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Introduction 

 The interpretation of the huge amounts of data provided by biotechnologies in 
the last years calls for novel mathematical and computational methods  

 Compared to statistical approaches, dynamical models are especially useful to 
study the evolution over time of biological systems 

 Systems and Control Theory provides us with many established tools for the 
identification and analysis of network models 
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Biological networks  
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A closer look at gene networks 
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Lodish et al, Molecular Cell Biology 
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Alternative splicing 

 Through alternative splicing, the same coding region can produce more 
than one protein 
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Post-translational 

modifications (e.g. 
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Transcriptional gene regulation 

 Genes expression is regulated via adjacent transcription-control regions 
in a combinatorial way 

 Only a subset of the whole genome is expressed at a particular time or in 
a specific cell type 
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Lodish et al, Molecular Cell Biology 
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High-throughput experiments 

 Modern biotechnologies, like cDNA and Protein arrays, RNA-seq, ChIP-Chip, 
enable to monitor the activity of thousands of species, resulting in a systemic 
snapshot of cellular activity at a certain time instant 

 Is it possible to infer interaction networks from these large datasets? 
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http://upload.wikimedia.org/wikipedia/commons/2/22/Affymetrix-microarray.jpg
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Graphical models of GRNs 
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BioTapestry, Davidson Lab, California Institute of Technology 

Transcriptional regulatory network of S. purpuratus endomesoderm development (6-18 h) 
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Large-scale networks 
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out-degree 

in-degree 

Transcriptional regulatory network of 
Mycobacterium Tubercolosis 



Carlo Cosentino, Ph.D. Bertinoro, Scuola di Dottorato SIDRA, 9 Luglio 2013 

Topological properties of networks 

 Degree: number of edges starting from (out-degree) or pointing at (in-degree) a 
node 

 Local Clustering : measures the connectivity between the neighbors of a node 

 Network Average Clustering: average of local clustering coefficients 

13 

 Modularity: measure of the division of nodes into highly 
interconnected subgroups 

 Network indexes: 

 Radius, mean path length, … 

 Node Centrality indexes: 

 Closeness, Betweenness, … 

 

Hierarchical 
modularity 
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Erdös-Rényi, Scale-free, and Hierarchical networks 
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Barabasi et al, Nature Review Genetics 101(5), 101–114 , 2004 
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Topology of biological networks 

 Albert has reviewed the topology of different kinds of 
biomolecular interaction networks 

 Several of these networks seem to exhibit a scale-free 
topology 

 For instance, transcriptional regulation networks exhibit 
a scale–free out–degree distribution, signifying the 
potential of transcription factors to regulate multiple 
targets 

 On the other hand, their in–degree is a more restricted 
exponential function, suggesting that combinatorial 
regulation by several TFs is less frequent 

Albert, Scale–free networks in cell biology, Journal of Cell Science 118(21), 4947–4957, 2005 
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Main approaches to GRNs inference 

 A plethora of reverse-engineering  approaches have been proposed, mostly 
applied to gene regulatory networks 

 Most of them fit into one of these three frameworks 

 Bayesian Networks 

 Information Theory 

 Dynamical Systems 

16 

 The first two are very good to capture the stochastic nature of biomolecular 
systems 

 However, they are not suitable to describe dynamical phenomena, such as those 
occurring in Gene Regulatory Networks (GRNs) 
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Bayesian Networks 

 A Bayesian Network is a graphical model of probabilistic relationships 
among a set of random variables 

 The nodes of the network represent genes expression levels and 
correspond to random variables Xi. 

 The graph G and the set of conditional distributions uniquely specify a 
joint probability distribution p(X) 

 

 

18 



Carlo Cosentino, Ph.D. Bertinoro, Scuola di Dottorato SIDRA, 9 Luglio 2013 19 

Inferring Bayesian Networks 

 In order to reverse-engineer a Bayesian network model of a gene network, we 
must find the directed acyclic graph that best describes the data 

 To do this, a scoring function is chosen, in order to evaluate the candidate 
graphs G with respect to the data set D 

 The score can be defined using Bayes rule 

 

 If the topology of the network is partially known, the a priori knowledge can be 
included in P(G) 

 The most popular scores are the Bayesian Information Criterion (BIC) or Bayesian 
Dirichlet equivalence (BDe) 

 They incorporate a penalty for complexity to cope with overfitting 
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Limitations of Bayesian Networks 

 An important limitation of BNs is that they cannot take into account feedback 
loops 

 The evaluation of all possible networks involves checking all possible 
combinations of interactions among the nodes 

 This problem is NP-hard, therefore heuristic methods are used, like the greedy–
hill climbing approach, the Markov–Chain Monte Carlo method, or Simulated 
Annealing 

 BNs are static models, thus they cannot capture the dynamics of the biological 
system 

 A software tool for inferring BNs is Banjo, developed by the group of Hartemink 
(http://www.cs.duke.edu/~amink/software/banjo)  
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Information–Theoretic Approaches 

 Information – theoretic approaches use a generalization of the Pearson 
correlation coefficient 

 

 

 used in hierarchical clustering, namely the Mutual Information (MI) 

 Mutual information is a metrics of dependency between two random 
variables 

 

 

 where p(x,y) is joint probability distribution of X and Y, and p(x), p(y) are 
the marginal probabilities. 
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Information–Theoretic Approaches 

 From the definitions above it follows that 

MI becomes zero if the two variables are statistically independent 

 A high value of MI indicates that the variables are non–randomly 
associated to each other 

MIij=MIji therefore the resulting reconstructed graph is undirected 

 The network is pruned based on the Data 
Processing Inequality (see figure) 

 Well assessed software tools based on Information 
Theory: ARACNe and CLR 

 Drawbacks: no causality, not possible to exploit 
prior knowledge 
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 Simplifying assumption: one protein for each gene! 

 The input-function 𝑓𝑖 𝐲  computes the relative activation of gene 𝑖 as a function of 
the transcription factor proteins 

 In a typical transcriptomic experiment, only the (steady-state) values 𝑥𝑖 are 
measured  

Dynamical model of a GRN 

 A basic model of transcriptional regulation is 
composed of two types of species: genes (xi) and 
proteins (yi) 
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A closer look at the input function 

 The network topology is implicitly defined by the input function 

 The protein concentrations appearing in 𝑓𝑖 𝐲  define the regulatory 
relationships for the 𝑖-th gene 

 A rational form is typically assigned to 𝑓𝑖 𝐲  

 One transcription factor 

 

 Two transcription factors 
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A closer look at the input function 
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Linearized models 

 The identification of high-order nonlinear ODE models is a daunting task, both 
from a theoretical point of view and in terms of computational requirements 

 Linearized models yield good results when applied to data from perturbation 
experiments 

 

 

 

 

 

 Most methods are based on linearized models, e.g. those by Gardner and di 
Bernardo, dealing both with steady–state (NIR) and time–series data (TSNI), or 
the Inferelator by Bonneau et al. 
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Modular Response Analysis (MRA) 
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 Assume that the steady-state value of the 𝑗-th species is given by a function of 
the other species 𝑥 and of the parameters 𝑝 

 

 The influence on the 𝑖-th species of the other species and of external 
perturbations are given by the coefficients 

 

 

 

 If the 𝑗-th perturbation does not directly affect the 𝑖-th species, then 
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Modular Response Analysis (MRA) 

 The name Modular Response Analysis stresses the fact that the same 
theoretical framework can be applied to modules 

29 

𝑟12 
𝑟31 

𝑟32 

𝑟23 

 Required measurements: only the 
communicating intermediates 

 The internal dynamics of the 𝑗-th 
module are summarized by the 
function 𝑓𝑗(𝑥, 𝑝) 
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Construction of the perturbation matrix 

. 

. 
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Genes Wild Type 

 Goal: Infer the regulators of the central 
node 

 Perturb all the nodes except that one 

 Measure the expression changes of all 
nodes each condition 

max expr. 

min expr 
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MRA application example 

 

31 



Carlo Cosentino, Ph.D. Bertinoro, Scuola di Dottorato SIDRA, 9 Luglio 2013 32 



Carlo Cosentino, Ph.D. Bertinoro, Scuola di Dottorato SIDRA, 9 Luglio 2013 

Inference via Least Squares regression 

 Assumption: the system is operating at a stable steady-state 

 It is based on the identification of the linearized system 

 

 Least Squares (LS) regression methods can be used to estimate the 
coefficients of the dynamical matrix, 𝑎𝑖𝑗, and those of the input matrix, 𝑏𝑖 
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Least squares regression approaches 

 Assume a static linear relationship between a dependent variable 𝑦 and 
an independent one 𝑥, given ℎ experimental measurements, 

 

where 𝜈  is gaussian noise with zero mean and 𝜎2 variance. 

 The Least Squares (LS) method allows the computation of the optimal 
value of the vector 𝜃 that minimizes the difference between the output 
of the model 

 

and the measured output 𝑦 in the sum-of-squared-errors sense.  
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Least squares regression 

 The problem can be conveniently reformulated in matrix form as 

 

 

where (superscripts denote the experiment)  

 

 

 

 The well-known solution is 
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Over- and under-determined problems 

 To get a full-rank invertible 𝑋𝑇𝑋, the #data points must be greater or 
equal than the #regression coefficients 

36 

𝑋𝑇 

#data points 

#regr. coeffs. 

 

 

𝑋 

  #regr. coeffs. 

#data points 

Overdetermined problem 

Underdetermined problem 
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How to cope with underdetermined problems 

 The problem is generally underdetermined: the number of samples is 
less than the number of regression parameters 

 Several strategies can be used to cope with this problem: 

 Limit the number of candidate regulators for each gene 

 Increase the number of data points by interpolation after smoothing 

 Reduce the problem dimension by clustering or PCA 
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Continuous- vs discrete-time model 

 The inference is based on sampled-data  we identify the matrices of 
the discretized system, 𝐴𝑑 and 𝐵𝑑 

 What is the relation between the sparsity pattern of the continuous- and 
discrete-time systems? 

 

 Assume, for the sake of simplicity, that 𝐴 has 𝑛 distinct real negative 
eigenvalues 

 

 It is then possible to find a nonsingular matrix 𝑃 such that 

39 

sAT

d eA  
sT

A

d BdeB
0



niii ,...,1|,||| 1  

1
 PDPA  n,...,λλD 1diag



Carlo Cosentino, Ph.D. Bertinoro, Scuola di Dottorato SIDRA, 9 Luglio 2013 

Continuous- vs discrete-time model 

 The matrix 𝐴𝑑 can be rewritten as 

 

 

 

 If the sampling time 𝑇𝑠 ≪ min 1 |𝜆𝑖| , then |𝜆𝑖|𝑇𝑠 ≪ 1 and 
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Continuous- vs discrete-time model 

 As for the input matrix, the following approximation holds 

 

 Note that the sparsity patterns of 𝐼 + 𝐴𝑇𝑠 and 𝐵𝑇𝑠 are identical to those 
of matrices 𝐴 and 𝐵 of the continuous time system, with the exception 
of the diagonal entries of 𝐼 + 𝐴𝑇𝑠 

 This is not an issue, because the diagonal entries are not considered 
as targets of the inference methods: they are just assumed to be 
nonzero 

 A typical approach to the reconstruction of the sparsity pattern: 
consider only the elements of 𝐴𝑑 and 𝐵𝑑 that fall above a certain 
threshold 
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Continuous- vs discrete-time model 

42 

 However, the diagonal elements 
might become dominant and 
mask the effect of the other 
ones 

 A careful choice of the sampling 
time is paramount for the 
successful inference of the 
network 

 Problem: typically, the dynamics 
of the system are not known 
beforehand 

 

Cosentino and Bates (2011) Feedback Control in Systems Biology. CRC Press. 
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Effect of noise on the regression coefficients 

 The quality of the model can be a posteriori assessed by examining the 
residuals 

 Under the following hypotheses 

a) the linear model is a good approximation of the real system 

b) the regressors are uncorrelated 

c) the process is affected only by additive gaussian zero-mean noise 

the residuals are also gaussian zero-mean 

 Moreover, it is possible to compute the covariance of the regression 
coefficients 𝜃 as 
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Effect of noise: a simple example 

 Let us consider the static linear model with additive gaussian noise 

 

where 

 

 

and 𝜈 is a vector of normally distributed random variables with zero 
mean and 𝜎2 variance 

 Assume this describes the static relationship between the perturbation 
input and the steady-state level of the node variables 

 Consider h=20 simulated experiments and apply LS to infer the network 
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Effect of noise: a simple example 

 Cast the problem as 

 

where 𝑌 ∈ ℝℎ×𝑛, 𝑍 ∈ ℝℎ× 𝑛+1 , Θ ∈ ℝ 𝑛+1 ×𝑛. The estimated system’s 
matrices are given by Θ𝑇 = 𝐴 𝐵  

 After computing the LS estimate, we normalize the estimated adjacency 
matrix 
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 ZŶ

𝐴 ⋆𝑗:= 𝑗-th column of 𝐴  

𝐴 𝑖⋆:= 𝑖-th row of 𝐴  
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Effect of noise: a simple example 

46 

Median of the absolute values of 𝐴  over 100 identification tests with different noise realizations 

Cosentino and Bates (2011) Feedback Control in Systems Biology. CRC Press. 
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Effect of noise: edges variance 

47 

True edges False edges 

Cosentino and Bates (2011) Feedback Control in Systems Biology. CRC Press. 
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Steady-state vs time-series exps 

 Several types of experiments are used to unravel gene interactions 

 Gene knock-out/down, overexpression 

 RNA-interference 

 Perturbations through drug injections 

 … 

 Subsequently, two types of measurements strategies are used: 

 The cellular system is measured after a long time, to ensure that a 
steady-state condition has been achieved 

 In other cases (especially perturbation exps), a whole time-course is 
taken, to study the transient behavior (expensive, less frequent) 
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Steady-state vs time-series 

 When using time-courses, the LS solution is no longer consistent 

 Let us consider the dynamical system 
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Regression on time-series:example 

 Take 𝐴𝑑 , 𝐵𝑑 = 𝐴, 𝐵  matrices considered in the static example before 

 LS yield a worse performance wrt to the static case, even with small 
noise 
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Cosentino and Bates (2011) Feedback Control in Systems Biology. CRC Press. 
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Regression on time-series: drawbacks 

 Issues:  

 Noise affects both sides of the relation  

 Regressors are correlated, indeed they are made up of values of the 
same variables at consecutive time points 
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Regression on time-series: drawbacks 

 How to improve the performance? 

 Decrease the sampling time? 

 Increases correlation between samples at consecutive time points 

 Increase the observation interval? 

 Not useful if the system has already reached the steady-state: in this case, again, 
the additional regression vectors are correlated with the previous ones 

 A possible answer is to exploit different types of experiments, however 

 Normalization of measurements taken with different experimental set-ups 
and techniques is problematic 

 Other System Identification approaches, e.g.  

 Instrumental Variables: iterative filtering of the residuals to decorrelate 
them (Ljung, System Identification Theory, 1999) 

More suitable for identification of predictive autoregressive models, 
computationally demanding 
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Total Least Squares 

 The classical LS method amounts to solving the following optimization 
problem 

 

 In this setting, the given data matrix 𝑋 and 𝑌 are treated asymmetrically: 
𝑋 is assumed to be certain, whereas 𝑌 subject to additive noise 

 The Total LS (TLS) method recasts the problem in a symmetric form 
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I. Markovsky, S. Van Huffel, Overview of total least-squares methods, Signal Processing 87 (2007) 2283–2302. 
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Total Least Squares 

 The difference between LS and TLS is fairly evident looking at the 
following fits 

 

 

 

 

 

 

 The solution of a TLS problems can be  found (if existing) through the 
singular value decomposition of 𝑋 𝑌  
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Constrained Total Least Squares 

 When the data matrices contain time-series measurements of the same 
variables, the TLS can be specialized to a Constrained TLS problem 

 CTLS preserves the information about the structure of the data matrices 
in the optimization matrices Δ𝑋 and Δ𝑌, that is 

 

 

 

 The correction terms 𝜈𝑖 𝑡𝑘  are the optimization variables 

 Drawback: no computionally effective algorithm to solve this problem! 
 limited to low-order systems 
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Total Least Squares application 

 An thourough analysis of the application of TLS to the reverse-
engineering of a MAPK network can be found in (Andrec et al, 2005) 

 In particular, the authors investigate the effect of noise and the 
probability of inferring a qualitatively wrong interaction between 
modules 

 

 

56 

 They cast the inference  problem in the 
framework of Modular Response Analysis 
(MRA) (Kholodenko et al, PNAS 2002.) 

 MRA allows reducing the complexity and 
focusing only on the communicating 
intermediates between modules 

M. Andrec, B.N. Kholodenko, R.M. Levy, E. Sontag, Inference of signaling and gene regulatory networks by 
steady-state perturbation experiments: structure and accuracy. J. Theor. Biol. 232 (2005) 427–441. 
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Total Least Squares application 

 The polar plots show the estimated value of the 
connection coefficients vector (𝑟1, 𝑟2)  

 

 

 

 

 

 𝑟1 and 𝑟2 small ⇒ it is more likely to mis-estimate 
only one (panel a) 

 𝑟1 and 𝑟2 large ⇒ it is more likely to mis-estimate 
both (panel c) 
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𝑟2 

𝑟1 

True values:  𝑟1 = 𝑟2 = −0.5 

True values:  𝑟1 = 𝑟2 = −1 

True values:  𝑟1 = 𝑟2 = −4 
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Inference entails subset selection 

 A typical inference algorithm based on ODE models entails two phases: 

a) Selection of a subset of the regression coefficients 

b) Identification of the current model 

 The process is often iterative 

 At each step, new regression coefficients are added or removed to 
the regression model 

 This amounts to pruning or expanding the inferred network 

 Phase a) is termed subset (or feature) selection, where the subset 
elements are the regression coefficients not set to zero 
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Feature selection basic strategy 

 The most basic feature selection strategy is the one adopted by the 
Network Inference by Reverse-engineering (NIR) algorithm (Gardner et 
al., Science, 2003) 

Multiple linear regression, a maximum of 𝑘max regulatory 
interactions is assumed for each gene 

 Exhaustive search over all the possible 𝑘-tuples, with 𝑘 < 𝑘max 

 Eventually, the subset of regressors yielding the smallest sum of 
squared errors (SSE) is chosen 

 

 

 Possible only with very small networks 

 E.g. with 𝑛 = 50, 𝑘max = 5  #regr. problems ~ 108 
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A case-study: the SOS pathway in E. coli 

 To keep the problem treatable, Gardner et al. have picked a subnetwork 
of only 9 genes 
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#pert. exps = 9 #pert. exps = 7 
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Forward subset selection  

 Given the linear-in-the-parameter model 

 

 Each regressor is used in a single-regressor test and the corresponding 
residual is evaluated 

 The regressor 𝑥A yielding the best approximation of 𝑦 is selected 

 The part of 𝑦 not explained by 𝑥A is 𝑦A = 𝑦 − 𝑥A𝜃 𝐴  

 Each of the non-selected regressors is tested against 𝑦A 

 The regressor 𝑥B yielding the best approximation of 𝑦B is selected 

 ... 
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Forward subset selection: drawbacks 

 FSS is a greedy algorithm: the subset at step 𝑖 + 1 includes all the 
elements selected at previous steps 

 Major drawback: does not consider the interaction between regressors 

 

 

 

 

 

 The final susbet is only suboptimal 

 Computationally efficient: 𝑀 − 𝑖 + 1 one-parameter regression at step 𝑖 
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Orthogonal LS and forward subset selection  

 The OLS method is based on the orthogonalization of the regressors, 
which yields the equivalent model 

 

 The parameters of the orthogonal model can be computed as 
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Forward selection with OLS 

 This is the case with three orthogonal regressors 
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O. Nelles, Nonlinear System Identification. (2001). Springer-Verlag. 
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Orthogonal LS and forward subset selection  

 A key advantage of the orthogonalization model is the possibility to 
compute the Error Reduction Ratio (ERR) associated to each regressor 

 

 Forward subset selection includes the regression coefficients in the 
model in descending order of 𝐸𝑅𝑅𝑖  value, with termination condition 

 

 

 Unfortunately, OLS selects the coefficients of the orthogonal model, not 
those of the original one (which correspond to the network edges)! 
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Backward elimination 

 Alternative to forward selection:  

 Start with a model made up of all the 𝑀 regressors 

 Iterate regression removing the least significant regressor at each 
step 

 Typically not applicable in biological network inference: 

 #number of regressors of the full model ≫ #data points 
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Stepwise regression 

 Stepwise regression addresses the drawbacks of forward selection by 
allowing the removal of variables selected at previous steps 

 The addition/removal are based on the Residual Sum of Squares (RSS); in 
particular the following normalized variables are considered 

 

 

 Under gaussian noise hypothesis, these variables (approximately) exhibit 
a Fisher distribution 

 Their use allows a statistical significance test to be performed for 
each regression coefficient 

 Thresholds 𝐹add and 𝐹rem can be computed from the distribution, to 
achieve desired significance 
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Stepwise regression algorithm 
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Ridge regression 

 Ridge regression is a method that introduces a penalty term on the size 
of the regression coefficients 𝜃 (aka problem regularization) 

 

 The solution is 

 

 Note that 

 

 

 Ridge regression shrinks the coefficients towards zero 
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Ridge regression 

 Typical behaviour of the coefficients in a ridge regression (ridge trace) 

71 

 Ridge regression does not 
actually implement a subset 
selection strategy 

 However, it regularizes the 
problem, by imposing a lower 
bound on the minimum 
eigenvalue of 𝑋𝑇𝑋 

 Note: the estimate is biased 

 𝜆 ↑ ⇒ bias ↑ 

 𝜆 ↑ ⇒ variance ↓ 

 
Ryan Tibshirani. “Data Mining” course lecture notes – Spring 2013 – Carnegie Mellon University 
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Ridge regression 

 The major issue in the application of ridge regression is the choice of the 
optimal value of 𝜆 

72 

 Above a certain value, the mean square 
error (MSE) becomes greater than LS 

 The value of 𝜆 can be chosen via (K-
fold) cross-validation methods 

 However, this technique is aimed at 
prediction accuracy, not at recovering 
the true model 

Ryan Tibshirani. “Data Mining” course lecture notes – Spring 2013 – Carnegie Mellon University 
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LASSO regression 

 Least Absolute Selection and Shrinkage Operator (LASSO) is similar to 
ridge regression, but uses an ℓ1 penalty term 

 

 This causes the coefficients to shrink exactly to zero as 𝜆 → ∞, thus 
implementing a true variable selection method, e.g. 
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Ridge regression vs LASSO 

 It is informative to look at the alternative formulation of Ridge 
Regression and LASSO as constrained optimization problems 
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squares contours 
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Objective function (find min) Solution space (constraints) 

Non-

Convex 

Convex 

Convex Optimization 

 A problem is convex when both the admissible solution space and the objective 
function are convex 

 Convex problems can be solved very efficiently! 
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Inference as a convex optimization problem 

 We have seen that the regression problems can be cast as (constrained) 
optimization problems 

 

 

 

 

 The good news is that this type of problems is convex and is therefore 
solvable by means of efficient off-the-shelf numerical tools, e.g. CVX 

 Why is it convenient to recast them as convex optimization problems? 
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Convex optimization methods 

 The basic idea is to improve linear ODE–based methods by exploiting 
available prior knowledge about the network topology 

 Indeed, it is much likely that the network topology is partially known 
from literature and biological databases 

 Known interactions   Sign constraints on the regression coefficients  
 Smaller admissible solution space 

x1 x2 

x3 x4 

x1 x2 x3 x4 

x1 ? ? ? 

x2 > < 0 

x3 > ? ? 

x4 ? ? 0 

Cosentino et al, IET Systems Biology 1(3): 164–173, 2007 

activation 

inhibition 
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Example: regression as an LMI problem 

 Assume that h+1 experimental observations are available, then 

 

 where 

 

 The identification problem can be cast as 

 

 The constraint is quadratic in the optimization variable , but using 
Schur complements it can be transformed into a LMI (convex constraint) 
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Plus additional inequality 
constraints for prior 
knowledge on specific edges 

Cosentino et al, IET Systems Biology 1(3): 164–173, 2007 
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Edges Ranking w/ Preferential Attachment 

 First identify a full A matrix, that will be used to weight the relative influence of 
each parameter on the system’s dynamics, and normalize it 

 

 At the k-th iteration, the edges ranking list 

 

 Starting with an empty network, at each iteration insert a number of edges 
according to such ranking list 

 Update accordingly the list of constraints and iterate the identification (stop 
when residuals converge) 

 The score assigned by the ranking list blends the preferential attachment with 
the weights computed at the first identification step 
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Case study: cell cycle in yeast 

 The method has been first validated by 
means of a large number of in silico tests 

 Then, it has been applied to a subnetwork 
involved in the cell cycle of the yeast S. 
cerevisiae, using microarray data 

 The network is composed of 27 genes, 
comprising genes encoding for 
transcription factors and for regulatory 
proteins (cyclins and CDKs) 

 The gold standard network has been 
derived from the BioGRID database, it 
comprises 119 interactions 
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Montefusco et al, IET Systems Biology 4(5): 296–310, 2010 
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Performance Evaluation 

 Performance indexes based on True/False Positives and Negatives 

 Sensitivity (Sn) (how many of the existing edges are inferred?) 

 

 Positive Predictive Value (PPV) (how reliable is a predicted 
interaction?) 

 

 The performance indexes are computed taking into account both the 
directed and the undirected inferred networks 
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Results w/o prior knowledge 
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Results w/ prior knowledge 
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Example: Christley et al, PLoS ONE 2009 

 Use of a penalization term for the elements that are not present in a 
prior information matrix 𝑊0 
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Example: Christley et al, PLoS ONE 2009 

 Application: inference of the interactors of a core 
regulatory module of embryonic stem cells fate 

 Using prior information  

 34 known edges are retained (only 25 w/o p.i.) 

 The core module is preserved (not w/o p.i.) 
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w/ prior information w/o prior information 

Black: prior 
information 

Red: false positive 

Blue: novel 
interaction 
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How to assess inference methods 

 Dialogue for Reverse Engineering Assessment and 
Methods (DREAM) 

 Catalyze interaction between experiments and 
theory in 

 Cellular network inference  

 Quantitative model building in Systems Biology 
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IMPROVER 

 IMPROVER 

 Enhanced assessment of complex 
scientific processes 

 Developmente of robust, repeatable 
and recognized methodology for 

 Verification of correctness of basic 
assumptions and  methods used in 
Systems Biology 
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The DREAM challenges 

 DREAM is based on annual challenges (since 2007) comprising 

 Gene network inference 

 Protein-protein network inference 

 Gene expression prediction 

 Signaling response prediction 

 Transcription factos – DNA motif recognition 

 Peptide recognition domain specificity 

 Systems Genetics (phenotype prediction from genetic screening) 

 Parameters estimation for biomolecular models 

 … 
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Example: the DREAM5 (2010) network inference 
challenge 
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Performance metrics for network inference 

 The performance evaluation is based on the  

 Area Under Precision-Recall curve (AUPR) 

 Area Under Receiver-Operator-
Characteristic (AUROC) 

 A probability distribution for these value is 
generated experimentally 

 The p-values  associated with the inferred 
network are computed 

 The Overall Score is computed based on the 
p-values of all the predictions 
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Wisdom of Crowds in Network Inference 

 The DREAM Consortium, (Nature Methods, 2012) showed 
complementarity of different approaches 
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Top performing regression method in 
DREAM 5 

 The top-performing method in DREAM5 network inference challenge is 
based on LASSO regression plus 

 Stability selection:  

 Repeat LASSO many times (bootstrapping the training dataset) 

 Compute frequency of selection for each edge across all runs 
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Conclusions 

 Biological network inference (and Systems Biology at large) is a very fast 
growing and highly interdisciplinar field 

 The present time is very favorable, we are at the beginning of a 
revolution in biosciences, which are shifting from qualitative to 
quantitative disciplines 

 Good for motivated students looking for a promising  research field 

  Requires (a bit of) biological background and theoretical and 

computational tools beyond the typical systems and control 
theory curriculum 

 Systems and Control Theory cannot miss the chance to play a key role in 
this revolution! 
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That’s all folks! 

Thank you for the 
attention… 
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