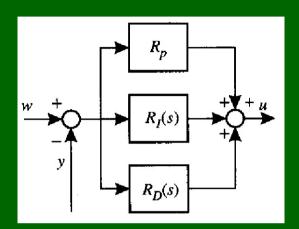
Regolatori PID

- ▲ I regolatori lineari più usati in ambito industriale sono certamente quelli ad azione Proporzionale, Integrale, Derivativa (PID)
- ▲ Forniscono buone prestazioni nella maggior parte dei processi industriali
- Esistono in commercio controllori PID realizzati con diverse tecnologie (idraulica, pneumatica, elettrica)
- A Esistono regole per la taratura automatica dei parametri

Modello base di PID

▲ La struttura base di un PID è

$$u(t) = K_P e(t) + K_I \int_{t_0}^t e(\tau) d\tau + K_D \frac{de(t)}{dt}$$



- Azione proporzionale: azione di controllo di base
- Azione integrale: annulla l'errore a fronte di disturbi costanti
- Azione derivativa: velocizza la risposta

Rappresentazione alternativa

▲ Una diversa rappresentazione dei PID è data da

$$R_{PID}(s) = K_P \left(1 + \frac{1}{T_I s} + T_D s\right) = K_P \frac{T_I T_D s^2 + T_I s + 1}{T_I s}$$

con

$$T_I = K_P / K_I$$

 $T_I = K_P / K_I$ Tempo integrale

$$T_D = K_D/K_P$$

 $T_D = K_D/K_P$ Tempo derivativo

A Tali parametri sono tipicamente quelli da settare nei dispositivi implementati a livello commerciale

Azione derivativa reale

- ▲ Si noti che la fdt del PID ideale è impropria
- ▲ Ciò è dovuto alla non fisica realizzabilità del derivatore ideale, per cui si usa un derivatore reale

$$R_D^a(s) = \frac{K_P T_D s}{1 + \frac{T_D}{N} s} = \frac{K_D s}{1 + \frac{K_D}{K_P N} s}$$

dove N è tale che il polo $s=-N/T_D$ sia all'esterno della banda di frequenze di interesse nel controllo

Combinazioni comuni

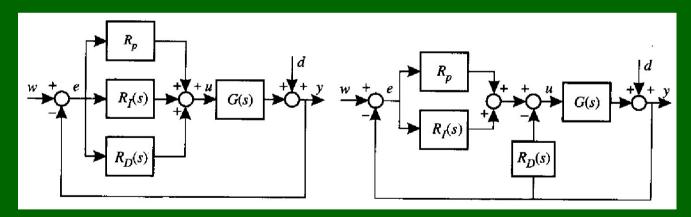
- Regolatori P: processi asintoticamente stabili, senza vincoli stringenti su errore a regime
- ▲ Regolatori I: (rete ritardatrice) prestazioni dinamiche non elevate, errore a regime nullo per disturbi/ingressi costanti
- ▲ Regolatori PI: (rete ritardatrice) la presenza di uno zero rende possibile aumentare la banda passante
- Regolatori PD: (rete anticipatrice) maggiore margine di fase, prestazioni dinamiche elevate (svantaggi: variabile di controllo maggiormente sollecitata)
- Regolatori PID: (rete a sella)

Realizzazione dei regolatori PID

- ▲ L'implementazione reale dei PID si discosta dalla struttura di base presentata sopra
- ▲ In particolare, i seguenti problemi devono essere portati in conto in un'implementazione reale
 - ♦ Limitazione dell'azione derivativa
 - ♦ Saturazione dell'azione integrale
 - → Passaggio dalla modalità manuale a quella automatica

Limitazione dell'azione derivativa

- A Nello schema di base la derivazione è effettuata sull'errore
- A Spesso il segnale di riferimento è un gradino, per cui la derivazione produce un impulso sul segnale di controllo
- La moderazione della variabile di controllo può essere recuperata utilizzando il seguente schema alternativo



Limitazione dell'azione derivativa

Analizziamo le funzioni di trasferimento dei due schemi

$$Y(s) = \frac{R_{PID}(s)G(s)}{1 + R_{PID}(s)G(s)}W(s) + \frac{1}{1 + R_{PID}(s)G(s)}D(s)$$

$$U(s) = \frac{R_{PID}(s)}{1 + R_{PID}(s)G(s)}W(s) - \frac{R_{PID}(s)G(s)}{1 + R_{PID}(s)G(s)}D(s)$$

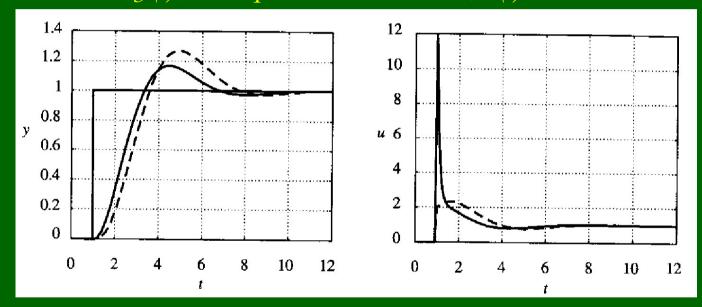
$$Y(s) = \frac{(R_{PI}(s)G(s))}{1 + (R_{PID}(s)G(s))}W(s) + \frac{1}{1 + (R_{PID}(s)G(s))}D(s)$$

$$U(s) = \frac{R_{PID}(s)}{1 + R_{PID}(s)G(s)}W(s) - \frac{R_{PID}}{1 + R_{PID}(s)G(s)}D(s)$$

Le uniche differenze consistono negli zeri delle fdt, quindi le proprietà di stabilità e i modi di evoluzione non cambiano

Limitazione dell'azione derivativa

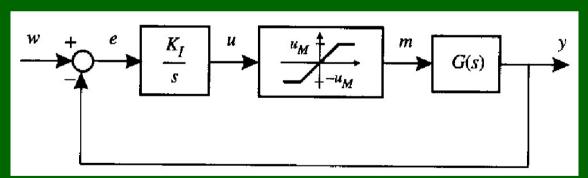
Andiamo ad esaminare gli andamenti della variabile controllata, y(t), e di quella di controllo, u(t)



▲ Talvolta viene implementata allo stesso modo anche l'azione proporzionale, per un segnale di controllo

Saturazione dell'azione integrale (integral wind-up)

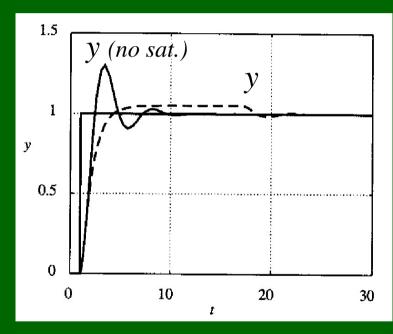
- La contemporanea presenza nel ciclo di controllo di una nonlinearità di tipo saturazione e di un'azione integrale (polo nell'origine) può provocare una degradazione delle prestazioni
- A Per semplicità, si supponga che il regolatore sia puramente integrale e che l'attuatore sia descritto da una saturazione simmetrica e con pendenza unitaria

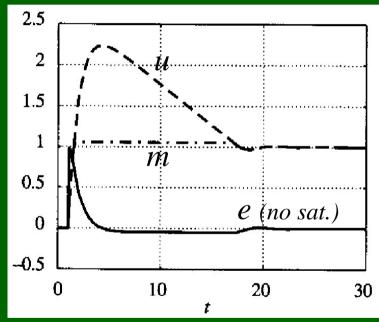


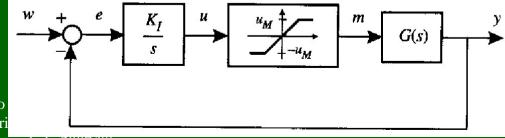
$$m(t) = \begin{cases} -u_M & u(t) < -u_M \\ u(t) & |u(t)| \le u_M \\ u_M & u(t) > u_M \end{cases}$$

Effetti della saturazione

Analizziamo l'andamento dei segnali di uscita e di controllo nel caso con e senza saturazione







Università degli Studi Magna Græcia di Catanzaro II anno – II semestre CdL specialistica in Ingegneri

Corso di Controllo dei Processi – Ing. C. Cosentino – A.A. 2007/08

Schema di desaturazione

- ▲ Durante la saturazione l'uscita del regolatore non è congruente con l'effettiva variabile di controllo, *m*
- L'idea di base, quindi, è di retroazionare il controllore con la variabile di controllo effettiva
- ▲ Si prenda in considerazione un regolatore generico

$$R(s) = \frac{N_R(s)}{D_R(s)}$$

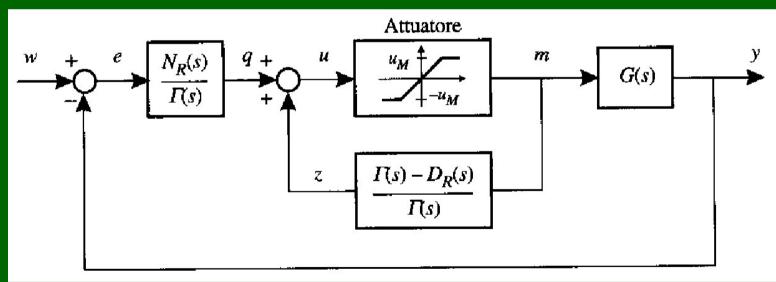
$$D_R(0) = 0 \qquad N_R(0) > 0$$

Schema di desaturazione

▲ Si definisca la fdt

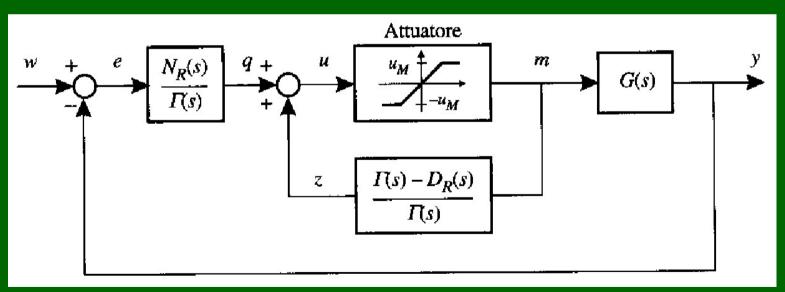
$$\psi(s) = \frac{\Gamma(s) - D_R(s)}{\Gamma(s)}$$

con il polinomio $\Gamma(s)$ tale che $\Psi(s)$ sia asintoticamente stabile e strettamente propria $\to \Psi(0)=1$



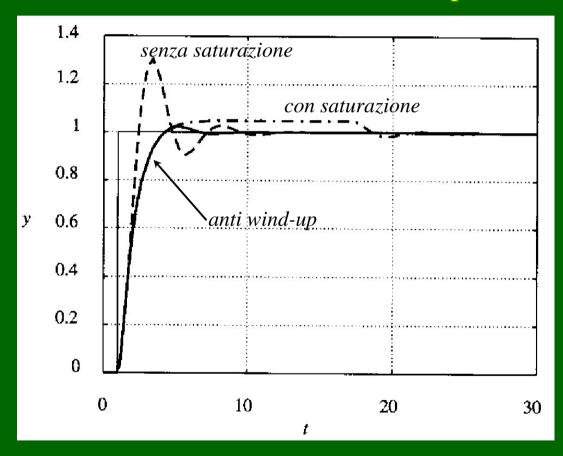
Schema di desaturazione

- A Si verifica facilmente che quando l'attuatore opera nella zona lineare la fdt da E(s) a M(s) è proprio pari a R(s)
- A Quando si è in saturazione, il feedback tramite Y(s) garantisce l'uscita dalla saturazione appena l'errore, e(t), cambia segno



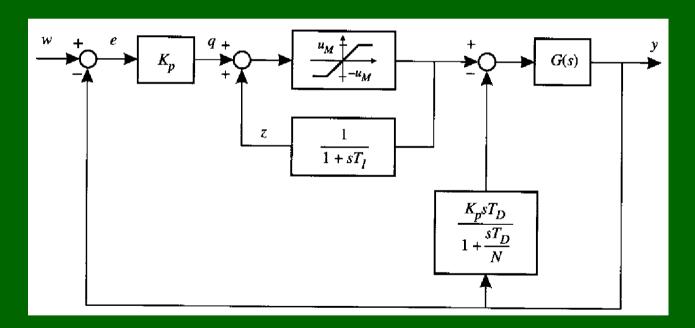
Effetto della desaturazione

Lo schema di desaturazione velocizza la risposta



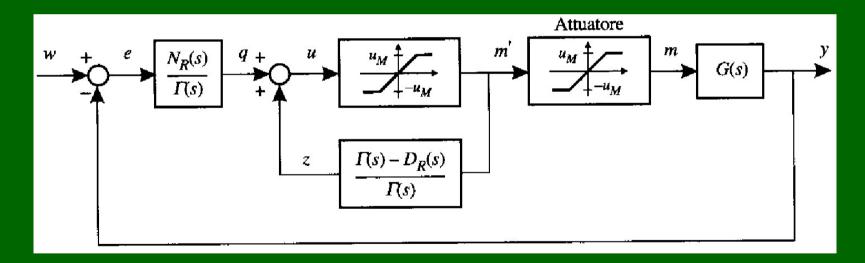
Schema implementazione PID

▲ In questo schema generale di implementazione di un PID sono stati portati in conto sia il problema del wind-up sia l'effetto dell'azione derivativa



Saturazione replicata

- ▲ Tipicamente la saturazione è incorporata nell'attuatore, quindi non è direttamente accessibile
- ▲ In tal caso si può replicare all'interno del controllore

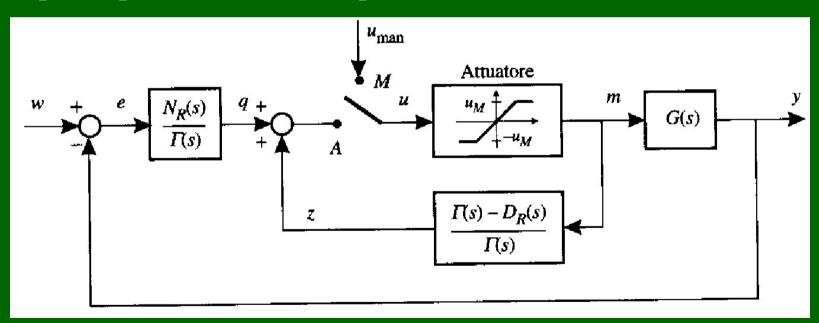


Inserimento "morbido" della regolazione automatica

- ▲ Tipicamente il controllore opera nell'intorno di un punto di equilibrio (condizione operativa nominale)
- L'impianto viene solitamente portato in tale condizione operativa mediante un iniziale controllo manuale
- La commutazione da controllo manuale ad automatico può produrre effetti indesiderati
- ▲ Tale fenomeno è causato da un'incongruenza tra il valore fornito dal controllore e quello comandato manualmente

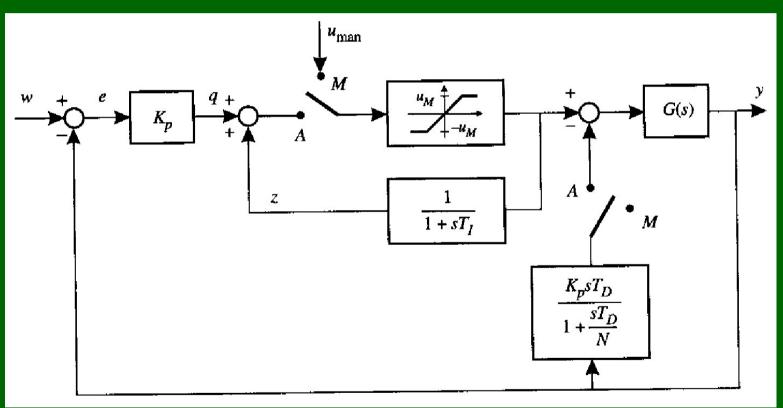
Inserimento "morbido" della regolazione automatica

- ▲ Il problema è analogo a quello della saturazione
- ▲ Lo stesso schema usato per la desaturazione si può utilizzare per implementare il "bumpless transfer"



Schema "bumpless" con PID

L'azione derivativa non deve entrare in gioco durante il controllo manuale

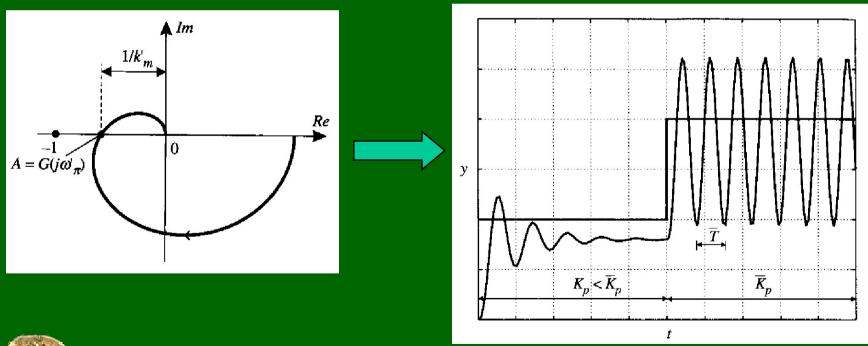


Metodi di taratura automatica

- Avendo un modello del sistema è possibile progettare il PID mediante le tecniche classiche di sintesi in frequenza
- A Spesso il modello non è noto (o non è noto il valore dei parametri) e lo scopo prioritario consiste nell'ottenere prestazioni accettabili in tempi rapidi
- ▲ In tale situazione si può ricorrere a dei metodi semi-empirici di taratura, come quelli sviluppati da Ziegler e Nichols (1942)

Metodo di Z-N in anello chiuso

- ▲ Si collega il PID all'impianto (anello di retroazione chiuso)
- $^{\wedge}$ Si attiva la sola azione proporzionale, aumentando gradatamente il valore del parametro K_P



Metodo di Z-N in anello chiuso

- La maggior parte dei sistemi arriverà al limite di stabilità (oscillazioni permanenti di periodo \overline{T}) per un valore limite \overline{K}_p
- ▲ Da tali valori, facilmente misurabili, si possono ricavare i parametri di taratura del PID, secondo la tabella

	K_{P}	T_{I}	T_D
P	$0.5\overline{K}_{P}$		
PI	$0.45\overline{K}_{P}$	$0.8\overline{T}$	
PID	$0.6\overline{K}_{P}$	$0.5\overline{T}$	$0.125\overline{T}$

Metodi in anello aperto

▲ Si basano sulla determinazione di un modello approssimato del processo, rappresentato dalla fdt

$$G_a(s) = \frac{\mu}{1 + Ts} e^{-\tau s}$$

- ▲ Tale modello può approssimare bene il comportamento di sistemi che non esibiscono oscillazioni
- \triangle Una volta determinata la $G_a(s)$ è possibile effettuare la sintesi in frequenza oppure ricorrere a metodi di ottimizzazione per la determinazione dei parametri del PID

Esercizio Matlab

A Progettare un controllore PID per il sistema con fdt

$$G(s) = \frac{1}{(1+s)(1+0.16s+0.04s^2)}$$

utilizzando le regole di taratura di Ziegler e Nichols

- ▲ Testare le prestazioni delle diverse configurazioni (P, PI,PID)
- A Implementare lo schema di limitazione dell'azione derivativa
- ▲ Implementare uno schema di limitazione sia dell'azione proporzionale che derivativa

Esercizio Matlab

♣ Per il controllore PI progettato nell'esercizio precedente, implementare lo schema di anti wind-up