Università degli Studi di Napoli "Federico II"

SCUOLA POLITECNICA E DELLE SCIENZE DI BASE DIPARTIMENTO DI INGEGNERIA INDUSTRIALE

CORSO DI LAUREA IN INGEGNERIA AEROSPAZIALE

CLASSE DELLE LAUREE IN INGEGNERIA INDUSTRIALE (L-9)

Elaborato di laurea in Meccanica del Volo Geometric modelling, stability and control analysis of the asymmetric Rutan Boomerang aircraft

Relatore: Prof. Danilo Ciliberti Candidato: Rester Brendon Entienza Matr. N35004277 To my love Krizzia, my loving mother Raissa and my hardworking father Brendo, without whom none of this would have been possible. To my siblings Raiven, Rovic, and my dog Althea. To my nanay Ester and my aunt Kelly, who are my caring second mothers.

Abstract

The purpose of this thesis is to create a geometric 3D model of the asymmetric Rutan Boomerang and to conduct a preliminary study regarding its stability and control. The analysis also considers propulsive effects, specifically the impact of asymmetric thrust. At last, a quick comparison with a symmetric aircraft has been made. For this thesis, the Boomerang was chosen due to its interesting and unconventional design, in particular, this work attempts to answer the question: "*can that airplane fly straight?*" The design was developed without wind tunnel testing or advanced computational tools, hence this work proposes to address the latter gap. NASA's Open Vehicle Sketch Pad (VSP) is used for geometric modeling, and aerodynamic analysis was performed using the VSPAERO tool, specifically through the vortex lattice method (VLM). Additionally, MATLAB and Microsoft Excel have been used to produce charts, plots and slope estimates. Due to the limitations of the chosen method, the results require further validation through wind tunnel testing or more advanced CFD tools. Nonetheless, this study shows that software like Open VSP, can be effectively and swiftly used to develop and evaluate both conventional and innovative aircraft designs.

Sommario

Lo scopo di questa tesi è di creare un modello geometrico 3D del velivolo asimmetrico Rutan Boomerang, e di condurre uno studio preliminare sulla stabilità e controllo. L'analisi considera anche gli effetti propulsivi, in particolare, l'impatto della spinta asimmetrica. Infine, un confronto con un velivolo simmetrico è stato fatto. Per questo elaborato, il Boomerang è stato scelto per il suo design unico e non convenzionale, in particolare questo elaborato cerca di rispondere alla domanda: "*può quell'aereo volare dritto?*" Il progetto è stato sviluppato senza alcuna prova in galleria del vento né con l'utilizzo di strumenti computazionali avanzati; dunque, questo lavoro si propone di colmare quest'ultima lacuna. Il software Open VSP della NASA è stato utilizzato per la modellazione geometrica, mentre le analisi aerodinamiche sono state condotte tramite lo strumento VSPAERO, nello specifico, con il metodo vortex lattice (VLM). Inoltre, MATLAB e Microsoft Excel sono stati utilizzati per generare tabelle, grafici e stime di pendenze. A causa delle limitazioni del metodo scelto, i dati prodotti dall'analisi richiedono ulteriori validazioni tramite prove in galleria del vento o l'utilizzo di strumenti CFD più avanzati. Tuttavia, questo studio dimostra che software come Open VSP possono essere usati in modo efficace e rapido per creare e valutare design convenzionali e non.

Table of contents

1. Introduction	
1.1 Objectives	10
1.2 Work layout	10
1.3 Burt Rutan's Boomerang	11
1.3.1 Asymmetrical Design and Stability	11
1.3.2 Single-Engine Performance	11
1.3.3 Aerodynamic Features	
1.3.4 Legacy and Achievement	
1.4 Open Vehicle Sketch Pad (VSP)	
1.4.1 Key Features	
1.4.2 Applications	14
1.5 Vortex Lattice Method (VLM)	15
1.5.1 Theoretical Foundations	15
1.5.2 Assumptions	15
1.5.3 Numerical Representation of the Wing	16
1.5.4 Velocity Induction and Biot-Savart Law	17
1.5.5 Boundary Condition: No-Penetration	
1.5.6 Solution of Linear Equations	
1.5.7 Lift Calculation	
1.5.8 Induced Drag	19
1.5.9 Wake Modeling	19
1.5.10 Simplifications and Practical Application	19
1.5.11 Limitations	19
2. Geometric Modelling	20
2.1 Rutan Boomerang general aspects	

4	2.2	Rutan Boomerang components modeling and meshing	21
	2.2.1	Wing	21
	2.2.2	Fuselages	22
	2.2.3	Horizontal tail	23
	2.2.4	Vertical tail	24
	2.2.5	Other components	25
2	2.3	Aircraft model views	25
3.	Long	gitudinal aerodynamic analysis	29
	3.1	Analysis setup	29
	3.1.1	Sets	29
	3.1.2	Center of gravity	29
	3.1.3	Flow condition	30
	3.1.4	Data processing	30
	3.2	Clean configuration	30
	3.2.1	Lifting surfaces load distribution	30
	3.2.2	Lift Coefficient	32
	3.2.3	Drag coefficient	33
	3.2.4	Aerodynamic efficiency	36
	3.2.5	Pitching moment coefficient	37
	3.3	Flaperon effects on longitudinal aerodynamics	38
	3.3.1	Lifting surfaces loading	38
	3.3.2	Lift coefficient	40
	3.3.3	Pitching moment coefficient	40
	3.4	Elevator effects on longitudinal aerodynamics	42
	3.4.1	Lift coefficient	42
	3.4.2	Pitching moment coefficient	43
	3.5	Longitudinal static equilibrium and stability considerations	44

	3.5.1	Linearized aerodynamic coefficients	44
	3.5.2	Stability Margin and Neutral Point	45
	3.5.3	Trim values	45
	3.6 I	ongitudinal motion inputs and lateral-directional coefficients coupling	47
4.	Latera	l-directional aerodynamic analysis	48
	4.1 A	Analysis setup	48
	4.1.1	Sets	48
	4.2 0	Clean configuration	49
	4.2.1	Sideforce coefficient	
	4.2.2	Yawing moment coefficient	51
	4.2.3	Rolling moment coefficient	
	4.3 F	Taperon effects on lateral directional aerodynamics	54
	4.3.1	Lifting surfaces loading	54
	4.3.2	Sideforce coefficient	56
	4.3.3	Yawing moment coefficient	
	4.3.4	Rolling moment coefficient	57
	4.4 F	Rudder effects on lateral directional aerodynamics	
	4.4.1	Sideforce coefficient	59
	4.4.2	Yawing moment coefficient	60
	4.4.3	Rolling moment coefficient	60
,	4.5 I	ateral-directional static equilibrium and stability considerations	62
	4.5.1	Linearized aerodynamic coefficients	62
,	4.6 I	ateral-directional inputs and longitudinal coefficients coupling	62
5.	Propul	sive effects	64
	5.1 A	Analysis setup	64
	5.1.1	Sets	64
	5.1.2	Engine configurations	64

5.1.3	Disk actuators parameters	65
5.2	Results	67
5.2.1	Lifting surfaces load distribution	67
5.2.2	Lift coefficient	68
5.2.3	Pitching moment coefficient	68
5.2.4	Yawing moment coefficient	68
5.2.5	Rolling moment coefficient	68
5.3	Propulsive effects considerations	69
6. Comp	parison with symmetric twin-engine aircraft	70
6.1	Cessna 402	70
6.2	Rutan Boomerang vs Cessna 402C	71
6.2.1	Longitudinal aerodynamics	71
6.2.2	Lateral-directional aerodynamic residual terms and derivatives	71
6.2.3	Propulsive effects	72
6.3	Considerations	72
Conclusion	n	73

List of figures

Figure 1.1 - Rutan Boomerang	11
Figure 1.2 - Rutan Boomerang specifications.	12
Figure 1.3 - OpenVSP User Interface	13
Figure 1.4 - VSPAERO & FEA Structure tabs	14
Figure 1.5 - Panelling and horseshoe vortex placement for a right wing	16
Figure 1.6 - Vortex ring model for a thin lifting surface	17
Figure 1.7 - Line vortex	17
Figure 2.1 - Rutan Boomerang general views drawing	20
Figure 2.2 - Wing model top and rear views	21
Figure 2.3 - Wing model parameters	21

Figure 2.4 - Fuselages model top and left view	22
Figure 2.5 - Fuselages model section 3 parameters	22
Figure 2.6 - Horizontal tail model top and iso left view	23
Figure 2.7 - Horizontal tail model parameters	23
Figure 2.8 - Vertical tail model top and left views	24
Figure 2.9 - Vertical tail model parameters	24
Figure 2.10 - (Left) Propeller modelled as an actuator disk. (Right) Air ducts	25
Figure 2.11 - Rutan Boomerang's model general views	25
Figure 2.12 - Top view side by side comparison	
Figure 2.13 - Front view side by side comparison	
Figure 2.14 - Left view side by side comparison	27
Figure 2.15 - Left iso view side by side comparison	27
Figure 2.16 - Left iso view of the mean surface	
Figure 2.17 - Left iso view of the meshed mean surface	
Figure 3.1 - Set editor tabs	29
Figure 3.2 - Moment reference position tab	29
Figure 3.3 - Wing load distribution diagram varying with α°	30
Figure 3.4 - Horizontal tail load distribution diagram varying with α°	31
Figure 3.5 - Pressure distribution and trailing wakes from VSPAERO Viewer for $\alpha = 6^{\circ}$	31
Figure 3.6 - <i>CL</i> vs <i>α</i> °	32
Figure 3.7 - <i>CD</i> vs <i>α</i> °	33
Figure 3.8 - Parasite Drag graphical user interface for WBT set	34
Figure 3.9 - <i>CD</i> enhanced vs α°	35
Figure 3.10 - Aircraft <i>CD</i> vs <i>CL</i> curve	35
Figure 3.11 - <i>E</i> vs α °	36
Figure 3.12 - <i>CMy</i> vs <i>α</i> °	37
Figure 3.13 - Wing load distribution diagram varying with δf°	38
Figure 3.14 - Horizontal tail load distribution diagram varying with δf°	38
Figure 3.15 - Pressure distribution, trailing wakes for $\delta f = 20^\circ$ at $\alpha = 0^\circ$ and $\beta = 0^\circ$	39
Figure 3.16 - <i>CL</i> vs δf° at $\alpha = 0^{\circ}$	40
Figure 3.17 - <i>CMy</i> vs δf° at $\alpha = 0^{\circ}$	41
Figure 3.18 - Left view of trailing wakes for $\delta f = 20^\circ$ at $\alpha = 0^\circ$ and $\beta = 0^\circ$	41
Figure 3.19 - <i>CL</i> and vs δe° at $\alpha = 0^{\circ}$	42

Figure 3.20 - <i>CMy</i> vs δe° at $\alpha = 0^{\circ}$.43
Figure 3.21 - Trailing wakes for $\delta e = -20^{\circ}$ at $\alpha = 0^{\circ}$.44
Figure 3.22 - <i>CLe</i> vs <i>αe</i> °	.46
Figure 3.23 - δee° vs CLe	.46
Figure 4.1 - Set editor tabs for lateral-directional analysis sets	.48
Figure 4.2 - Pressure distribution and trailing wakes for $\beta = -10^{\circ}$ at $\alpha = 0^{\circ}$.49
Figure 4.3 - <i>CFy</i> vs β° at $\alpha = 0^{\circ}$.50
Figure 4.4 - <i>CMz</i> vs β° at $\alpha = 0^{\circ}$.51
Figure 4.5 - <i>CMx</i> vs β° at $\alpha = 0^{\circ}$.53
Figure 4.6 - Wing load distribution diagram varying with δa° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$.54
Figure 4.7 - Horizontal tail load distribution diagram varying with δa° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$	°54
Figure 4.8 - Pressure distribution, trailing wakes for $\delta a^{\circ} = 20^{\circ}$ at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$.55
Figure 4.9 - <i>CFy</i> vs δa° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$.56
Figure 4.10 - <i>CMz</i> vs δa° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$.57
Figure 4.11 - <i>CMx</i> values vs δa° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$.58
Figure 4.12 - <i>CFy</i> vs δr° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$. 59
Figure 4.13 - <i>CMz</i> vs δr° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$.60
Figure 4.14 - <i>CMx</i> vs δr° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$.61
Figure 4.15 - Tail trailing wakes for $\delta r = 20^{\circ}$ at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$.61
Figure 5.1 - Set editor tabs for propulsive effects analysis	.64
Figure 5.2 - VLM Geometry preview for the WBTP set	.65
Figure 5.3 - VSPAERO Actuator disk set-up	.66
Figure 5.4 - VSPAERO Actuator Disk tab for WBTP set	.66
Figure 5.5 - Wing load distribution diagram for different engine configurations	.67
Figure 5.6 - Horizontal tail load distribution diagram for different engine configurations	.67
Figure 6.1 - Cessna 402 drawing	.70
Figure 6.2 - Cessna 402 model taken from VSP Airshow	.70

List of tables

Table 3.1 - <i>CL</i> values vs α°	32
Table 3.2 - <i>CD</i> values vs α°	33

Table 3.3 - <i>CD</i> 0 values	34
Table 3.4 - <i>CD</i> enhanced values vs α°	34
Table 3.5 - E values vs α°	36
Table 3.6 - <i>CMy</i> values vs α°	37
Table 3.7 - <i>CL</i> values vs δf° at $\alpha = 0^{\circ}$	40
Table 3.8 - <i>CMy</i> values vs δf° at $\alpha = 0^{\circ}$	40
Table 3.9 - <i>CL</i> values vs δe° at $\alpha = 0^{\circ}$	42
Table 3.10 - <i>CMy</i> values vs δe° at $\alpha = 0^{\circ}$	43
Table 3.11 - Longitudinal residual terms and aerodynamic derivatives (deg ⁻¹)	44
Table 3.12 - αe° and $\delta e e^{\circ}$ values vs <i>CLe</i>	45
Table 3.13 - <i>CFy</i> , <i>CMz</i> and <i>CMx</i> values vs α° at $\beta = 0^{\circ}$	47
Table 3.14 - <i>CFy</i> , <i>CMz</i> and <i>CMx</i> values vs $\delta f^{\circ} at \alpha = 0^{\circ}$, $\beta = 0^{\circ}$	47
Table 3.15 - <i>CFy</i> , <i>CMz</i> and <i>CMx</i> values vs $\delta e^{\circ} at \alpha = 0^{\circ}$, $\beta = 0^{\circ}$	47
Table 4.1 - <i>CFy</i> values vs β° at $\alpha = 0^{\circ}$	50
Table 4.2 - <i>CMz</i> values vs β° at $\alpha = 0^{\circ}$	51
Table 4.3 - <i>CMx</i> values vs β° at $\alpha = 0^{\circ}$	52
Table 4.4 - <i>CFy</i> values vs δa° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$	56
Table 4.5 - <i>CMz</i> values vs δa° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$	56
Table 4.6 - <i>CMx</i> values vs δa° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$	57
Table 4.7 - <i>CFy</i> values vs δr° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$	59
Table 4.8 - <i>CMz</i> values vs δr° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$	60
Table 4.9 - <i>CMx</i> values vs δr° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$	60
Table 4.10 - Lateral directional residual terms and aerodynamic derivatives (deg ⁻¹)	62
Table 4.11 - <i>CL</i> and <i>CMy</i> values vs $\beta^{\circ} at \alpha = 0^{\circ}$	62
Table 4.12 - <i>CL</i> and <i>CMy</i> values vs $\delta a^{\circ} at \alpha = 0^{\circ}$, $\beta = 0^{\circ}$	63
Table 4.13 - <i>CL</i> and <i>CMy</i> values vs $\delta r^{\circ} at \alpha = 0^{\circ}$, $\beta = 0^{\circ}$	63
Table 5.1 - Engine specifications	65
Table 5.2 - Propulsive effects analysis parameters	66
Table 5.3 - <i>CL</i> for different engine configurations at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$	68
Table 5.4 - Percentage changes of <i>CL</i> w.r.t. prop-off configuration (WBT)	68
Table 5.5 - <i>CMy</i> for different engine configurations at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$	68
Table 5.6 - CMy relative difference w.r.t prop-off configuration (WBT)	68
Table 5.7 - <i>CMz</i> for different engine configurations at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$	68

Table 5.8 - <i>CMz</i> relative difference w.r.t prop-off configuration (WBT)	68
Table 5.9 - <i>CMx</i> for different engine configurations at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$	68
Table 5.10 - <i>CMx</i> relative difference w.r.t prop-off configuration (WBT)	68
Table 6.1 - Longitudinal aerodynamic residual terms and derivatives (deg ⁻¹) comparison	71
Table 6.2 - Lateral-directional aerodynamic residual terms and derivatives (deg ⁻¹) compari	ison
	71
Table 6.3 - Propulsive effects comparison	72
Table 6.4 - Percentage change of single engine configurations w.r.t to WBTP	72

1. Introduction

1.1 Objectives

This thesis aims to perform geometric modeling of the Rutan Boomerang using NASA's Open Vehicle Sketch Pad (Open VSP) and conduct preliminary aerodynamic analysis through the Vortex Lattice Method (VLM) using VSPAERO, focusing on evaluating the aircraft's longitudinal and lateral-directional stability and control. Propulsive effects are also analyzed, with a major interest in the effects of asymmetric thrust. Finally, the values yielded by the analysis are juxtaposed to those of a symmetric light twin-engine aircraft.

1.2 Work layout

Chapter 1: Assesses the thesis' purpose, presents Rutan Boomerang aircraft, the software and the method used for the analysis.

Chapter 2: Exhibits the process of geometric modelling and meshing of the aircraft of interest, component by component with Open VSP.

Chapter 3: Presents and discusses the aerodynamic analysis results of the aircraft's longitudinal stability and control characteristics, with some comments on coupling effects.

Chapter 4: Same as chapter three, but for the aircraft's lateral-directional stability and control.

Chapter 5: Focuses on the propulsive effects, with a major interest in asymmetric thrust.

Chapter 6: Compares the aerodynamic characteristics of the Rutan Boomerang with those of a symmetric twin-engine aircraft.

1.3 Burt Rutan's Boomerang

Figure 1.1 - Rutan Boomerang

The Rutan Boomerang, designed by Burt Rutan, is a one-of-a-kind experimental asymmetric aircraft that addresses the challenges of asymmetrical thrust in twin-engine aircraft. Its asymmetric configuration is a departure from conventional designs, focusing on enhanced control, safety, and efficiency.

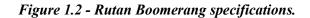
1.3.1 Asymmetrical Design and Stability

In traditional twin-engine aircraft, engines positioned far from the centerline create significant yawing moments during engine failure, complicating control and stability. Rutan mitigated this issue by moving the right engine closer to the fuselage, positioning both engines near the aircraft's center of gravity. This adjustment reduces asymmetrical thrust effects and drag by minimizing the frontal area compared to traditional configurations. The designer further refined the airframe to ensure stability and control, allowing consistent performance during single-engine operation. Additional refinements include the left engine being slightly offset from the effective centerline to align thrust lines during high angles of attack, addressing P-factor challenges. These measures ensure superior control and safety.

1.3.2 Single-Engine Performance

The Boomerang exhibits outstanding single-engine performance. It maintains full operational control without requiring rudder input, even at full power. Its forward-swept wing design

ensures that wing roots stall before the tips, preserving roll control during stalls. When stalling, the aircraft naturally lowers its nose, increases air speed, and regains stable flight. Even under prolonged stall conditions, the Boomerang retains directional control, enabling repeated stall and recovery cycles. In contrast, conventional twin-engine aircraft often lose control due to excessive asymmetrical thrust, even with full rudder deflection.


1.3.3 Aerodynamic Features

The wing features full-span ailerons that double as flaperons, enhancing control and versatility. These ailerons can deflect upward for camber control, improving aerodynamic efficiency at high speeds. Additionally, the Boomerang's dual-tail configuration, located within the engines' prop wash, enhances yaw control and stability, particularly during low-speed operations or engine-out scenarios.

1.3.4 Legacy and Achievement

Despite its unconventional appearance, the Boomerang represents Burt Rutan's greatest contribution to general aviation. It achieves exceptional efficiency and practicality while eliminating the risks associated with asymmetrical thrust. Remarkably, the design was developed without wind tunnel testing or advanced computational tools, underscoring Rutan's ingenuity and expertise. The Boomerang remains a symbol of experimental aviation's potential to redefine established norms.

```
Boomerang Model 202-11
- Engines = Left - Lyc TIO-360A1B 200HP / Right - Lyc TIO-360C1A6D 210HP
                                 Wing Area=101.7 Soft
 Span=36.7 ft Length=30.6 ft
- Weight Empty = 2370 lb
- Max Gross Weight = 4242 lb
 Max Climb = 1900 fpm (2900 fpm @ 2800 lb)
- Stall Speed =88 Kt at 42001b or 73 Kt @ 2800 1b
 Vmax = 283 Knots True (326 MPH) @ 18000 ft
- Max Fuel = 1007 lb
 Max Cabin Payload = 1000 lb
 Payload at Max Fuel = 865 lb
 Max Cruise @ 22000ft (75% power) = 264 Knots (304 MPH) @ 1500 Nautical Miles Range*
 Economy Cruise @ 24000ft (50% power) = 210 Knots (242 MPH) @ 2100 Nautical Miles Range*
 Cabin Pressurized to 7000 ft at 22,000 ft altitude
 Aspect Ratio = 13.2
 Electric Retract gear
 Full-Span Aileron Reflex
 Five-Place Seating/1 bed
- Boom Baggage *Range includes Takeoff, climb and 45 min reserve
```


1.4 Open Vehicle Sketch Pad (VSP)

Open Vehicle Sketch Pad (OpenVSP) is an open-source software platform developed by NASA to support the design and analysis of three-dimensional (3D) parametric models of aircraft. It is particularly well-suited for conceptual design tasks, allowing for the rapid development and assessment of both traditional and unconventional aircraft configurations. OpenVSP was released as open source in 2012 under the NASA Open-Source Agreement and continues to evolve with contributions from NASA, the Air Force Research Laboratory (AFRL), and the broader aerospace community.

1.4.1 Key Features

OpenVSP offers a versatile set of tools for aircraft design and analysis, catering to conceptual and early-stage development:

• **Parametric Geometry Modeling**: Users can create detailed 3D models using predefined shapes like wings, fuselages, and propellers, as well as advanced geometries such as ducts and bodies of revolution. The user-friendly interface combines a workspace for visualization and a geometry browser for managing and modifying components, streamlining the modeling process.

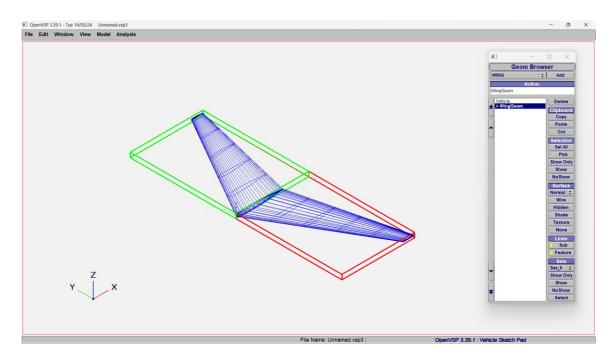


Figure 1.3 - OpenVSP User Interface

- Aerodynamic Analysis: Tools like VSPAERO provide aerodynamic evaluations using vortex lattice and panel methods, while additional features estimate wave and parasite drag for performance assessments.
- Structural Analysis: OpenVSP supports finite element analysis (FEA) by generating meshes and designing internal structures such as ribs and spars, aiding in structural integrity evaluations.

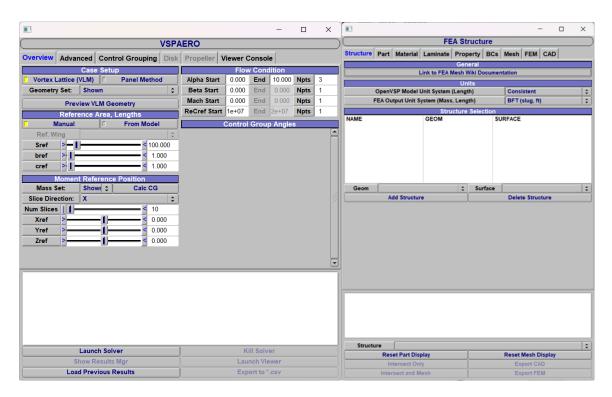


Figure 1.4 - VSPAERO & FEA Structure tabs

- Geometry Processing and Simplification: The CompGeom tool handles mesh generation, intersections, and trimming, while simplified geometry representations can be created for specific analyses.
- File Compatibility and Integration: The software supports importing and exporting formats like STL, STEP, and IGES, ensuring compatibility with CFD and FEA tools. Scripting via Python, MATLAB, and AngelScript allows for workflow automation and customization.

1.4.2 Applications

OpenVSP is widely used in conceptual aircraft design, facilitating efficient model iteration and testing. Its export capabilities enable detailed aerodynamic and structural analysis in specialized software. It also serves as a teaching and research tool for aerospace design.

1.5 Vortex Lattice Method (VLM)

The **Vortex Lattice Method (VLM)** is a numerical approach in aerodynamics that predicts aerodynamic forces and moments on wings and other lifting surfaces. It is widely used during the conceptual stages of aircraft design due to its efficiency and ability to model various geometries within certain assumptions.

1.5.1 Theoretical Foundations

The VLM is based on the following principal aerodynamic theories:

• **Potential Flow Theory**: the fluid is assumed to be incompressible, inviscid, and irrotational. These assumptions simplify the governing equations of fluid motion, allowing the use of Laplace's equation for the velocity potential, expressed as:

$$\nabla^2 \phi = 0 \tag{1.1}$$

where ϕ represents the velocity potential.

Kutta-Joukowski Theorem: the lift per unit span (l) generated by a vortex filament is proportional to the circulation (Γ) around it and the free-stream velocity (V_∞):

$$l = \rho V_{\infty} \Gamma \tag{1.2}$$

where ρ is the air density.

• Helmholtz's Vortex Theorems: the strength of a vortex filament remains constant along its length, and vortices either form closed loops or terminate at physical boundaries such as surfaces.

1.5.2 Assumptions

The Vortex Lattice Method relies on the following assumptions:

- Flow Properties: The flow is treated as incompressible, inviscid, and irrotational. Nonetheless, small-disturbance subsonic compressible flow can be accommodated by applying the general 3D Prandtl-Glauert transformation.
- Lifting Surface Characteristics: The lifting surfaces are assumed to be thin, and the effects of surface thickness on aerodynamic forces are disregarded.

• **Small Angle Approximations**: Both the angle of attack and sideslip are considered small, allowing for the use of linear approximations in the analysis.

1.5.3 Numerical Representation of the Wing

In the numerical representation of the wing, thickness is disregarded: in fact, it is simplified to a surface that has the same camber of the selected airfoil, while fuselages are represented by two intersecting mean surfaces forming a cross. Instead of the classical VLM approach, which consists of dividing the mean surface of wing into a grid of panels each containing a bound vortex line that models the circulation along the surface, VSPAERO solves the lifting surface problem by vortex ring elements. The main advantage of this element is in the simple programming effort that it requires, although its computational efficiency can be further improved.

The following key elements define the numerical approach:

- Bound Vortices: Located at the quarter-chord line of each panel to represent the lift.
- **Control Points**: Placed at the three-quarter chord line of each panel to enforce boundary conditions.

The unknown circulation strengths (Γ_i) are solved using boundary conditions and the Biot-Savart law.

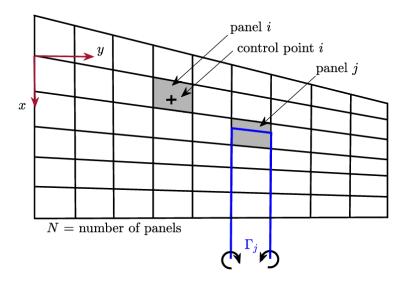


Figure 1.5 - Panelling and horseshoe vortex placement for a right wing.

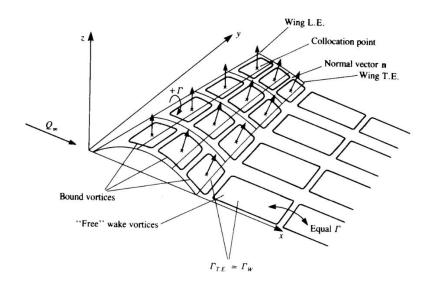


Figure 1.6 - Vortex ring model for a thin lifting surface

1.5.4 Velocity Induction and Biot-Savart Law

The Biot-Savart law determines the velocity induced by a vortex filament at a given point:

$$\mathbf{v} = \frac{\Gamma}{4\pi} \int \frac{\mathbf{r_1} \times \mathbf{r_2}}{|\mathbf{r_1} \times \mathbf{r_2}|^3} d\mathbf{s}$$
(1.3)

Here:

- Γ represents the vortex strength.
- $\mathbf{r_1}$ and $\mathbf{r_2}$ are vectors connecting the vortex element to the point of interest.
- *ds* denotes an infinitesimal segment of the vortex filament.

This relationship quantifies the induced velocity field, which forms the basis for satisfying the flow conditions at control points.

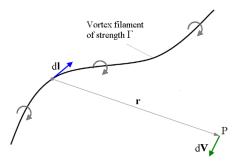


Figure 1.7 - Line vortex

1.5.5 Boundary Condition: No-Penetration

The boundary condition ensures that fluid flow remains tangent to the surface of the wing, expressed mathematically as:

$$\boldsymbol{V} \cdot \boldsymbol{n} = \boldsymbol{0} \tag{1.4}$$

Here:

- V is the total velocity at the control point, combining free-stream velocity (V_∞) and induced velocity (v).
- *n* is the normal vector at the control point.

Substituting the induced velocity components into this equation for all control points results in a system of linear equations that relate the vortex strengths to the flow field.

1.5.6 Solution of Linear Equations

The governing equations from the no-penetration condition can be expressed in matrix form:

$$[A]\{\Gamma\} = \{-V_{\infty} \cdot n\} \tag{1.5}$$

where:

- [A] is the influence coefficient matrix, representing the effect of all vortex filaments on each control point.
- $\{\Gamma\}$ is the vector of unknown vortex strengths.
- $\{-V_{\infty} \cdot n\}$ represents the free-stream contribution.

Solving this system yields the circulation distribution (Γ) for the wing panels.

1.5.7 Lift Calculation

Once the circulation distribution is determined, the lift force is calculated using the Kutta-Joukowski theorem:

$$L = \rho V_{\infty} \sum_{i=1}^{N} \Gamma_i \Delta y \tag{1.6}$$

where Γ is the vortex strength for panel *i* and Δy represents the spanwise width of the panel.

1.5.8 Induced Drag

Induced drag arises from the downwash effects caused by trailing vortices. The induced drag can be calculated as:

$$D_i = \rho \sum_{i=1}^N \Gamma_i w_i \Delta y \tag{1.7}$$

Where w_i is the downwash velocity at the control point, which is computed from the trailing vortices using the Biot-Savart law.

1.5.9 Wake Modeling

In the VLM, trailing vortices extend downstream into the wake. While the simplest models assume a planar wake, more advanced methods allow the wake to deform naturally under flow conditions. The induced velocity contribution from the wake is given by:

$$\mathbf{w}_{\mathrm{w}} = \frac{\Gamma}{4\pi} \int_{\mathrm{wake}} \frac{\mathbf{r}_{1} \times \mathbf{r}_{2}}{|\mathbf{r}_{1} \times \mathbf{r}_{2}|^{3}} d\mathbf{s}$$
(1.8)

Accurate wake modeling is essential for improving the accuracy of drag predictions.

1.5.10 Simplifications and Practical Application

- **Panel Influence Calculation**: The contribution of each vortex filament to the velocity field is precomputed, reducing the computational effort during the solution phase.
- Numerical Solution: Efficient solvers are used to solve the system of equations, making VLM computationally inexpensive compared to high-fidelity Computational Fluid Dynamics (CFD) simulations.

1.5.11 Limitations

The Vortex Lattice Method (VLM) inherently focuses on lifting surfaces (e.g., wings, horizontal and vertical tails) and treats the flow around non-lifting components like fuselages, pylons, or nacelles as secondary. This limitation arises because VLM does not account for the aerodynamic effects of these components unless explicitly included as lifting surfaces, which may not accurately capture their actual role in the flow field. Lastly, the Vortex Lattice Method (VLM) neglects parasite drag, including skin friction, form, and interference drag, leading to incomplete and potentially inaccurate drag predictions.

2. Geometric Modelling

2.1 Rutan Boomerang general aspects

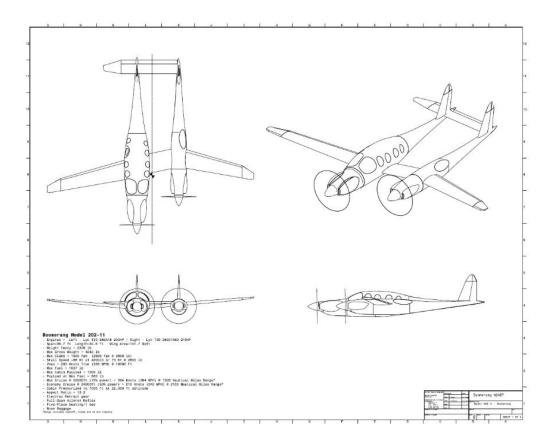


Figure 2.1 - Rutan Boomerang general views drawing

From the drawing specifications, only the span (36.7 ft) length (36.0 ft) and wing area (101.7 Sq ft) are available. Starting from the exact given value, the right fuselage model length has been set. Other measurements have been estimated through the Adobe Measurements Tool, as they will be inserted as starting values for the various default geometries from Open VSP. It is possible to set different backgrounds corresponding to the different views. This is crucial for the user to adjust the measurements of the model to have perfect alignment of the contours. In this work, perfect alignment cannot be obtained due to a misalignment error present in the drawing, more specifically, the distance from left fuselage to the right in the top and front are not equal. The latter distance has been chosen for the model. For meshing refinement, the methodology aligns with best practices recommended by the OpenVSP community and the OpenVSP Google Group.

2.2 Rutan Boomerang components modeling and meshing

2.2.1 Wing

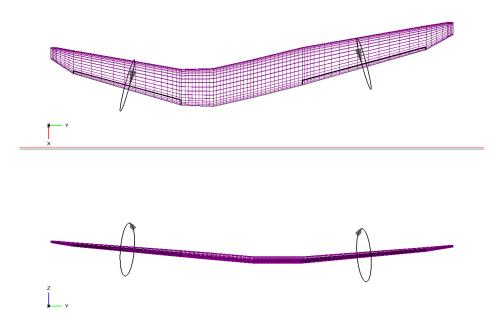


Figure 2.2 - Wing model top and rear views

			-	D X	Ĩ				-	o x					-		×
(1	Wing: Wing					Wing: Wir	na					Wing: V	Vina			
Gen XForm M	7 I.	1 1	Blanding	Modify	Gen XForm	Mass Sub	Plan Sect	Airfoil Ble	nding M	lodify	Gen XForm	Maee Sub	1 1		Blanding	Modify	_
		otal Planform		liouny			Wing Section						Sub-Surfa		Dieriung	mouny	_
Span	>			 < 35.96129 	<<	< 5			>	>>	NAME		TYPE		SUR		
Proj Span	>	ī		< 35.81981	Split	Cut	Сору	Past	. T	Insert	RightWing CS		Contro	Surf	Surf Surf	0	
Chord	>			< 2.37455			Sections										
Area	>			- < 99.42958						9							
Aspect Ratio	12.90419				Num U >	In	terpolated X	Secs		13							
		lip Treatment			Rt. Cluster					1.00000			Delet	•			
Cap Tess	>			- 3	Tip Cluster		i_			<1.00000	Туре	C	ontrol Surf				-
Root Cap Type	Flat			\$			Section Planf	orm		1.00000	Surface		urf_0				
Length	>			< 1.00000		>-1-	section Flani	Iorm		< 1.06794			Add				-
Offset	>			-< 0.00000	X X Spar	n >				< 3.62766		Su	b-Surface P	arameter			=
Strength	>			< 0.50000	Area	a >	<u> </u>			< 12 32270	Name Lef	Wing_CS					
		Sweep Stretch				er >				< 1.00122	Tag		Insid	le	Г	Outside	
Tip Cap Type	Flat			\$		c >	1			< 3.39687	Upper/Lov	wer B	oth	:	l Le	ading Edge	•
Length	>			< 1.00000	XX • Root	c >	1			< 3.39480			Spanw	ise			
Offset	>			< 0.00000	🛛 🛇 🔍 Tip (c >	1			3.39894	Start U	>				< 0.27	2889
Strength	>			< 0.50000	(X ○ ○ Sec S		1			<-12.58062	End U	>		I		0.36	3375
		Sweep Stretch				Project	ted Span		3.6	139			Eta for Spanv	dse Coord	inate		
	R	oot Incidence					Sweep				Start Et		-11			< 0.05	
Incidence	>			< 0.00000	Sweep					<-12.64286	End Eta	a >-		<u> </u>		< 0.324	4605
Incidence Loc	>1			- < 0.25000	Sweep Loc	D				< 0.00000			Chordv				
	Tes	sellation Control		He erees	Sec SW Loc >				<u> </u>	1.00000	- Lengt		Lengt	h/C	0	Constant	
LE Clustering	-1-			< 0.25000			Twist				Start Len	-				< 0.26	
TE Clustering	<u></u>	_		0.2500 0	Twist >					< 0.00000	Start Leng End Leng					< 0.12	
	TE Panel Width	0.005351			Twist Loc >	U				4 0.25000	End Leng		<u> </u>			< 0.14	
Maximum G	Frowth Ratio	1.437			Dihedral >		Dihedral			<-5 00000	End Lengt						0000
		ng Loft Control	1-							- -0.00000	☐ Start		Surface En			ame Angle	
Twist Refe		Rel		Abs	16	Rotate Sec	tion Tip Foil T	o Match Dihe	edral		Start Ang	·	CIN		1- 3		
Dihedral Ref		Rel		Abs							End Ang			_1_			70712
-		Foils To Match Di									Num Poir					< 15	
<u></u>		Root Foil To Matc															
L	Correct Foil Th	hickness For Dihec	aral Rotation														

Figure 2.3 - Wing model parameters

The asymmetrical wing is represented through a model comprising eight distinct parts to account for its geometrical complexity. The airfoil utilized is a NACA 2218 profile, and the

2.2.2 Fuselages

flaperons exhibit a positive deflection when rotated downward (counterclockwise about the *y*-axis in the OpenVSP reference frame). When functioning as ailerons, deflected in an antisymmetric manner, a positive deflection corresponds to a downward deflection of the right aileron, resulting in a negative rolling moment (clockwise rotation about the *x*-axis in the OpenVSP reference frame). Additional parameters are detailed in Figure 2.3.

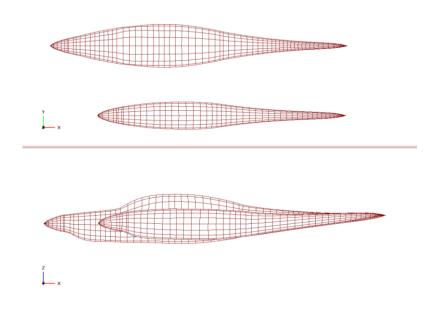


Figure 2.4 - Fuselages model top and left view

							-) ×								-		×
			Fus	elage:	L fus	elage				$) \bigcirc$			Fus	selage:	R fus	elage			
Gen	XForm	Mass	Sub	Design	XSec	Skinni	ng M	odify		Gen	XForm	Mass	Sub	Design	XSec	Skinnir	ng Mo	dify	
				Cross	Section	1								Cross	Section	1			
<	<		3					>	>>	<	<	<	3					>	>>
	Insert		Cu	t		Сору		P	aste		Insert		С	ut		Сору		Pa	ste
	Num U								7		Num U	>						<	10
	d. Cluster				_11_				1.96795		d. Cluste	ar >-							2.49003
	t Cluster				_1				2.79019		Cluster				—Ĩ-				1.72203
x							• < 0.25		6.44374	x							< 0.223	- 12	6.84835
Y									0.00000								< 0.000		0.00000
Y Z							 < 0.00 < -0.0 		-0.11269								< 0.000		0.00000
							0.0					_			1411				
	ot X >				<u>.</u>				0.00000		tX >				<u>.</u>				0.00000
	otY >				븮드				0.00000		tY >				8				0.00000
	ot Z >				- <u>8</u>				0.00000		ot Z				8				0.00000
S	pin >				-11				0.00000		bin >]						-30).00000
Cho	ose Type	: ELLI	DSE	Т	уре	1	how	Conv	ert CEDIT	Cho	ose Typ	e: ELI	IPSE	T	уре	‡ Ì S	how	Conve	rt CEDI
			- 32	•															
	Width			<u>.</u>					2.66000	$ \odot \otimes$	Widt								3. 63300 3.70909
50	Area								5.65833		Are Heig								3.70909 3.05200
\times	Heigh								2.70822		H/W R								0.84008
	H/W Rat	(10 2	-						1.01813	100	FI/W PC	auo	_						1.04000

Figure 2.5 - Fuselages model section 3 parameters

22

2.2.3 Horizontal tail

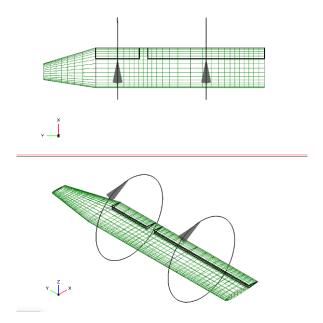


Figure 2.6 - Horizontal tail model top and iso left view

								×								-		×								-		×
		Win	g: Hori	zontal	Tail							Wi	ng: H	orizor	ntal Ta	il			$) \square$			Wing	: Hor	izon	tal Ta	il		
Gen XForm	Mass	Sub	Plan Se	ct Airf	foil Blei	nding	Modify		Gen)	(Form	Mass	Sub	Plan	Sect	Airfoil	Blending	a Mo	odify	Gen	XForm	Mass	Sub P	an S	ect	Airfoil	Blending	Modify	
			Total Pi	_	_							_		ng Sect									ıb-Su	_				_
Span	>			-11			12.7	3758	<<		< 1	3					>	>>	NAM				TYP			SUR		
Proj Span	>			-11			- 12.7	8758	-	olit		Cut	<u> </u>	Сору		Paste	<u> </u>	Insert		ontalTailL ontalTailR				trol S		Surf	0	
Chord	>	-11-		-			- < 2.07	884		m	`					raste			Honz	JILAITAIIN	igni		COI	100_3	un	Sun_	,	
Area	>	-		-11			- < 27.3	9440				Num	Sectio	ns				3										
Aspect Ratio	5.950	52											Interpo	olated)	(Secs		_											
			erT alT	atment					Num			-1					_	< 8					De	lete				
Cap Tess	>	1-				_	- < 3		Rt. Clu					-‼-			_	2.25000		-		-						
Root Cap Type	e Fla							10	Tip Clu	ster >	_	_	_				_	1 .00000	_	Тур			ol_Su	rf				:
Length	>			-11		_	- < 1.00						Section	on Plan	form		_		I	Surfa	ce	Surf						
Offset	>			- i -			- < 0.00		000	AR	>	_	-					< 1.86653						dd				
Strength	>			-i			-<0.50			Spa							_	< 3.02103					urfac	e Par	ameter	5		
			Sween	Stretch					000	Area	_						_	4.88963	Na		orizontal	lalLeft				x-		
	-								$\times \circ$	Таре		<u> </u>					_	< 0.40193		Тар			I	nside	1.		Outside	
Tip Cap Type	Fia						< 1 00	=	$ \times O $	Ave		-";					_	< 1.61853		Upper/L	ower	Both			\$	Le:	ading Edg	e
Length							_			Root								< 2.30900					Spa	nwise	•			
Offset	2			-			0.00		$\otimes \otimes ($									0.92806		Start			-11-		141		0.19	
Strength	1	_	E	Stretch		_		000	XOC) Sec S	w >	Desile			_		3.02	< -16.93393		End	0				-		0.49	0538
												Proje	cted S				3.02	210	<u> </u>	Start 8		Use Eta	for Sp	anwise	e Coord	inate	< 0.52	0705
Incidence			Root Inc	idence			0.00	200	Swe					Sweep				8.67857		End E		_2_			-1-			28924
Incidence Loc							- 0.25		Sweep									0.00000		End	ta						0.5Z	20924
Incluence Loc		_	ssellatio				- 0.20	000	Sec SV									1.00000		Len		Ĩc		rdwis ngth/C		Ĭ.	Constant	
LE Clustering			ssellatio	n Contr	rol		- < 0.25	200	Sec St	LOC								1.00000		Start Le	-	>=1	Le	ngtn/c		. <mark></mark>		34975
TE Clustering		=					< 0.25		Twi					Twist				0.00000		Start Le							< 0.03	
		_	_						Twist			-						0.25000		End Lei	-							34975
Minimum LE/									TWISt			_			_			0.25000		End Len								75000
Maximum	Growth		1.43						Diheo					Dihedra			_	< 0.00000		End Len	guire		_	-	_		0.21	5000
			Ving Lof		ol				Dinec	irai								0.00000	-	Sta	-	Su	face	End <i>F</i> End	Angle) c	ame Angle	
Twist Refe				Rel			Abs				Rot	tate Se	ction T	ip Foil	To Match	Dihedral			11-	Start A				End		5		00000
Dihedral Re	ferenc	-	1	Rel			Abs	_												End Ar								000000
<u> </u>					Dihedra															Num Po	-						SU:0	
<u> </u>					atch Dihe															Hum PC	iiii s							,
	Corr	ect Foil	Thicknes	s For Dif	hedral Ro	tation																						

Figure 2.7 - Horizontal tail model parameters

The elevators exhibit a positive deflection when rotated downward (counterclockwise about the *y*-axis in the OpenVSP reference frame). This results in a negative pitching moment (clockwise rotation about the *y*-axis in the OpenVSP reference frame). Additional parameters are detailed in Figure 2.7.

2.2.4 Vertical tail

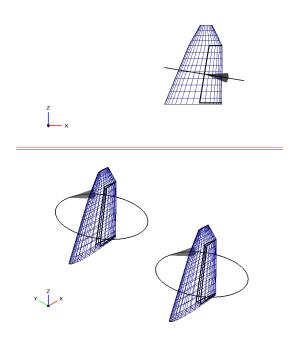


Figure 2.8 - Vertical tail model top and left views

			- 🗆 X										-	
	Wing	L Vertical tai		(Wing	: L Verti	cal tail				Wing:	L Vertical	tail	
Gen XForm M	lass Sub Pla	Sect Airfoil	Blending Modify	Gen XForm	Mass Sub Pla	an Sect	Airfoil Blendi	ng Modify	Gen XForm	Mass	Sub Plan	Sect	foil Blendin	
		otal Planform	Sitting mouny			Ning Sect		ng mouny		mass		-Surface Lis		g mouny
Span	>	1	4.64930	<< .	< 1	ing ocor		> >>	NAME			TYPE	SU	RF
Proj Span	>	ĩ — —	4.64930			0	Dente		LeftVerticalTail			Control Surf	Sur	0
Chord			< 2.00036	Split	Cut	Сору	Paste	Insert						
Area			10.77736		Num Sec	ctions		2						
Aspect Ratio	2.00568				Inte	rpolated)	XSecs							
		p Treatment		Num U >				 1 0				Delete		
Cap Tess		p meaunem	3	Rt. Cluster >				1.00000				Delete		
· · · · ·	<u> </u>			Tip Cluster >				1.00000	Туре	•	Control	Surf		\$
Root Cap Type	Flat		:		Se	ction Plan	nform		Surfa	ce	Surf_0			\$
Length	2		< 1.00000	OOO AR	>			< 1.29401				Add		
Offset	2		< 0.00000	● X X Spar	· >1	<u> </u>		< 3.44301			Sub-Sur	face Param	eters	
Strength	2		< 0.50000	OOO Area	. >	I		< 9.16095	Name Lo	eftVertica	ITail			
		Sweep Stretch		X O O Tape	r >1			< 0.58935	Tag			Inside	Π	Outside
Tip Cap Type	Flat		\$	X O O Ave	c >			< 2.66074	Upper/L	ower	Both		0 D	ading Edge
Length	>		< 1.00000	X O X Root	c >1	<u> </u>		< 3.34821				Spanwise		
Offset	>		< 0.00000	XX • Tip (: > <u></u>			1.97326	Start	U	>			0.257500
Strength	>		< 0.50000	🛛 🔿 🔿 Sec S	w >			< 0.63245	End	U	>			0.502286
		Sweep Stretch			Projected	d Span		3.4430	0		Use Eta for	Spanwise C	oordinate	
	R	oot Incidence				Sweep			Start E	ita	>-1			< 0.022216
Incidence	>		< 0.00000	Sweep >-		-1-		22.31250	End E	ita	>			< 0.742917
Incidence Loc			< 0.25000	Sweep Loc	1			0.00000			0	hordwise		
	Tess	ellation Control		Sec SW Loc >-				1.00000	C Leng	jth	-	Length/C	[Constant
LE Clustering	>		< 0.25000			Twist			Start Le	ngth	>1			< 1.296849
TE Clustering	>		< 0.25000	Twist >		-1-		< 0.00000	Start Len	gth/C	>			0.392157
Minimum LE/T	E Panel Width	0.007722		Twist Loc >		_		< 0.25000	End Ler	ngth	>-1-			0.769286
Maximum G		1.437				Dihedra	1		End Len	gth/C	>			< 0.392157
maximum of		a Loft Control		Dihedral >				< 0.00000			Surfa	ce End And	le	
Twist Refer		Rel	Abs		Rotate Sectio	n Tin Foll 1	To Match Dihedra		🗇 Sta	rt	Γ.	End		Same Angle
Dihedral Refe		Rel	Abs		restate Sectio		ro matori Diriedi		Start Ar	ngle	>		<u> </u>	< 90.632451
(r		Foils To Match Dil							End An	gle	>		i	64.012302
		Root Foil To Match							Num Po	ints	>1		-	 15
		ickness For Dihed												_
	Correct Poll Th	ckness For Dined	ai Rotation											

Figure 2.9 - Vertical tail model parameters

The rudders exhibit a positive deflection when rotated to the right (counterclockwise about the *z*-axis in the OpenVSP reference frame). This results in a negative yawing moment (clockwise rotation about the *z*-axis in the OpenVSP reference frame). Additional parameters are detailed in Figure 2.9.

2.2.5 Other components

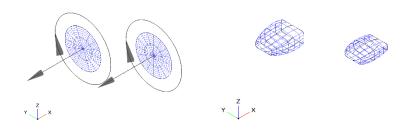


Figure 2.10 - (Left) Propeller modelled as an actuator disk. (Right) Air ducts

The propellers, modeled as actuator disks, have a diameter of 6.1 ft. The air ducts have been modeled with OpenVSP's stack component. Propellers will be considered exclusively during propulsive effects analysis, meanwhile airducts will be completely neglected.

2.3 Aircraft model views

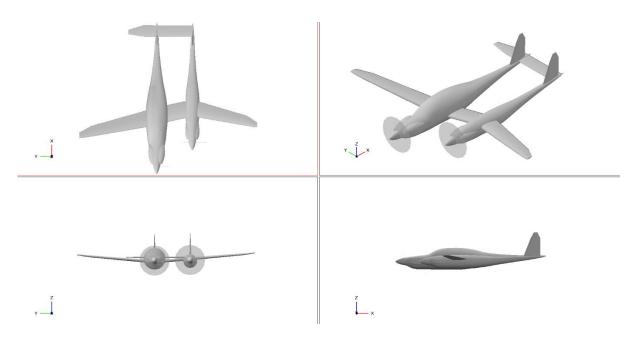


Figure 2.11 - Rutan Boomerang's model general views

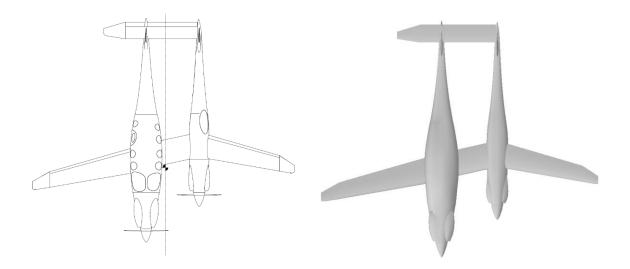


Figure 2.12 - Top view side by side comparison

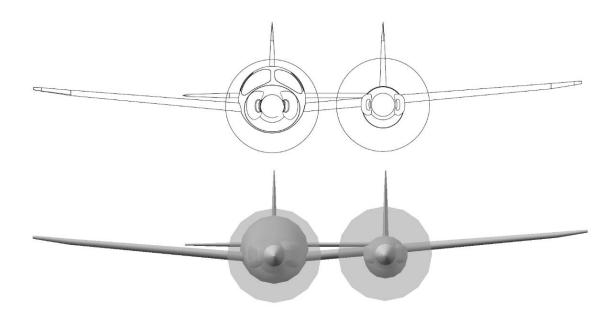


Figure 2.13 - Front view side by side comparison

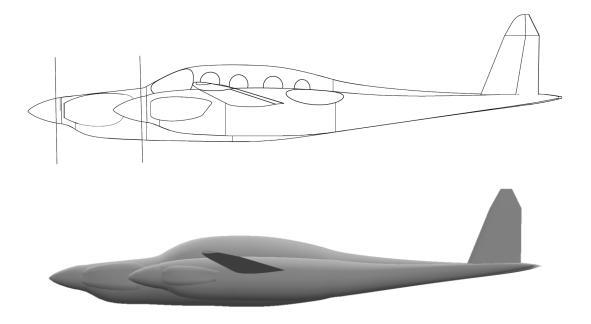


Figure 2.14 - Left view side by side comparison

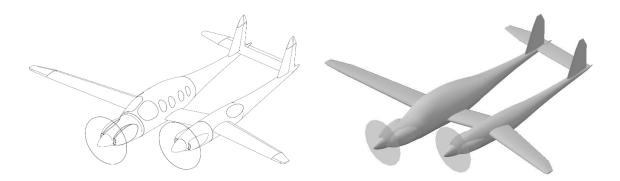


Figure 2.15 - Left iso view side by side comparison

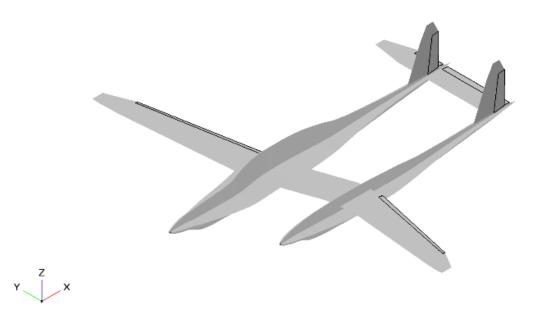


Figure 2.16 - Left iso view of the mean surface

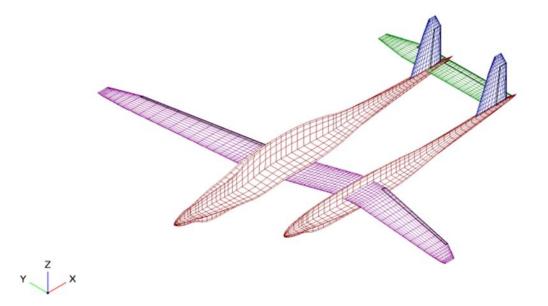


Figure 2.17 - Left iso view of the meshed mean surface

3. Longitudinal aerodynamic analysis

3.1 Analysis setup

3.1.1 Sets

The following sets have been defined for the longitudinal aerodynamic analysis, to see how the coefficients vary from the isolated wing to the complete aircraft. As said before, propellers and airducts will be neglected during the analysis. Therefore, the Wing-Body-Tail (WBT) set will be referred to as the whole aircraft from now on.

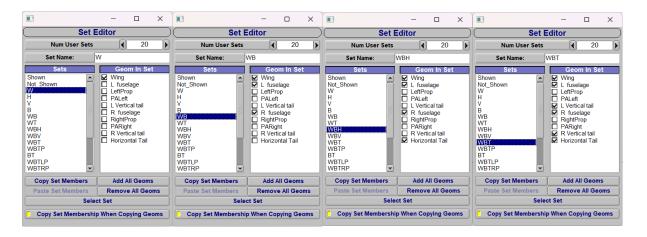


Figure 3.1 - Set editor tabs

3.1.2 Center of gravity

The center of gravity is chosen as moment reference pole. Its position has been defined from its position from the aircraft drawing. The coordinates are relative to the Open VSP reference frame, which origin is coincident to the right fuselage's nose tip.

Momen	t Refe	erence	Position	
Mass Set:	All	\$ [Calc	CG
Slice Direction:	X			\$
Num Slices	-		<	10
Xref >		-0-	<	10.190
Yref >		-11	<	-2.690
Zref >		-11	<	0.000

Figure 3.2 - Moment reference position tab

3.1.3 Flow condition

According to the aircraft's specifications, an economy cruise at 24000 ft, 50% power, 210knots(242mph)has been chosen as the flight condition for this analysis. This means that the Mach number is equal to 0,347 and the Reynolds number to 2,74496e + 06. This condition will be considered in both longitudinal and lateral-directional analysis.

3.1.4 Data processing

The csv (Comma Separated Values) files generated by the analysis have been processed through a MATLAB code that automatically generates Microsoft Excel Sheets containing the tables that are found below and the aerodynamic derivatives of interest, estimated through first order polynomial interpolation.

3.2 Clean configuration

For this analysis, control surfaces are set to zero deflection. The angle of attack (α) interval considered is from $\alpha = 0^{\circ}$ to 12° with a step of 2°, within the linearity range.

3.2.1 Lifting surfaces load distribution

The following diagrams are the results of the analysis conducted on the WBT set.

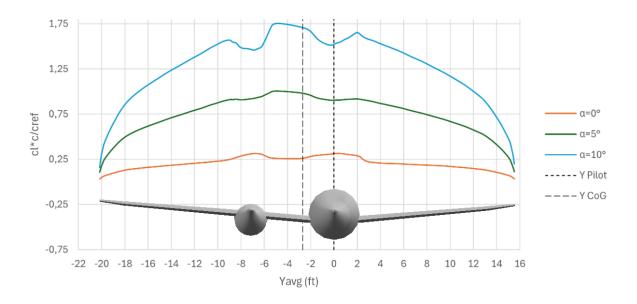


Figure 3.3 - Wing load distribution diagram varying with α°

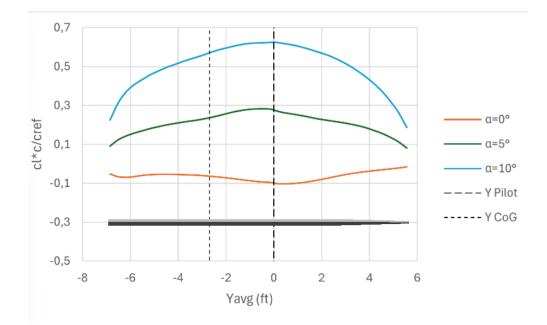


Figure 3.4 - Horizontal tail load distribution diagram varying with α°

Due to the asymmetric shape of the airplane, it is reasonable to expect that the load is also asymmetric. Furthermore, the influence of the fuselages on the loading is notable. Pressure distribution and trailing wakes can be seen by opening VSPAERO's viewer.

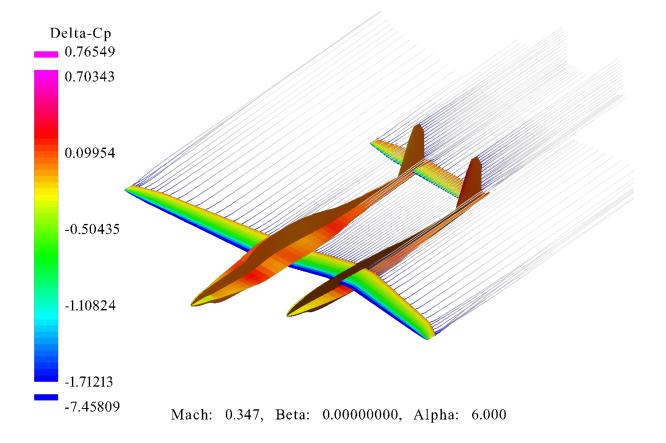
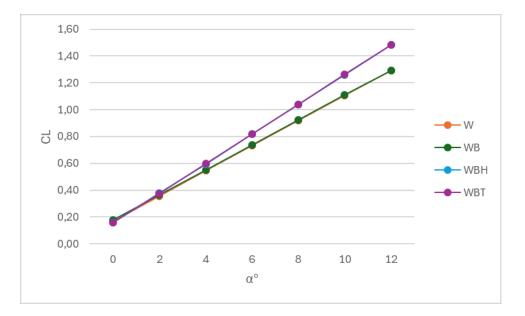
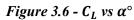


Figure 3.5 - Pressure distribution and trailing wakes from VSPAERO Viewer for $\alpha = 6^{\circ}$


3.2.2 Lift Coefficient


α°	W	WB	WBH	WBT
0	0,168	0,176	0,157	0,156
2	0,355	0,363	0,376	0,376
4	0,544	0,550	0,596	0,596
6	0,731	0,737	0,817	0,818
8	0,919	0,923	1,039	1,039
10	1,106	1,109	1,260	1,262
12	1,292	1,294	1,484	1,485

For each defined set, the analysis yields the following values for the *lift coefficient* (C_L) .

Table 3.1 - C_L values vs α°

By plotting the given values of C_L w.r.t. α , we obtain:

While the values of C_L do not differ by adding the fuselages to the wing, a variation is notable when the tail is also considered.

The total aircraft's lift curve slope is:

$$C_{L\alpha} = 0,1107 \, deg^{-1} \tag{3.1}$$

3.2.3 Drag coefficient

0	0.0001			
	0,0091	0,0082	0,0104	0,0122
2	0,0122	0,0116	0,0142	0,0161
4	0,0175	0,0177	0,0216	0,0235
6	0,0248	0,0264	0,0328	0,0348
8	0,0344	0,0379	0,0476	0,0497
10	0,0460	0,0519	0,0659	0,0682
12	0,0596	0,0687	0,0881	0,0904

For each defined set, the analysis yields the following values for the *drag coefficient* (C_D).

Table 3.2 - C_D values vs α°

By plotting the given values of C_D w.r.t. α , we obtain:

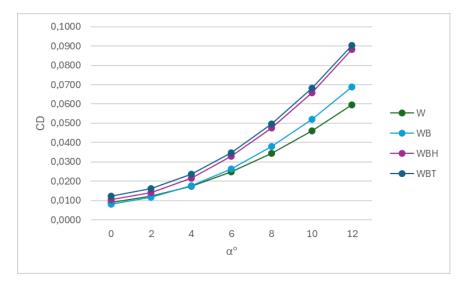


Figure 3.7 - C_D vs α°

Drag increases with α due to the increase of induced drag. Note that VSPAERO includes an estimate of parasite drag C_{D0} in the calculation of the zero lift drag coefficient, but it is best practice to utilize the *Parasite Drag* tool, which provides much more advanced options and capabilities. Parasite drag is a combination of form, friction, and interference drag that is evident in any body moving through a fluid. For the *friction coefficient* C_f , different equations are available, so the Blasius equation for laminar flow and the Blasius power law for turbulent flow have been selected. Regarding Form Factor *FF*, the DATCOM method has been chosen.

3. Longitudinal aerodynamic analysis

						P	arasite Dra	g										
Overview Excre	scence Documen	tation																
	Geometry		Component	S_wet (ft ²)	Grou	ıp	FF Equation		FF	L_ref (ft)	t/c or l/d	Re (1e7)	% Lam	C_f (1e-3)	Q	f (ft²)	C_D	□% Tot
Geometry Set:	WBT	:	(+) Wing	160.26	SELF	\$	DATCOM	\$ 1.	60	2.89	0.180	0.35	0.0	3.54	1.00	0.9055	0.00911	38.73
Model Length Unit	ft	:	(+) L fuselage	132.97	SELF	\$	Schemensky	¢ 1.	10	25.56	9.379	3.08	0.0	2.29	1.00	0.3336	0.00335	14.27
	uation Selection		(+) L Vertical tail	21.44	SELF	\$	DATCOM	¢ 1.	36	2.52	0.120	0.30	0.0	3.64	1.00	0.1063	0.00107	4.54
Lam. Cf Eqn:	Blasius	:	(+) R fuselage	231.89	SELF	\$	Schemensky	¢ 1.	19	30.61	7.027	3.69	0.0	2.21	1.00	0.6094	0.00613	26.06
Turb. Cf Eqn:	Power Law Blasius	:	(+) R Vertical tail	21.69	SELF		DATCOM	¢ 1.	36	2.52	0.120	0.30	0.0	3.64	1.00	0.1075	0.00108	4.60
R Manual	Reference Area	Model	(+) Horizontal Tail	53.78	SELF			: 1.		2.20	0.120	0.27	0.0	3.74	1.00	0.2760	0.00278	11.80
Ref. Wing	0_Wing	i Model	Excrescence	Type	·	Inpu		•					0.0					
Sref >-	99.43	ft ²	LAGIESCENCE	Type		mpu	·											
F	Flow Condition																	
Atmocphore UIS 9	Standard Atmosphere	1976																
	Standard Atmosphere																	
Vinf >	4 354.44	ft/s 😂																
Vinf >	3 54.44 24000.00	ft/s 2 ft 2																
Vinf > Alt > Temp >	354.44 24000.00 -26.6	ft/s ↓ ft ↓ °F ↓																
Vinf > Alt > Temp > dTemp >	<pre>354.44 354.44 24000.00</pre>	ft/s : ft : °F : °F																
Vinf > Alt > Temp > dTemp > Pres >	354.44 24000.00 -26.6 0.00 < 280.192	ft/s 1 ft 1 °F 1 °F 1 Ibf/ft² 1																
Vinf > Alt > Temp > dTemp > Pres > Density >	<354.44	ft/s : ft : °F : °F																
Vinf > Alt > Alt Temp > Alt Pres > Density > Gamma >	354.44 24000.00 2.26.6 2.26.8 2.20.192 1.103e-03 1.400	ft/s \$ ft \$ °F \$ °F \$ Ibf/ft² \$ slug/ft³ \$																
Vinf > Alt > Temp > Pres > Density > Dyn Visc I	3354.44 24000.00 226.6 2000.102 1.032-03 1.400 3238e-07	ft/s ft ft ft ft ft ft ft ft ft f																
Vinf > Ait > Temp > Pres > Density > Gamma > Dyn Visc	354.44 24000.00 26.6 2000.100 1.103e-03 1.400 3238e-07 1.206e+06	ft/s \$ ft \$ °F \$ °F \$ Ibf/ft² \$ slug/ft³ \$																
Vinf > Alt > Temp > Pres > Density > Dyn Visc I	3354.44 24000.00 226.6 2000.102 1.032-03 1.400 3238e-07	ft/s ft ft ft ft ft ft ft ft ft f														f (ft²)	C_D	% Tota
Vinf > Ait >	354 44 24000 00 26 6 20 192 1 103-03 3 238-07 1 206-06 0.347	ft/s ft ft ft ft ft ft ft ft ft f													Geom:	f (ft²) 2.3382	C_D 0.02352	% Tota 100.0
Vinf > Ait > Temp > Pres > Density > Gamma > Dyn Visc	354.44 24000.00 26.6 2000.100 1.103e-03 1.400 3238e-07 1.206e+06	ft/s ft ft ft ft ft ft ft ft ft f													Geom: Excres:			

Figure 3.8 - Parasite Drag graphical user interface for WBT set

For each defined set, the computation yields the following values for the zero lift drag coefficient (C_{D0}).

	W	WB	WBH	WBT
C_{D0}	0,0118	0,0187	0,0214	0,0235
		<i>Table 3.3 - C_{D0}</i>	values	

Given C_{Di} , that is the lift induced drag coefficient, calculated by the VSPAERO tool, and knowing that:

$$C_{D} = C_{D0} + C_{Di} \tag{3.2}$$

a better estimation of C_D can be obtained, as presented below.

a°	W	WB	WBH	WBT
0	0,0125	0,0185	0,0211	0,0232
2	0,0149	0,0213	0,0243	0,0263
4	0,0191	0,0263	0,0306	0,0327
6	0,0251	0,0336	0,0402	0,0423
8	0,0328	0,0431	0,0530	0,0552
10	0,0422	0,0550	0,0689	0,0712
12	0,0532	0,0692	0,0882	0,0906

Table 3.4 - C_D enhanced values vs α°

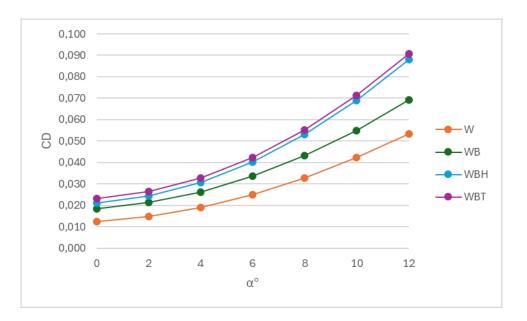


Figure 3.9 - C_D enhanced vs α°

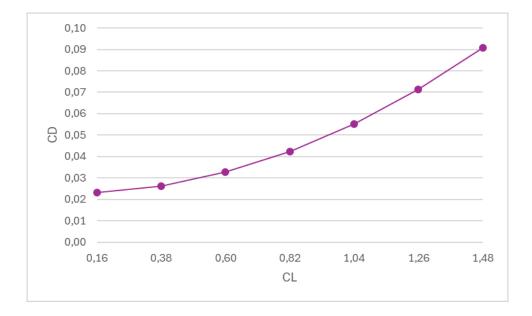


Figure 3.10 - Aircraft C_D vs C_L curve

3.2.4 Aerodynamic efficiency

For	each	defined	set,	the	analysis	yields	the	following	values	for	the	lift/drag	ratio
(aer	odyna	mic effici	iency.	, E),	consideri	ng the C	C_D en	hanced val	ues com	pute	d abo	ove.	

α°	W	WB	WBH	WBT
0	13,44	9,52	7,45	6,74
2	23,83	17,09	15,51	14,27
4	28,44	20,95	19,49	18,26
6	29,18	21,96	20,35	19,33
8	28,05	21,39	19,62	18,84
10	26,22	20,16	18,30	17,71
12	24,26	18,71	16,83	16,38

Table 3.5 - E values vs α°

By plotting the given values of *E* w.r.t. α , we obtain:

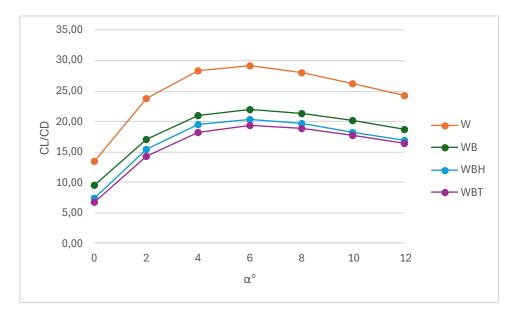
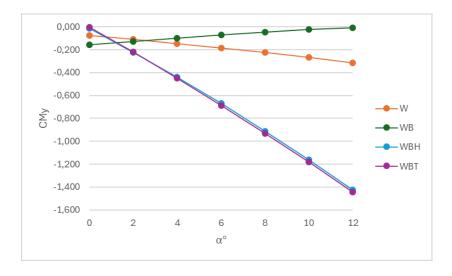
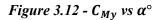


Figure 3.11 - E vs α°

E has its maximum around $\alpha = 6^{\circ}$. As expected, it decreases the more components we consider, due to the higher drag.


3.2.5 Pitching moment coefficient


For each defined set, the analysis yields the following values for the <i>pitching moment coefficient</i>	
$(\mathcal{C}_{My}).$	

α°	W	WB	WBH	WBT
0	-0,0765	-0,1563	-0,0149	-0,0056
2	-0,1102	-0,1265	-0,2226	-0,2214
4	-0,1463	-0,0976	-0,4386	-0,4491
6	-0,1849	-0,0700	-0,6701	-0,6859
8	-0,2257	-0,0468	-0,9109	-0,9299
10	-0,2690	-0,0252	-1,1596	-1,1809
12	-0,3143	-0,0065	-1,4243	-1,4424

Table 3.6 - C_{My} values vs α°

By plotting the given values of C_{My} w.r.t. α , we obtain:

A positive slope of C_{My} indicates unstable behavior, as it suggests a nose-up pitching moment increases with angle of attack. This instability arises when fuselages are attached to the wing, but the addition of the tail counteracts this effect, restoring stability to the aircraft.

The aircraft's pitching moment curve slope is:

$$C_{My\alpha} = -0,1198 \, deg^{-1} \tag{3.3}$$

This guarantees the aircraft's longitudinal stability. It can be shown that $C_{My\alpha}$ when C_L is zero is positive, meaning that the aircraft is also equilibrable.

3.3 Flaperon effects on longitudinal aerodynamics

For this analysis, control surfaces have a deflection set to zero, except for the flaperons acting as flaps. The flap deflection angle (δ_f) interval considered is from 0° to 20° with a step of 10°. The angle of attack α and sideslip angle β are fixed at 0°.

3.3.1 Lifting surfaces loading

The following diagrams are the results of the analysis conducted on the WBT set.

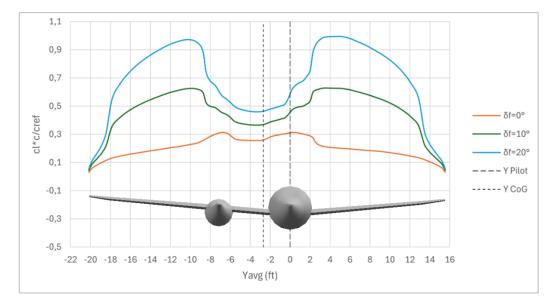


Figure 3.13 - Wing load distribution diagram varying with δ_f°

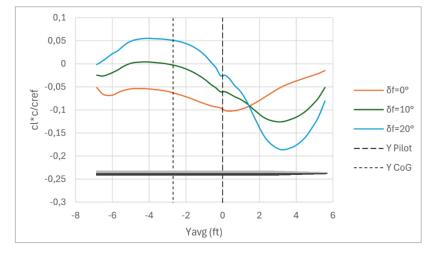
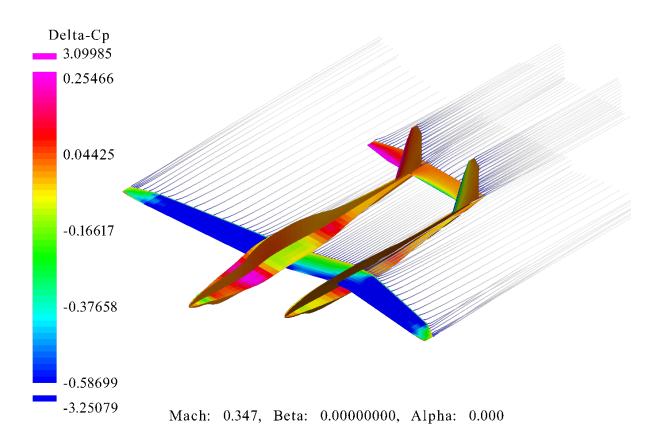



Figure 3.14 - Horizontal tail load distribution diagram varying with δ_f°

It is possible to note that C_l increases significantly along the span of the flaperons. A decrease of C_l on the right part of the horizontal tail is due to the decrease of its angle of attack caused by the wing wake.

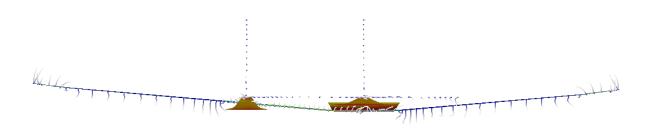


Figure 3.15 - Pressure distribution, trailing wakes for $\delta_f = 20^\circ$ at $\alpha = 0^\circ$ and $\beta = 0^\circ$

3.3.2 Lift coefficient

For the WBT set, the analysis yields the following values for the *lift coefficient* (C_L) .

	0 °	10 °	20 °			
C _L	0,16	0,38	0,58			
Table 3.7 - C_L values vs δ_f° at $\alpha = 0^\circ$						

By plotting the given values of C_L w.r.t. δ_f , we obtain:

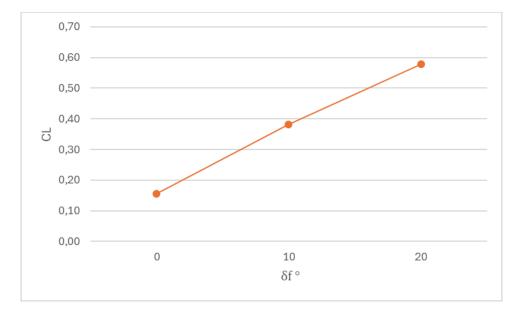
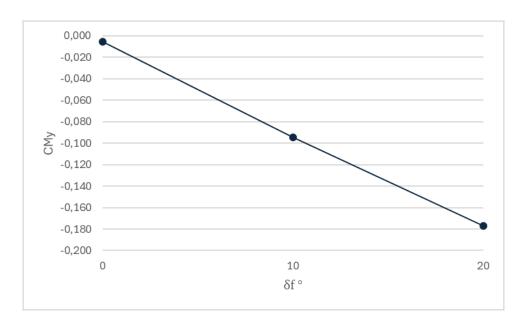


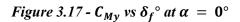
Figure 3.16 - C_L vs δ_f° at $\alpha = 0^\circ$

A positive symmetric deflection of the flaperons causes an increase of C_L .

The control derivative of C_L w.r.t. δ_f is:


$$C_{L\delta_f} = 0,0211 \, \mathrm{deg}^{-1} \tag{3.4}$$

3.3.3 Pitching moment coefficient


For the WBT set, the analysis yields the following values for the *pitching moment coefficient* (C_{My}) .

	0 °	10 °	20 °		
C_{My}	-0,006	-0,094	-0,177		
Table 3.8 - C_{My} values vs δ_f° at $\alpha = 0^\circ$					

40

By plotting the given values of C_{My} w.r.t. δ_f , we obtain:

A positive symmetric deflection of the flaperons causes an increase in magnitude of the negative pitching moment, meaning a greater tendency of the aircraft to dive.

The control derivative of C_{My} w.r.t. δ_f is:

$$C_{M\delta_f} = -0,0086 \, \mathrm{deg}^{-1} \tag{3.5}$$

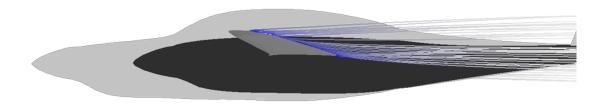


Figure 3.18 - Left view of trailing wakes for $\delta_f = 20^\circ$ at $\alpha = 0^\circ$ and $\beta = 0^\circ$

3.4 Elevator effects on longitudinal aerodynamics

For this analysis, control surfaces have a deflection set to zero, except for the elevator. The elevator deflection angle (δ_e) interval considered is from -20° to 10° with a step of 10° . The angle of attack α and sideslip angle β are fixed at 0° .

3.4.1 Lift coefficient

For the WBT set, the analysis yields the following values for the *lift coefficient* (C_L).

	-20°	-10°	0 °	10 °		
C_L	-0,04	0,05	0,16	0,27		
Table 3.9 - C_L values vs δ_e° at $\alpha = 0^\circ$						

By plotting the given values of C_L w.r.t. δ_e , we obtain:

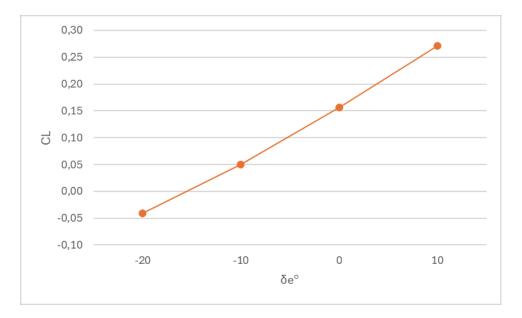


Figure 3.19 - C_L and vs δ_e° at $\alpha = 0^{\circ}$

A negative deflection of the elevator causes a decrease of C_L , as the curvature of the horizontal tailplane becomes negative, hence generating negative lift.

The control derivative of C_L w.r.t. δ_e is:

$$C_{L\delta_e} = 0,0104 \, deg^{-1} \tag{3.6}$$

42

3.4.2 Pitching moment coefficient

For the WBT set, the analysis yields the following values for the *pitching moment coefficient* (C_{My}) .

	-20°	-10°	0 °	10 °		
C_{My}	1,515	0,806	-0,006	-0,886		
Table 3.10 - C_{Mv} values vs δ_e° at $\alpha = 0^{\circ}$						

By plotting the given values of C_{My} w.r.t. δ_e , we obtain:

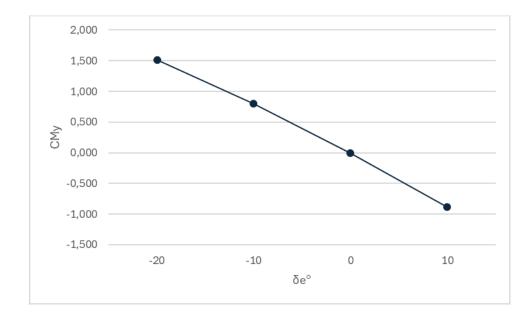


Figure 3.20 - C_{My} vs δ_e° at $\alpha = 0^{\circ}$

A negative deflection of the elevator causes an increase of C_{My} , this derives from the given orientation to the control surface's rotation.

The control derivative of C_{My} w.r.t. δ_e is:

$$C_{M\gamma\delta_e} = -0,0801 \, deg^{-1} \tag{3.7}$$

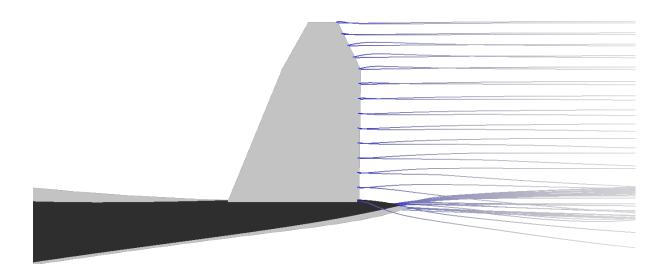


Figure 3.21 - Trailing wakes for $\delta_e = -20^\circ$ at $\alpha = 0^\circ$

3.5 Longitudinal static equilibrium and stability considerations

3.5.1 Linearized aerodynamic coefficients

In the hypothesis of small angle variations, aerodynamic coefficients, relative to longitudinal motion, can be expressed as follows:

$$C_L = C_{L0} + C_{L\alpha} \cdot \alpha + C_{L\delta_f} \cdot \delta_f + C_{L\delta_e} \cdot \delta_e$$
(3.8)

$$C_{My} = C_{My0} + C_{My\alpha} \cdot \alpha + C_{My\delta_f} \cdot \delta_f + C_{My\delta_e} \cdot \delta_e$$
(3.9)

where α , δ_f , δ_e are inputs and the remaining coefficients have been calculated through VSPAERO:

<i>C</i> _{L0}	С _{Му0}	C _{Lα}	С _{Муа}
0,156	-0,0056	0,1107	-0,1198
$C_{L\delta_f}$	$C_{M\delta_f}$	$C_{L\delta_e}$	$C_{My\delta_e}$
0,0211	-0,0086	0,0104	-0,0801

Table 3.11 - Longitudinal residual terms and aerodynamic derivatives (deg⁻¹)

3.5.2 Stability Margin and Neutral Point

Stability Margin, which is the distance between the aircraft center of gravity and neutral point, expressed as percentage of the mean chord \bar{c} , can be calculated as follows:

$$SM = \frac{C_{My\alpha}}{c_{L\alpha}} = -1,0822$$
 (3.10)

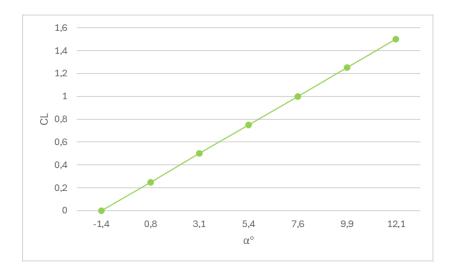
A negative value of *SM* implies that the aircraft is statically stable. This means that the center of gravity aft of the neutral point. The latter has the following X coordinate w.r.t. the body axes:

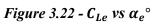
$$x_N = x_G - SM \cdot \bar{c} = 12,7598 \tag{3.11}$$

where x_G is the x coordinate of the center of gravity and \bar{c} is the mean chord calculated by Open VSP.

3.5.3 Trim values

By solving the system of equations composed by Equation 3.7 and Equation 3.8, with $C_{My} = 0$ and $\delta_f = 0^\circ$, the following expressions can be obtained:


$$\alpha_e = \frac{C_{Le} - C_{L0}}{C_{L\alpha}} \tag{3.11}$$


$$\delta_{ee} = -\frac{C_{My0} + C_{My\alpha} \cdot \alpha_e}{C_{My\delta_e}}$$
(3.12)

where α_e and δ_{ee} are respectively the angle of attack and the elevator deflection that allow a trimmed flight. The following table shows α_e and δ_{ee} varying with C_{Le} .

C _{Le}	α_e	δ_{ee}
0	-1,4	2,0
0,25	0,8	-1,3
0,5	3,1	-4,7
0,75	5,4	-8,1
1	7,6	-11,5
1,25	9,9	-14,9
1,5	12,1	-18,2

Table 3.12 - α_e° and δ_{ee}° values vs C_{Le}

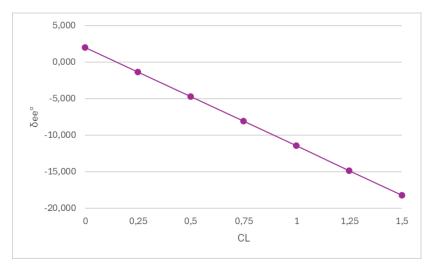


Figure 3.23 - δ_{ee}° vs C_{Le}

The derivative of C_{Le} w.r.t α_e is:

$$C_{Le\alpha_{e}} = 0,1107 \, deg^{-1} \tag{3.13}$$

Whilst the derivative of δ_{ee} w.r.t C_L is:

$$\delta_{eeC_{Le}} = -13,5107 \, deg \tag{3.14}$$

This last derivative can be also computed by the following formula:

$$\delta_{eeC_{Le}} = -\frac{C_{MyCL}}{C_{My\delta_e}} = -\frac{SM}{C_{My\delta_e}}$$
(3.15)

46

3.6 Longitudinal motion inputs and lateral-directional coefficients coupling

The following tables show how variations of α , δ_f and δ_e affects C_{Fy} , C_{Mz} and C_{Mx} (sideforce coefficient, yawing moment coefficient, and rolling moment coefficient, respectively).

α°	0	2	4	6	8	10	12	
C _{Fy}	0,00184	0,00550	0,00773	0,01131	0,01242	0,01299	0,01255	
C _{Mz}	-0,00034	0,00103	0,00244	0,00485	0,00661	0,00873	0,01091	
C_{Mx}	-0,00003	0,00300	0,00588	0,00888	0,01181	0,01558	0,01865	
	Table 3.13 - C_{Fv} , C_{Mz} and C_{Mx} values vs α° at $\beta = 0^{\circ}$							

 C_{Mz} and C_{Mx} are linear w.r.t α with a positive slope having a magnitude of the order between 10^{-3} and 10^{-4} , meanwhile C_{Fy} is linear only in the α interval bracketed by 0° and 6°, with more or less the same slope of the other two coefficients.

$\delta_{f}{}^{\circ}$	0	10	20
C _{Fy}	0,00184	0,00111	0,00037
C_{Mz}	-0,00034	-0,00141	-0,0026
C_{Mx}	-0,00003	0,00256	0,00482
Table 3 14 -	C - C and C w	alues vs δ_{-}° at α -	$-0^{\circ}\beta - 0^{\circ}$

Table 3.14 - C_{Fy} , C_{Mz} and C_{Mx} values vs δ_f° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$

 C_{Fy} , C_{Mz} and C_{Mx} are linear w.r.t δ_f with a slope having a magnitude of the order between 10^{-4} and 10^{-5} . It is positive for C_{Mx} and negative for the other two.

δ_e°	-20	-10	0	10
C _{Fy}	-0,00349	-0,00115	0,00184	0,00539
C_{Mz}	-0,00331	-0,00209	-0,00034	0,00144
C_{Mx}	-0,00463	-0,00237	-0,00003	0,00307
	Table 3.15 - C_{Fy} , C_M	iz and C _{Mx} values	$vs \delta_e^{\circ} at \alpha = 0^{\circ},$	$\boldsymbol{\beta} = 0^{\circ}$

 C_{Fy} , C_{Mz} and C_{Mx} are linear w.r.t δ_e with a positive slope having a magnitude of the order of 10^{-4} .

Since for C_{Fy} , C_{Mz} and C_{Mx} , a variation of α , δ_f and δ_e produces very small effects, it safe to say that longitudinal motion inputs and lateral-directional coefficients are strongly uncoupled, if not completely. This result aligns with Bryan's hypothesis [6].

4. Lateral-directional aerodynamic analysis

4.1 Analysis setup

4.1.1 Sets

The following sets have been defined for the lateral-directional aerodynamic analysis, to see how the coefficients vary from the isolated lifting surfaces to the complete aircraft. As for the longitudinal aerodynamic analysis, propellers and airducts have been neglected. The WBT set will still be referred to as the whole aircraft.

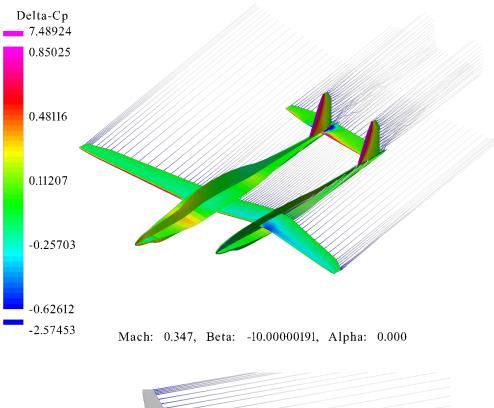

	-				-				-	
Set E	ditor			Set	Editor			Set I	ditor	
Num User Sets		20	í	Num User Sets	•	20		Num User Sets	•	20
Set Name:	0			Set Name:	н		16	Set Name:	 V	
Sets Shown Not Shown W H V B WB WT WBH WBV WBT WBT BT WBTP BT WBTLP WBTRP V	Geom Wing L L fusela L fusela L teftProp PALeft L Vertica R fusela R fusela RightPro PARight R Vertica	- Ige p altail		Sets Shown Not_Shown W W B W W W B W W B W W B W B W B W B	Geor Wing L fusel LettPro PALeft R L Vertic R fuse RightPr PARigh R Vertic W Horizor	p al tail lage op t :al tail		Sets Shown Not_Shown W H V WB WT WBH WBH WBT WBTP WBTP WBTP WBTP WBTP WBTP WBTP	Gee Wing L fus: L tettPr PALet V L Vert R fus Right PARig V R Ver Horizo	rop it ical tail elage Prop ght tical tail
Copy Set Members	Add All	Geoms		Copy Set Members	Add Al	l Geoms		Copy Set Members	Add	All Geoms
Paste Set Members	Remove	All Geoms		Paste Set Members	Remove	All Geoms		Paste Set Members	1	e All Geoms
Selec	ct Set			Sele	ct Set			Select Set		
Copy Set Membership	When Copy	ing Geoms		Copy Set Membersh	ip When Cop	ying Geoms		Copy Set Membership When Copying Geoms		
							\wedge			
Set I	_		<	E.	_	• ×		E.	_	X
Set E	_ Editor			Set	- Editor		$\mathcal{O}(\mathbf{x})$	Set E	_ iditor	
Set E Num User Sets		20		Set Num User Sets		□ × 20)	$\mathcal{O}(\mathbf{x})$	Set E Num User Sets		20 ×
Set E Num User Sets	B	20 1 In Set ige al tail age pp al tail		Set	WB	20) n In Set age p al tail age op t at tail		Set E Num User Sets	WBT	20) m In Set slage op cal tail elage frop ht ical tail
Shown WB WB WB WB WB WB WB WB WB WB	B Ving L fusela L LeftProp PALeft L Vertica R fusela R fusela R fusela R fusela	20 1 In Set ige al tail age pp al tail		Set Num User Sets Set Name: Sets Shown WG WT WBH WBH WBH WBH WBT WBT WBTP BT WBTP BT WBTP	WB Geor Wing L fusel L defPro PALeft L Vertic R fuse RightPy PARigh R Vertic Horizor	20) n In Set age p al tail age op t at tail		Set E Num User Sets Set Name: Sets Shown W H V B B WB	NBT	20) m In Set slage op cal tail elage frop ht ical tail
Shown WB WB WB WB WB WB WBT WBT WBT W	B Geon Ving L fusela L fusela L fusela R fusel R fusel R Vertic R Vertic Horizont Add All	20 In Set ige al tail age pp al tail atail al tail al tail		Set Num User Sets Set Name: Shown Not_Shown W H V B WBH WBH WBH WBH WBH WBT WBT WBTP BT WBTP BT WBTP V WBTP	WB Ceot Ving LeftPro PALeft LeftPro RightPr PARigh R Verlid Horizor Add Al	20) n in Set age p al tail age op t tail tail tail tail tail Tail		Set E Num User Sets Set Name: Sets Shown Not, Shown W H V B B WB WBH WBY WBH WBY WBT WBT WBT WBTP BT WBT WBTP BT WBT WBT WBT WBT WBT WBT WBT WBT WBT	NBT Geo Wing L fuse LeftPr PALeft P ALeft P ALeft PARig W R Vert Horizo	20) m In Set dage op t cal tail elage troop ht ical tail ical tail ntal Tail

Figure 4.1 - Set editor tabs for lateral-directional analysis sets

Copy Set Membership When Copying Geoms

4.2 Clean configuration

For this analysis, control surfaces have a deflection set to zero. The sideslip angle interval considered is from $\beta = -20^{\circ}$ to 20° with a step of 4°. The angle of attack (α) is fixed at $\alpha = 0^{\circ}$.

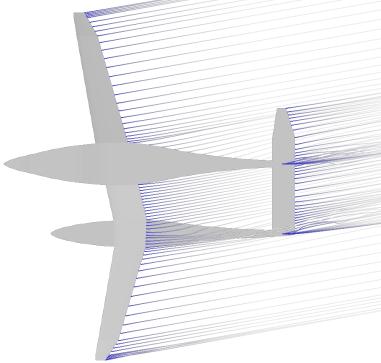


Figure 4.2 - Pressure distribution and trailing wakes for $\beta = -10^{\circ}$ at $\alpha = 0^{\circ}$

4.2.1 Sideforce coefficient

β°	W	Н	V	WB	WBT
-20	0,0135	0,0008	0,1778	0,0117	0,2184
-16	0,0116	0,0007	0,1454	0,0103	0,1781
-12	0,0096	0,0005	0,1110	0,0087	0,1362
-8	0,0074	0,0003	0,0750	0,0069	0,0915
-4	0,0051	0,0002	0,0379	0,0049	0,0469
0	0,0027	0,0000	0,0000	0,0029	0,0018
4	0,0003	-0,0002	-0,0379	0,0008	-0,0423
8	-0,0021	-0,0003	-0,0750	-0,0013	-0,0867
12	-0,0044	-0,0005	-0,1110	-0,0034	-0,1291
16	-0,0066	-0,0007	-0,1454	-0,0054	-0,1711
20	-0,0086	-0,0008	-0,1778	-0,0073	-0,2114

The analysis yields the following values for the *sideforce coefficient* (C_{Fy}).

Table 4.1 - C_{Fy} values vs β° at $\alpha = 0^{\circ}$

By plotting the given values of C_{Fy} w.r.t. β , we obtain:

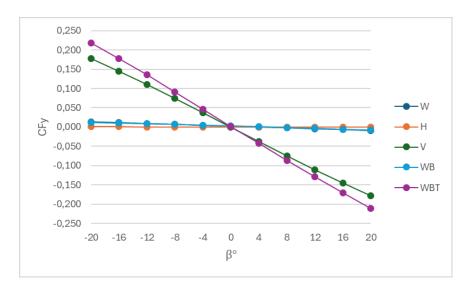


Figure 4.3 - C_{Fy} vs β° at $\alpha = 0^{\circ}$

The stability derivative of C_{Fy} w.r.t. β is:

$$C_{Fy\beta} = -0.0108961 \, deg^{-1} \tag{4.1}$$

From theory, it is known that:

$$C_{Fy\beta} = C_{Fy\beta,WB} + C_{Fy\beta,H} + C_{Fy\beta,V}$$
(4.2)

It is possible to confirm that the contribution of the vertical tail is the most significant.

4.2.2 Yawing moment coefficient

The analysis yields the following values for the *yawing moment coefficient* (C_{Mz}).

β°	W	Н	V	В	WB	WBT
-20	-0,0001	0,0003	0,0838	-0,0391	-0,0405	0,0605
-16	0,0000	0,0002	0,0687	-0,0322	-0,0336	0,0486
-12	0,0001	0,0001	0,0526	-0,0247	-0,0261	0,0375
-8	0,0002	0,0001	0,0356	-0,0168	-0,0180	0,0223
-4	0,0003	0,0000	0,0180	-0,0085	-0,0092	0,0108
0	0,0004	-0,0001	0,0000	0,0000	0,0002	-0,0003
4	0,0005	-0,0002	-0,0180	0,0084	0,0097	-0,0113
8	0,0005	-0,0003	-0,0359	0,0167	0,0188	-0,0240
12	0,0006	-0,0004	-0,0532	0,0247	0,0270	-0,0350
16	0,0006	-0,0005	-0,0699	0,0322	0,0347	-0,0479
20	0,0006	-0,0005	-0,0856	0,0391	0,0412	-0,0633

Table 4.2 - C_{Mz} values vs β° at $\alpha = 0^{\circ}$

By plotting the given values of C_{MZ} w.r.t. β , we obtain:

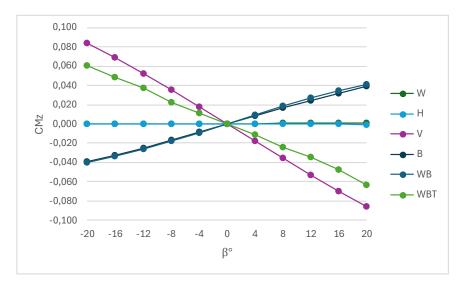


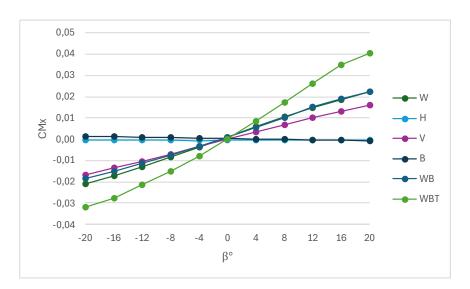
Figure 4.4 - C_{Mz} vs β° at $\alpha = 0^{\circ}$

The stability derivative of C_{Mz} w.r.t. β is:

$$C_{MZ\beta} = -0,0031456 \, deg^{-1} \tag{4.3}$$

To have stability, when a perturbation of the flow direction occurs, the aircraft reacts so it returns to the previous state. Since β is positive when the wind is coming from the right and the z axis is pointed downwards, for a positive β a negative C_{Mz} is needed so that the aircraft rotates towards the wind direction. Hence, when β increases, C_{Mz} must decrease. From theory, it is known that:

$$C_{MZ\beta} = C_{MZ\beta,B} + C_{MZ\beta,W} + C_{MZ\beta,V}$$
(4.4)


In Figure 4.4, it is possible to observe that the contribution of the fuselages is positive, that is unstable behavior, due to the free moments of a fusiform body. The second term is a function of the sweep angle. When β is nonzero, because of the negative sweep, the downwind wing generates more lift hence more induced drag that causes the aircraft to rotate away from the wind direction. Once again, the term related to the vertical tail dominates over the others. It takes to account the presence of a sidewash angle.

4.2.3 Rolling moment coefficient

β°	W	Н	V	В	WB	WBT
-20	-0,0210	-0,0003	-0,0166	0,0014	-0,0183	-0,0321
-16	-0,0171	-0,0003	-0,0135	0,0012	-0,0150	-0,0275
-12	-0,0129	-0,0003	-0,0103	0,0010	-0,0113	-0,0215
-8	-0,0084	-0,0003	-0,0069	0,0008	-0,0076	-0,0152
-4	-0,0038	-0,0003	-0,0035	0,0006	-0,0035	-0,0079
0	0,0010	-0,0003	0,0000	0,0003	0,0009	0,0000
4	0,0058	-0,0003	0,0034	0,0001	0,0055	0,0084
8	0,0104	-0,0003	0,0068	-0,0001	0,0103	0,0171
12	0,0147	-0,0003	0,0100	-0,0003	0,0150	0,0259
16	0,0187	-0,0003	0,0130	-0,0005	0,0191	0,0348
20	0,0223	-0,0003	0,0158	-0,0006	0,0225	0,0405

The analysis yields the following values for the *rolling moment coefficient* (C_{Mx}).

Table 4.3 - C_{Mx} values vs β° at $\alpha = 0^{\circ}$

By plotting the given values of C_{Mx} w.r.t. β , we obtain:

Figure 4.5 - C_{Mx} vs β° at $\alpha = 0^{\circ}$

The stability derivative of C_{Mx} w.r.t. β is:

$$C_{M\chi\beta} = 0,0019208 \, deg^{-1} \tag{4.5}$$

This is also known as the *dihedral effect*. Since β is positive when the wind is coming from the right and the x axis is pointed towards the rear, for a positive β , a positive C_{Mx} is needed so that the aircraft rolls towards the wind direction. Hence, when β increases, C_{Mx} must decrease. From theory, it is known that:

$$C_{Mx\beta} = C_{Mx\beta,WB} + C_{Mx\beta,H} + C_{Mx\beta,V}$$
(4.6)

In Figure 4.5, it is possible to observe that the first term is the most significant. It is a function of the sweep angle, the wing-fuselage relative positioning and the wing dihedral angle. The latter gives its name to the derivative. The second term is negligible w.r.t the others and the contribution of the vertical tail plane is due to the sideforce generated by β not aligned with the center of gravity's z coordinate.

4.3 Flaperon effects on lateral directional aerodynamics

For this analysis, control surfaces have a deflection set to zero, except for the flaperons acting as ailerons. The aileron deflection angle (δ_a) interval considered is from -20° to 20° with a step of 10°. The angle of attack α and sideslip angle β are fixed at 0°.

4.3.1 Lifting surfaces loading

The following diagrams are the results of the analysis conducted on the WBT set.

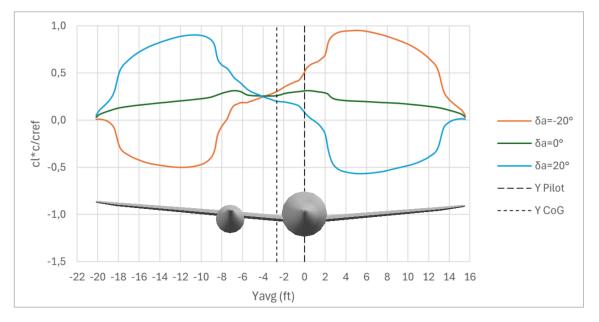


Figure 4.6 - Wing load distribution diagram varying with δ_a° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$

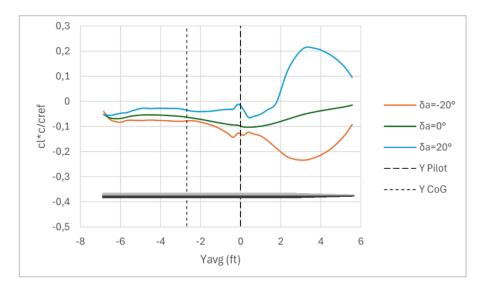
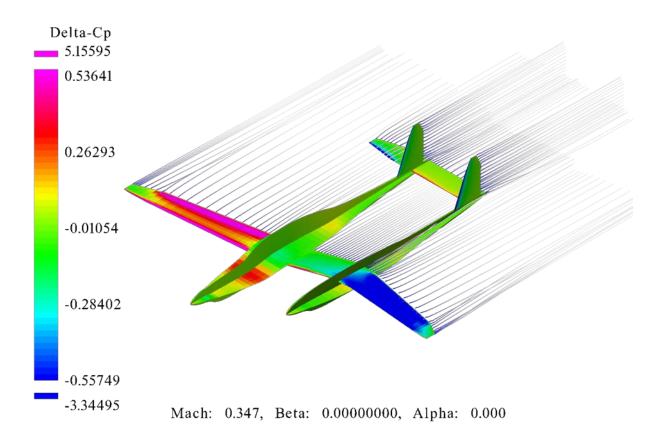



Figure 4.7 - Horizontal tail load distribution diagram varying with δ_a° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$

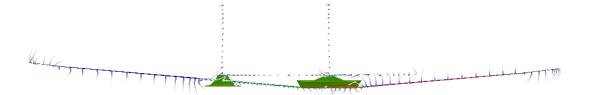


Figure 4.8 - Pressure distribution, trailing wakes for $\delta_a^{\circ} = 20^{\circ}$ at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$

4.3.2 Sideforce coefficient

For the WBT set, the analysis yields the following values for the *sideforce coefficient* (C_{Fy}).

	-20°	-10°	0 °	10 °	20 °
C _{Fy}	-0,0038	-0,0015	0,0018	0,0054	0,0087
	Table 4.4 - (C _{Fv} values vs	$\delta_a^\circ at \alpha =$	$0^{\circ}, \beta = 0^{\circ}$	

By plotting the given values of C_{Fy} w.r.t. δ_a , we obtain:

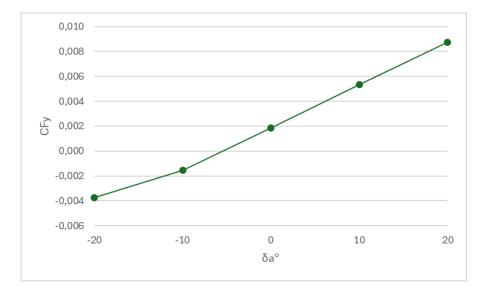
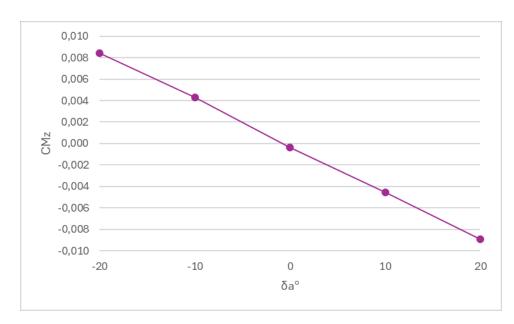


Figure 4.9 - C_{Fy} vs δ_a° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$

The control derivative of C_{Fy} w.r.t. δ_a is:


$$C_{Fy\delta_{\alpha}} = 0,0003190 \ deg^{-1} \tag{4.7}$$

The aileron deflection does not cause a significant variation of the sideforce, hence it is negligible w.r.t other derivatives.

4.3.3 Yawing moment coefficient

For the WBT set, the analysis yields the following values for the *yawing moment coefficient* (C_{Mz}) .

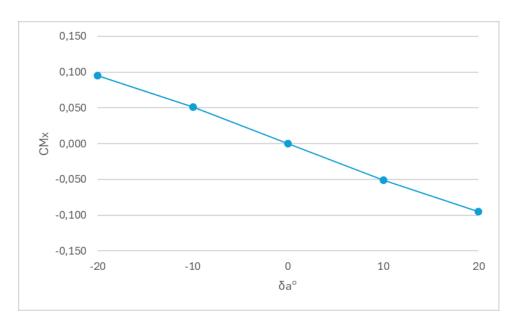
	-20°	-10°	0 °	10 °	20 °
C _{Mz}	0,0084	0,0043	-0,0003	-0,0046	-0,0089
	Table 4.5 - 0	C _{Mz} values v	s $\delta_a^\circ at \alpha =$	$0^{\circ}, \beta = 0^{\circ}$	

By plotting the given values of C_{Mz} w.r.t. δ_a , we obtain:

Figure 4.10 - C_{Mz} vs δ_a° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$

The control derivative of C_{Mz} w.r.t. δ_a is:

$$C_{Mz\delta_{\alpha}} = -0,0004352 \ deg^{-1} \tag{4.8}$$


This is also known as the *cross effect*. It is negative since when the ailerons are positively deflected (negative roll), the left wing generates more lift hence the induced drag increases, which makes the aircraft rotate to the left (negative yaw).

It is an unwanted effect, which can be alleviated or eliminated by compensating the difference of induced drag between the wings with a difference of parasite drag through differential rotation or frise ailerons. Note that for the aircraft of interest, this effect is already very small.

4.3.4 Rolling moment coefficient

For the WBT set, the analysis yields the following values for the *rolling moment coefficient* (C_{Mx}) .

	- 20 °	-10°	0 °	10 °	20 °
C _{Mx}	0,0956	0,0512	0,0000	-0,0506	-0,0946
	Table 4.6 - (C _{Mx} values v	$\delta_a^\circ at \alpha =$	0° , $\beta = 0^{\circ}$	

By plotting the given values of C_{Mx} w.r.t. δ_a , we obtain:

Figure 4.11 - C_{Mx} values vs δ_a° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$

The control derivative of C_{Mx} w.r.t. δ_a is:

$$C_{Mx\delta_{\alpha}} = -0,0048214 \ deg^{-1} \tag{4.9}$$

This is also known as *lateral control power*. This represents that aircraft's ability to rotate around the roll axis (x axis). It is negative since the orientation asymmetric deflection of the flaperons has been defined so that a positive deflection corresponds to negative roll.

4.4 Rudder effects on lateral directional aerodynamics

For this analysis, control surfaces have a deflection set to zero, except for the rudders. The rudder deflection angle (δ_r) interval considered is from -20° to 20° with a step of 10° . The angle of attack α and sideslip angle β are fixed at 0° .

4.4.1 Sideforce coefficient

For the WBT set, the analysis yields the following values for the *sideforce coefficient* (C_{Fv}).

	-20°	-10°	0 °	10 °	20 °
C _{Fy}	0,1375	0,0696	0,0018	-0,0689	-0,1327
Ta	ble 4.7 - C _F	_{sy} values vs	$\delta_r \circ at \alpha =$	= 0 °, β =	0 °

By plotting the given values of C_{Fy} w.r.t. δ_r , we obtain:

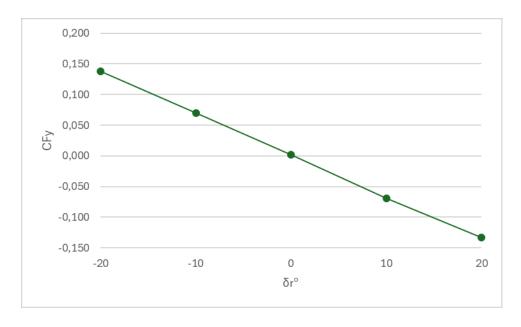


Figure 4.12 - C_{Fy} vs δ_r° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$

A positive deflection (to the right) of the rudder generates a negative sideforce (to the left) due to the definition of its orientation w.r.t. the Open VSP reference frame.

The control derivative of C_{Fy} w.r.t. δ_r is:

$$C_{Fy\delta_r} = -0,0067893 \ deg^{-1} \tag{4.10}$$

4.4.2 Yawing moment coefficient

For the WBT set, the analysis yields the following values for the *yawing moment coefficient* (C_{Mz}) .

	- 20 °	-10°	0 °	10 °	20 °
C _{Mz}	0,0602	0,0329	-0,0003	-0,0357	-0,0658
Ta	ble 4.8 - C _M	_z values vs	$\delta_r^\circ at \alpha =$	$= 0^{\circ}, \beta =$	0 °

By plotting the given values of C_{MZ} w.r.t. δ_r , we obtain:

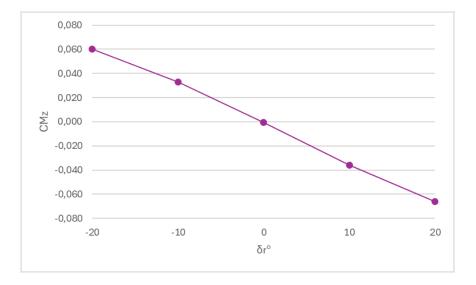
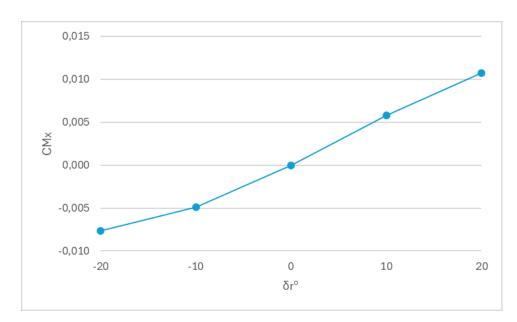


Figure 4.13 - C_{Mz} vs δ_r° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$

The control derivative of C_{Mz} w.r.t. δ_r is:


$$C_{Mz\delta_r} = -0,0032058 \ deg^{-1} \tag{4.11}$$

This is also known as *directional control power*. It represents the aircraft's ability to rotate around the yaw axis (z axis). It is always negative since the orientation of the rudder's deflection has been defined so that a positive deflection corresponds to negative yaw.

4.4.3 Rolling moment coefficient

For the WBT set, the analysis yields the following values for the *rolling moment coefficient* (C_{Mx}) .

	-20°	-10°	0 °	10 °	20 °
C _{Mx}	-0,0077	-0,0049	0,0000	0,0058	0,0108
Ta	ble 4.9 - C _N	Ax values v	s δ_r° at α	$= 0^{\circ}, \beta =$	• 0 °

By plotting the given values of C_{Mx} w.r.t. δ_r , we obtain:

Figure 4.14 - C_{Mx} vs δ_r° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$

The control derivative of C_{Mx} w.r.t. δ_r is:

$$C_{Mx\delta_r} = 0,0004753 \ deg^{-1} \tag{4.12}$$

This is also known as the *rudder induced roll*. When δ_r is positively deflected, the aircraft besides yawing negatively, rolls positively also. This effect depends on the attitude of the aircraft.

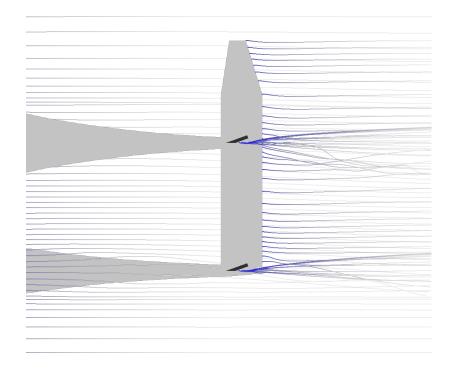


Figure 4.15 - Tail trailing wakes for $\delta_r = 20^\circ$ at $\alpha = 0^\circ$, $\beta = 0^\circ$

4.5 Lateral-directional static equilibrium and stability considerations

4.5.1 Linearized aerodynamic coefficients

In the hypothesis of small angle variations, aerodynamic coefficients relative to lateraldirectional motion can be expressed as follows:

$$C_{Fy} = C_{Fy0} + C_{Fy\beta} \cdot \beta + C_{Fy\delta_a} \cdot \delta_a + C_{Fy\delta_r} \cdot \delta_r$$
(4.13)

$$C_{Mz} = C_{Mz0} + C_{Mz\beta} \cdot \beta + C_{Mz\delta_a} \cdot \delta_a + C_{Mz\delta_r} \cdot \delta_r \qquad (4.14)$$

$$C_{Mx} = C_{Mx0} + C_{Mx\beta} \cdot \beta + C_{Mx\delta_a} \cdot \delta_a + C_{Mx\delta_r} \cdot \delta_r \qquad (4.15)$$

where β , δ_a , δ_r are inputs and the remaining coefficients have been calculated through VSPAERO:

C _{Fy0}	C _{Mz0}	C _{Mx0}
0,0018	-0,0003	0,0000
$C_{Fy\beta}$	C _{Mzβ}	C _{Mxβ}
-0,0108961	-0,0031456	0,0019208
$C_{Fy\delta_{lpha}}$	$C_{Mz\delta_{lpha}}$	$C_{Mx\delta_{lpha}}$
0,0003190	-0,0004352	-0,0048214
$C_{Fy\delta_r}$	$C_{Mz\delta_r}$	$C_{Mx\delta_r}$
-0,0067893	-0,0032058	0,0004753

Table 4.10 - Lateral directional residual terms and aerodynamic derivatives (deg⁻¹)

Note that some residual terms (C_{Fy0} , C_{Mz0}) are nonzero due to the asymmetricity of the aircraft. Overall, as already discussed, the aircraft is lateral-directionally stable.

4.6 Lateral-directional inputs and longitudinal coefficients coupling

The following tables show how variations of β , δ_a and δ_r affects C_L and C_{My} .

β°	-20	10	0	10	20
C _L	0,29057	0,19693	0,15619	0,14046	0,16720
C _{My}	-0,72915	-0,19729	-0,00558	0,05739	-0,04755

Table 4.11 - C_L and C_{My} values vs β° at $\alpha = 0^\circ$

At around $\beta = 10^{\circ}$, C_L has a minimum and C_{My} has a maximum. The greater β , the greater are C_L and C_{My} variations; the latter can reach an order of magnitude higher. C_{My} 's value for $\beta = -20^{\circ}$ is quite odd and hard to justify, although this result is due to the software limitations, unable to manage trailing wakes interaction with aircraft parts in the best way.

δ_a °	-20	10	0	10	20	
C _L	0,16997	0,16547	0,15619	0,14256	0,13111	
C_{My}	0,28534	0,16334	-0,00558	-0,17409	-0,34230	
Table 4.12 - C_L and C_{M_V} values vs δ_a° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$						

 C_L and C_{My} are linear w.r.t δ_a , with a negative slope having a magnitude of the order between 10^{-2} and 10^{-3} .

δ_r °	-20	10	0	10	20		
C _L	0,22268	0,17514	0,15619	0,16047	0,18555		
C_{My}	-0,33372	-0,10754	-0,00558	0,01383	-0,00768		
	Table 4.13 - C_L and C_{M_V} values vs δ_r° at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$						

At around $\delta_r = 0^\circ$, C_L has a minimum, meanwhile at around $\delta_r = 10^\circ C_{My}$ has a maximum. C_L and C_{My} trends w.r.t. δ_r are like those w.r.t β . Despite having a change of C_L by rotating the rudder seems unphysical because of the aft position of the rudder, this should make sense by observing that a rotation of the rudder generates a yawing moment that changes the sideslip angle β seen by the wing. This also explains the similarity between the said trends. As before, the greater the δ_r , the greater are C_L and C_{My} variations, that can increase until two orders of magnitude for the latter.

For C_L and C_{My} , small variations of β , δ_a and δ_r still produce small effects, although they increase as the variations get bigger; in particular, the effects are more felt by C_{My} . These results tell us that for this specific aircraft, it is not completely true that lateral-directional inputs are uncoupled with longitudinal aerodynamic coefficients, as Bryan's hypothesis suggests. Nevertheless, this behavior can also be found in conventional symmetric aircraft and the coupling remains very loose.

5. Propulsive effects

5.1 Analysis setup

5.1.1 Sets

For the following analysis, the following sets have been defined. As before, airducts have been neglected for the analysis.

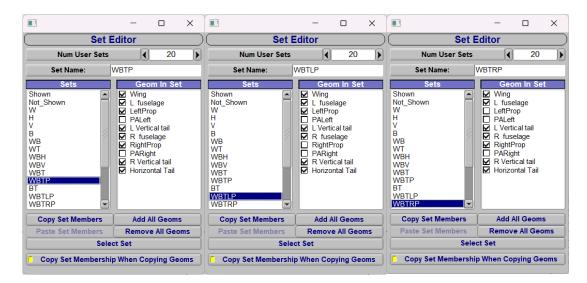


Figure 5.1 - Set editor tabs for propulsive effects analysis

5.1.2 Engine configurations

To address asymmetric thrust issues, propellers have been modelled as disk actuators. The following configurations have been studied.

- Both engine on, at 50% power (WBTP set), that is the economic cruise case.
- Left engine on, at 100% power, right engine off (WBTLP set), in case of a right engine failure.
- Right engine on, at 100% power, left engine off (WBTRP set), in case of a left engine failure.

Results have been compared to the ones obtained with the WBT set, that is the whole aircraft without propeller and airducts.

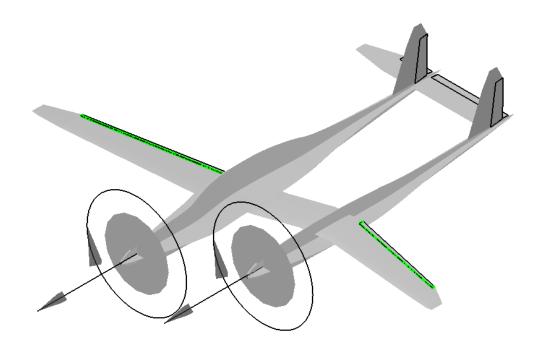


Figure 5.2 - VLM Geometry preview for the WBTP set

5.1.3 Disk actuators parameters

	Left engine	Right engine
Name	<i>Lyc TIO</i> – 360 <i>A</i> 1 <i>B</i>	<i>Lyc TIO</i> – 360 <i>C</i> 1 <i>A</i> 6 <i>D</i>
Shaft Power (P _S)	200 hp	210 hp
Max RPM	2575	2575

From the aircraft and engine specifications, the following parameters have been collected:

Table 5.1 - Engine specifications

From the drawing, the propeller diameter *D* measurement is 6,1 *ft*. A propeller efficiency η has been hypothesized to be 0,85. To completely set up the analysis, the thrust coefficient and power coefficient are needed. They are defined as follows.

$$C_T = \frac{T}{\rho \cdot n^2 \cdot D^4} \tag{5.1}$$

$$C_P = \frac{P_S}{\rho \cdot n^3 \cdot D^5} \tag{5.2}$$

Where *T* is required thrust, P_S is shaft power, ρ is the air density, *n* is the number of revolutions per second, and *D* is the propeller diameter. The two are related through the following formula:

$$C_P = J \cdot \frac{C_T}{\eta} \tag{5.3}$$

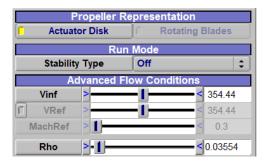
Where J is the advance ratio, which is defined, given the flight velocity V, as:

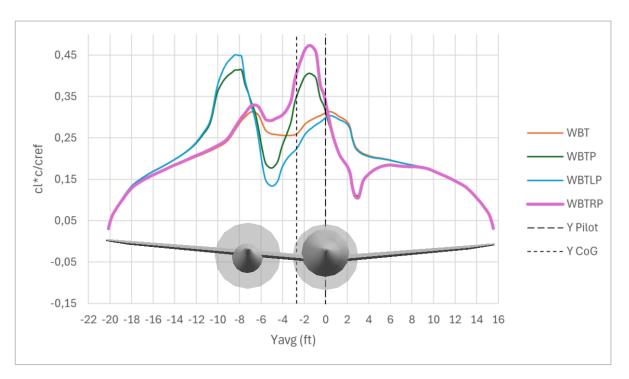
$$J = \frac{V}{n \cdot D} \tag{5.4}$$

Starting from the power conditions observed in engine specifications, C_P has been calculated, C_T , follows from Equation (5.4). n and P_S are hypothesized linearly proportional. For each configuration, the following parameters have been computed.

	Left Engine			Right engine				
	n	J	C _T	C _P	n	J	C_T	C _P
WBTP	21,458	2,708	0,187	0,597	21,458	2,708	0,187	0,626
WBTLP	42,917	1,354	0,094	0,149	/	/	/	/
WBTRP	/	/	/	/	42,917	1,354	0,098	0,157

Table 5.2 - P	ropulsive e	ffects analysis	parameters
---------------	-------------	-----------------	------------




Figure 5.3 - VSPAERO Actuator disk set-up

VSPAERO								
Overview	Advanced	Contro	Grouping	Disk Pro	opeller Vie	wer Console		
			Rotor Di	isk Elemen	t Settings			
INDX	NAME		DIA	HUB DIA	RPM	CP	СТ	
0	LeftProp 0		6.10	1.30	1288.0	0.60	0.19	
1	RightProp_()	6.10	1.30	1288.0	0.20	0.63	
Dia	a. 6.1	00000						
Auto	Hub Dia. >						< 1	300
RPI	м >-				I		 < 1	288.00
СТ	r >=				ī —			187
CF								.597
CF								.597

Figure 5.4 - VSPAERO Actuator Disk tab for WBTP set

5.2 Results

To observe the effects of asymmetric thrust, α and β have been fixed at 0°.

5.2.1 Lifting surfaces load distribution

Figure 5.5 - Wing load distribution diagram for different engine configurations

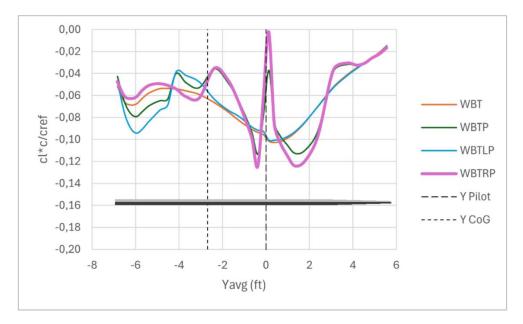


Figure 5.6 - Horizontal tail load distribution diagram for different engine configurations

5.2.2 Lift coefficient

WBT	WBTP	WBTLP	WBTRP
0,1562	0,1648	0,1627	0,1626

Table 5.3 - C_L for different engine configurations at $\alpha = 0^\circ$, $\beta = 0^\circ$

WBTP	WBTLP	WBTRP
5,48%	4,15%	4,08%

Table 5.4 - Percentage changes of C_L w.r.t. prop-off configuration (WBT)

5.2.3 Pitching moment coefficient

WBT	WBTP	WBTLP	WBTRP
-0,0056	-0,0245	-0,0090	-0,0214
Table 5.5 C	for difforment and in	and forwations a	$4 \sim - 0^{\circ} \rho - 0^{\circ}$

Table 5.5 - C_{My} for different engine configurations at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$

WBTP	WBTLP	WBTRP
-0,0189	-0,0034	-0,0159

Table 5.6 - $\overline{C_{My}}$ relative difference w.r.t prop-off configuration (WBT)

5.2.4 Yawing moment coefficient

WBT	WBTP	WBTLP	WBTRP
-0,00034	0,00554	0,00175	0,00465

Table 5.7 - C_{Mz} for different engine configurations at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$

WBTP	WBTLP	WBTRP
0,00589	0,00209	0,00499

Table 5.8 - C_{Mz} relative difference w.r.t prop-off configuration (WBT)

5.2.5 Rolling moment coefficient

WBT	WBTP	WBTLP	WBTRP
0,0000	-0,0048	-0,0031	-0,0023
T-11-50 C	C 1: CC	C	

Table 5.9 - C_{Mx} for different en	igine configurations at $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$
---------------------------------------	--

-0,0047 -0,0031 -0,0022	WBTP	WBTLP	WBTRP
	-0.0047	-0.0031	-0.0022

Table 5.10 - C_{Mx} relative difference w.r.t prop-off configuration (WBT)

5.3 Propulsive effects considerations

By considering the propulsive effects, the linearized moment coefficients take the following expressions:

$$C_{My} = C_{My0} + C_{My\beta} \cdot \beta + C_{My\delta_a} \cdot \delta_a + C_{My\delta_r} \cdot \delta_r + C_{My,PE}$$
(5.1)

$$C_{Mz} = C_{Mz0} + C_{Mz\beta} \cdot \beta + C_{Mz\delta_a} \cdot \delta_a + C_{Mz\delta_r} \cdot \delta_r + C_{Mz,PE}$$
(5.2)

$$C_{Mx} = C_{Mx0} + C_{Mx\beta} \cdot \beta + C_{Mx\delta_a} \cdot \delta_a + C_{Mx\delta_r} \cdot \delta_r + C_{Mx,PE}$$
(5.3)

 $C_{My,PE}$, that is the propulsive effects on the pitching moment, has been computed by deducting the C_{My0} value obtained from the WBT set from C_{My} . In other words, it is the relative difference w.r.t the prop-off configuration (WBT), as shown in Table 5.6 - C_{My} relative difference w.r.t prop-off configuration (WBT). The same applies to the other terms in bold.

From Table 5.4, it is possible to affirm that C_L is negligibly affected by propulsive effects. However, the same cannot be said for the moment coefficients. The propellers contribute negatively to C_{My} , with an order of magnitude of 10^{-2} for both the both-engine-on and rightengine-on only configurations, while the contribution is an order of magnitude smaller for the left-engine-on only scenario. The propulsive effects on C_{Mz} are positive, with the right-engineon only configuration being less than 15% of the both-engine-on, whereas the left-engine-on only configuration yields less than half the magnitude of the both-engines-on case. Lastly, the effects on C_{Mx} are negative and characterized by an order of magnitude of 10^{-3} . In comparison to the residual terms of the WBT set, all these propulsion-related effects are larger by one or two orders of magnitude. Propulsive effects are less pronounced when the aircraft is flying with only one engine. These results confirm that the aircraft is minimally impacted by asymmetrical thrust issues. Advance CFD software could be useful to make the precedent affirmation stronger, because of the limitations of the model and method of choice. A comparison with a light symmetric twin-engine is done in the next chapter.

6. Comparison with symmetric twin-engine aircraft

6.1 Cessna 402

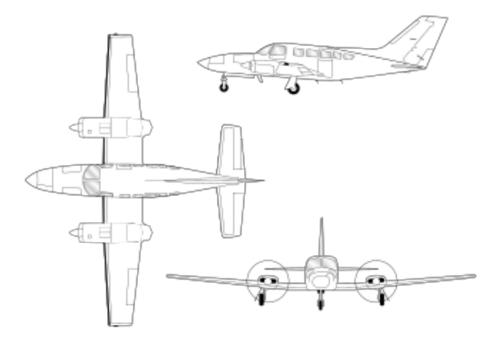


Figure 6.1 - Cessna 402 drawing

The Cessna 402 is a light twin-engine conventional aircraft, unlike the Rutan Boomerang. A model of the former is available in VSP Airshow. The same analyses have been conducted on this model to make a comparison possible. The selected flight condition remains economy cruise at 50% power.

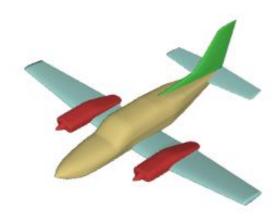


Figure 6.2 - Cessna 402 model taken from VSP Airshow

6.2 Rutan Boomerang vs Cessna 402C

	Rutan Boomerang	Cessna 402
<i>CL</i> 0	0,156	-0,031
C_{My0}	-0,0056	0,1974
$C_{L\alpha}$	0,1107	0,0997
$C_{My\alpha}$	-0,1198	-0,0114
$C_{L\delta_e}$	0,0104	0,0118
$C_{My\delta_e}$	-0,0801	-0,0306

6.2.1 Longitudinal aerodynamics

Table 6.1 - Longitudinal aerodynamic residual terms and derivatives (deg⁻¹) comparison

6.2.2 Lateral-directional aerodynamic residual terms and derivatives

	Rutan Boomerang	Cessna 402
C _{Fy0}	0,0018	0,0000
C_{Mz0}	-0,0003	0,0000
C_{Mx0}	0,0000	0,0000
$C_{Fy\beta}$	-0,0109	-0,0074
$C_{MZ\beta}$	-0,0031	-0,0015
$C_{M x \beta}$	0,0019	0,0013
$C_{Fy\delta_{lpha}}$	0,0003	0,0009
$\sum_{Mz\delta_{\alpha}}$	-0,0004	-0,0001
$C_{M x \delta_{\alpha}}$	-0,0048	-0,0047
$C_{Fy\delta_r}$	-0,0068	-0,0039
$C_{Mz\delta_r}$	-0,0032	-0,0015
$C_{Mx\delta_r}$	0,0005	0,0003

Table 6.2 - Lateral-directional aerodynamic residual terms and derivatives (deg⁻¹) comparison

	Rut	Rutan Boomerang		Cessna 402	
	WBTP	WBTLP	WBTRP	WBTP	WBT1P
C _{My}	-0,0189	-0,0034	-0,0159	0,00517	0,00356
C_{Mz}	0,00589	0,00209	0,00499	0,00010	-0,00164
C _{Mx}	-0,0047	-0,0031	-0,0022	0,00002	-0,01176

6.2.3 Propulsive effects

Table 6.3 - Propulsive effects comparison

	Rutan Boomerang		Cessna 402
	WBTLP	WBTRP	WBT1P
C_{My}	-82%	-16%	-31%
C_{Mz}	-65%	-15%	-1740%
C_{Mx}	-34%	-53%	-50313%

Table 6.4 - Percentage change of single engine configurations w.r.t to WBTP

6.3 Considerations

Overall, in terms of longitudinal and lateral-directional stability and control, the two aircrafts have similar characteristics, differing only and minimally through the residual aerodynamic terms, with the Rutan Boomerang paradoxically being more stable than Cessna despite it being asymmetrical, although this fact strongly depends on the choice of the center of gravity. Hence it is safe to say that only in this specific choice of the centers of gravity, Boomerang is more stable than Cessna 402. The comparison between the coupling effects has been omitted since the difference between the two aircraft is minimal. On the other hand, a major difference is found in the propulsive effects: while the single engine configuration propulsive effects for the Boomerang are the same order of magnitude w.r.t. the both-engine-on configuration, for the Cessna it can be one or two. This reinforces the affirmation that Rutan Boomerang is less affected by the problem of asymmetric thrust encountered in conventional twin-engine aircraft.

Conclusion

This study shows that with the Open VSP software, it is possible to create and make a preliminary evaluation of innovative aircraft designs, such as the Rutan Boomerang, in an easy and rapid way. Due to its simplicity of use, coupled with the presence of a database of aircraft models, comparison with traditional aircraft designs is also possible. The results of the analysis give us a first answer to the question presented in the abstract. Despite the asymmetric and *bizarre* configuration of the aircraft, *"yes, that thing flies straight."* Nevertheless, the obtained data from the analysis should be compared and supported with data collected from wind tunnel testing and/or advanced CFD software. This can be done to further this research.

Bibliography

[1] Aerocrafted Engineering website: <u>https://aerocrafted.com/</u>

[2] Open VSP website: https://openvsp.org/

[3] J.D. Anderson Jr, Fundamentals of aerodynamics, 2nd ed., McGraw-Hill Inc, 1991.

[4] NASA, Vortex-lattice utilization. NASA SP-405, NASA-Langley, Washington, 1976.

[5] J. Katz, A. Plotkin, Low-Speed Aerodynamics, 2nd ed., Cambridge University Press, Cambridge, 2001.

[6] A. De Marco, D. Ciliberti, Notes 05 – Equilibrium Flight.

[7] VSP Airshow https://airshow.openvsp.org/

[8] SKYbrary website: https://skybrary.aero/aircraft/c402

Acknowledgements

This thesis was done with supervision of Prof. Danilo Ciliberti, that I personally thank for entrusting me with this challenging yet fulfilling project, that I really enjoyed working on. His guidance and support have been invaluable for the completion of this work, and I am truly grateful for his availability and the knowledge he shared with me through his insights.

I would like to dedicate this academic accomplishment to everyone who joined me through this wonderful journey, starting from those who nourished me through my whole life, who are my wonderful and hardworking parents: my mother Raissa and my father Brendo. I recognize that I am who I am molded by their unconditional love and support they give me day by day, rain or shine. This milestone is for all their sacrifices and the all the things they have endured to make sure that I receive quality education, and a peaceful and lovely home. I am deeply grateful for everything they have done for me, and I feel immensely lucky to have them as my parents.

To continue, I dedicate this achievement to my love Krizzia, who I met at the start of this chapter and accompanied me till the end, even though it has not been easy at all, due to the distance, the overlapping schedules and every other problem that relationships encounter. If there's someone who can depict and capture what I really have been through in these years, it's her. With her, every small victory felt the biggest, and every hardship felt like a small rock on the road. I would like to thank her for always believing in me even when I failed to do so. I'm truly grateful for having her by my side.

I would like to dedicate this work also to my siblings Raiven, Rovic and my fur sibling Althea for being such a supportive and sweet company at home. I am grateful for being your *kuya*.

A heartfelt thought and hug goes to the whole Bernardino family, firstly to my dearest *nanay* Ester, who took care of me when my parents could not, and to my supportive and generous uncles and aunts, in particular to my aunts Kelly and Thesz, and uncles Ryan, Ron, Rannie, Raffy and Carmelo for not failing to make their love be felt despite being on the other side of the world. I miss them all and I hope to see them soon.

A special appreciation goes to my childhood friends Nicole, Gerald and Malou, who have been there for me since forever, despite the distance. I thank them for their timeless friendship, and for the wonderful memories together. I wish to acknowledge my *kuyas*, Jasper and Klein, who have been two reference points for my career. I would like to thank them for sharing their thoughts and judgement with me, that certainly helped me navigate the academic waters and further inspired me to pursue more knowledge.

I would also like to thank my friends Kim, Kate, Jhesus, Aaron, Tom and my high school classmates, for their friendship, the memories, the laughs, and their kindness towards me.

This journey would not have been as fun without my dear colleagues Alessio, Adelaide, Francesco and Angelo. I thank them for their pleasant company and for showing me their best skills and qualities, which pushed me to strive to be better not only academically but also as a person.

I then want to extend my gratitude to those who have been my educators, with a special mention to my piano teacher Rosa and to my *magister* Alfredo. I wholeheartedly thank them for teaching me how to make my soul resonate.

And last but not the least, I would like to thank God for the health, the qualities and the achievements he continuously lends me day by day.