

Corso di Biologia dei Sistemi A.A. 2015/16

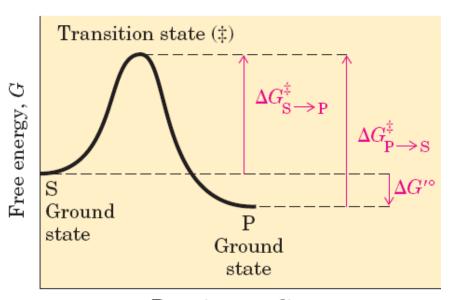
Cinetiche di reazione

Prof. Carlo Cosentino

Dipartimento di Medicina Sperimentale e Clinica Università degli Studi Magna Graecia di Catanzaro tel: 0961-3694051 carlo.cosentino@unicz.it http://bioingegneria.unicz.it/~cosentino http://wpage.unina.it/carcosen

Equilibrio e Velocità di Reazione

- riangle L'equilibrio è legato alla variazione di energia biochimica libera standard, ΔG°
- riangle La velocità della reazione, invece, è determinata dall'energia di attivazione, $\Delta G_{S o P}^{\ddagger}$



Reaction coordinate

Equilibrio di Reazione

- Si consideri la semplice reazione reversibile
- ▲ Essa può essere descritta dal sistema di eq.

$$S \stackrel{k_1}{\rightleftharpoons} P$$

$$\frac{d[S]}{dt} = -k_1[S] + k_{-1}[P]$$

$$\frac{d[P]}{dt} = k_1[S] - k_{-1}[P]$$

$$K'_{eq} = \frac{[P]}{[S]} = \frac{k_1}{k_{-1}}$$

$$\Delta G^{\prime \circ} = -RT \ln K_{eq}^{\prime}$$

R (costante dei gas) = 8.315 J/mol·K

T (temperatura assoluta) = 298 K (25 °C)

- ▲ La velocità della reazione è determinata da
 - ♦ concentrazione dei singoli reagenti
 - \Rightarrow una costante cinetica, in genere indicata con k
- \wedge Ad es. per la reazione $S \xrightarrow{k} P$ la velocità di reazione è

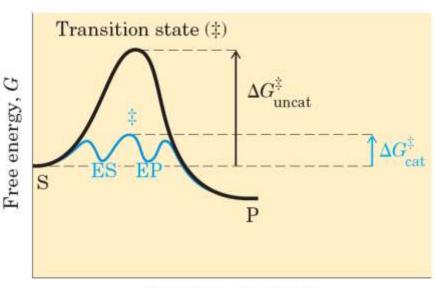
$$V = k[S]$$

△ Dalla teoria dello stato di transizione si ha

$$k = \frac{\mathbf{k}T}{h} e^{-\Delta G^{\ddagger}/RT}$$

dove ${f k}$ e h sono la costante di Boltzmann e Planck rispettivamente

- Gli enzimi sono una tipologia di proteine specializzate nella catalisi delle reazioni
- ▲ I catalizzatori non reagiscono, ma favoriscono la reazione diminuendo la soglia di energia necessaria alla formazione del prodotto
- Nel caso degli enzimi questo avviene tramite la formazione di un composto enzima-substrato, da cui poi il substrato viene trasformato nel prodotto finale della reazione

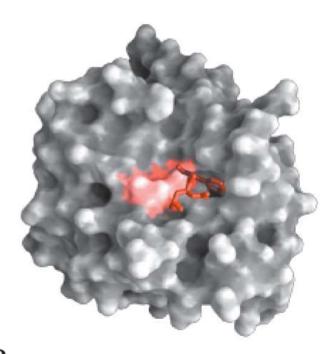


Reaction coordinate

- Gli enzimi giocano un ruolo chiave in tutti i processi biologici
- Essi hanno un ruolo importante nella regolazione delle vie metaboliche
- Molte malattie sono causate dalla carenza o assoluta mancanza di enzimi
- Molti farmaci agiscono interagendo con gli enzimi

- Le reazioni catalizzate da enzimi avvengono in una ansa chiamata sito attivo in cui si formano condizioni favorevoli alla reazione
- La molecola che si lega al sito attivo viene chiamata substrato
- ▲ La superficie del sito attivo viene delineata da amminoacidi i cui residui legano il substrato e ne catalizzano la trasformazione

$$E + S \Longrightarrow ES \Longrightarrow EP \Longrightarrow E + P$$

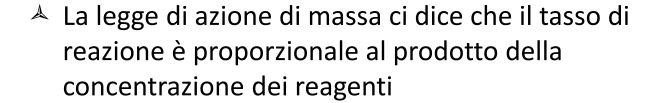


Reazione di Michaelis-Menten

▲ Il modello base di reazione enzimatica è stato proposto da Michaelis e Menten nel 1913

$$S + E \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} SE \xrightarrow{k_2} P + E$$

dove k_1, k_{-1}, k_2 sono costanti positive associate ai tassi di reazione



$$A + B \xrightarrow{k} C \qquad \qquad \frac{d[C]}{dt} = k[A][B]$$

L. Michaelis (1875-1949)

M. Menten (1879-1960)

Reazione di Michaelis-Menten

▲ Dalla reazione ricaviamo il seguente modello

$$\dot{s} = -k_1 e s + k_{-1} c, \qquad \dot{e} = -k_1 e s + (k_{-1} + k_2) c$$

$$\dot{c} = k_1 e s - (k_{-1} + k_2) c, \qquad \dot{p} = k_2 c$$

dove abbiamo indicato le concentrazioni delle varie specie come

$$s := [S], e := [E], c := [ES], p := [P]$$

e le condizioni iniziali sono $s(0)=s_0$, $e(0)=e_0$, c(0)=0, p(0)=0

 \triangle Si noti che l'eq. di p è disaccoppiata dalle altre e fornisce

$$p(t) = k_2 \int_0^t c(\tau) d\tau$$

MG Modello Semplificato

La quantità totale di enzima, libero più legato, rimane invariata nel tempo, come si può vedere anche sommando la seconda e terza eq.

$$\dot{e} + \dot{c} = 0 \implies e(t) + c(t) = e_0$$

per cui possiamo ricavare e(t) da questa relazione e sostituire, ottenendo il sistema semplificato in due equazioni

$$\dot{s} = -k_1 e_0 s + (k_1 s + k_{-1})c, \qquad s(0) = s_0$$

$$\dot{c} = k_1 e_0 s - (k_1 s + k_{-1} + k_2)c, \qquad c(0) = 0$$

Modello Semplificato

- Tipicamente la formazione iniziale del complesso ES è molto veloce, dopodiché rimane all'equilibrio (approssimazione di pseudo-regime)
- \triangle Ciò si traduce nell'assumere $dc/dt \approx 0$, da cui

$$c(t) = \frac{e_0 s(t)}{s(t) + K_m} \quad \Rightarrow \quad \dot{s} = -\frac{k_2 e_0 s}{s + K_m}$$

dove la costante positiva

$$K_m = \frac{k_{-1} + k_2}{k_1}$$

è detta costante di Michaelis-Menten

Approssimazione di pseudo-regime

- ▲ La quantità di enzima si assume tipicamente piccola rispetto a quella di substrato, per cui quest'ultima rimane pressoché invariata durante la formazione del complesso $\Rightarrow s(0) = s_0$
- riangle Dall'eq. di \dot{s} otteniamo la soluzione implicita

$$s(t) + K_m \ln s(t) = s_0 + K_m \ln s_0$$

- \triangle Si noti che l'eq. di c(t) non soddisfa la cond. iniz. c(0)=0, ma l'approssimazione vale in molti casi
- Esistono due scale temporali, una corrispondente alla formazione del complesso, l'altra relativa alla trasformazione del substrato

- Per stabilire il range di validità del modello approssimato dobbiamo rispondere a diverse domande
 - ♦ Quanto è veloce il transitorio iniziale?
 - → Per quali valori di parametri sono sufficienti le approssimazioni di pseudo-regime?
 - ♦ Cosa accade se la concentrazione di enzima non è effettivamente piccola rispetto a quella di substrato?

MG Adimensionalizzazione

A Per rispondere alle domande precedenti dobbiamo innanzitutto adimensionalizzare il sistema, mediante le trasformazioni

$$\tau = k_1 e_0 t, \quad u(\tau) = \frac{s(t)}{s_0}, \quad v(\tau) = \frac{c(t)}{e_0},$$

$$\lambda = \frac{k_2}{k_1 s_0}, \quad K = \frac{k_{-1} + k_2}{k_1 s_0} = \frac{K_m}{s_0}, \quad \varepsilon = \frac{e_0}{s_0}$$

 $^{\!\!\!\!/}$ Che è una scelta ragionevole se $\epsilon \ll 1$, ossia quando l'enzima è presente in quantità molto minore del substrato

G Adimensionalizzazione

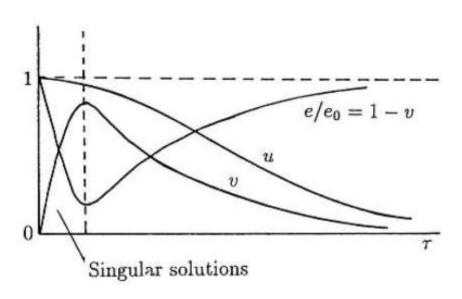
Utilizzando le trasformazioni precedenti otteniamo il sistema

$$\dot{u} = -u + (u + K - \lambda)v, \quad u(0) = 1$$

$$\varepsilon \dot{v} = u - (u + K)v, \quad v(0) = 0$$

si noti che $K-\lambda>0$

Non è possibile ricavare una soluzione analitica, ma si può abbozzare l'andamento studiando il segno delle derivate al variare di u



 \wedge Sfruttando il fatto che s non varia apprezzabilmente durante il transitorio iniziale si può valutare la durata di questo dall'eq. di c (ponendo $s=s_0$)

$$\dot{c} = k_1 e_0 s_0 - k_1 (s_0 + K_m) c$$

▲ La costante di tempo associata a questo sistema del primo ordine è

$$t_c = \frac{1}{k_1(s_0 + K_m)}$$

Arr Una stima della durata della dinamica di s si ottiene considerando la derivata massima (ossia il valore per $s=s_0$)

$$t_s \approx \frac{s_0}{\left| ds/dt \right|_{\text{max}}} \approx \frac{s_0 + K_m}{k_2 e_0}$$

riangle Sulla base delle stime effettuate, la condizione che il transitorio iniziale sia molto veloce rispetto alla dinamica della trasformazione del substrato, ossia $t_c \ll t_s$ si riscrive

$$\frac{k_2 e_0}{k_1 (s_0 + K_m)^2} << 1$$

△ Un'altra condizione per la validità dell'approssimazione è che la deplezione di S durante il transitorio iniziale sia una frazione trascurabile del totale, ossia $|\Delta s/s_0|\ll 1$

$$\frac{e_0}{s_0 + K_m} << 1$$

 \triangle La condizione precedente si ottiene considerando una stima per eccesso di ds/dt, derivabile dalla eq. nel modello del 2° ordine (v. lucido 10)

$$\Delta s \le \left| \frac{ds}{dt} \right|_{\text{max}} t_c = k_1 e_0 s_0 \cdot \frac{1}{k_1 (s_0 + K_m)}$$

Condizione di Pseudo-Regime

Si noti, tuttavia, che il primo vincolo si può riscrivere come

$$\frac{k_2 e_0}{k_1 (s_0 + K_m)^2} = \frac{e_0}{s_0 + K_m} \cdot \frac{1}{1 + (k_{-1}/k_2) + (s_0 k_1/k_2)} << 1$$

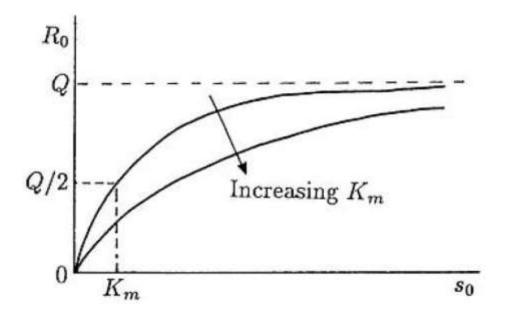
- ▲ Il secondo vincolo risulta, pertanto, più stringente e può essere considerato come condizione di validità dell'approssimazione di pseudo-regime
- \blacktriangle Si noti inoltre che, anche se $e_0/s_0=O(1)$, l'approssimazione rimane valida se K_m è grande

Parametri Sperimentali

- Nella pratica sperimentale si misurano due parametri
 - ♦ La costante di Michaelis-Menten
 - ♦ La velocità massima di reazione

$$Q = \left[R_0 \right]_{\text{max}} = k_2 e_0$$

$$R_0 = \frac{k_2 e_0 s_0}{s_0 + K_m} = \frac{Q s_0}{s_0 + K_m}$$



Quasi-Steady-State-Approximation (QSSA) e total QSSA

Quasi-Steady-State Approximation

- L'approssimazione di pseudo-regime è conosciuta come Quasi-Steady-State-Approximation (QSSA)
- ▲ La presenza di sottosistemi con scale temporali molto diverse può complicare notevolmente sia la simulazione numerica che la comprensione del sistema
- Per questo è comune approssimare le dinamiche veloci come se fossero istantaneee e ridurre le dinamiche del sistema a quelle del/i sottosistema/i più lento/i

$$d[A]/dt = \varepsilon^{-1} f([A],[B],[C],...)$$
 fast $d[B]/dt = g([A],[B],[C],...)$ intermediate $d[C]/dt = \varepsilon h([A],[B],[C],...)$ slow $0 < \varepsilon \ll 1$.

- Nelle reazioni enzimatiche, la validità della QSSA dipende dall'entità
 - ♦ della differenza delle scale temporali
 - ♦ della differenza di concentrazione tra enzima e substrato
- Quando si considerano reti di interazioni tra proteine, la QSSA in genere non produce risultati validi, perché
 - ♦ Gli enzimi hanno substrati multipli
 - ♦ I substrati sono catalizzati da più enzimi
 - ♦ Enzimi e substrati spesso hanno ruoli intercambiabili (ad es., due proteine chinasi possono fosforilarsi a vicenda)

Un articolo interessante sulla validità della QSSA

E.H. Flach, S. Schnell, *Use and abuse of the quasi-steady-state approximation*, IEE Proc.—Syst. Biol. 153(4), 187–191, 2006

♣ Gli autori hanno confrontato i risultati di due modelli del meccanismo di Van Slyke-Cullen, un caso speciale di reazione di M-M, con e senza QSSA

$$\xrightarrow{v_1} S + E \xrightarrow{k_1} C \xrightarrow{k_2} E + P \xrightarrow{v_2}$$

$$s' = v_1(p) - k_1 se$$

 $e' = -k_1 se + k_2 c$
 $c' = k_1 se - k_2 c$
 $p' = k_2 c - v_2(p)$

Modello di Van Slyke–Cullen

A Dalla conservazione della quantità totale di enzima, otteniamo

$$\dot{s} = v_1(p) - k_1 s(e_0 - c)$$

$$\dot{c} = k_1 s(e_0 - c) - k_2 c$$

$$\dot{p} = k_2 c - v_2(p)$$

riangle Adimensionalizzando possiamo eliminare i parametri k_1 e k_2 ,

Nelle prossime slide, per brevità, indicheremo le nuove variabili senza la barretta sopra

Considerazioni sui flussi

Dall conservazione totale della massa si ricava la relazione

$$\dot{s} + \dot{c} + \dot{p} = v = v_1 - v_2$$

 \land Se i flussi in ingresso e uscita sono uguali (v=0), possiamo eliminare un'eq

$$\dot{s} = v_1(p) - s(e_0 - c)$$
$$\dot{c} = s(e_0 - c) - c$$

- \blacktriangle Se $v_i = 0$, il sistema è isolato, poiché non entrano e non escono molecole
- riangle Se v_1 è costante, l'equazione di p(t) è disaccoppiata dalle altre (come nel modello di M-M)

$$\xrightarrow{v_1} S + E \xrightarrow{k_1} C \xrightarrow{k_2} E + P \xrightarrow{v_2}$$

MG Analisi di stabilità del modello chiuso

- \wedge Consideriamo il sistema ridotto del secondo ordine (v=0), possiamo visualizzare le traiettorie sul piano delle fasi
- Annullando le derivate troviamo le isocline

$$s = \frac{v_1}{e_0 - c} \qquad c = \frac{e_0 s}{1 + s}$$

L'intersezione ci fornisce il punto di equilibrio

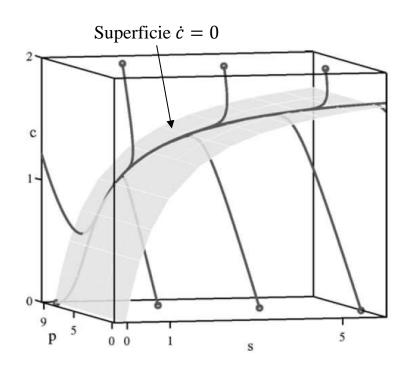
$$\left(\left(\frac{v_1}{e_0}-v_1\right), v_1\right)$$

che dipende da k_1 e k_2 , come si può vedere tornando alle variabili originali

G Analisi di stabilità del modello ridotto

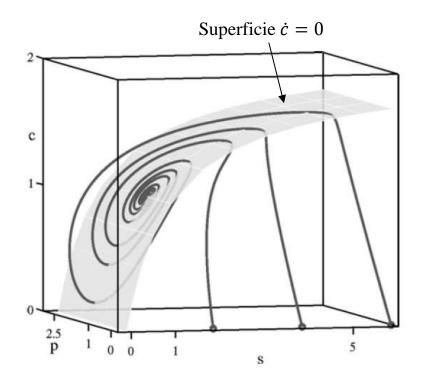
- Analizziamo il sistema linearizzato nell'intorno del punto di equilibrio calcolato
- riangle Quando v è costante, gli autovalori del sistema linearizzato risultano reali e negativi; abbiamo quindi un nodo stabile nel piano delle fasi
 - \star Le traiettorie sono attratte su una traiettoria definita dall'intersezione delle curve $\dot{s}=0$ e $\dot{c}=0$ e convergono nel punto di eq.

$$\left(\left(\frac{v_1}{e_0}-v_1\right), v_1, s_0\right)$$



🕏 Analisi di stabilità del modello completo

- A questo punto, ripetiamo l'analisi, usando però il modello completo del terzo ordine (senza QSSA)
- In questo caso, l'analisi del modello linearizzato nell'intorno del punto di equilibrio porta a conclusioni diverse:
 - ♣ Il p. di equilibrio è ancora asintoticamente stabile
 - \Rightarrow Per alcuni valori di v_1 e v_2 , gli autovalori diventano complessi, portando alla comparsa di fuoco stabile (spirale convergente)



MG Modello QSSA del sistema aperto

- $^{\wedge}$ Adesso consideriamo il caso $v_1(p) v_2(p)$
- Assumiamo che, dopo un transitorio iniziale, la quantità di complesso vari molto lentamente, ossia $dc/dt \approx 0$
- A Possiamo esprimere c in funzione di s

$$c \approx \frac{e_0 s}{1 + s}$$

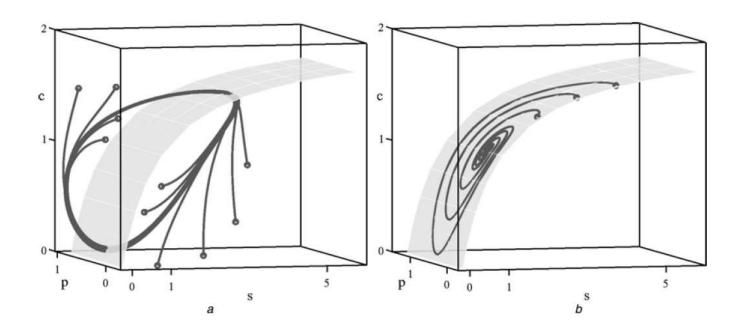
Sostituendo nelle altre equazioni, otteniamo

$$\dot{s} \approx v_1(p) - \frac{e_0 s}{1 + s}$$

$$\dot{p} \approx \frac{e_0 s}{1 + s} - v_2(p)$$

Confronto del modello completo e approssimato con QSSA

- Anche in questo caso il comportamento del sistema può variare notevolmente
- Le traiettorie mostrate sotto sono ottenute con gli stessi valori dei parametri e dei flussi, usando il modello completo (a) e quello ricavato con QSSA (b)
- Il modello esibisce un ciclo limite, mentre le traiettorie del sistema ridotto mostrano un modo a spirale convergente



- La QSSA è probabilmente il metodo più comunemente utilizzato per ridurre la complessità dei modelli di pathway biochimici
- Tuttavia, come dimostrato in questo e altri lavori, questa approssimazione può
 - ♦ camuffare alcune caratteristiche della dinamica nel transitorio.
 - → alterare le dinamiche di lungo periodo e, quindi, il comportamento
 qualitativo del sistema originale

total Quasi-Steady-State Approximation

Un modo per superare le limitazioni della QSSA nelle reazioni enzimatiche è stato proposto nel lavoro

JAM Borghans, RJ De Boer, LA Segel, *Extending the Quasi-Steady-State Approximation by Changing Variables*, Bull. Math. Biol. 58(1), 43–63, 1996

riangle L'idea di base è che, quando e_0 e s_0 hanno valori confrontabili, conviene utilizzare come variabile la conc. totale di substrato (libero + legato)

$$\hat{S}(t) = S(t) + C(t)$$

$$S + E \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} SE \xrightarrow{k_2} P + E$$

MG total Quasi-Steady-State Approximation

Applicando la tQSSA alla reazione di M-M, otteniamo

$$\frac{d\hat{s}}{dt} = -k_2 c$$

$$\frac{dc}{dt} = k_1 [(e_0 - c)(\hat{s} - c) - K_M c]$$

$$\hat{s}(0) = s_0$$

$$c(0) = 0$$

dove $e + c = e_0$

Assumendo $\frac{dc}{dt} = 0$, l'espressione di pseudo-regime di c(t) è data dalla soluzione della seguente equazione di secondo grado

$$c^2 - (e_0 + K_M + \hat{s})c + e_0 \hat{s} = 0$$

▲ Tzafriri and Edelman (J. Theor. Biol., 2004) hanno derivato condizioni sufficienti per la validità della tQSSA, che possono essere sintetizzate come

$$k_{-1} \gg k_2$$

ossia, la velocità di dissociazione del complesso enzima-substrato deve essere molto più veloce della conversione del substrato in prodotto

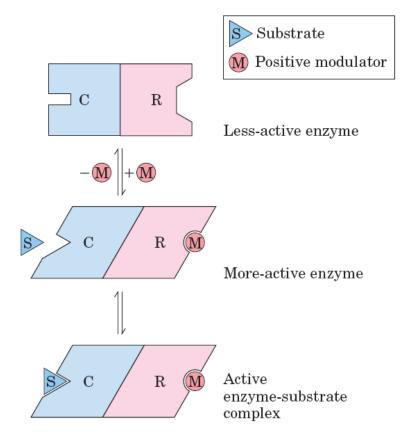
- La tQSSA, dunque, rappresenta una buona approssimazione a prescindere dal rapporto tra quantità di enzima e substrato e tra le scale temporali
- Nel seguente articolo sono riportate interessanti applicazioni della tQSSA a diverse reti di interazione proteina-proteina

A Ciliberto, F Capuani, JJ Tyson, *Modeling Networks of Coupled Enzymatic Reactions Using the total Quasi–Steady State Approximation*, PLOS Computational Biology 3(3), 463–472, 2007

Altri tipi di reazioni enzimatiche

- Nel modello base abbiamo supposto che una molecola di enzima si combini con una sola di substrato
- Molte proteine hanno più di un sito di legame, ad es. l'emoglobina ha quattro siti per le molecole di ossigeno
- Una reazione tra un enzima e un substrato si dice cooperativa se una singola molecola di enzima, dopo aver legato una molecola di substrato ad un sito, può legarne un'altra ad un altro sito

- Una tipologia di reazione cooperativa molto importante si ha quando il legame di un substrato ad un sito può influenzare il legame di altri substrati ad altri siti (enzima allosterico)
- Un substrato viene detto attivatore o inibitore a seconda che aumenti o diminuisca l'attività di legame in altri siti
- Se la specie substrato funge anche da modulatore l'interazione si dice omotropica, altrimenti eterotropica



Esempio di Reazione Cooperativa

Consideriamo ora un semplice esempio di reazione cooperativa in cui un enzima ha due siti di legame

$$S + E \underset{k_{-1}}{\rightleftharpoons} C_1 \xrightarrow{k_2} E + P$$

$$S + C_1 \underset{k=3}{\overset{k_3}{\rightleftharpoons}} C_2 \xrightarrow{k_4} C_1 + P$$

Calcoliamo l'approssimazione di pseudo-regime e la funzione di trasformazione del substrato

Equazioni Cinetiche

▲ Applicando la legge dell'azione di massa otteniamo

$$S + E \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} C_1 \xrightarrow{k_2} E + P$$
$$S + C_1 \underset{k_{-3}}{\overset{k_3}{\rightleftharpoons}} C_2 \xrightarrow{k_4} C_1 + P$$

$$\dot{s} = -k_1 s e + (k_{-1} - k_3 s) c_1 + k_{-3} c_2$$

$$\dot{c}_1 = k_1 s e - (k_{-1} + k_2 + k_3 s) c_1 + (k_{-3} + k_4) c_2$$

$$\dot{c}_2 = k_3 s c_1 - (k_{-3} + k_4) c_2$$

$$\dot{e} = -k_1 s e + (k_{-1} + k_2) c_1$$

$$\dot{p} = k_2 c_1 + k_4 c_2$$

$$s(0) = s_0, \quad e(0) = e_0, \quad c_1(0) = c_2(0) = p(0) = 0$$

▲ La conservazione dell'enzima fornisce

$$e + c_1 + c_2 = e_0$$

Analogamente ai casi precedenti troviamo il modello ridotto

$$\dot{s} = -k_1 e_0 s + (k_{-1} + k_1 s - k_3 s) c_1 + (k_1 s + k_{-3}) c_2$$

$$\dot{c}_1 = k_1 e_0 s - (k_{-1} + k_2 + k_1 s + k_3 s) c_1 + (k_{-3} + k_4 - k_1 s) c_2$$

$$\dot{c}_2 = k_3 s c_1 - (k_{-3} + k_4) c_2$$

e adimensionalizziamo usando le relazioni

$$\tau = k_1 e_0 t, \quad u = \frac{s}{s_0}, \quad v_1 = \frac{c_1}{e_0}, \quad v_2 = \frac{c_2}{e_0}, \quad a_1 = \frac{k_{-1}}{k_1 s_0},$$

$$a_2 = \frac{k_2}{k_1 s_0}, \quad a_3 = \frac{k_3}{k_1}, \quad a_4 = \frac{k_{-3}}{k_1 s_0}, \quad a_5 = \frac{k_4}{k_1 s_0}, \quad \varepsilon = \frac{e_0}{s_0}$$

Modello Adimensionale

▲ Sostituendo otteniamo

$$\dot{u} = -u + (u - a_3 u + a_1)v_1 + (a_4 + u)v_2$$

$$\varepsilon \dot{v}_1 = u - (u + a_3 u + a_1 + a_2)v_1 + (a_4 + a_5 - u)v_2$$

$$\varepsilon \dot{v}_2 = a_3 u v_1 - (a_4 + a_5)v_2$$

$$u(0) = 1, \quad v_1(0) = v_2(0) = 0$$

$$\dot{u} = -u \frac{a_2 + a_3 a_5 u (a_4 + a_5)^{-1}}{a_1 + a_2 + u + a_3 u^2 (a_4 + a_5)^{-1}} = -r(u) < 0$$

A Riportando in formato dimensionale troviamo la velocità di reazione di Michaelis-Menten per $e_0/s_0\ll 1$

$$R_0(s_0) = \left| \frac{ds}{dt} \right|_{t=0} = e_0 s_0 \frac{k_2 K'_m + k_4 s_0}{K_m K'_m + K'_m s_0 + s_0^2}$$

dove

$$K_m = \frac{k_{-1} + k_2}{k_1}, \quad K'_m = \frac{k_4 + k_{-3}}{k_3}$$

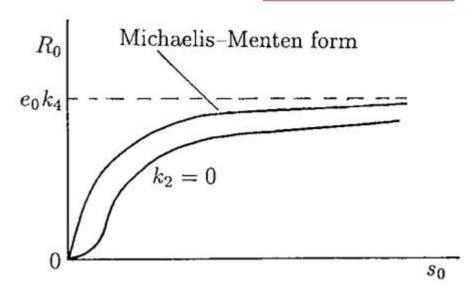
sono le costanti di Michaelis-Menten delle due reazioni

- La curva risultante può differire da quella di una reazione base, come mostrato in figura
- \land Ad es., per k2 = 0 si vede subito che $s_0 \rightarrow 0 \Longrightarrow R_0 \propto s_0^2$

$$S + E \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} C_1 \xrightarrow{k_2} E + P$$
$$S + C_1 \underset{k_{-3}}{\overset{k_3}{\rightleftharpoons}} C_2 \xrightarrow{k_4} C_1 + P$$

In questo caso l'andamento viene approssimato con una curva di Hill

$$R_0(s_0) = \frac{Qs_0^n}{s_0^n + K_m^n}, \quad n > 0$$



- riangle Si noti che il numero n non è necessariamente intero, inoltre si definiscono i seguenti casi
 - $*n > 1 \Rightarrow$ cooperazione positiva
 - $*n < 1 \Rightarrow$ cooperazione negativa
 - $*n = 1 \Rightarrow$ cooperazione nulla
- \wedge Alla stessa relazione (ma con n intero) si arriva considerando un modello di enzima che lega contemporaneamente n molecole substrato, ossia

$$E + n S \rightarrow E + n P$$

- Molti processi biologici hanno un meccanismo insito di regolazione mediante retroazione (feedback)
- In pratica la regolazione si basa sul fatto che il prodotto di una reazione può influenzare la storia futura del processo
- L'effetto di regolazione è generalmente nonlineare e può essere sia di attivazione che di inibizione nei confronti della reazione
- ▲ In particolare l'autocatalisi è il processo per cui una specie viene utilizzata nella reazione che la produce, ad es.

$$A + X \stackrel{k_1}{\rightleftharpoons} 2X$$

Esempi di Autocatalisi

▲ Se la concentrazione della specie A viene mantenuta costantemente al livello a, possiamo scrivere

$$A + X \underset{k=1}{\overset{k_1}{\rightleftharpoons}} 2X \quad \Longrightarrow \quad \dot{x} = k_1 a x - k_{-1} x^2 \quad \Longrightarrow \quad x(t) \to x_S = \frac{k_1 a}{k_{-1}}$$

- \wedge II sistema ha due punti di equilibrio, x=0 instabile e $x=x_S$ stabile
- La retroazione è fornita dal prodotto stesso, che inibisce la formazione di ulteriore prodotto: l'intensità dell'azione inibente cresce con il quadrato della concentrazione
- △ Il meccanismo è analogo a quello studiato nelle popolazioni monospecie

Esempi di Autocatalisi

▲ Si consideri la reazione

$$A + X \stackrel{k_1}{\rightleftharpoons} 2X, \quad B + X \stackrel{k_2}{\rightarrow} C$$

e si supponga che a e b vengano mantenuti costanti

$$\dot{x} = (k_1 a - k_2 b)x - k_{-1} x^2$$

- riangleq II sistema ha una biforcazione quando $k_1a-k_2b=0$, infatti
 - $*k_1a k_2b > 0 \Rightarrow$ L'origine è un p. di equilibrio instabile, infatti il tasso di produzione è maggiore di quello di trasformazione
 - $*k_1a k_2b < 0 \Rightarrow$ L'origine è un p. di equilibrio stabile, infatti il tasso di produzione è minore di quello di trasformazione

Esempi di Autocatalisi

$$A + X \xrightarrow{k_1} 2X$$
, $X + Y \xrightarrow{k_2} 2Y$, $Y \xrightarrow{k_3} B$

dove la concentrazione di A è mantenuta costante

- △ Si noti che le prime due reazioni sono autocatalitiche
- Applicando la legge dell'azione di massa riotteniamo le equazioni di Lotka-Volterra

$$\dot{x} = k_1 ax - k_2 xy$$

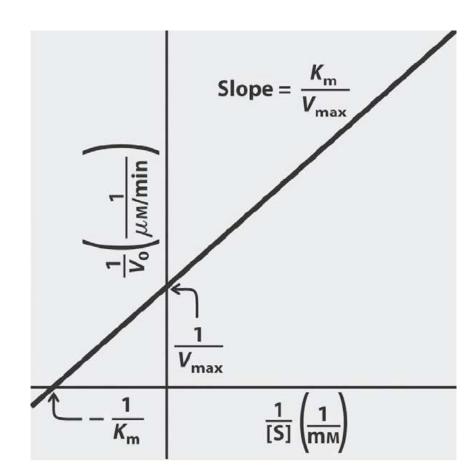
$$\dot{y} = k_2 x y - k_3 y$$

Grafico di Lineweaver-Burke

♣ Il grafico di L-B, detto anche dei doppi reciproci, si ricava invertendo ambo i membri dell'eq. della velocità di reazione

$$\frac{1}{V_0} = \frac{K_m + [S]}{V_{\text{max}}[S]}$$

$$\frac{1}{V_0} = \frac{K_m}{V_{\text{max}}} \frac{1}{[S]} + \frac{1}{V_{\text{max}}}$$



Reazione Uni-Uni

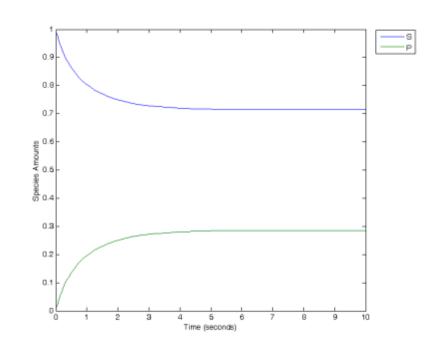
A Reazione enzimatica unireactant-unireactant (Michaelis-Menten reversibile)

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_3} EP \xrightarrow{k_5} E + P$$

$$\frac{d[P]}{dt} = \frac{\frac{V_M^f}{K_m^f}[S] - \frac{V_M^r}{K_m^r}[P]}{1 + \frac{[S]}{K_m^f} + \frac{[P]}{K_m^r}}$$

$$K_{\text{eq}} = \frac{[P]_{\text{eq}}}{[S]_{\text{eq}}} = \frac{V_M^f K_M^r}{V_M^r K_M^f}$$

Relazione di Haldane



🕏 Reazione Bi-Bi

A Reazioni enzimatiche bi-substrate

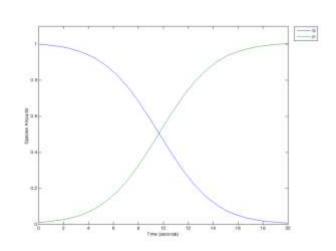
Random order

Sequential binding

$$ES_1$$
 ES_1
 ES_1
 ES_2
 ES_2
 ES_2
 ES_2
 ES_2
 ES_1
 ES_2
 ES_2
 ES_2
 ES_1
 ES_2
 ES_2
 ES_2
 ES_1
 ES_2
 ES_2
 ES_1
 ES_2
 ES_2
 ES_1
 ES_2
 ES_2
 ES_2
 ES_2
 ES_3
 ES_4
 ES

$$\frac{d[P]}{dt} = \frac{V_{\text{max}}}{\frac{K_s^{S_1} K_m^{S_2}}{[S_1][S_2]} + \frac{K_m^{S_1}}{[S_1]} + \frac{K_m^{S_2}}{[S_2]} + 1}$$

Ordered Bi-Bi



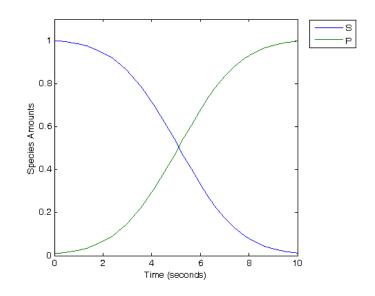
Reazione Ping-Pong Bi-Bi

△ In questo caso non avviene la formazione di complesso ternario

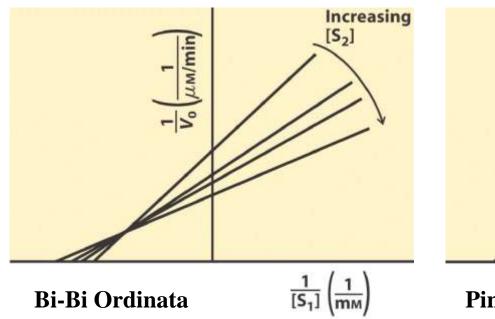
$$E + S_1 \Longrightarrow ES_1 \Longrightarrow E'P_1 \stackrel{P_1}{\Longleftrightarrow} E' \stackrel{S_2}{\Longleftrightarrow} E'S_2 \longrightarrow E + P_2$$

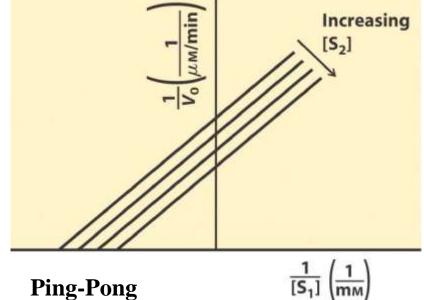
$$\frac{d[P]}{dt} = \frac{V_{\text{max}}}{\frac{K_{m}^{S_{1}}}{[S_{1}]} + \frac{K_{m}^{S_{2}}}{[S_{2}]} + 1}$$

N.B. Rispetto al caso precedente c'è un parametro in meno



- ≜ L'andamento nel tempo è simile
- $^{igstyle L}$ La differenza si evince dal comportamento al variare della concentrazione di ${\cal S}_2$

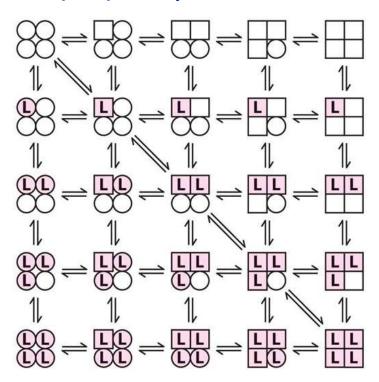




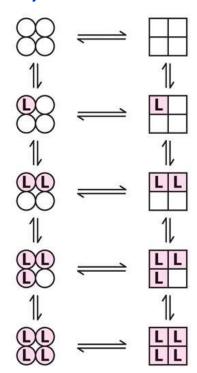
Modelli di enzimi allosterici

L'enzima è costituito da più unità, ciascuna delle quali può essere nello stato inattivo
 T (tense, ○) o attivo R (relaxed, □)

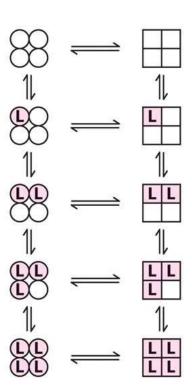
Koshland-Némethy-Filmer (KNF) or sequential model



Monod-Wyman-Changeux (MWC) or concerted model



- ▲ Il modello MWC si basa sulle seguenti ipotesi
 - → Le subunità sono equivalenti in termine di interazione con l'ambiente e con il ligando
 - → Ogni subunità ha un unico sito recettore
 - → La proteina si può trovare in due diversi stati conformazionali e le affinità di legame dei due stati sono diverse
 - → La commutazione tra questi due stati è concertata, ossia avviene contemporaneamente per tutte le subunità
 - → L'affinità di legame di un sito recettore dipende solo dallo stato conformazionale, è indipendente dallo stato di occupazione degli altri siti recettori

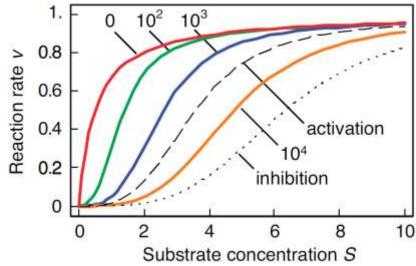


L'equilibrio tra stato R e T, in assenza di ligando, è dato dalla costante allosterica

$$L = \frac{T_0}{R_0}$$

- riangle Le costanti di legame per le due conformazioni sono K_R e K_T
- A Se le molecole di substrato possono legare solo la forma attiva (ossia $K_T=0$), la velocità di reazione è data da

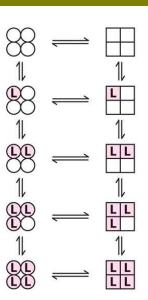
$$V = \frac{V_{\text{max}} K_R S}{(1 + K_R S)} \frac{1}{\left[1 + \frac{L}{(1 + K_R S)^n}\right]}$$

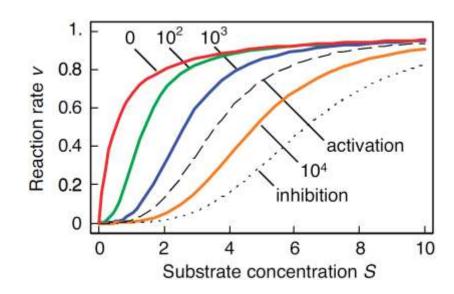


 $\,^{\,\downarrow}\,$ Il modello MWC può essere esteso per portare in conto l'effetto di attivatori (A) ed inibitori (I), modificando la L

$$L' = L \frac{(1 + K_I I)^n}{(1 + K_A A)^n}$$

 \wedge A parità di L, l'attivatore riduce la sigmoidicità della curva, l'inibitore la aumenta

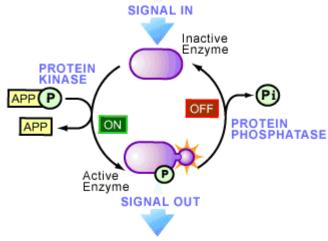


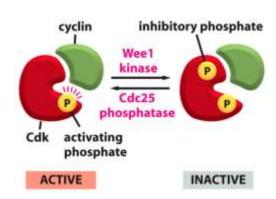


Cinetica di Goldbeter-Koshland

Molti meccanismi di segnalazione si basano sull'attivazione di proteine mediante una modifica covalente

- Un esempio notevole sono i cicli di fosforilazione/defosforilazione per mezzo di chinasi e fosfatasi
- ▲ La cinetica di K-G descrive la condizione di equilibrio di un sistema di questo tipo
- Ad es., la regolazione del ciclo cellulare si basa sull'attivazione/inattivazione delle Cyclindependent kinases (Cdk)



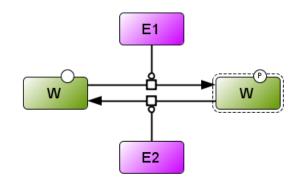


Cinetica di Goldbeter-Koshland

Lo switch di Goldbeter-Koshland è descritto dalle seguenti reazioni

$$W + E_1 \xrightarrow[d_1]{a_1} WE_1 \xrightarrow{k_1} W^* + E_1$$

$$W^* + E_2 \xrightarrow[d_2]{a_2} W^*E_2 \xrightarrow{k_2} W + E_2$$



Assumendo costante la quantità totale di W, ossia $W^T=W+W^*={
m costante}$, ed utilizzando la cinetica di Michaelis-Menten, si ha

$$\frac{dW^*}{dt} = \frac{V_1(W^T - W^*)}{K_{M1} + (W^T - W^*)} - \frac{V_2W^*}{K_{M2} + W^*}$$

MG Funzione di Goldbeter-Koshland

- \wedge Imponendo la condizione di equilibrio $dW^*/dt = 0$, otteniamo la concentrazione all'eq. di W^* in funzione
 - \Rightarrow delle velocità max di reazione $V_1=k_1E_1^T$ e $V_2=\mathbf{k}_2E_2^T$
 - \Rightarrow e delle costanti di M-M normalizzate $K_1 = \frac{K_{M1}}{W^T}$, $K_2 = \frac{K_{M2}}{W^T}$

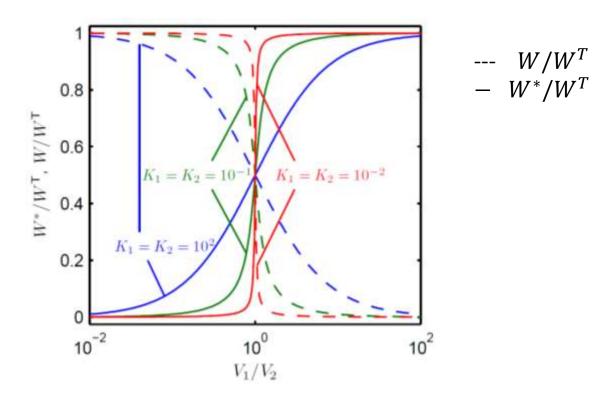
$$\frac{W^*}{W^T} = G(V_1, V_2, K_1, K_2) = \frac{B + \sqrt{B^2 + 4\frac{V_1}{V_2} \left(\frac{V_1}{V_2} - 1\right) K_2}}{2\left(\frac{V_1}{V_2} - 1\right)}$$

dove

$$B = \left(\frac{V_1}{V_2} - 1\right) - \left(\frac{V_1}{V_2} + \frac{K_1}{K_2}\right) K_2$$

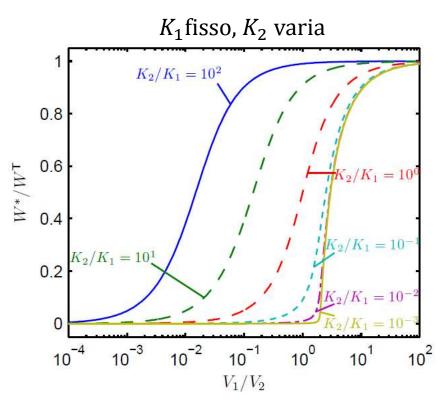
🕏 Funzione di Goldbeter-Koshland

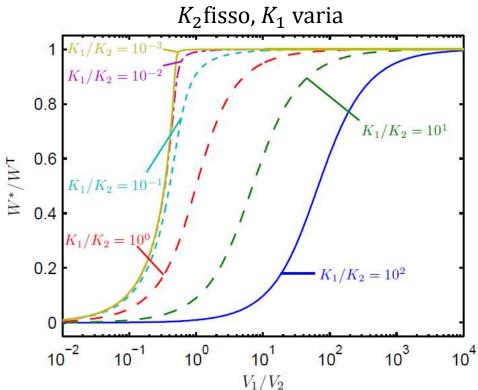
- Arr Il p. di eq. cambia al variare di V_1 e V_2 , ossia delle concentrazioni di chinasi E_1 e fosfatasi E_2
- ▲ Dall'andamento in figura, si vede che piccole variazioni possono produrre una attivazione/disattivazione pressoché completa (ultrasensitività)



Funzione di Goldbeter-Koshland

- igwedge Di seguito, riportiamo l'andamento al variare dei parametri K_{1} e K_{2}
- \land Si noti che la funzione G varia sia in funzione di K_1/K_2 che di K_2





Reazioni enzimatiche di inibizione

- ▲ Inibizione Irreversibile
 - ♦ substrato suicida
- Inibizione Reversibile
 - ♦ Competitiva
 - → Mista (non competitiva)
 - ♦ Incompetitiva

Un processo enzimatico di particolare importanza è quello descritto dal modello di Walsh (1978)

$$E + S \stackrel{k_1}{\rightleftharpoons} X \stackrel{k_2}{\rightarrow} Y \stackrel{k_3}{\rightarrow} E + P$$

$$\downarrow^{k_4}$$

$$E_i$$

dove E, S, P sono rispettivamente enzima, substrato e prodotto, X, Y sono prodotti intermedi, E_i è l'enzima inattivato e le k sono costanti positive

Arr Il rapporto $r:=k_3/k_4$ è chiamato *coefficiente di partizione*

- L'enzima lo converte in un inibitore che inattiva in maniera irreversibile l'enzima stesso
- ▲ I substrati suicidi sono importanti perché forniscono un metodo per inattivare uno specifico enzima
- L'uso principale è nella somministrazione di farmaci, perché non sono dannosi nella forma comune e solo l'enzima specifico li può convertire nella forma inibitoria (ad es. l'aspirina e la penicillina agiscono mediante questo meccanismo)

- ▲ La cinetica dei substrati suicidi è stata studiata a fondo da Waley (1980) e Tatsunami (1981)
- Questi studi si concentrano sul meccanismo che permette o meno al substrato di essere interamente trasformato prima che tutto l'enzima sia inattivato
- riangle Waley ha concluso che questo dipende dal valore $rrac{e_0}{s_0}$
- \wedge Tatsunami ha proposto come indice il valore $(1+r)\frac{e_0}{s_0}$

$$(1+r)e_0/s_0 < 1$$
 Tutto l'enzima è inattivato

$$(1+r)e_0/s_0 > 1$$
 II substrato viene trasformato interamente

Equazioni cinetiche

Applicando la legge di azione di massa

$$\dot{s} = -k_1 e s + k_{-1} x$$

$$\dot{e} = -k_1 e s + k_{-1} x + k_3 y$$

$$\dot{x} = k_1 e s - k_{-1} x - k_2 x$$

$$\dot{y} = k_2 x - k_3 y - k_4 y$$

$$\dot{e}_i = k_4 y$$

$$\dot{p} = k_3 y$$

$$e(0) = e_0, \quad s(0) = s_0,$$

$$x(0) = y(0) = e_i(0) = p(0) = 0$$

Anche in questo caso si può sfruttare la conservazione della quantità totale di enzima

$$e + x + y + e_i = e_0$$

e il fatto che l'eq. di p è disaccoppiata dalle altre

$$\dot{s} = -k_1 (e_0 - x - y - e_i) s + k_{-1} x$$

$$\dot{x} = k_1 (e_0 - x - y - e_i) s - (k_{-1} + k_2) x$$

$$\dot{y} = k_2 x - (k_3 + k_4) y$$

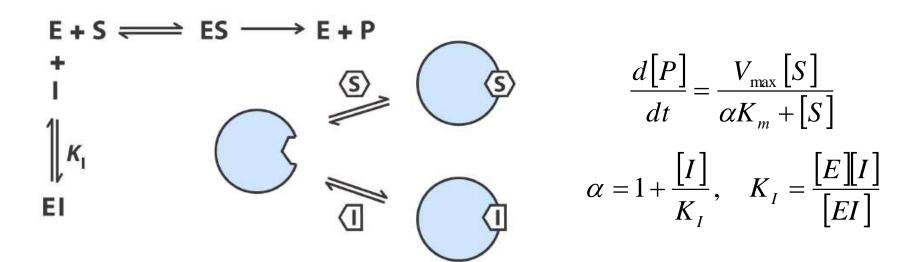
$$\dot{e}_i = k_4 y$$

Studieremo il sistema risolvendo numericamente le eq.

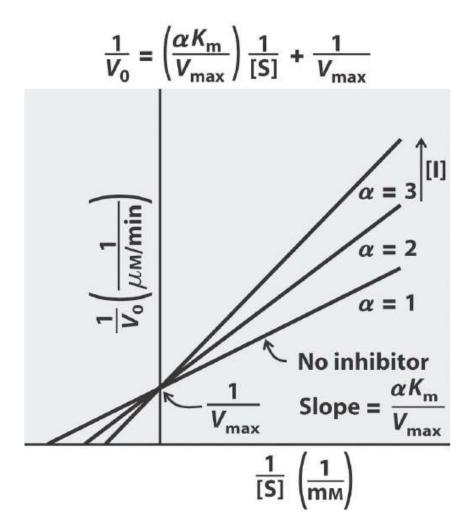
$$s_0 = 20, e_0 = 8, k_1 = 1, k_{-1} = 0.5, k_3 = 0.8, k_4 \in [0.01, 1],$$

Inibizione competitiva

- ▲ L'inibitore ed il substrato si legano allo stesso sito
- riangle L'aumento di $[{
 m I}]$ equivale ad un aumento di K_m
- Arr La V_{max} raggiungibile dalla reazione non cambia (ma può cambiare la quantità di substrato necessaria per raggiungerla)

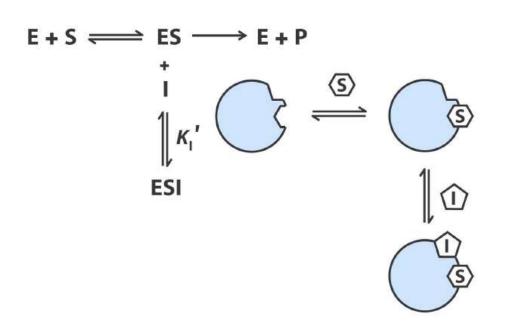


Inibizione competitiva



Inibizione incompetitiva

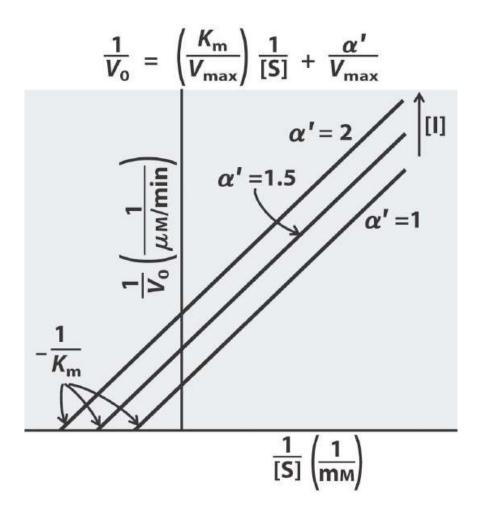
- Siti di legame differenti, l'inibitore si lega solo al complesso ES
- riangle L'aumentare di [I] equivale ad una diminuzione sia di V_{max} che di K_m



$$\frac{d[P]}{dt} = \frac{V_{\text{max}}[S]}{K_m + \alpha'[S]}$$

$$\alpha' = 1 + \frac{[I]}{K_I'}, \quad K_I' = \frac{[ES][I]}{[ESI]}$$

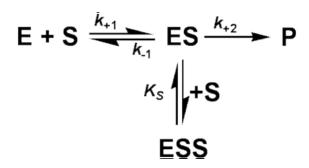
MG Inibizione incompetitiva

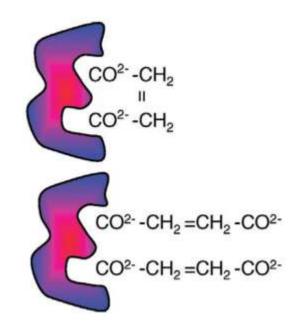


Inibizione da eccesso di substrato

- In alcuni casi, invece, il legame di una seconda molecola di substrato può impedire la formazione del prodotto
- Applicando lo schema dell'inibizione incompetitiva, con I = S

$$\frac{dP}{dt} = \frac{V_f S}{K_M + S\left(1 + \frac{S}{K_I}\right)}$$

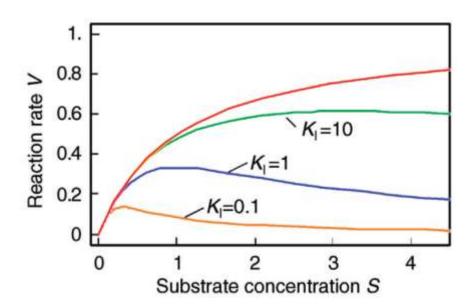




ਾਂ Inibizione da eccesso di substrato

△ In questo caso il valore massimo di velocità si ottiene quando

$$\bar{S} = \sqrt{K_m K_I} \implies V_{\text{max}} = \frac{V_f}{1 + 2\sqrt{\frac{K_m}{K_I}}}$$

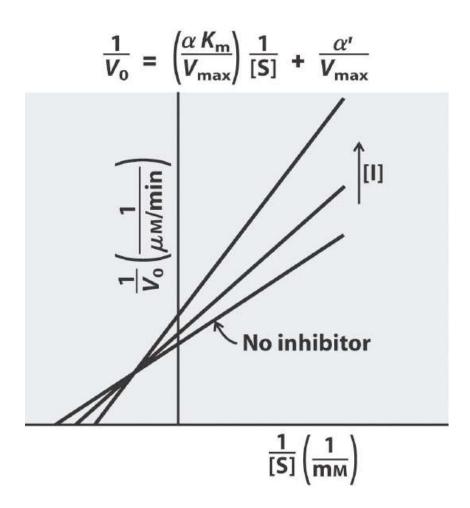


Competizione mista

Siti di legame diversi, l'inibitore può legarsi sia a E che a ES

Se $\alpha = \alpha'$ l'inibizione viene detta non-competitiva pura

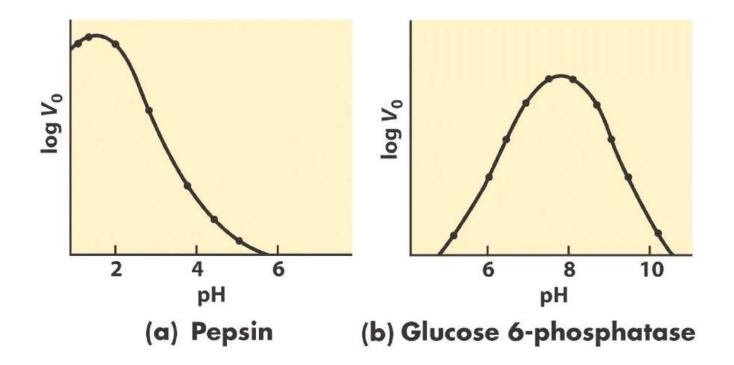
MG Competizione mista



- Systems Biology Ontology (SBO) è un set di vocabolari relazionali controllati di termini utilizzati nella systems biology e, in particolare, nella modellistica di sistemi biologici
- Consultabile sul sito dello EBI (http://www.ebi.ac.uk/sbo/main/)
- △ E' composto da sette vocabolari ortogonali, che definiscono
 - ♦ ruoli delle specie che participano alla reazione (ad es., substrato)
 - → parametri quantitativi (ad es., costante di Michaelis-Menten)
 - * espressioni matematiche cinetiche (ad es., legge di azione di massa)
 - framework modellistico usato (ad es., logical framework)
 - † tipo dell'entità funzionale o materiale (ad es., macromolecola).
 - ♦ tipo di interazione (ad es., processo)
 - ♦ tipi di metadati

Dipendenza da altri fattori

➡ Bisogna ricordare che le reazioni enzimatiche sono fortemente dipendenti da altri fattori, e.g. pH e temperatura



- ♣ In molti casi reali di interesse non si conosce in maniera dettagliata la lista di reazioni che genera un certo processo biologico
- Più realisticamente si può ricavare sperimentalmente l'effetto globale al variare di una specie o delle condizioni al contorno
- In questo caso non si può utilizzare l'approccio visto finora, trasformando direttamente le reazioni in eq. differenziali
- Il modello, quindi, è costituito da opportuni termini matematici che descrivono i vari fenomeni pur non rappresentandone i meccanismi biochimici di base

Cinetica di convenienza

E' un'espressione generale che generalizza la cinetica di M-M reversibile al caso di più substrati e più prodotti

$$n_{-1}S_1 + n_{-2}S_2 + \cdots \leftrightarrow n_{+1}P_1 + n_{+2}P_2 + \cdots$$

$$v = E_{\text{total}} \cdot f_{\text{reg}}$$

$$\cdot \frac{k_{\text{cat}}^{\text{for}} \prod_{i} (S_{i}/K_{\text{m},S_{i}})^{n_{-i}} - k_{\text{cat}}^{\text{back}} \prod_{j} (P_{j}/K_{\text{m},P_{j}})^{n_{+j}}}{\prod_{i} (1 + (S_{i}/K_{\text{m},S_{i}}) + \dots + (S_{i}/K_{\text{m},S_{i}})^{n_{-i}}) + \prod_{j} (1 + (P_{j}/K_{\text{m},P_{j}}) + \dots + (P_{j}/K_{\text{m},P_{j}})^{n_{+j}}) - 1}$$

- A I parametri sono indipendenti e non soggetti alla relazione di Haldane
- \blacktriangle Il fattore di regolazione f_{reg} può essere 1 (in assenza di modulatori) oppure una funzione di eventuali modulatori attivatori o inibitori (ad es. $K_I/(K_I+I)$)

Esempi di modelli fenomenologici

▲ Si consideri il seguente modello

$$\dot{u} = \frac{a}{b+v} - cu$$

$$\dot{v} = du - ev$$

con a, b, c, d, e costanti positive

- $^{\wedge}$ L'interpretazione biologica di queste eq. è che u attiva v, attraverso un termine du, e entrambe u e v sono degradate in maniera linearmente proporzionale alla loro concentrazione (si parla in questo caso di cinetica del primo ordine)
- \land Il termine a/(b+v) porta in conto l'effetto di inibizione esercitato da v su u, infatti il tasso di produzione di u è tanto più piccolo quanto maggiore è la concentrazione di v

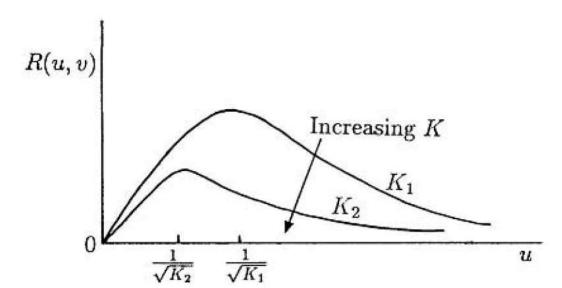
Esempi di modelli fenomenologici

▲ Il meccanismo di Thomas (1975) è stato sviluppato per descrivere la reazione dei substrati ossigeno e acido urico in presenza dell'enzima urease

$$\dot{u} = a - u - \rho R(u, v)$$

$$\dot{v} = \alpha (b - v) - \rho R(u, v)$$

$$R(u, v) = \frac{uv}{1 + u + Ku^2}$$



Effetto di inibizione del substrato

Esempi di modelli fenomenologici

△ Un ulteriore modello di sistema attivatore (u) - inibitore (v)

$$\dot{u} = a - bu + \frac{u^2}{v(1 + Ku^2)}$$

$$\dot{v} = u^2 - v$$

- \wedge L'attivatore u è un prodotto autocatalitico, come descritto dal termine $u_2/[v(1+Ku_2)]$, ma il tasso di produzione satura al valore 1/Kv per u $\to \infty$
- riangle L'inibitore v è attivato da u, ma ne inibisce la produzione