

Corso di "Fondamenti di Automatica" A.A. 2016/17

Realizzazione, Raggiungibilità e Osservabilità

Prof. Carlo Cosentino

Dipartimento di Medicina Sperimentale e Clinica Università degli Studi Magna Graecia di Catanzaro tel: 0961-3694051

carlo.cosentino@unicz.it http://bioingegneria.unicz.it/~cosentino

Rappresentazioni i.s.u. e i.u.

△ Data una rappresentazione i.s.u. di un sistema LTI, si è visto che la corrispondente f.d.t.

$$W(s) = C(sI - A)^{-1}B + D$$

è univocamente determinata

- ▲ Il viceversa non è vero!
- ▲ Data una fdt esistono infinite rappresentazioni i.s.u. che forniscono lo stesso comportamento ingresso-uscita

Rappresentazioni Similari

▲ Per convincersi di quanto detto, si consideri il sistema

$$\Sigma_1 : \begin{cases} \dot{x} = A_1 x + B_1 u \\ y = C_1 x + D_1 u \end{cases}$$

- A Presa una qualsiasi matrice quadrata e invertibile, T, si applichi il cambio di variabili di stato z=Tx
- ▲ Si ottiene il sistema

$$\Sigma_{2} : \begin{cases} \dot{z} = TA_{1}T^{-1}z + TB_{1}u := A_{2}z + B_{2}u \\ y = C_{1}T^{-1}z + D_{1}u := C_{2}z + D_{2}u \end{cases}$$

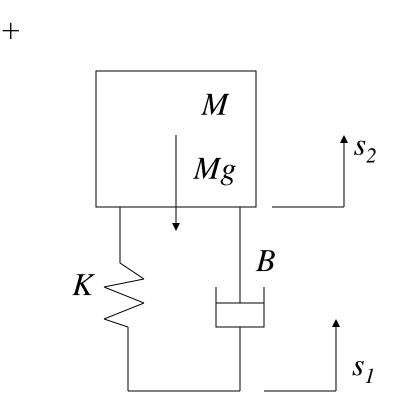
Rappresentazioni Similari

- $^{\wedge}$ I due sistemi, Σ_1 e Σ_2 , sono indistinguibili dal punto di vista ingresso-uscita
- A Si può verificare facilmente che le corrispondenti fdt sono, infatti, identiche
- $^{\wedge}$ (Es: si dimostri quanto sopra calcolando $W_2(s)$)

Problema della Realizzazione

- ▲ Nell'ambito della modellistica di sistemi dinamici, abbiamo visto come spesso si possa arrivare in maniera semplice ad una rappresentazione i.s.u.
- ▲ In questi casi, partendo dalle equazioni di governo del sistema, ossia la rappresentazione i.u. nel tempo, si arrivava alla rappresentazione i.s.u. mediante opportune scelte delle variabili di stato
- ▲ Tuttavia, abbiamo visto che in alcuni casi le usuali regole per la scelta delle variabili di stato non portano ad una rappresentazione i.s.u.

Esempio: Sospensione Automobilistica



s₁: quota del supporto inferiore (supposto privo di massa)

s₂: spostamento della massa

Mg: forza peso

$$u=s_1$$

 $y=s_2$

Esempio: Sospensione Automobilistica

▲ Si arriva alla rappresentazione i.u.

$$M\ddot{y}(t) + B\dot{y}(t) + Ky(t) = B\dot{u}(t) + Ku(t) - Mg$$

▲ In questo caso non è possibile derivare la rappresentazione i.s.u. scegliendo lo stato in modo usuale (posizione e velocità).

Forme Canoniche di Rappresentazione

- ▲ Tipicamente si incontrano difficoltà quando nelle equazioni di governo compaiono le derivate dell'ingresso
- ▲ In tali casi si può comunque arrivare ad una rappresentazione i.s.u., ma è necessario utilizzare delle *forme canoniche di rappresentazione*

Derivazione delle Forme Canoniche

▲ Si consideri la generica rappresentazione i.u.

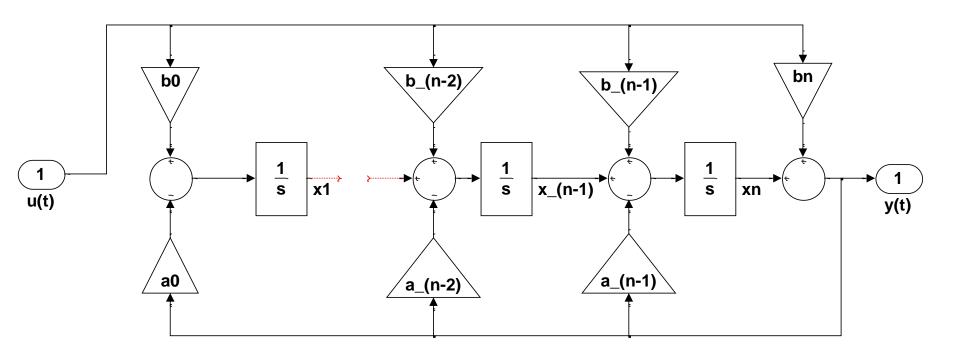
$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_0y = b_nu^{(n)} + b_{n-1}u^{(n-1)} + \dots + b_0u$$

A Portando tutti i termini al secondo membro, tranne $y^{(n)}$, e integrando n volte si ottiene

$$y = b_n u + \int (b_{n-1}u - a_{n-1}y)dt + \iint (b_{n-2}u - a_{n-2}y)dt + \dots + \iint \int_{n \text{ volte}} (b_0u - a_0y)dt$$

A partire da questa equazione si può costruire uno schema di realizzazione

Schema Canonico di Realizzazione



A Per tale schema, risulta naturale scegliere come variabili di stato le uscite degli integratori

Forma Canonica di Osservabilità

Dallo schema precedente si ricava la seguente rappresentazione, detta forma canonica di osservabilità

$$\dot{x} = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & 0 & \dots & 0 & -a_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & -a_{n-1} \end{pmatrix} x + \begin{pmatrix} \hat{b}_0 \\ \hat{b}_1 \\ \hat{b}_2 \\ \vdots \\ \hat{b}_{n-1} \end{pmatrix} u$$

$$y = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix} x + \hat{b}_n u$$

$$y = (0 \quad 0 \quad 0 \quad \dots \quad 0 \quad 1)x + \hat{b}_n u$$

$$\hat{b}_n = b_n$$
, $\hat{b}_i = b_i - a_i b_n$, $i = 0, ..., n-1$

Forma Canonica di Raggiungibilità

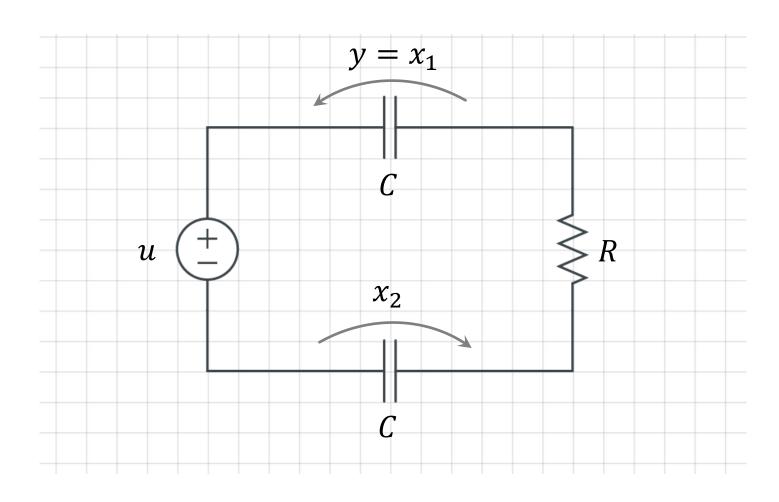
La duale della precedente viene detta forma canonica di raggiungibilità

$$\dot{x} = \begin{pmatrix}
0 & 1 & 0 & \dots & 0 \\
0 & 0 & 1 & \dots & 0 \\
0 & 0 & 0 & \dots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \dots & 1 \\
-a_0 & -a_1 & -a_2 & \dots & -a_{n-1}
\end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} u$$

$$y = (\hat{b}_0 \quad \hat{b}_1 \quad \hat{b}_2 \quad \dots \quad \hat{b}_{n-1})x + \hat{b}_n u$$

$$\hat{b}_n = b_n, \quad \hat{b}_i = b_i - a_i b_n, \quad i = 0, \dots, n-1$$

Esempio di sistema non completamente raggiungibile



Esempio di sistema non completamente raggiungibile

La rappresentazione ISU del sistema nell'esempio 2 risulta essere

$$\dot{x}_1(t) = -\frac{1}{RC}(x_1(t) + x_2(t) - u(t))$$

$$\dot{x}_2(t) = -\frac{1}{RC}(x_1(t) + x_2(t) - u(t))$$

$$y(t) = x_1(t)$$

▲ Definiamo il cambio di variabili

$$\hat{x}_1(t) = x_1(t) + x_2(t) \\ \hat{x}_2(t) = x_1(t) - x_2(t)$$

$$\hat{x}_2(t) = (1 \quad 1) \begin{pmatrix} x_1(t) \\ \hat{x}_2(t) \end{pmatrix} = (1 \quad -1) \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$$

Esempio di sistema non completamente raggiungibile

▲ Il sistema a valle del cambio di variabili diventa

$$\begin{aligned} \dot{\hat{x}}_1(t) &= -\frac{2}{RC} (\hat{x}_1(t) - u(t)) \\ \dot{\hat{x}}_2(t) &= 0 \\ y(t) &= \frac{1}{2} (\hat{x}_1(t) + \hat{x}_2(t)) \end{aligned}$$

- \land La differenza tra le tensioni ai capi dei condensatori non è modificabile tramite l'ingresso u(t).
- \wedge Scegliendo opportunamente u(t), invece, è possibile far assumere alla variabile \hat{x}_1 qualsiasi valore finito in un tempo arbitrario $\tilde{t} > 0$. (dimostrare)

Raggiungibilità: definizione

- Dato un sistema LTI, uno stato \tilde{x} del sistema si dice raggiungibile se esistono un istante di tempo finito $\tilde{t} > 0$ e un ingresso \tilde{u} , definito tra 0 e \tilde{t} , tali che, detto $\tilde{x}_f(t)$, il movimento forzato dello stato generato da \tilde{u} , $0 \le t \le \tilde{t}$, risulti $\tilde{x}_f(\tilde{t}) = \tilde{x}$.
- ♣ Un sistema i cui stati siano tutti raggiungibili si dice completamente raggiungibile.
- A Quindi, uno stato è raggiungibile se è possibile, con un'opportuna scelta dell'ingresso, condurre in esso la traiettoria del sistema in un tempo finito arbitrario \tilde{t} .
- A e B.

Raggiungibilità: teorema

$$M_r = \begin{bmatrix} B & AB & A^2B & \dots & A^{n-1}B \end{bmatrix} \in \mathbb{R}^{n \times mn}$$

- è pari a n
- A Se il sistema ha un solo ingresso (m = 1), la matrice M_r è quadrata e la condizione di sopra diventa $\det(M_r) \neq 0$.
- A Nel caso in cui il sistema non sia completamente raggiungibile, si può isolare la sua parte dotata della proprietà di raggiungibilità.

Raggiungibilità: decomposizione

▲ Dato un sistema LTI, la sua eq. di stato

$$\dot{x}(t) = Ax(t) + Bu(t),$$

ightharpoonup può essere trasformata, mediante un opportuno, non univoco, cambio di variabili di stato $\hat{x} = T_r x$, nella forma

$$\dot{\hat{x}}(t) = \hat{A}\,\hat{x} + \hat{B}\,u(t),$$

dove
$$n_r = \rho([\hat{B}_a \ \hat{A}_a \hat{B}_a \ \hat{A}_a^2 \hat{B}_a \dots \ \hat{A}_a^{n-1} \hat{B}_a]),$$

$$\hat{A} = \begin{bmatrix} \hat{A}_a & \hat{A}_{ab} \\ 0 & \hat{A}_b \end{bmatrix}, \ \hat{A}_a \in \mathbb{R}^{n_r \times n_r}$$

Gli autovalori di \hat{A} sono quelli dei blocchi sulla diagonale

$$\hat{B} = \begin{bmatrix} \hat{B}_a \\ 0 \end{bmatrix}, \qquad \hat{B}_a \in \mathbb{R}^{n_r \times m}$$

Raggiungibilità: decomposizione

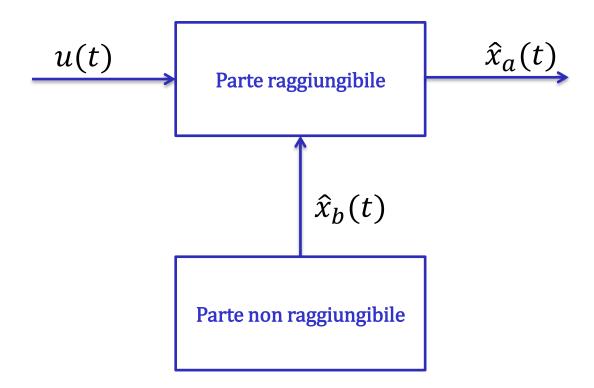
- La matrice T_r^{-1} si ottiene selezionando n_r colonne indipendenti da M_r e completando con $n-n_r$ colonne arbitrarie linearmente indipendenti dalle prime
- \wedge Partizionando il vettore \hat{x} , si ottiene il sistema decomposto nella forma

$$\begin{split} \dot{\hat{x}}_a(t) &= \hat{A}_a \hat{x}_a(t) + \hat{A}_{ab} \hat{x}_b(t) + \hat{B}_a u(t) \\ \dot{\hat{x}}_b(t) &= \hat{A}_b \hat{x}_b(t) \end{split}$$

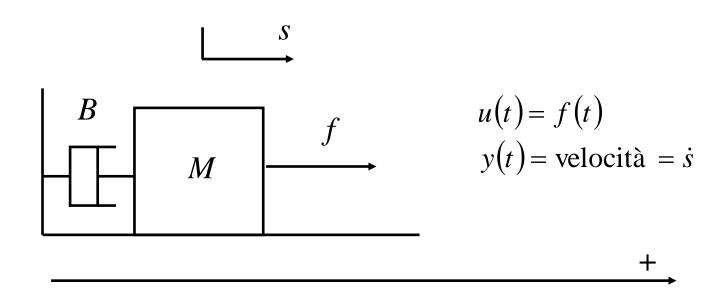
- \wedge Da questa forma si evince che u(t) non è in grado di influenzare la parte non raggiungibile del sistema, ossia le equazioni di $\hat{x}_b(t)$
- \wedge Viceversa, le equazioni di $\hat{x}_a(t)$ rappresentano la parte raggiungibile del sistema

Raggiungibilità: decomposizione

A Rappresentiamo mediante un diagramma a blocchi il sistema decomposto



Esempio di sistema non completamente osservabile



Esempio di sistema non completamente osservabile

A Scegliendo posizione e velocità come variabili di stato, otteniamo la ISU

$$\dot{x}(t) = \begin{pmatrix} 0 & 1 \\ 0 & -\frac{B}{M} \end{pmatrix} x(t) + \begin{pmatrix} 0 \\ \frac{1}{M} \end{pmatrix} u(t) \qquad x(t) = \begin{pmatrix} s(t) \\ \dot{s}(t) \end{pmatrix}$$
$$y(t) = \begin{pmatrix} 0 & 1 \end{pmatrix} x(t)$$

- \land L'esame di un qualunque transitorio dell'uscita non permette di ricavare informazioni circa il valore della posizione $x_1(t_0)$ all'istante iniziale.
- A Se si scegliesse come uscita la posizione, sarebbe invece possibile ricavare l'intero stato iniziale a partire dal movimento dell'uscita.

Osservabilità: definizione

- Dato un sistema LTI, uno stato $\tilde{x} \neq 0$ del sistema si dice non osservabile se, qualunque sia $\tilde{t} > 0$ finito, detto $\tilde{y}_l(t), t \geq 0$, il movimento libero dell'uscita generato da \tilde{x} , risulta $\tilde{y}_l(t) = 0, 0 \leq t \leq \tilde{t}$.
- ▲ Un sistema privo di stati non osservabili si dice completamente osservabile.
- A Quindi, uno stato \tilde{x} è non osservabile se l'evoluzione libera a partire da tale stato è indistinguibile da quella che si ottiene partendo dallo stato nullo.
- \land Si noti che l'osservabilità dipende solo dalla coppia di matrici (A, C).

Osservabilità: teorema

LTI (ovvero la coppia (A, C)) è completamente osservabile se e solo se il rango della matrice di osservabilità

$$M_o = \begin{bmatrix} C^T & A^T C^T & A^{T^2} C^T & \dots & A^{T^{n-1}} C^T \end{bmatrix} \in \mathbb{R}^{n \times pn}$$

è pari a n.

- A Se il sistema ha una sola uscita (p = 1), la matrice M_o è quadrata e la condizione di sopra diventa $\det(M_o) \neq 0$.
- A Nel caso in cui il sistema non sia completamente osservabile, si può isolare la sua parte dotata della proprietà di osservabilità.

Osservabilità: decomposizione

Arr Dato un sistema LTI, con u(t) = 0, esso può essere trasformato, mediante un opportuno, non univoco, cambio di variabili di stato $\hat{x} = T_o x$, nella forma

$$\dot{\hat{x}}(t) = \hat{A} \, \hat{x}(t)$$
$$y(t) = \hat{C} \hat{x}(t)$$

$$\operatorname{dove} n_o = \rho \left(\begin{bmatrix} \hat{C}^T & \hat{A}^T \hat{C}^T & \hat{A}^{T^2} \hat{C}^T & \dots & \hat{A}^{T^{n-1}} \hat{C}^T \end{bmatrix} \right),$$

$$\hat{A} = \begin{bmatrix} \hat{A}_a & 0 \\ \hat{A}_{ba} & \hat{A}_b \end{bmatrix}, \ \hat{A}_a \in \mathbb{R}^{n_o \times n_o}$$

$$\hat{C} = [\hat{C}_a \quad 0], \qquad \hat{C}_a \in \mathbb{R}^{p \times n_o}$$

Gli autovalori di \hat{A} sono quelli dei blocchi sulla diagonale

Osservabilità: decomposizione

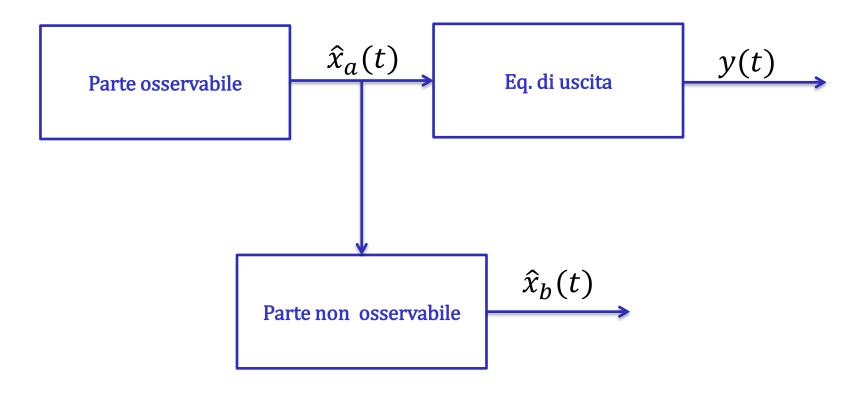
- La matrice T_o^{-1} si ottiene selezionando $n-n_o$ colonne indipendenti ζ_i da M_o , tali che $M_o\zeta_i=0$, e anteponendo n_o colonne arbitrarie linearmente indipendenti dalle prime
- \blacktriangle Partizionando il vettore \hat{x} , si ottiene il sistema decomposto nella forma

$$\begin{split} \dot{\hat{x}}_a(t) &= \hat{A}_a \hat{x}_a(t) \\ \dot{\hat{x}}_b(t) &= \hat{A}_{ba} \hat{x}_a(t) + \hat{A}_b \hat{x}_b(t) \\ y(t) &= \hat{C}_a \hat{x}_a(t) \end{split}$$

- \wedge Da questa forma si evince che i movimenti della **parte non osservabile** del sistema, ossia le equazioni di $\hat{x}_b(t)$, non influenzano l'uscita
- \wedge Viceversa, le equazioni di $\hat{x}_a(t)$ rappresentano la parte osservabile del sistema

Osservabilità: decomposizione

A Rappresentiamo mediante un diagramma a blocchi il sistema decomposto



Decomposizione canonica e forma minima

- ▲ Un sistema LTI può essere sia non completamente raggiungibile sia non completamente osservabile.
- ▲ In questo caso, è possibile definire un cambio di variabili che decompone il sistema in quattro sottosistemi:
 - ♦ Sottosistema completamente raggiungibile ed osservabile
 - ♦ Sottosistema completamente raggiungibile ma non osservabile
 - ♦ Sottosistema completamente osservabile ma non raggiungibile
 - ♦ Sottosistema non completamente raggiungibile né osservabile
- A Questa è detta decomposizione canonica, o di Kalman
- A Se è completamente raggiungibile ed osservabile si dice **sistema in forma minima**: non è possibile ricavare un sistema equivalente con un numero inferiore di variabili.

Forme di Rappresentazione Minime

- Le forme canoniche di osservabilità e di raggiungibilità sono rappresentazioni minime, ossia non esiste una rappresentazione di ordine minore
- A Si dimostri che la forma canonica di raggiungibilità (osservabilità) è sempre completamente raggiungibile (osservabile)
- A Particolare attenzione va prestata nel caso in cui i valori dei coefficienti sono di ordini di grandezza differenti, poiché la matrice A può essere fortemente mal condizionata

Esempio

