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Abstract

The scope of this thesis is to analyse the stability behaviour for several planes included in the JPAD virtual
hangar. For each plane different configurations are studied, namely the isolated wing, isolated fuselage,
and wing-body configuration, using the linear vortex lattice solver VSPAERO, which is an OpenVSP
tool. Then these results are compared with the ones obtained from semi-empirical methods like the
Munk-Multhopp methods. This work provides a collection of stability derivatives of wing, fuselage, and
wing-body combinations of in-service transport aircraft. It also shows that the results of the VSPAERO
aerodynamic solver are in good agreement with those calculated with semi-empirical methods.

Sommario

Questa tesi si pone l’obiettivo di analizzare la stabilità dei vari velivoli inclusi nel virtual hangar di JPAD.
Per ogni velivolo vengono studiate diverse configurazioni, quali l’ala, la fusoliera e la configurazione ala-
fusoliera, usando il solutore aerodinamico VSPAERO, incluso nella suite OpenVSP. Successivamente, i
risultati sono confrontati con quelli ottenuti tramite l’applicazione di metodi semi-empirici come quelli
di Munk-Multhopp. Questo lavoro fornisce una raccolta di derivate di stabilità per ali, fusoliere e com-
binazioni di ala e fusoliera per vari velivoli da trasporto attualmente in servizio. Viene inoltre mostato
che i risultati ottenuti dal risolutore VSPAERO sono in accordo con quelli ricavati dai suddetti metodi
empirici.
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Chapter 1

Introduction

The behaviour of an aircraft when it is subjected to perturbations from its equilibrium position is a
fundamental information to know. In other words, it must be known what effect will have on the airplane
the system of aerodynamic actions that it will be experienced after a variation of angle of attack or
sideslip. For small variations of parameters, such as flight (e.g., angle of attack, sideslip, Mach number)
or input parameters (e.g., the results of the action of the pilot), a linear relation between such parame-
ters and forces (moments) can be assumed. It follows that the stability of a complete aircraft will be a
linear combination of effects caused by the wing, body, and the control surfaces such as the elevator for
the longitudinal stability. Components like the horizontal and vertical tail are employed to stabilize the
wing-body system that is usually unstable, thus it is necessary to have an estimation of the instability of
this system, in order to choose the right parameters for these surfaces to make the whole system stable
and trimmable.
The hypothesis of small variations of parameters allows to consider linear relations between the angles
of attack and sideslip (flight parameters) and coefficients like lift and moment, meaning that linearised
theories (cf. Reference [1]) can be employed to have an esteem of these coefficients that are necessary to
understand the stability behaviour.
A numerical method for obtaining the required coefficients is the Vortex Lattice Method, or VLM, that,
under the assumption of irrotational and inviscid fluid, allows to build an algebraic system of equations
whose solution gives the circulation of the fluid around the inspected part (cf. Reference [2]). From the
circulation it is possible to estimate lift and moment coefficients. These results can be compared the ones
obtained with other methods, relying on the same assumptions on the flow (otherwise the results could
not be compared), to obtain the aerodynamic forces and moments acting on parts of the vehicle.
Fuselages play an important role in the stability of the vehicle, since they present an unstable be-
haviour both in longitudinal and latero-directional dynamics. A fuselage is essentially an elongated,
non-axisymmetric body that does not generate any lift. The asymmetric pressure distribution generates
a free couple that is the cause of the aerodynamic instability. These effects, for an isolated fuselage, can
be easily studied supposing that the body is slender so that the flow at a position along the fuselage can
be considered bi-dimensional, adding then a corrective factor for its finite slenderness (cf. References [1,
3, 4]).
When the wing is mounted on the fuselage, the interference of one element on the other alters the be-
haviour of both components significantly: for example, taking as reference point the wing aerodynamic
centre (cf. Reference [1]), a wing-body configuration will have a varying moment coefficient with the angle
of attack, while for the isolated wing it will be constant. As for the isolated fuselage, the influence of
the wing on the fuselage can be computed using a semi-empirical method. Results from the VLM can
be compared with the ones obtained from this method since the effects of the wing-body system can be,
at a first approximation, considered as the sum of the effects of the wing alone plus the effects of the
fuselage due to the presence of the wing. In this way VLM gives the global results for the wing and body
configuration, whereas the semi-empirical method gives the effect of the fuselage under the influence of
the wing, so that a comparison between these results can be made.
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Chapter 2

Geometric and Aerodynamic
Modelling

2.1 Aircraft Geometry

The JPAD software has been used to obtain data representing the aircraft geometry, such as the wing
span, planform surface, mean aerodynamic chord and so on.
JPAD Modeller is a parametric CAD software which is capable of generating simple models from overall
geometric and operational data using other aircraft specifications from its database, allowing to refine it
afterward (cf. Reference [5]).
The data obtained from JPAD can be divided roughly in two categories being:

• the reference measures, like the mean aerodynamic chord, the planform area, the wing span and so
on;

• the geometry required by the linear vortex solver VSPAERO to conduct the analysis.

The first ones are used to make the moment and lift nondimensional obtaining the corresponding coeffi-
cients, while the latter are used by both VSPAERO and MATLAB to get the results of the semi-empirical
methods which will be introduced hereafter. The first three measures are (see Figure 2.1):

• c̄ is the mean aerodynamic chord;

• Sref is the planform surface of the wing;

• bref is the wing span.

Aircraft
c̄ Sref bref

(m) (m) (m)

1 A220-300 3.87 111.95 35.01
2 A320neo 3.98 122.6 35.8
3 A340 8.09 437.3 63.45
4 AN32 2.81 73.69 28.79
5 ATR42 2.29 54.5 24.57
6 ATR72 2.32 61 27.05
7 B737-600 4.47 124.6 34.3
8 B737-700 4.47 125.12 34.44
9 B737-800 4.47 125.12 34.44
10 B737-900 4.47 125.12 34.44
11 C-130H 4.52 154.98 34.7
12 C-27J 2.82 57.13 21.22
13 Canadair CL415 3.51 100.33 28.6
14 EmbraerLegacy650 2.8 51 21.15

Aircraft
c̄ Sref bref

(m) (m) (m)

15 Falcon10x 4.09 122.01 33.6
16 Falcon8x 3.2 70.75 26.28
17 G400 4.29 98.96 26.3
18 G650 4.48 119.2 30.36
19 G700 4.19 119.28 31.39
20 G800 4.38 119.2 31.39
21 global6000 3.86 94.78 28.69
22 global7000 4.35 122.3 31.77
23 global8000 4.36 122.23 31.75
24 Learjet45 2.14 28.95 14.58
25 Praetor600 2.39 44.67 21.42
26 Q400 2.44 67.27 28.4
27 Regional Jet RM 4.02 118.58 33.81

Table 2.1: Definition of Reference Measures
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These are summarised in Table 2.1 and can be found in Jpad interface as shown in Figure 2.2.
There is necessity to define a pole around which the moments have to be calculated, but this decision
is strongly dependent on the choice of an adequate reference frame: both JPAD and OpenVSP use a
constructive reference frame (CRF), whose origin is at the tip of the nose of the fuselage, x-axis runs
along the fuselage pointing to the tail, y-axis points at the right of the pilot, and z-axis is obtained so that
{x, y, z} is a left handed coordinate system. This means that all the coordinates reported in Table A1
and Table A2 are defined in such reference frame.

Figure 2.1: Definition of Table 1 dimensions

Instead derivatives are expressed in a body ref-
erence frame (BRF), whose axes are parallel to the
previous ones but with different orientation:

• the BRF x-axis is parallel to CRF x-axis but
it points in the opposite direction, from the
tail to the nose;

• y-axis coincides with the y-axis of the CRF;

• z-axis happens to be anti-parallel to the CRF
z-axis, pointing downward, because both sys-
tems are left handed.

Last but not least, BRF is a baricentric reference
frame, meaning that it has its origin in the air-
plane centre of mass, while CRF is not. Fig-
ure 2.3 shows these two Reference Frames. To
get a fair comparison among the different aircraft
investigated, the reference point for the moments
has been fixed at a quarter of the mean aerody-
namic chord, along the xCRF axis and at the z
coordinate of the wing apex. The leading edge of the mean aerodynamic chord is obtained from JPAD in
a different reference frame, that is derived from the body reference frame through an x and z translation
at the wing apex, as shown in Figure 2.4. The new quantities introduced are:

• Xle, Zle are the (x, z) coordinates of wing apex in the Constructive Reference Frame;

• xc̄ , zc̄ are the (x, z) coordinates of c̄ leading edge, in a reference frame whose axis are parallel to
the Constructive Reference Frame and its origin in the wing apex.

Figure 2.2: Definition of JPAD interface where data can be found
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Figure 2.3: Definition of brf and crf

Other geometrical data are needed, particularly the ones concerning the horizontal tailplane as they will
be required by the semi-empirical methods. These new quantities are:

• XH,le, ZH,le are the (x, z) coordinates of horizontal tail apex in the CRF;

• xH,c̄, zH,c̄ are the (x, z) coordinates of the mean aerodynamic chord leading edge of the horizontal
tail in a reference frame whose axis are parallel to the CRF with its origin at the horizontal tail
apex;

• c̄H is the mean aerodynamic chord of the horizontal tailplane.

Figure 2.4 shows the aforementioned quantities that are also listed in Table A2. It is seen these
quantities are defined in the same way as the ones reported in Table A1.

Figure 2.4: Definitions of Horizontal Tail and Wing dimensions
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2.2 Exporting the Aircraft

It is necessary to export the geometry from JPAD into a file suitable for OpenVSP.
OpenVSP is an open-source parametric developed by NASA, which, through its tools, is also capable of
conducting aerodynamic and structural simulations. The tool used in this thesis is VSPAERO, which
conducts analysis employing vortex lattice method.
The standard for OpenVSP takes as input files with .vsp3 extension, in order to load and analyse the
aircraft correctly. This is also an export format supported by JPAD.
The computational grid, once exported from JPAD and imported to OpenVSP, can be tweaked directly
into the latter, changing, for example, the number of subdivision along the wing span, or the number
of sections in which the fuselage is subdivided. Comparison between JPAD and OpenVSP geometry
visualization is shown in Figure 2.5. Other further modifications can be made to the aircraft geometry
in OpenVSP such as changing the airfoils at specific sections in the wing or changing the relative positions
among components.

Figure 2.5: Comparison between JPAD and OpenVSP geometries
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2.3 Vortex Lattice Method

It has been stated that VSPAERO evaluates lift and moments using the vortex lattice method, thus it is
appropriate to give a brief introduction about this method and how it is implemented.
Considering a steady and irrotational flow field, the following two relations are obtained:

∇ · (ρV) = 0 → ∇ ·V = 0 if the flow is also incompressible (2.1)

∇×V = 0 (2.2)

The second relation states that the velocity field is irrotational, hence there must exist a scalar function
Φ defined such as:

∇Φ = V (2.3)

Substituting this relation into the continuity equation, it yields:

∇ · (∇Φ) = 0 ↔ ∇2Φ = 0 (2.4)

It has been obtained that the potential function Φ is the solution of the Laplace’s equation [2]. This is
a second order partial differential equation and it must be paired with two boundary conditions (BCs)
dictated by the Physics of the problem. These BCs are:

V · n = 0 the fluid is tangent to the body (it cannot pass through it) (2.5a)

lim
r→∞

V = V∞ far away from the body the current is undisturbed (2.5b)

Because of the linearity Laplace’s equation, the principle of superposition is valid. The flow field can be
seen as the summation of the potential function describing the undisturbed current stream Φ∞ plus the
potential of the disturbed velocity profile caused by the presence of the wing Φ∗.
It is now necessary to find some elementary functions that satisfy both the Laplace’s equation and (2.5b).
This last requirement is motivated by the fact that this kind of functions is used to model the body dis-
turbance in the field, meaning that this disturbance is reduced as the distance from the body is increased,
going to zero when the distance goes to infinity.
There are many possible functions that can satisfy the Laplace’s equation but, for the sake of the discus-
sion, it will be introduced only the one used in VSPAERO: the vortex singularity. The potential function
Φ expressed in Cartesian coordinates for a vortex located at (x0, z0) is:

Φ = − Γ

2π
tan−1 z − z0

x− x0
(2.6)

The same function assumes the following form when expressed in polar coordinates with origin in the
vortex itself:

Φ = − Γ

2π
θ → Vθ =

1

r

∂Φ

∂θ
= − Γ

2πr
(2.7)

Figure 2.6: The velocity field induced by a vortex of
positive (right) and negative (left) circulation

From the last relation it can be seen that the po-
tential introduced automatically satisfies (2.5b),
meaning that the velocity disturbance induced by
a vortex tends to zero when the distance from it
increases.
Using the principle of superposition, the distur-
bance caused by a lifting body can me modelled
as a distribution of {Φ}i vortices, whose linear
combination must satisfy (2.5a) (as (2.5b) is au-
tomatically satisfied).
In a three dimensional case the vortex has to be
closed or it has to have its starting and ending
points at infinity, because from Helmholtz theo-
rems [2] its vorticity — defined as the flux of the rotor of the velocity vector V through a section of the
vortex tube — must be constant, and this could not be possible if the vortex tube had to end abruptly (in
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that case the flux of the last surface would be zero). Based on this requirement a wing can be modelled
as a distribution of horseshoe vortices or as a distribution of ring vortices. OpenVSP uses the second
kind of vortex structure in its tool VSPAERO.
The vortex lattice method, implemented by VSPAERO, discretizes the wing into a series of flat plates,
and in each one of these places a ring vortex of fixed intensity Γj (cf. Reference [6]). The leading vortex
segment is placed at a quarter of the panel chord (because it is the position of the centre of pressure for
a flat plate), while the collocation point is defined at three quarters. The collocation point for a panel
is the point where the boundary condition must be specified. Since every panel is represented only by a
single vortex, the BC can be enforced only in a single point. The BC (2.5a) becomes:

(V∞ −Vj) · n = 0 j = 1, ...m

where Vj is the velocity induced by all the ring vortices at the j-th control point and m is the number of
panels the wing has been discretized in.
The induced velocity induced by the i-th circular vortex of each panel in the j-th point Pj is obtained
using the Biot-Savart law [2]:

Vij =
Γi

4π

4∑
k=1

∫ xk+1

xk

dl× rk
|rk|3︸ ︷︷ ︸

V̂ij

x5 = x1 (2.8)

with rk being the vector pointing from the k-th vortex in the circle to the point Pj as shown in Figure
2.7.
In this way the total induced velocity at a point i is the sum of the induced velocities that the single
vortex ring j impresses at the selected point:

Vj =

m∑
j=1

Γj

4π
V̂ij i = 1, . . . ,m (2.9)

Thus, (2.5a) becomes:

V∞ · ni =− (

m∑
j=1

Γj

4π
V̂ij) · ni i = 1, . . . ,m (2.10)

This corresponds to a set of m linear equations, one for each panel, in the unknowns Γj that can be
solved. VSPAERO uses an iterative approach to reduce the computational cost instead of directly trying
to solve the system [6].
A final remark must be made on the Kutta condition at the trailing edge: since the wake is modelled as
a group of ring vortices, it is necessary to set their intensity equal to the wings trailing edge, so that the
Kutta condition can be enforced. This means that the circulation at the trailing edge is set to zero, hence
also the differential pressure is zero (using the Bernoulli equation). In this way, the adjacent unbounded
vortices cancel each other, leaving only the two external vortices that model the wake. A general scheme
of this method is given in Figure 2.8.

Figure 2.7: The velocity field induced by a ring vortex
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These two vortex rings 
have equal circulation so 

on the trailing edge the 
net circulation is zero

Figure 2.8: Scheme of the discretization used by VSPAERO and visualization of the results
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2.4 Calculation of the Aerodynamic Centre Position of theWing

2.4.1 Analysis the Isolated Wing

When the full configuration of the aircraft is analysed, it is customary to take the reference pole in the
centre of gravity, while in this case it will be shown that taking the aerodynamic centre of the wing as
a pole is more appropriate for showing the difference between wing and wing-body interaction on the
aircraft stability. Because the coordinates of this special pole are not known, an arbitrary pole has been
chosen as reported in the last column of Table A1.
To conduct the analysis the .vsp3 file has to be loaded into OpenVSP, then all the parts not necessary
for the wing analysis (e.g., the fuselage, tailplane, nacelles, . . . ) must be deleted. In some case it is
necessary to modify the computational grid from the default exported by JPAD. This operation can be
done using the appropriate menus as shown in Figure 2.9. Mach number was set to 0.001.

Pole Definition

Reference Measures

Geometry Analised Angle Span

Figure 2.9: Options for running an analysis with VSPAERO

Figure 2.10: Results from VSPAERO for the wing of the A220-300
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When the geometry has been set up, the model is ready to be analysed by VSPAERO. The interface is
shown in Figure 2.9, highlighting the field where geometric data defined in Table 2.1 and Table A1
have to be inserted. Angle span has been set from 0 deg to 10 deg with a spacing of 2.5 deg so that the
analysis falls into the linear trait of the forces/moments vs. angles relations as shown in Figure 2.10.
Results for each airplane are listed in Table A3 with the obtained value of the coefficient (evaluated
using the procedure explained at Section 2.5).

2.4.2 Evaluation of the Wing Aerodynamic Centre

The aim of this process is to obtain the values of various aerodynamic coefficients (e.g., the lift coefficient,
the pitch moment coefficient, . . . ) for different configurations of wing and body.
Once the moment and lift coefficients of the isolated wing, taken about the arbitrary pole, have been
evaluated with VSPAERO, the position of the aerodynamic centre can be calculated. To show the
procedure to obtain this quantity, lets take an arbitrary pole, called A. Moment of the aerodynamic force
around this pole will be given by the following relation (supposing that lift is applied in its reduction
centre):

M(A) = (A− Pc.p.) (2.11)

Let’s now take another point, called B. Using (2.11) in this case we obtain:

M(B) =(B − Pc.p.)× L = [(B −A) + (A− Pc.p.)]× L

M(B) =M(A) + (B −A)× L

Making this equation dimensionless and taking the module it follows:

C
(B)
M =

M (B)

q∞Srefc̄
= C

(A)
M + (xb − xa)CL (2.12)

To find the aerodynamic centre of the wing, the invariance of CM with respect to the angle of attack
must be imposed:

C
(B)
M ≡ CMa.c.(W)

⇔
∂C

(B)
M

∂α
=

∂C
(A)
M

∂α
+ [xa.c.(W) − xa]

∂CL

∂α
= 0 (2.13)

Figure 2.11: Relating the moment around pole B to
the moment around pole A

and the following relation is obtained:

CMα

CLα

= [xa.c.(W) − xa] (2.14)

Using values of CM from the isolated wing with
respect to the point at 0.25c̄, employing the pro-
cedure explained at Section 2.5, the required
derivatives can be evaluated and so the relative
position of the wing aerodynamic centre with re-
spect to the point chosen. Table A3 contains all
lift and pitching moment coefficients for the iso-
lated wing, the value expressed by (2.14) and the
coordinates of the wing aerodynamic centre.

For the vehicles marked with (∗) the CMα value is not correct because, for these wings, the reference
point happens to be the aerodynamic centre of the wing. When the point is chosen to be the aerodynamic
centre, CM values obtained running a VSPAERO analysis will assume an irregular trend and they will
change in magnitude very little with α compared to CM values taken at other points. Figure 2.12 shows
the behaviour of CM when the pole is:

• ahead of the wing a.c.;

• at the wing a.c.;

• behind the wing a.c.
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Figure 2.12: Comparison among the moments taken at three points for the A220-300

2.5 Evaluating the Aerodynamic Derivatives

The output of the VSPAERO simulation consists in several files, but only two are necessary for this
analysis:

• a Results.csv file containing the results of the analysis, e.g., values of different coefficients with
respect of the angle;

• a DegenGeom.csv file containing the point of the discretized geometry used to run the simulation.

The structure of the first file is shown in Figure 2.13. The values of the angles of attack and sideslip
are set to span between 0 and 10 degrees. This interval corresponds to the linear trait of the CM vs. CL

curves, therefore, the evaluation of the derivatives of such functions is reduced to compute the angular
coefficient of the straight lines. MATLAB is used to obtain these values importing the data stored in the
.csv files into matrices and fitting them using the standard MATLAB function polyfit. All the results
shown in Tables A4 to A5 are obtained using this procedure.

Figure 2.13: Example of the results file

2.5.1 Wing

Wing moment coefficients are evaluated using as reference pole the centre at a quarter chord instead of
the aerodynamic centre. The quantities reported in Table A4 are:

• the lift coefficient CLα,W
for the isolated wing;
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• the pitching moment CMα,W
;

• the roll moment CLβ,W
;

• the yaw moment CNβ,W

The second coefficient is tied to longitudinal stability, while the last two are instead linked to the latero-
directional stability. It is useful to remember that these coefficients are expressed in the BRF and not in
the CRF. This means that:

• a positive CMα,W
corresponds to an unstable longitudinal behaviour at the given component, be-

cause, for a variation of α from the equilibrium position, the system responds moving away from
the such position;

• a positive CLβ,W
also corresponds to an unstable lateral behaviour because, for a variation of sideslip

angle β, the vehicle will tend to move into a spiral;

• a positive CNβ,W
coefficient corresponds to a stable directional behaviour since in this case the

system tends to reduce the perturbation, i.e., the component tends to move towards the direction
of the current.

Figure 2.14: Differences among CMB
values for an ATR-42 evaluated at three different points

Generally it would be expected for a wing to have a negative CMα,W
and a positive CNβ,W

coefficient.
It is more difficult to make a general argument for the rolling coefficient because it depends both on the
wing itself (through its angle of bank and sweep angle) and how it is installed on the fuselage.
Some tweaks had to be made to different wing computational grids, since some numerical solutions were
not physical. One of the most critical cases was the G400 whose results are reported in Figures 2.15
and 2.16. To obtain better results it was necessary to refine the spanwise grid distribution towards the
wingtip.
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Figure 2.15: Results for the pitching moment of a
G400 with the default grid from JPAD

Figure 2.16: The same results for the G400 with a
finer grid

2.5.2 Isolated Fuselage

The fuselage is a non-lifting body, therefore it is known that its forces system is equivalent to a free
couple, whose effect is to reduce aircraft stability. This behaviour is also shown by VSPAERO because,
if the pole has changed, the CMα,B

:

• remains positive;

• does not vary with the pole as Figure 2.14 shows for the ATR-42 fuselage.

As expected, VSPAERO did not provide a significant value for the lift coefficient.
A similar result is obtained analysing the latero-directional stability. As matter of fact, it is shown in
Figure 2.17 how the results of the yawing coefficients do not change when the pole’s position varies.
Results for the isolated fuselage are reported in Table A6.
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Figure 2.17: Differences among CNB
values for an ATR-42 evaluated at three different points

2.5.3 Wing and Body

To conduct the analysis for the wing and body configuration, the aerodynamic centre of the wing is
chosen as the reference pole for the moments. The setup for the analysis is the same seen in the previous
cases and its geometry can be seen in Figure 2.18. Longitudinal and latero-directional coefficients are
listed in Table A5.

Figure 2.18: Visualization of the grid for a wing-
body configuration of an ATR-42

Figure 2.19: Visualization of the grid for a fuselage
of an ATR-42
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2.6 Discussion of Results

It is here anticipated that most of the wings have negative pitching moment coefficients and negative
pitching moment derivatives, meaning that they all tend to pitch down and exhibit a stable behaviour at
pitching with the chosen reference point. For the yawing behaviour, there is no clear trend as, out of 27
wings analysed, almost half resulted in a positive yawing moment (stable), while the other half resulted
in a negative yawing derivative.

Figure 2.20: Effects of the Dihedral angle with respect to rolling

It is noted that for single or multi-cranked wings, the sweep angle had to be superior to 30 degrees
to achieve stability at yawing, but almost all rectangular tapered wings (excepted for the Q400 wing)
presented instead stable behaviour. The sweep angle can generally increase stability at yawing because
it makes the windward half-wing to generate an increase of lift and drag as shown in Figure 2.21.
This unbalanced system of forces has the effect to rotate the airplane towards the wind direction. This
phenomenon could explain the directional stability among airplanes with rather large values of sweep
angle. The increase of lift experienced by the upwind semi-wing is also shown by VSPAERO analysis
and reported in Figure 2.21.
For the body and wing configuration there is no ambiguity on the behaviour of the system, given that
the instability of the fuselage overcomes the stabilizing effect (when present) of the isolated wing, hence
all of the 27 wing-body configurations presents an unstable behaviour.

Figure 2.21: Effects on yawing and rolling associated with a
sweep angle

Considering roll stability, it results that
all wings except three are stable to
roll because of the lift increment on
the downwind half-wings due to sweep
and dihedral angles. This increase of
lift generates an unbalanced force that
causes a negative rolling moment for
positive angles of sideslip. The afore-
mentioned effects can be visualised in
Figures 2.20 and 2.7. The only three
cases of positive (unstable) CLβ,B

is ex-
perienced in aircraft whose wings have
neither a dihedral angle nor a sweep
angle (Canadair CL-415 and C-130H),
while the last one (AN-32) has a neg-
ative dihedral angle. For the first two
cases, though, the wing-body configu-
ration is stable to roll, because of the
interference of the fuselage on the wing
aerodynamic system, being both high-
wing aircraft. Conversely, the wing of
the AN-32 remains laterally unstable.
In general, it is observed that all high-
wing airplanes present a lower CLβ,B

of
the isolated wing (being more negative)
that the one of wing-body configura-
tion. The opposite is true for low-wing
airplanes. Reference [7] gives a brief ex-
planation of this phenomenon as it is
linked to the variation of angle of attack that the cross field causes in the vicinity of the fuselage.
Lastly, the pitching behaviour of the wing-body system is unstable, i.e., the moment coefficient slope is
positive since there is no horizontal tail to stabilize the configuration.
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Chapter 3

Semi-Empirical Methods and Results
Comparison

Two semi-empirical methods were used to validate some of the results obtained from the lattice vortex
analysis, namely the Munk strip method, useful to predict pitching and yawing moment coefficients of the
isolated body, and the Multhopp method (later included into the DATCOM database), used to predict
the behaviour of the fuselage when combined with the wing. Both the vortex lattice method and these
two semi-empirical methods rely on the same hypothesis on the nature of flow field.

3.1 Munk Theory for Isolated Body Derivatives

Since the hypotheses for the slender bodies are the same as the ones expressed in Section 2.3 about
the VLM, all the considerations about the velocity can be made. This means that the velocity potential
Φ can be introduced and it has to satisfy the same equation (2.4) and BCs (2.5), as defined in Section
2.3. A body like a fuselage displaces the fluid around it when moving. To make it move, it is necessary to
overcome the inertia of the body itself and the fluid. Considering the fluid and the fuselage as a system,
the total kinetic energy is given by the sum of the two kinetic energies [8]:

Ttotal =
1

2
MBV

2 +
1

2
MaV

2 (3.1)

where the term Ma is the apparent mass factor of the body and is defined as:

Ma ≡Tfluid
1
2V

2
= Kρ∞ (3.2)

so that the second term in the expression of Ttotal can be expressed as:

1

2
MaV

2 =
1

2

Tfluid
1
2V

2
V 2 = Tfluid (3.3)

It is now useful to introduce the concept of impulsive force. The motion of a body in a fluid that satisfies
the above-cited hypothesis can be modelled as a series of impulsive forces applied sequentially. A force,
to be defined impulsive, has to change by a finite amount the velocity and momentum in a very short
period of time. The relation between change in momentum and force is [9]:

q(t0 +∆t)− q(t0) =

∫ t0+∆t

t0

Fdt ≡ I (3.4)

where the integral is defined as the impulse. Now, taking a particle of fluid, the variation of its momentum
due to impulsive forces can be expressed (using the balance of momentum in the Lagrangian form for the
small control mass) as:

m [V(t1)−V(t0)] =

∫ t0+∆t

t0

Fdt = −
∫ t0+∆t

t0

∇
(
p

ρ

)
dt (3.5)
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since on an element of fluid only acts pressure as the viscous effects have been neglected. The last term
of the equation is the impulsive pressure and can be related to velocity potential as:

V(t) = ∇Φ =−
∫ t0+∆t

t0

∇
(
p

ρ

)
dt = −1

ρ
∇PI

∇(Φ +
PI

ρ
) =0 → −Φρ = PI

The work done by this impulsive pressure on the fluid is given by the difference of kinetic energy. If the
fluid is moved from rest, then ∆T = T − 0 :

T =

∫
S

−ρΦ︸︷︷︸
PI

0 +
∂Φ

∂n
2


︸ ︷︷ ︸

time-averaged velocity

dS (3.6)

If a body is moving in an inviscid fluid, there is no drag and no lift, but this does not mean that also
the moment is null. In fact, considering a body moving on a straight line with constant velocity and
assuming that there is a component of momentum of the flow perpendicular to the velocity V with value
[3, 9]:

q = Kρ∞V∞ (3.7)

Fixing a point in the plane containing the momentum vector, an angular momentum is generated from
this momentum component perpendicular to the velocity direction. By the Euler’s second law, the time
derivative of the angular momentum equals the applied moment. The magnitude of this moment is the
magnitude of the cross product of the velocity and momentum vectors:

M = |V× q| = V (Kρ∞V∞) (3.8)

This means that an equal and opposite moment must be applied to the body to reach an equilibrium.
Conversely, if the body does not experience any moment, the momentum of the flow must be entirely in
the line of motion of the body.
Consider a body that is in equilibrium in a constant flow. If the body is slightly turned by a small angle
dα, the direction of the body velocity will be no longer parallel to the momentum of the flow, hence a
moment is generated. If the moment tends to reduce the disturbance — meaning that for a clockwise
rotation, the moment is counterclockwise and vice-versa — the equilibrium is said to be stable. In this
case, to turn the body, work must be done on the fluid, since the fluid tends to oppose this rotation, and
its kinetic energy increases by an amount given by dT ′

= Mdα. In this case dα and M have opposite sign
(M opposes the disturbance). Thus, using the same sign convention for both gives dT = −dT ′ = Mdα.
As a result, if the body lies in a orientation for which T is maximum, a perturbation from this position
will reduce the kinetic energy, hence the sign of the derivative will be negative and the moment will be
opposite to the angular displacement, meaning that the equilibrium is stable. Summarising:

dT
dα

> 0 stable

dT
dα

< 0 unstable

The kinetic energy is then different for directions of motion other than specified ones, but it is always
a positive number. Therefore, as the orientation of the motion of the body is changed from a fixed
orientation to the opposite, there must be two directions for V somewhere between, for which the kinetic
energy is maximum and minimum. In these two directions the body is in equilibrium.
Supposing now that the body lies in one of these directions, called x̃1, it will have a momentum parallel
to the direction of the motion defined again as (3.7):

q = Kρ∞V∞ (3.7)

Maintaining the body oriented along this direction, let us move the fluid along an axis perpendicular to
this one, named x̃2. In a general case x̃2 could be a non-equilibrium axis, hence there could be momentum
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components along all three axes, then:

q1 = Dρ∞V∞ x̃1 (3.9a)

q2 = Cρ∞V∞ x̃2 (3.9b)

q3 = Eρ∞V∞ x̃3 (3.9c)

where x̃3 is a direction perpendicular to the first two. Taking now a generic line of motion between x̃1

and x̃2, forming an angle of α with x̃1, there will be a momentum:

q1 =Kρ∞V∞ cosα+Dρ∞V∞ sinα (3.10a)

q2 =Cρ∞V∞ sinα (3.10b)

while the velocity will be:

V1 = V∞ cosα (3.11a)

V2 = V∞ sinα (3.11b)

Subsequently, the kinetic energy will be:

T =
1

2
q ·V∞ =

=
ρ∞
2

V 2
∞[K1 cos

2 α+D sinα cosα+ C sin2 α]

M =
dT
dα

=
ρ∞
2

V 2
∞[(C −K1) sin(2α) +D cos(2α)]

For α = 0 the direction coincides with the direction of equilibrium, hence it must be M = 0:

M =
dT
dα

∣∣∣∣
α=0

=
ρ∞
2

V 2
∞[(C −K1) sin(2α) +D cos(2α)]α=0 = 0 → D = 0

From this condition, it follows that the apparent mass coefficient D must be zero. The moment becomes:

M =
dT
dα

=
ρ∞
2

V 2
∞(C −K1) sin(2α) (3.12)

This means that if the body is moving in direction x̃2 there will not be any momentum component along
x̃1, since it is a direction of equilibrium.
Taking this result into account, it is possible to obtain other two directions that are equilibrium axes (cf.
Ref. [9] for the explanation of the phenomenon in a more rigorous way). If these three axes are taken as
a reference system, the momentum along a generic axis in the x̃1–x̃2 plane will be given by:

q1 = K1ρ∞V∞ cosα (3.13a)

q2 = K2ρ∞V∞ sinα (3.13b)

Using Euler’s law for the momentum, applied in the BRF, gives:

dK

dt
=−VB × q+M(F) (3.14)

where M(F) is the moment acting on the fluid, K is the angular momentum of the fluid. If the motion is
stationary, the previous formula becomes:

M(F) =VB × q (3.15)

To obtain the moment the fluid F exerts on the body B, using Newton’s laws of motion:

M(B) = −M(F)

M(B) = −VB × q

Considering a flow at an angle of attack, carrying out the cross product:

M(B) = V 2
∞ρ∞

∣∣∣∣∣∣
i j k

K1 cosα 0 K2 sinα
cosα 0 sinα

∣∣∣∣∣∣ = ρ∞(K2 −K1)V
2
∞ sinα cosαj =

1

2
ρ∞(K2 −K1)V

2
∞ sin(2α)j

(3.16)
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is an equilibrium axes

Figure 3.1: Momentum orientation in the three cases described (for a detailed explanation of the matrix
see Reference [9])

Figure 3.2: Moment orientation for a current with angle of attack and sideslip

Figure 3.2 clarifies the meaning of the sign of the moment both for a flow with an angle of attack and
for a flow with an angle of sideslip. If K2 > K1 this moment tends to increase the value of α, hence it is
unstable.The apparent mass coefficients can be expressed in term of the body volume V , as

Ki = kiV

and for small angles of attack, where sin(2α) ≈ 2α, equation (3.16) becomes:

My = (k2 − k1)ρ∞V 2
∞αV (3.17)

These results are extended to non axisymmetric bodies subdividing their planforms into stripes of length
∆x considered to be axisymmetric obtaining:

CMα,B
=

(k2 − k1)π

SWc̄

∫ lB

0

b(x)2 dx (3.18a)

CNβ,B
=

(k2 − k1)π

SWbW

∫ lB

0

h(x)2 dx (3.18b)

where b(x) is the width of the fuselage section at a given station x along the longitudinal axis, h(x) is the
height along the z-axis, lB is the total length of the fuselage. Wing span SW, mean aerodynamic chord c̄,
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and wing span bW are chosen as reference parameters for making the moment non-dimensional. Starting
from these relations, a MATLAB code has been developed to evaluate the required derivatives.
The geometrical data required to evaluate the volume of the stripes are stored into the Degen_Geom.csv,
created by VSPAERO after an analysis has been run, as a set of (x, y, z) coordinates. MATLAB code
reads all the triplets of point coordinates and uses the information to build a discretized version of the
airplane (using the same discretization employed by VSPAERO) and evaluates the length, width, and
height of the stripes. Then it evaluates strip-by-strip the summation:

CMα,B
=

(k2 − k1)π

SWc̄

n∑
i=1

b2i∆xi (3.19a)

CNβ,B
=

(k2 − k1)π

SWbW

n∑
i=1

h2
i∆xi (3.19b)

In this case h(x) and b(x) have been replaced with respectively the width and height of the i-th fuselage
strip. The structure pf the MATLAB code employed to obtain the values of these derivatives is reported
in Figure 3.6. The term k2 − k1 is tabulated in relation with the fuselage slenderness ratio and it is
plotted in Figure 3.5. The results are tabulated and compared with the ones obtained by VSPAERO.

3.2 Multhopp Method for Body with Wing Effects

The presence of a wing alters the flow field around the fuselage significantly, and as a consequence its
behaviour. Reference [1] suggests that lifting forces that the body takes due to the wing are approximately
of the same magnitude of the ones that the section of the wing substituted by the fuselage would take.
A reference plane is chosen at an arbitrary distance x from the fuselage nose, so that it is perpendicular
to the stream direction of the airplane. The lift of the rear part of the fuselage is obtained through
momentum considerations. The phenomenon is stationary, so the integral of pressures on the fuselage
surface ahead of the reference plane is equal to the change in vertical momentum passing through such
plane. If the body is slender, the flow around a section of the fuselage can be considered bi-dimensional.
Reference [4] shows that the vertical flow passing across a 2-D cylinder of diameter b is given by:

ṁ = ρVnπ

(
b

2

)2

(3.20)

where Vn is the velocity normal to the cylinder section.

Figure 3.3: Definition of the arbitrary plane along
the x-axis

For a fuselage, Vn is the component of V projected
in a plane at right angles to the body axes and it
is given by Vn = V sin γ, with γ being the angle
the current makes with the fuselage axis. This
angle can be seen as the summation of the angle
of attack of the body, plus the additional deviation
angle induced by the wing circulation: γ = α + ϵ,
with ϵ = ϵ(x) as it varies along the fuselage.
Recalling (3.20), the rate of change of momentum
is then given by:

Laft = ṁV∞ ≈ ρ∞V 2
∞γ(x)π

(
b

2

)2

(3.21)

Differentiating (3.21), the rate of change of lift
along the body axis is:

dLaft

dx
=

1

2
ρ∞V 2

∞
d

dx

[
γ(x)b2(x)

]
The moment can be obtained from a reference pole as the integral of the elemental lift dL, acting on a
segment dx, multiplied by the distance of such segment to the pole reference:

M =−
∫ lB

0

xdL = −
∫ lB

0

x
dL

dx
dx =

=− 1

2
ρ∞V 2

∞
π

2

∫ lB

0

x
d

dx

[
γ(x)b2(x)

]
dx
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Integrating by parts and remembering that b(x=0) = b(x= lB) = 0:

M =− 1

2
ρ∞V 2

∞
π

2

(
xγ(x)b2(x)

∣∣lB
0

−
∫ lB

0

γ(x)b2(x) dx

)
=

=
1

2
ρ∞V 2

∞
π

2

∫ lB

0

γ(x)b2(x) dx

(3.22)

The function describing the local angle the current makes with the fuselage axis (which is the contribution
of wing circulation) has to be found. Since the stability is here investigated, the moment given by (3.22)
has to be differentiated by the angle of attack:

∂M

∂α
=
1

2
ρ∞V 2

∞
π

2

∫ lB

0

∂γ(x)

∂α
b2(x) dx =

1

2
ρ∞V 2

∞
π

2

∫ lB

0

∂[α+ ϵ(x)]

∂α
b2(x) dx =

=
1

2
ρ∞V 2

∞
π

2

∫ lB

0

(
1 +

∂ϵ(x)

∂α

)
b2(x) dx

(3.23)

The value of the derivative
∂ϵ(x)

∂α
assumes different behaviours in relation to the position of the section

with respect to the wing:

• ahead of the wing trailing edge, there is an upwash caused by the circulation of the wing and it
reaches a peak in the proximity of the leading edge. The value of the derivative is tabulated in
Figure 3.4 computed for a wing of aspect ratioA = 8 and CLα

= 4.5 rad−1. Reference [1] states
that for other wings this value can be approximated scaling it by the effective wing CLα ;

• on the wing the current is practically parallel to the wing chord, hence the derivative is null;

• from the trailing edge going to the end of the fuselage, the current is deviated by the wing downwash,
which can be considered as linearly varying from the wing trailing edge to the horizontal tail.

The integral for obtaining the pitching moment coefficients needs to be divided in two sections, one ahead
of the wing, the other aft the wing, since the value of dϵ/ dα is different. This means that, with varying
angle of attack, the moment of the fuselage is no longer constant. It follows that the moment of the wing
and body configuration about the aerodynamic centre of the isolated wing is no longer constant with α
meaning that the aerodynamic centre of this configuration does not coincide with the one of the isolated
wing.
A new MATLAB code had to be implemented using the same data contained in the Degen_Geom.csv, but
it also required other geometrical data obtained from JPAD, like the position in the body reference frame
of the horizontal tail apex (not included into the Degen_Geom.csv, since it was ignored in the analysis)
and the position of the point at a quarter chord. The structure of this MATLAB code is represented
in Figure 3.7. All these quantities were grouped in a .csv file that was passed as an input to the
MATLAB code. They are required to evaluate the upwash and downwash gradients that the wing forms
respectively ahead and behind the fuselage and that modify the behaviour of the fuselage itself. The
additional data are listed in Table A8.
The upwash gradient is obtained from Figure 3.4, where it is plotted against the non-dimensional
coordinates x̄1, x̄2, that identify the position of the i-th strip from a system of reference, whose origin
is placed on the leading edge of the exposed root chord. The downwash gradient is estimated using
a method provided by DATCOM and it is supposed to increase linearly from the exposed root chord
trailing edge to the horizontal tail.
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Figure 3.4: Value for the wing upwash gradient evaluated for a wing of A = 8 and CLα = 4.5 rad−1 [1]

Figure 3.5: Table of values of k2 − k1
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Figure 3.6: Flow chart for the program implementing the Munk method for evaluating CMα,B
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Figure 3.7: Flow chart for the program implementing the Multhopp method for evaluating CMα,B(W)
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Chapter 4

Conclusions

The aim of this thesis was to analyse the static stability contribution of the partial configurations of all
the aircraft included in the JPAD Modeller software, so that a database of moment and lift coefficients
could be created. This database contains all the static stability derivatives for the longitudinal and
latero-directional cases, under the assumption of small perturbations, in order to consider decoupled the
longitudinal and the latero-directional motions. The raw data, consisting of values of lift and moment
coefficients, were obtained from the VSPAERO solver for OpenVSP and they were post-processed with
MATLAB to obtain the value of the corresponding derivatives. The results concerning the fuselage
behaviour could be compared with results obtained from semi-empirical methods, relying on the same
assumptions about the kind of flow field required to run the analysis within VSPAERO. A good agreement
was found with the isolated body derivatives. This was not the case, though, for wing and body results,
where differences between the results obtained from the two methods were significant for some cases. It
must be noted that also the geometry of the airplanes was far from being completely accurate since it
was approximated by the JPAD software. Some details were lost, such as the tip of the fuselage, whose
points are not exported in the degenerated geometry file handled by VSPAERO. However, even the semi-
empirical approaches provided large differences between their reference experiments and the equations
of their methods. This was attributed to the variety of the geometries involved. Thus, VSPAERO is
a valuable alternative to semi-empirical methods for the estimation of stability derivatives, especially if
integrated with a geometric modeller like JPAD.
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Appendix

Aircraft
Xle Zle xc̄ zc̄ Pole coordinates
(m) (m) (m) (m) x and z in m

1 A220-300 11.7 -1.25 3.78 0.509 16.45 -0.741
2 A320neo 12 -1.24 2.69 0.748 15.68 -0.492
3 A340 22.92 -1.78 7.61 1.323 32.55 -0.457
4 AN32 8.55 1.6 0.42 -0.124 9.67 1.476
5 ATR42 8.77 1.471 0.17 0 9.52 1.471
6 ATR72 11.2 1.65 0.21 0 11.99 1.65
7 B737-600 9 -0.8 3.71 0.663 13.82 -0.137
8 B737-700 10.3 -1 3.72 0.666 15.14 -0.334
9 B737-800 13.5 -0.9 3.72 0.666 18.34 -0.234
10 B737-900 15.24 -1 3.72 0.666 20.08 -0.334
11 C-130H 12 1.8 0 0 13.13 1.8
12 C-27J 7 1.5 0.13 0.098 7.84 1.598
13 Canadair CL415 7 1.72 0 0 7.88 1.72
14 EmbraerLegacy650 11.2 -0.9 2.27 0.201 14.18 -0.699
15 Falcon10x 13 -1 4.94 0.285 18.96 -0.715
16 Falcon8x 9.3 -0.9 3.6 0.213 13.7 -0.687
17 G400 9.9 -1 4.03 0.126 15 -0.874
18 G650 10.7 -1.2 4.49 0.291 16.31 -0.909
19 G700 11.8 -0.68 4.16 0.292 17.01 -0.388
20 G800 9.8 -1.1 3.95 0 14.84 -1.1
21 global6000 9.7 -1 3.57 0.269 14.24 -0.731
22 global7000 10.9 -0.9 4.61 0.257 16.6 -0.643
23 global8000 9.5 -0.9 4.44 0.347 15.03 -0.553
24 Learjet45 7.91 -0.68 0.85 0.14 9.29 -0.54
25 Praetor600 8.4 -0.9 2.69 0.372 11.69 -0.528
26 Q400 13.7 1.486 0.22 0.126 14.53 1.612
27 Regional Jet RM 16.33 -1.35 3.79 0.491 21.13 -0.859

Table A1: Positions of the Wing reference measurements
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Aircraft
XH,le ZH,le xH,c̄ zH,c̄ c̄H
(m) (m) (m) (m) (m)

1 A220-300 33.00 1.00 1.60 0.246 2.49
2 A320neo 31.53 0.67 1.65 0 2.80
3 A340 57.98 1.79 3.67 0.453 5.42
4 AN32 20.51 1.28 0.74 0.213 2.06
5 ATR42 20.53 5.60 0.35 0 1.52
6 ATR72 25.30 5.40 0.40 0 1.65
7 B737-600 24.90 1.20 1.86 0.504 2.62
8 B737-700 24.90 1.20 1.86 0.504 2.62
9 B737-800 33.53 1.20 1.86 0.504 2.62
10 B737-900 35.97 1.20 1.86 0.504 2.62
11 C-130H 25.50 1.70 0.80 0 3.41
12 C-27J 16.00 1.55 0.64 0.042 1.83
13 Canadair CL415 17.20 3.35 0.00 0 2.42
14 EmbraerLegacy650 24.40 4.70 0.72 0 1.87
15 Falcon10x 31.80 5.10 1.60 0 2.92
16 Falcon8x 20.80 2.58 1.48 -0.133 2.16
17 G400 24.10 4.70 1.27 0 2.17
18 G650 27.60 5.40 1.76 0 2.86
19 G700 28.80 4.10 1.80 0 2.73
20 G800 27.90 5.70 1.45 0 3.08
21 global6000 24.00 4.30 1.57 -0.151 2.63
22 global7000 28.10 4.50 1.58 -0.099 2.57
23 global8000 25.50 4.50 1.58 -0.099 2.72
24 Learjet45 15.67 2.35 0.64 0 1.24
25 Praetor600 18.60 3.80 1.19 0 1.94
26 Q400 30.40 5.40 0.50 0 1.80
27 Regional Jet RM 37.80 5.80 1.42 0 2.72

Table A2: Positions of the Horizontal Tail reference measurements
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Aircraft
CLα,W

CMα,W x̄a.c.,W
Xa.c.,W

(10−2 deg−1) (m)

1 A220-300 8.187 −1.098 0.384 16.97
2 A320neo 8.397 −0.777 0.342 16.05
3 A340 7.907 −0.948 0.370 33.52
4 AN32 8.812 −0.893 0.250* 9.67
5 ATR42 8.927 −0.166 0.250* 9.52
6 ATR72 9.075 −0.112 0.250* 11.99
7 B737-600 8.057 −0.774 0.346 14.25
8 B737-700 8.073 −0.786 0.347 15.58
9 B737-800 8.073 −0.786 0.347 18.78
10 B737-900 8.073 −0.783 0.347 20.52
11 C-130H 8.248 0.121 0.235 13.06
12 C-27J 8.394 −0.058 0.250* 7.84
13 Canadair CL415 8.332 0.125 0.235 7.82
14 EmbraerLegacy650 7.993 −0.547 0.318 14.37
15 Falcon10x 7.543 −0.653 0.322 19.26
16 Falcon8x 7.796 −0.836 0.357 14.05
17 G400 7.191 −0.635 0.338 15.38
18 G650 7.426 −0.690 0.343 16.72
19 G700 7.760 −0.479 0.312 17.26
20 G800 7.698 −0.588 0.326 15.17
21 global6000 7.761 −0.624 0.330 14.55
22 global7000 7.513 −0.608 0.331 16.95
23 global8000 7.546 −0.560 0.324 15.35
24 Learjet45 8.002 0.054 0.243 9.28
25 Praetor600 8.085 −0.652 0.331 11.88
26 Q400 9.167 0.127 0.236 14.49
27 Regional Jet RM 8.092 −0.544 0.317 21.40

Table A3: Values the lift and moment coefficients and the positions of the wing aerodynamic centre for
the isolated wing
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Aircraft
CLα,W

CMα,W
CNβ,W

CLβ,W

(10−2) (10−3) (10−5) (10−3)

1 A220-300 8.187 −10.984 −1.787 −1.530
2 A320neo 8.397 −7.767 −6.501 −1.703
3 A340 7.907 −9.481 −2.297 −1.733
4 AN32 8.812 −8.928 1.901 0.648
5 ATR42 8.927 −1.664 0.607 −0.142
6 ATR72 9.075 −1.121 0.659 −0.086
7 B737-600 8.057 −7.737 −4.513 −1.928
8 B737-700 8.073 −7.862 −7.044 −2.036
9 B737-800 8.073 −7.862 −7.044 −2.036
10 B737-900 8.073 −7.834 −7.077 −2.030
11 C-130H 8.248 1.214 0.848 0.066
12 C-27J 8.394 −0.582 −2.022 −0.856
13 Canadair CL415 8.332 1.250 0.440 0.020
14 EmbraerLegacy650 7.993 −5.472 −0.110 −1.260
15 Falcon10x 7.543 −6.534 2.474 −1.907
16 Falcon8x 7.796 −8.357 1.097 −1.538
17 G400 7.191 −6.349 2.325 −1.349
18 G650 7.426 −6.904 6.840 −2.466
19 G700 7.760 −4.794 0.723 −0.600
20 G800 7.698 −5.875 5.072 −0.923
21 global6000 7.761 −6.240 0.344 −1.702
22 global7000 7.513 −6.081 1.320 −1.322
23 global8000 7.546 −5.604 2.597 −1.671
24 Learjet45 8.002 0.539 −0.697 −0.678
25 Praetor600 8.085 −6.522 −1.778 −2.168
26 Q400 9.167 1.270 −0.122 −0.773
27 Regional Jet RM 8.092 −5.439 −0.667 −2.332

Table A4: Values of longitudinal and latero-directional stability derivatives for the isolated wings (all
coefficients are expressed in deg−1)
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Aircraft
CLα,WB CMα,WB CLβ,WB

CNβ,WB

(10−2)

1 A220-300 8.160 1.832 1.991 −0.261
2 A320neo 8.355 1.752 1.923 −0.279
3 A340 7.943 1.023 1.021 −0.157
4 AN32 8.745 1.693 1.834 −0.140
5 ATR42 8.806 2.738 2.570 −0.223
6 ATR72 8.979 2.973 2.851 −0.228
7 B737-600 8.094 0.882 1.122 −0.196
8 B737-700 8.116 0.882 1.282 −0.215
9 B737-800 8.066 1.087 1.587 −0.266

10 B737-900 8.117 1.263 1.733 −0.289
11 C-130H 8.079 1.000 1.079 −0.155
12 C-27J 8.235 1.311 1.296 −0.244
13 Canadair CL415 8.141 1.113 1.287 −0.133
14 EmbraerLegacy650 7.911 1.108 1.401 −0.195
15 Falcon10x 7.486 0.641 0.875 −0.120
16 Falcon8x 7.712 0.872 1.275 −0.146
17 G400 7.149 0.448 0.604 −0.107
18 G650 8.849 0.542 0.664 −0.114
19 G700 7.716 0.699 0.846 −0.114
20 G800 7.663 0.605 0.734 −0.125
21 global6000 7.751 0.535 0.698 −0.110
22 global7000 7.499 0.416 0.604 −0.093
23 global8000 7.518 0.367 0.543 −0.083
24 Learjet45 7.947 1.103 1.305 −0.209
25 Praetor600 8.001 1.150 1.496 −0.172
26 Q400 9.108 2.577 2.594 −0.206
27 Regional Jet RM 8.008 1.764 2.156 −0.271

Table A5: Values of longitudinal and latero-directional stability derivatives in deg−1 for the wing-body
configuration
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Aircraft CMα,B CLβ,B
CNβ,B

(10−2) (10−3) (10−5)

1 A220-300 2.364 −2.609 6.136
2 A320neo 2.298 −2.791 7.343
3 A340 1.230 −1.568 3.356
4 AN32 1.865 −1.398 6.474
5 ATR42 2.797 −2.235 9.756
6 ATR72 3.064 −2.282 6.644
7 B737-600 1.339 −1.960 4.787
8 B737-700 1.479 −2.153 5.036
9 B737-800 1.827 −2.659 5.222

10 B737-900 1.987 −2.890 5.195
11 C-130H 1.055 −1.551 7.188
12 C-27J 1.379 −2.437 14.065
13 Canadair CL415 1.226 −1.326 9.624
14 EmbraerLegacy650 1.486 −1.950 5.151
15 Falcon10x 0.962 −1.205 1.888
16 Falcon8x 1.204 −1.457 3.844
17 G400 0.658 −1.071 2.495
18 G650 0.767 −1.138 2.125
19 G700 0.964 −1.141 2.543
20 G800 0.894 −1.249 2.109
21 global6000 0.819 −1.101 2.696
22 global7000 0.677 −0.931 1.686
23 global8000 0.594 −0.825 1.666
24 Learjet45 1.336 −2.090 6.448
25 Praetor600 1.545 −1.724 5.378
26 Q400 2.722 −2.058 5.193
27 Regional Jet RM 2.302 −2.714 5.844

Table A6: Values of longitudinal and latero-directional stability derivatives in deg−1 for the isolated
fuselage obtained from VSPAERO
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CMα,B
CNβ,B

Aircraft VLM Munk err. VLM Munk err.
(10−2) (%) (10−3) (%)

1 A220-300 2.364 2.550 7.29 −2.609 −2.771 5.84
2 A320neo 2.298 2.457 6.48 −2.791 −2.951 5.44
3 A340 1.230 1.345 8.54 −1.568 −1.652 5.14
4 AN32 1.865 1.967 5.19 −1.398 −1.424 1.85
5 ATR42 2.797 2.888 3.13 −2.235 −2.318 3.60
6 ATR72 3.064 3.267 6.22 −2.282 −2.391 4.56
7 B737-600 1.339 1.361 1.62 −1.960 −1.826 7.36
8 B737-700 1.479 1.516 2.45 −2.153 −2.024 6.37
9 B737-800 1.827 1.907 4.21 −2.659 −2.544 4.51
10 B737-900 1.987 2.084 4.62 −2.890 −2.774 4.18
11 C-130H 1.055 1.070 1.42 −1.551 −1.495 3.72
12 C-27J 1.379 1.399 1.46 −2.437 −2.518 3.23
13 Canadair CL415 1.226 1.212 1.16 −1.326 −1.260 5.21
14 EmbraerLegacy650 1.486 1.628 8.75 −1.950 −2.127 8.28
15 Falcon10x 0.962 1.048 8.28 −1.205 −1.256 4.05
16 Falcon8x 1.204 1.303 7.63 −1.457 −1.586 8.10
17 G400 0.658 0.707 7.01 −1.071 −1.147 6.66
18 G650 0.767 0.824 6.95 −1.138 −1.206 5.65
19 G700 0.964 1.033 6.70 −1.141 −1.173 2.75
20 G800 0.894 0.961 7.02 −1.249 −1.355 7.81
21 global6000 0.819 0.881 6.99 −1.101 −1.175 6.32
22 global7000 0.677 0.733 7.67 −0.931 −1.010 7.77
23 global8000 0.594 0.642 7.49 −0.825 −0.882 6.49
24 Learjet45 1.336 1.426 6.30 −2.090 −2.269 7.89
25 Praetor600 1.545 1.681 8.08 −1.724 −1.871 7.87
26 Q400 2.722 2.932 7.17 −2.058 −2.182 5.66
27 Regional Jet RM 2.302 2.483 7.30 −2.714 −2.964 8.43

Table A7: Comparison among results from the Munk method and VLM on isolated fuselage
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CMα,WB

Aircraft VLM Multhopp err.
(10−2) (%)

1 A220-300 1.832 1.991 8.01
2 A320neo 1.752 1.923 8.88
3 A340 1.023 1.021 0.28
4 AN32 1.693 1.834 7.72
5 ATR42 2.738 2.570 6.51
6 ATR72 2.973 2.851 4.27
7 B737-600 0.882 1.122 21.36
8 B737-700 0.882 1.282 31.25
9 B737-800 1.087 1.587 31.51

10 B737-900 1.263 1.733 27.11
11 C-130H 1.000 1.079 7.34
12 C-27J 1.311 1.296 1.20
13 Canadair CL415 1.113 1.287 13.57
14 EmbraerLegacy650 1.108 1.401 20.93
15 Falcon10x 0.641 0.875 26.74
16 Falcon8x 0.872 1.275 31.57
17 G400 0.448 0.604 25.91
18 G650 0.542 0.664 18.42
19 G700 0.699 0.846 17.34
20 G800 0.605 0.734 17.56
21 global6000 0.535 0.698 23.30
22 global7000 0.416 0.604 31.09
23 global8000 0.367 0.543 32.46
24 Learjet45 1.103 1.305 15.45
25 Praetor600 1.150 1.496 23.14
26 Q400 2.577 2.594 0.67
27 Regional Jet RM 1.764 2.156 18.16

Table A8: Comparison among results from the Multhopp method and VLM (in deg−1) on the body under
the aerodynamic interference of the wing
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Aircraft
CMW 10−1 at α, deg

0 2.5 5 7.5 10

1 A220-300 −1.226 −1.455 −1.719 −2.017 −2.317
2 A320neo −0.837 −0.986 −1.170 −1.366 −1.617
3 A340 −1.277 −1.482 −1.708 −1.959 −2.223
4 AN32 −0.048 −0.033 −0.042 −0.076 −0.132
5 ATR42 −0.022 −0.010 −0.033 −0.093 −0.189
6 ATR72 −0.039 −0.020 −0.034 −0.077 −0.150
7 B737-600 −1.658 −1.851 −2.042 −2.235 −2.433
8 B737-700 −1.660 −1.849 −2.046 −2.241 −2.447
9 B737-800 −1.660 −1.849 −2.046 −2.241 −2.447
10 B737-900 −1.660 −1.846 −2.045 −2.240 −2.442
11 C-130H −0.088 −0.055 −0.023 0.006 0.033
12 C-27J −0.071 −0.048 −0.050 −0.077 −0.129
13 Canadair CL415 −0.084 −0.050 −0.017 0.014 0.040
14 EmbraerLegacy650 −1.262 −1.404 −1.544 −1.683 −1.806
15 Falcon10x −1.523 −1.672 −1.808 −1.931 −2.076
16 Falcon8x −1.682 −1.905 −2.114 −2.319 −2.519
17 G400 −1.362 −1.527 −1.684 −1.848 −1.995
18 G650 −1.687 −1.871 −2.038 −2.210 −2.380
19 G700 0.001 −0.122 −0.243 −0.362 −0.478
20 G800 −1.685 −1.840 −1.984 −2.125 −2.277
21 global6000 −1.650 −1.821 −1.986 −2.135 −2.274
22 global7000 −1.146 −1.304 −1.461 −1.607 −1.755
23 global8000 −1.568 −1.717 −1.855 −1.996 −2.129
24 Learjet45 −1.393 −1.380 −1.373 −1.358 −1.337
25 Praetor600 −1.622 −1.794 −1.963 −2.124 −2.273
26 Q400 −0.051 −0.016 0.017 0.047 0.076
27 Regional Jet RM −1.601 −1.744 −1.881 −2.023 −2.142

Table A9: Values of CMW
in deg−1 at different angles of attack
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