
QUALITATIVE RESPONSE REGRESSION MODELS 

Ø Regression models involving nominal scale dependent 

variables are among a broader class of models known as 

qualitative response regression models. 

Ø Today we will consider the simplest of such models, the 

binary or dichotomous or dummy dependent variable 

regression models. 



Dichotomous Dependent Variables 

�  So far, having described the OLS, we have assumed a statistical 
experiment that draws from a normal distribution. 

�  There are various problems associated with estimating a 
dichotomous dependent variable under assumptions of a statistical 
experiment that draws from a normal distribution, i.e., using 
regression. 

�   Obviously the statistical experiment is not draws from a normal 
distribution, but from something called a Bernoulli distribution.  
Thus, estimation with OLS is likely to be inefficient.  It is also 
theoretically inconsistent with the nature of the statistical experiment. 



Recall of a Bernoulli distribution 
�  Before introducing a Binomial random distribution let us 

introduce the Bernoulli distribution. 
�  A random variable X is called Bernoulli                  if assumes 

only two values: 0 with probability 1-p and 1 with probability 
p, where 0≤p≤1, or equivalently 

�  This random variable can be generated by drawing an 
outcome by a population whose units can ssume only two 
carachters, such as: YES-NO; RIGHT-WRONG; etc. 



Recall of a Bernoulli distribution 
�  From a Bernoulli it is straightforward to calculate the rth 

moment 

�  In particular: 

A Binomial is a generalization of a Bernoulli (draws with ripetition/remission) 

Bernoulli indipendent random variables  



Binary response models
�  Model for mutually exclusive binary outcomes focus on the 

determinants of  the probability p of  the occurrence of  one 
outcome rather than an alternative outcome that occurs 
with a probability of  1-p (in regression analysis we want to 
measure how the probability p varies across individuals as 
function of  regressors). 

�  An alternative is predicting the propensity score p, the 
conditional probability of  participation of  an individual in  
a treatment program 

�  Linear Probability Model 
�  Probit and Logit Regression 
�  Estimation, Marginal Effect and Inference 



Basic models
�  Suppose the outcome y takes one of  the two values: 

 
�  Given our interest in modeling p as a function of  regressors x, 

there is no loss of  generality in setting the outcome values to 1 
and 0. The probability density function for the observed 
outcome y is py(1-p)1-y, with E(y) = p and Var(y)=p(1-p). 

�  A regression model is formed by parametrizising the probability  
p on a regressor vector x and a Kx1 parameter vector beta. The 
commonly used models are of  single-index form with 
conditional probability given by  



Basic models

�  Where F(.) is a specified parametric function. To ensure that  
0 ≤ p ≤ 1 it is natural to specify F(.) to be a cumulative 
distribution function (CDF).  

�  Note that if  F(.) is a CDF, then this cdf  is only being used to 
model the parameter p and does not denote the cdf  of  y itself, 
except for the LPM that does not use cdf.  



Latent variable interpretation and identification
�  Binary outcome models can be given a latent-variable 

interpretation. This provides a link with the linear regression 
model, explains more deeply the difference between logit and 
probit and provides the basis for extention to some 
multinomial models. 

From Cameron and Trivedi (2005) 



Latent variable interpretation and identification
�  We distinguish between the observed binary outcome, y, and 

an underlying continuous unobservable (or latent) variable, y*, 
that satisfies the single- index model 

Altough y* is not observed, we do observe  

Where the zero threshold is a normalization that is of  no 
consequence if  x includes an intercept. Given the latent-variable 
models just described, we have 

F(.) is the CDF of  -u. If  u is standard 
normally distributed PROBIT; if  
logistically distributed LOGIT 
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Some  more information
�  For  binary models other than the LPM, estimation is by ML. 

The density for a single observation can be compatly written 
as is pi

yi(1-pi)1-yi , where   
�  For a sample of  N independent observations, the MLE 

maximizes the associated log-likelihood function 

�  The MLE is obtained by iterative methods and is 
asymptotically normally distributed. More iterations might 
mean high degree of  multicollinearity. 



Linear Probability model

�  Note that a linear regression line through the actual data cuts through the data at the point of 
greatest concentration on each end. 

�  The residuals from this regression line will only be close to the regression line if the X variable 
is also Bernoulli distributed.  This means that measures of fit or hypothesis tests involving the 
squared errors will be silly.  The regression line will seldom lie near the data. 



PROBLEMS WITH LINEAR PROBABILITY MODEL 

Ø The linear probability model (LPM) uses the OLS method to 
determine the probability of an outcome. 

Ø Problems: 
Ø 1. The LPM assumes that the probability of the outcome moves linearly with 

the value of the explanatory variable, no matter how small or large that value 
is. 

Ø 2. The probability value must lie between 0 and 1, yet there is no guarantee 
that the estimated probability values from the LPM will lie within these 
limits. 

Ø 3. The usual assumption that the error term is normally distributed cannot 
hold when the dependent variable takes only values of 0 and 1, since it 
follows the binomial distribution. 

Ø 4. The error term in the LPM is heteroscedastic, making the traditional 
significance tests suspect. 



�  Relatedly, this feature also means that the residuals from the linear model will 
be dichotomous and heteroskedastic, rather than normal, raising questions 
about hypothesis tests. 
When y=1, the residual will depend on X and be: 
 
 
When y=0, the residual will depend on X and be: 
 
 
 
 

�  This means that the residuals from the linear probability model will be 
heteroskedastic and have a dichotomous character. 
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�  Note that the residuals change systematically with the values of X.  This implies 
what it termed endogeneity. They are also not distributed normally.   
 
We could "fix" this problem by estimating the linear probability model using 
weighted least squares. 
 
However, the problem with this model runs deeper.  We must be able to 
interpret results from this model as expected values of probabilities.  However, 
the graph below suggests further problems. 
 



�  Observe that some of the probabilities lie above 1 and below zero.  This is not 
consistent with the rules of probability.  We could truncate the model at 0 and 1 
to "fix" this problem. 
 
However, note that probability, according to this model, is alleged to change in 
linear fashion with changes in X.  Yet, this may not be consistent with reality in 
many real world situations.  For example, consider the probability of home 
ownership as a function of income. 
 
Suppose we have prospective buyers with income around 10k per year.  If we 
change their income by 1k, how much does the probability that they will buy a 
home change?  Suppose we have prospective buyers with income around 30k.  If 
we change their income by 1k, how much does the probability that they will 
own a home change?  Suppose we have prospective buyers with income around 
80k.  If we change their income by 1k, how much does the probability that they 
will own a home change?   
 

�  In practice, there are many situations where the probability of a yes outcome 
follows an S shaped distribution, rather than the linear distribution alleged by 
the linear probability model. 
 
 
 



Non-Linear Probability Models 



CHARACTERISTICS OF LOGIT/PROBIT MODEL 
Ø  1. As Pi goes from 0 to 1, Li goes from  -∞ to ∞. 
Ø  2. Although Li is linear in Xi, the probabilities themselves are not. 
Ø  3. If Li is positive, when the value of the explanatory variable(s) increases, the 

odds of the outcome increase.  If it negative, the odds of the outcome decrease. 
Ø  4. The interpretation of the logit model is as follows: Each slope coefficient 

shows how the log of the odds in favor of the outcome changes as the value of the 
X variable changes by a unit. 

Ø  5. Once the coefficients of the logit model are estimated, we can easily compute 
the probabilities of the outcome. 

Ø  6. In the LPM the slope coefficient measures the marginal effect of a unit change 
in the explanatory variable on the probability of the outcome, holding other 
variables constant.  In the logit model, the marginal effect of a unit change in the 
explanatory variable not only depends on the coefficient of that variable but also 
on the level of probability from which the change is measured.  The latter depends 
on the values of all the explanatory variables in the model. 



LOGIT vs PROBIT 
Ø Logit and probit models generally give similar results. 
Ø The main difference between the two models is that the 

logistic distribution has slightly fatter tails. 
Ø The conditional probability Pi approaches 0 or 1 at a slower rate in 

logit than in probit.  
Ø In practice there is no compelling reason to choose one over 

the other. 
Ø Many researchers choose the logit over the probit because 

of its comparative mathematical simplicity. 

STATA 



Measures of  fit
The R2  and R2 corrected don’t make sense here. So, two 
other specialized measures are used: 
�  The fraction correctly predicted = fraction of  Y ’s for 
which predicted probability is >50% (if  Yi = 1) or is <50% 
(if  Yi = 0). 
�  The pseudo-R2 measure the fit using the likelihood 
function: measures the improvement in the value of  the 
log likelihood, relative to having no X’s. This simplifies to 
the R2 in the linear model with normally distributed errors.



Interpretation 
�   Interpreting Dichotomous Logit and Probit  

 
�   Coefficients- The actual coefficients in a logit or probit analysis are limited in 

their immediate interpretability.   
 

�  The signs are meaningful, but the magnitudes may not be, particularly when 
the variables are in different metrics.   
 

�  Above all, note that you cannot interpret the coefficients directly in terms of 
units of change in y for a unit change in x, as in regression analysis.   
 

�   There are various approaches to imparting substantive meaning into logit and 
probit results, including:  
�  Probability Calculations  
�  Graphical methods 
�  Odd Ratio 
�  First Partial derivatives.   

 



Marginal Effect

However, what we really care is not      itself. We want to 
know how the change of  X will affect the probability that 
Y = 1. For the probit model, 
 
 
 
 
where        is pdf  of  the standard normal distribution.



The effect of  the change in X on Pr(Y = 1|X) depends on 
the value of  X. In practice, we usually evalute the marginal 
effect at the sample average    . i.e. The marginal effect is



When X is binary, it is not clear what does the sample 
average mean. 
The marginal effect then measures the probability 
difference between X = 1 and X = 0. 
 
 
 



