Interval Temporal Logics over Finite Linear Orders: the Complete Picture

D. Bresolin\(^1\) and D. Della Monica\(^2\) and A. Montanari\(^3\) and P. Sala\(^4\) and G. Sciavicco\(^5\)

Abstract. Interval temporal logics provide a natural framework for temporal reasoning about interval structures over linearly ordered domains, where intervals are taken as the primitive ontological entities. In this paper, we focus on the class of all finite linear orders, that come into play in a variety of application domains. Consider, for instance, planning problems. They consist of finding a finite partially-ordered sequence of actions that, applied to an initial world state, leads to a final state (the goal), within a bounded amount of time, satisfying suitable conditions about which sequence of states the world must go through. We give a complete picture of HS fragments with respect to (un)decidability of their satisfiability problem over finite linear orders, reviewing known results and providing missing ones. In particular, we identify the set of all expressively-different decidable fragments, and we determine the exact complexity of each of them. We will denote HS fragments by the set of their modalities, in alphabetical order, and omitting those which are definable in terms of the others (in the considered fragment). As we will see, if we restrict our attention to decidable fragments, the only definable operators are \(\langle L \rangle\) and \(\langle T \rangle\), corresponding to Allen’s relations \(after\) and \(before\), respectively: \(\langle L \rangle\) can be defined as \(\langle A \rangle \langle A \rangle\), and \(\langle T \rangle\) by \(\langle A \rangle \langle G \rangle\). Moreover, thanks to the highly symmetrical structure of the class of decidable fragments, all decidability results for fragments involving modalities \(\langle B \rangle\) and \(\langle B \rangle\) (for Allen’s relations \(starts\) and \(started\) by) can be immediately transferred to mirror fragments involving modalities \(\langle E \rangle\) and \(\langle E \rangle\) (for Allen’s relations \(finishes\) and \(finished\) by). More precisely, each HS fragment in Fig. 2 can be transformed into its mirror image by reversing the time order and replacing \(\langle A \rangle\) by \(\langle A \rangle\), \(\langle L \rangle\) by \(\langle L \rangle\), \(\langle T \rangle\) by \(\langle T \rangle\), \(\langle E \rangle\) by \(\langle E \rangle\), and \(\langle B \rangle\) by \(\langle E \rangle\). We will refer to the Hasse diagram obtained by replacing each fragment with its mirror image as the mirror diagram. Fig. 2 displays 35 different decidable fragments. If we pair them with the fragments in the mirror diagram, we obtain a total of 62 different decidable fragments (8 fragments belong to both diagrams).

Most of the results reported in this paper were already known: \(\langle L \rangle\) and \(\langle E \rangle\) is NP-complete [13]; \(\langle A \rangle\) and all its fragments have been proved with respect to various classes of interval structures (all, dense, and discrete linear orders, natural numbers, integers, rationals) [5, 12].

1 University of Verona, Italy, davide.bresolin@univr.it
2 University of Reykjavik, Iceland, dar biodm@ru.is
3 University of Udine, Italy, angelo.montanari@uniud.it
4 University of Verona, Italy, pietro.sala@univr.it
5 University of Murcia, Spain, guido@um.es

In this paper, we focus our attention on the class of all finite linear orders, that come into play in a variety of application domains. Consider, for instance, planning problems. They consist of finding a finite partially-ordered sequence of actions that, applied to an initial world state, leads to a final state (the goal), within a bounded amount of time, satisfying suitable conditions about which sequence of states the world must go through. We give a complete picture of HS fragments with respect to (un)decidability of their satisfiability problem over finite linear orders, reviewing known results and providing missing ones. In particular, we identify the set of all expressively-different decidable fragments, and we determine the exact complexity of each of them. We will denote HS fragments by the set of their modalities, in alphabetical order, and omitting those which are definable in terms of the others (in the considered fragment). As we will see, if we restrict our attention to decidable fragments, the only definable operators are \(\langle L \rangle\) and \(\langle T \rangle\), corresponding to Allen’s relations \(after\) and \(before\), respectively: \(\langle L \rangle\) can be defined as \(\langle A \rangle \langle A \rangle\), and \(\langle T \rangle\) by \(\langle A \rangle \langle G \rangle\). Moreover, thanks to the highly symmetrical structure of the class of decidable fragments, all decidability results for fragments involving modalities \(\langle B \rangle\) and \(\langle B \rangle\) (for Allen’s relations \(starts\) and \(started\) by) can be immediately transferred to mirror fragments involving modalities \(\langle E \rangle\) and \(\langle E \rangle\) (for Allen’s relations \(finishes\) and \(finished\) by). More precisely, each HS fragment in Fig. 2 can be transformed into its mirror image by reversing the time order and replacing \(\langle A \rangle\) by \(\langle A \rangle\), \(\langle L \rangle\) by \(\langle L \rangle\), \(\langle T \rangle\) by \(\langle T \rangle\), \(\langle E \rangle\) by \(\langle E \rangle\), and \(\langle B \rangle\) by \(\langle E \rangle\). We will refer to the Hasse diagram obtained by replacing each fragment with its mirror image as the mirror diagram. Fig. 2 displays 35 different decidable fragments. If we pair them with the fragments in the mirror diagram, we obtain a total of 62 different decidable fragments (8 fragments belong to both diagrams).

Most of the results reported in this paper were already known: \(\langle L \rangle\) and \(\langle E \rangle\) is NP-complete [13]; \(\langle A \rangle\) and all its fragments have been proved with respect to various classes of interval structures (all, dense, and discrete linear orders, natural numbers, integers, rationals) [5, 12].

1 University of Verona, Italy, davide.bresolin@univr.it
2 University of Reykjavik, Iceland, dar biodm@ru.is
3 University of Udine, Italy, angelo.montanari@uniud.it
4 University of Verona, Italy, pietro.sala@univr.it
5 University of Murcia, Spain, guido@um.es

In this paper, we focus our attention on the class of all finite linear orders, that come into play in a variety of application domains. Consider, for instance, planning problems. They consist of finding a finite partially-ordered sequence of actions that, applied to an initial world state, leads to a final state (the goal), within a bounded amount of time, satisfying suitable conditions about which sequence of states the world must go through. We give a complete picture of HS fragments with respect to (un)decidability of their satisfiability problem over finite linear orders, reviewing known results and providing missing ones. In particular, we identify the set of all expressively-different decidable fragments, and we determine the exact complexity of each of them. We will denote HS fragments by the set of their modalities, in alphabetical order, and omitting those which are definable in terms of the others (in the considered fragment). As we will see, if we restrict our attention to decidable fragments, the only definable operators are \(\langle L \rangle\) and \(\langle T \rangle\), corresponding to Allen’s relations \(after\) and \(before\), respectively: \(\langle L \rangle\) can be defined as \(\langle A \rangle \langle A \rangle\), and \(\langle T \rangle\) by \(\langle A \rangle \langle G \rangle\). Moreover, thanks to the highly symmetrical structure of the class of decidable fragments, all decidability results for fragments involving modalities \(\langle B \rangle\) and \(\langle B \rangle\) (for Allen’s relations \(starts\) and \(started\) by) can be immediately transferred to mirror fragments involving modalities \(\langle E \rangle\) and \(\langle E \rangle\) (for Allen’s relations \(finishes\) and \(finished\) by). More precisely, each HS fragment in Fig. 2 can be transformed into its mirror image by reversing the time order and replacing \(\langle A \rangle\) by \(\langle A \rangle\), \(\langle L \rangle\) by \(\langle L \rangle\), \(\langle T \rangle\) by \(\langle T \rangle\), \(\langle E \rangle\) by \(\langle E \rangle\), and \(\langle B \rangle\) by \(\langle E \rangle\). We will refer to the Hasse diagram obtained by replacing each fragment with its mirror image as the mirror diagram. Fig. 2 displays 35 different decidable fragments. If we pair them with the fragments in the mirror diagram, we obtain a total of 62 different decidable fragments (8 fragments belong to both diagrams).

Most of the results reported in this paper were already known: \(\langle L \rangle\) and \(\langle E \rangle\) is NP-complete [13]; \(\langle A \rangle\) and all its fragments have been proved with respect to various classes of interval structures (all, dense, and discrete linear orders, natural numbers, integers, rationals) [5, 12].
now complete. In particular, we would like to point out that fragments \mathcal{D} and \mathcal{O}, and \mathcal{D} and \mathcal{O} have been shown to be undecidable in [16] and [6], respectively. Undecidability of any fragment including them immediately follows. Similarly, undecidability of any fragment including \mathcal{BE}, \mathcal{BE}, \mathcal{BE}, or \mathcal{BE} has been shown in [3].

2 Preliminaries

Let $\mathbb{D} = (D, <)$ be a finite linearly ordered set. An interval over \mathbb{D} is an ordered pair $[x, y]$, where $x, y \in D$ and $x < y$ (strict semantics). There are 12 different non-trivial ordering relations (excluding equality) between any pair of intervals in a linear order, often called Allen’s relations [1]: the six relations depicted in Fig. 1 and the inverse ones. We interpret interval structures as Kripke structures and Allen’s relations as accessibility relations, thus associating a modality $\langle X \rangle$ with each Allen’s relation R_X. For each operator $\langle X \rangle$, its inverse (or transpose), denoted by $\langle X' \rangle$, corresponds to the inverse relation $R_{X'}$ of R_X. That is, $R_{X'} = (R_X)^{-1}$.

Halpern and Shoham’s logic HS is a multi-modal logic with formulas built on a set AP of propositional letters, the boolean connectives \lor and \land, and a modality for each Allen’s relation. We denote by X_1, \ldots, X_n the fragment of HS featuring a modality for each Allen’s relation in the subset $\{R_{X_1}, \ldots, R_{X_n}\}$. Formulas of X_1, \ldots, X_n are defined by the grammar:

$$\phi ::= p \mid \neg \phi \mid \phi \lor \phi \mid \langle X_1 \rangle \phi \mid \ldots \mid \langle X_n \rangle \phi.$$

The other boolean connectives can be viewed as abbreviations, and the dual operators $\langle X \rangle$ are defined as usual, that is, $\langle X \rangle \equiv \neg \langle \neg X \rangle \neg \neg \phi$. Given a formula ϕ, its length, denoted by $|\phi|$, is the number of its symbols. The semantics of HS is given in terms of interval models $M = (\mathbb{D}, V, \ll)$, where \ll is the set of all intervals over \mathbb{D} and $V : AP \rightarrow 2^{\mathbb{D}}$ is a valuation function that assigns to every $p \in AP$ the set of intervals which p holds. The truth of a formula over a given interval $[x, y]$ in an interval model M is defined by structural induction on formulas: (i) a proposition letter p is true over an interval $[x, y]$ iff $[x, y] \in V(p)$; (ii) boolean connectives are dealt with in the standard way; (iii) for each modality $\langle X \rangle$, it holds that $M, [x, y] \models \langle X \rangle \psi$ iff there exists an interval $[x', y']$ such that $[x, y] \mathcal{R}_X [x', y']$ and $M, [x', y'] \models \psi$, where \mathcal{R}_X is the relation corresponding to $\langle X \rangle$. An HS-formula ϕ is valid, denoted by $\models \phi$, if it is true on every interval in every interval model.

3 Expressiveness and Undecidability

In this section, we study the expressive power of HS fragments over the class of finite linear orders. Given a fragment $\mathcal{F} = X_1X_2 \ldots X_n$ and a modal operator $\langle X \rangle$, we write $\langle X \rangle \in \mathcal{F}$ if $X \in \{X_1, \ldots, X_n\}$. Given two fragments \mathcal{F}_1 and \mathcal{F}_2, we write $\mathcal{F}_1 \subseteq \mathcal{F}_2$ if $\langle X \rangle \in \mathcal{F}_1$ implies $\langle X \rangle \in \mathcal{F}_2$, for every modality $\langle X \rangle$.

Definition 1 An HS modality $\langle X \rangle$ is definable in an HS fragment \mathcal{F}, denoted $\langle X \rangle \subseteq \mathcal{F}$, if $\langle X \rangle p \equiv \psi(p)$ for some formula $\psi(p) \in \mathcal{F}$, for any fixed proposition letter p. The equivalence $\langle X \rangle p \equiv \psi(p)$ is called an inter-definability equation for $\langle X \rangle$ in \mathcal{F}.

In [14], Halpern and Shoham show that, according to strict semantics, all HS modalities are definable in the fragment featuring the modalities $\langle A \rangle$, $\langle B \rangle$, and $\langle E \rangle$, and their transposes $\langle A' \rangle$, $\langle B' \rangle$, and $\langle E' \rangle$ (in case non-strict semantics is assumed, the four modalities $\langle B \rangle$, $\langle E \rangle$, $\langle B' \rangle$, and $\langle E' \rangle$ suffice, as shown in [21]). Given two HS fragments \mathcal{F}_1 and \mathcal{F}_2, we say that \mathcal{F}_2 is at least as expressive as \mathcal{F}_1 ($\mathcal{F}_1 \subseteq \mathcal{F}_2$) if each operator $\langle X \rangle \in \mathcal{F}_1$ is definable in \mathcal{F}_2, and that \mathcal{F}_1 is strictly less expressive than \mathcal{F}_2 ($\mathcal{F}_1 \preceq \mathcal{F}_2$), if $\mathcal{F}_1 \subseteq \mathcal{F}_2$ but not $\mathcal{F}_2 \subseteq \mathcal{F}_1$. Moreover, we say that \mathcal{F}_1 and \mathcal{F}_2 are expressively incomparable ($\mathcal{F}_1 \not\preceq \mathcal{F}_2$), if neither $\mathcal{F}_1 \subseteq \mathcal{F}_2$ nor $\mathcal{F}_2 \subseteq \mathcal{F}_1$.

In order to show non-definability of a given modality in a certain fragment, we use the standard notion of bisimulation, and the invariance of modal formulas with respect to bisimulations (see, e.g., [2]). More precisely, we exploit the fact that any \mathcal{F}-bisimulation preserves the truth of all formulas in \mathcal{F}. Thus, to prove that a modality $\langle X \rangle$ is not definable in \mathcal{F}, it suffices to construct a pair of interval models M and M' and a \mathcal{F}-bisimulation between them, relating a pair of intervals $[a, b] \in M$ and $[a', b'] \in M'$, such that $M, [a, b] \models \langle X \rangle p$, while $M', [a', b'] \not\models \langle X \rangle p$.

To prove that Fig. 2 is sound and complete with respect to the class of finite linear orders (see Theorem 4 below), we focus our attention on \mathcal{AABB} and its fragments showing that (i) each pair of fragments which are not related to each other in Fig. 2 are expressively incomparable; (ii) an edge from a fragment \mathcal{F}_1 to a fragment \mathcal{F}_2 means that $\mathcal{F}_2 \preceq \mathcal{F}_1$; (iii) each fragment which is displayed neither in Fig. 2 nor in the mirror diagram is undecidable. It can be easily shown that (i) and (ii) are immediate consequences of the following lemma.

Lemma 2 $\langle L \rangle p \equiv \langle A \rangle \langle A \rangle p$ and $\langle T \rangle p \equiv \langle A \rangle \langle A \rangle p$ are all and only the inter-definability equations for \mathcal{AABB} over finite linear orders.

Proof. The soundness proof is straightforward. To prove that these equations are the only possible ones, for each operator $\langle X \rangle \in \mathcal{AABB}$, we show that $\langle X \rangle$ is not definable in the maximal fragment \mathcal{AABB} not containing $\langle X \rangle$ itself. This amounts to prove that: (1) $\langle A \rangle \not\equiv \mathcal{AABB}$ and $\langle A \rangle \not\equiv \mathcal{AABB}$; (2) $\langle B \rangle \not\equiv \mathcal{AABB}$ and $\langle B \rangle \not\equiv \mathcal{AABB}$; (3) $\langle E \rangle \not\equiv \mathcal{AABB}$ and $\langle E \rangle \not\equiv \mathcal{AABB}$. As for (1), let $M_1 = (\langle 0 \rangle, V_1)$ and $M_2 = (\langle 0 \rangle, V_2)$ be two models based on $D = \{0, 1, 2\}$, with the usual ordering, V_1 and V_2 be such that $V_1(p) = \{1, 2\}$ and $V_2(p) = \emptyset$, where p is the only proposition letter in AP, and \models be a relation between (intervals of) M_1 and M_2 defined as $Z = \{(0, 1), (0, 2), (1, 2)\}$. It can be easily shown that Z is an \mathcal{AABB}-bisimulation. The local property trivially holds, since all Z-related intervals satisfy $\neg p$. As for forward and backward conditions, starting from interval $(0, 1, 0)$, modalities $\langle A \rangle \not\equiv \mathcal{AABB}$ only allows one to reach interval $[0, 2]$ (and vice versa), that in both models satisfies $\neg p$. Hence, since $(0, 1) \in Z$, it holds that $M_1, [0, 1] \models \psi$ iff $M_2, [0, 1] \models \psi$, for every $\psi \in \mathcal{AABB}$. However, $M_1, [0, 1] \models \langle A \rangle p$, but $M_2, [0, 1] \models \neg \langle A \rangle p$. Therefore, $\langle A \rangle \not\equiv \mathcal{AABB}$. A similar (reversed) argument works for $\langle E \rangle$.

As for (2), let M_1 and M_2 be defined as in case (1), the only difference being that $V_1(p) = \{0, 2\}$ and $V_2(p) = \emptyset$, and $Z = \{(0, 1), [1, 2], (1, 2)\}$. It can be easily shown that Z is an
AAB-bimulation. The only interval that differentiates the two models (interval \([0, 2]) is not reachable from \([0, 1]\) by using modalities in \text{AAB}. Since \((\{0, 1\}, 0, 1) \models (D)p\) and \((M, \{0, 1\} \models (E)p\), we can conclude that \((M) \not\models \text{AAB}\). As before, a reversed argument works for \((E)\).

As for (3), let \(M_1 = (\{I\}, V_1)\) and \(M_2 = (\{I\}, V_2)\), where \(D = \{0, 1, 2, 3\}\), with the usual ordering, and \(V_1\) and \(V_2\) are such that \(V_1(p) = \{0, 1\}\) and \(V_2(p) = \emptyset\). \(Z = \{\{2, 3\}, \{2, 3\}\}\) is an AAB-bimulation, as no interval is reachable from \([2, 3]\). Since \(M_1, [2, 3] \models (L)p\) and \(M_2, [2, 3] \models (\neg L)p\), it follows that \((L) \not\models \text{AAB}\). A similar argument works for \((L) \not\models \text{AAB}\).

Property (iii) can be proved by pairing Lemma 2 with known undecidability results for HS fragments.

Lemma 3 Each HS fragment which is displayed neither in Fig. 2 nor in the mirror diagram is undecidable over finite linear orders.

Proof. First, observe that, by Lemma 2, Fig. 2 contains all expressively-different fragments of HS featuring modalities from the set \(\{A, (A), (B), (L), (L)\}\). Now, by contradiction, suppose that there exists a decidable fragment \(F\) which is not included in Fig. 2 or in the mirror diagram. By the previous observation, \(F\) must contain at least one modality from the set \(\{(D), (E), (O), (L), (L)\}\). If it contains one modality from the set \(\{(D), (E), (O), (L)\}\), then it is undecidable, since all HS fragments featuring one (and only one) of these modalities are already undecidable [6, 16]. Hence, \(F\) must contain at least one modality in the set \(\{(L), (L)\}\). This prevents modalities \((B)\) and \((E)\) to be included in \(F\), as they would immediately yield undecidability [3]. Then, it follows that \(F\) can contain only modalities from the set \(\{(A), (O), (E), (L), (L)\}\), and thus it must belong to the mirror diagram (contradiction).

Theorem 4 The Hasse diagram in Fig. 2, together with the mirror diagram, displays all and only decidable fragments of HS over the class of finite linear orders, and their relative expressive power.

4 NP-completeness

In this section, we prove that NP-completeness of \(\text{BBL}\) [13] can be extended to \(\text{BBLL}\). Since the satisfiability problem for propositional logic is itself NP-complete, \(\text{BBLL}\) and its fragments are NP-hard. The core of this section is a membership proof, namely, NP-membership. By a model-theoretic argument, we show that finite satisfiability of a \(\text{BBLL}\)-formula \(\varphi\) can be reduced to satisfiability in a model whose domain has a cardinality lower than a certain value which is polynomial in \(|\varphi|\).

As a preliminary step, we show that satisfiability of a \(\text{BBLL}\)-formula \(\varphi\) in a finite model \(M = (\{I(\{0, \ldots, N\}\}, V)\) can be reduced to satisfiability of the formula \(\tau(\varphi) = \varphi \lor (\neg L)\varphi \lor (L)\varphi \lor (L)(\varphi \lor (L)\varphi)\) over the interval \([0, 1]\), that is, \(M, [\infty, \infty] \models \varphi\) if and only if \(M, [0, 1] \not\models \tau(\varphi)\). The reader can easily check that the transformation \(\tau\) does not work whenever \(N = 2\) (resp., \(N = 3\)) and \(\varphi\) is satisfied by the interval \([1, 2]\) (resp., by \([1, 3]\)). However, in both cases, by a bisimulation argument, we can prove that there exists a model \(M' = (\{I(\{0, \ldots, N'\}\}, V)\) with \(N' < N\), such that \(M', [0, 1] \not\models \varphi\). Thus, we can safely restrict our attention to the problem of satisfiability over \([0, 1]\) (initial satisfiability).

Given a \(\text{BBLL}\)-formula \(\varphi\), let \(C(\varphi)\) be the set of all its subformulas and of their negations, and let \(M\) be a model such that \(M, [0, 1] \not\models \varphi\). For each point \(x\) of the domain of \(M\), let \(R_L(x)\) (resp., \(R_{L*}(x)\)) be the maximal subset of \(C(\varphi)\) consisting of all and only \((L)\)-formulas (resp., \((L*)\)-formulas) and their negations that are satisfied over intervals ending (resp., beginning) at \(x\). It can be easily checked that all intervals ending (resp., beginning) at the same point satisfy the same \((L)\)-formulas (resp., \((L*)\)-formulas) and their negations. Let \(R(x) = R_L(x) \cup R_{L*}(x)\). \(\text{R}(x)\) is consistent, as it cannot contain a formula and its negation. Now, let \(\text{R}\) be the subset of \(C(\varphi)\) that contains all possible \((L)\)- and \((L*)\)-formula and their negations. \(|\text{R}\|\) is polynomial (linear) in \(|\varphi|\).

Lemma 5 Let \(\varphi\) be a \(\text{BBLL}\)-formula. Then, \(\varphi\) is initially satisfiable over a finite model if and only if it is initially satisfiable over a model \(M = (\{I(\{0, \ldots, N\}\}, V)\), with \(N \leq (m_L + 1) \cdot m_B + m_L + 2\), where \(m_L = 2 \cdot |\text{R}|\) and \(m_B\) is the cardinality of the set of all \((B)\)- and \((\neg B)\)-formulas in \(C(\varphi)\).

Proof. One direction is trivial. As for the other, let us assume that \(\varphi\) is initially satisfiable over a finite model \(M = (\{I(\{0, \ldots, N\}\}, V)\), with \(N > (m_L+1) \cdot m_B + m_L + 2\). For each \(\psi \in C(\varphi)\) such that \(\omega(\psi) \in R(x)\), for some \(1 < x < N\), we choose an interval \([x^*_{\max}, y^*_{\max}]\) such that it satisfies \(\psi\) and for each \(z > x^*_{\max}\) no interval starting at \(z\)
implies that R satisfies ψ, such that this is not the case, that is, assume \bar{s} satisfies ψ. Since \bar{x} is a point that the model M satisfies $\bar{x} \notin R$. Now, by definition of \bar{y}, $\zeta \notin R(y)$. This implies that $y < \bar{y}$, as (\bar{L}) is transitive. Next, consider the above-defined interval $[x_{\max}, y_{\max}]$. Two cases may arise: either $x_{\max} < y$ or $x_{\max} > y$. In the former case, since $(\bar{L}) \psi \notin R(y)$, there must be an interval $[x', y']$, with $x' > y$, that satisfies ψ, thus contradicting the definition of x_{\max}. In the latter case, $(\bar{L}) \psi \notin R(y)$, against the hypothesis. The case in which $[\bar{L}(\bar{y}) \notin R(y)$ and $[\bar{L}(\bar{y}) \notin R(y)$ can be proved in a similar way.

Since $N > (m_L + 1) \cdot m_B + m_L + 2$, by a simple combinatorial argument, we can conclude that there must be a set B_l, such that $|B_l| > m_L$. Let \bar{x} be the least point in B_l. We prove that the model $M' = \{\{0, \ldots, N - 1\}, V\}$, obtained from M by deleting \bar{x} and by replacing V by a suitable adaptation of it V', is such that $M'[0, \ldots, L - 1] \models \phi$. To this end, consider $M'' = \{\{0, \ldots, N - 1\}, V''\}$, where V'' is the projection of V over the intervals that neither start nor end at \bar{x}. The replacement of M by M'' does not affect satisfaction of box-formulas in $Cl(\phi)$. The only possible problem is the existence of diamond-formulas which were satisfied in M and are not satisfied anymore in M''.

Let $[y, x']$, with $y < \bar{x}$, be such that $M, [y, x'] \models (\bar{L}) \psi$. Since M is a model of ϕ, then there exists an interval $[x', y']$, with $x' > y$, in M that satisfies ψ. Now, in M', there exists an interval $[x_{\max}', y_{\max}']$ such that $x_{\max}, y_{\max} \in B_l$, $x_{\max}', y_{\max}' \models \psi$, and $x_{\max}' \geq x'$. Therefore, $M''', [y, x'] \models (\bar{L}) \psi$. A symmetric argument can be applied to the case of $\bar{D}(\bar{L})$. Thus, the removal of point \bar{x} does not generate any problem with (\bar{L})- or (\bar{L})-formulas.

Now, let $[y, x]$, with $y < \bar{x}$, be such that $M, [y, x] \models (\bar{B}) \psi$ (resp., $M, [y, x] \models (\bar{B}) \psi$) for some formula $(\bar{B}) \psi \in Cl(\phi)$ (resp., $(\bar{B}) \psi \in Cl(\phi)$, and $[y, x]$ is the only interval in M, starting at y, that satisfies ψ. Since \bar{x} is the least point in B_l, $M, [y, x] \models (\bar{B}) \psi$ (resp., $M, [y, x] \models (\bar{B}) \psi$) as well, by transitivity of (\bar{B}) (resp., (\bar{B})).

Consider now the first m_B successors of \bar{x}: $\bar{x} + 1, \ldots, \bar{x} + m_B$. Since $|B_l| > m_B$, all these points belong to B_l. We prove that there exists at least one point $\bar{x} + k$ among them that satisfies the following properties: (a) for every $(\bar{B}) \xi \in Cl(\phi)$, if $M, [\bar{x}, \bar{x} + k + 1] \models (\bar{B}) \xi$, then $M, [y, \bar{x} + k] \models (\bar{B}) \xi$, and (b) for every $(\bar{B}) \xi \in Cl(\phi)$, if $M, [\bar{x}, \bar{x} + k - 1] \models (\bar{B}) \xi$, then $M, [y, \bar{x} + k] \models (\bar{B}) \xi$. To this end, it suffices to observe that, by transitivity of (\bar{B}), if $M, [y, \bar{x} + k + 1] \models (\bar{B}) \xi$, then $M, [y, x'] \models (\bar{B}) \xi$ for every $x' \geq \bar{x} + k + 1$. Hence, if $\bar{x} + k$ does not satisfy property (a) for $(\bar{B}) \xi$, then all its successors are forced to satisfy it for $(\bar{B}) \xi$. Symmetrically, by transitivity of (\bar{B}), if $M, [\bar{x}, \bar{x} + k] \models (\bar{B}) \xi$, but $M, [y, \bar{x} + k] \not\models (\bar{B}) \xi$, then $M, [y, x] \models (\bar{B}) \xi$ for every $x' \geq \bar{x} + k$. Hence, all successors of $\bar{x} + k$ trivially satisfy property (b) for $(\bar{B}) \xi$. Since the number of (\bar{B})- and (\bar{B})-formulas is limited by m_B, a point with the required properties can always be found.

We fix the defect by defining the labeling V' as follows: for every proposition letter p and $1 \leq t \leq k$, we put $[y, \bar{x} + t] \in V'(p)$ if and only if $[y, \bar{x} + t + 1] \in V(p)$; the labeling of the other intervals remains unchanged. From the definition of the set B_l, it easily follows that such a change in the labeling does not introduce new defects of any kind.

By iterating such a procedure, we obtain the required model M'. ■ Since m_L and m_B are both polynomial in $|\phi|$, we can state the following theorem.

Theorem 6 The finite satisfiability problem for BBLL and all its sub-fragments is NP-complete.

5 NEXPTIME-completeness

As we pointed out in Section 1, the subset of NEXPTIME-complete fragments has been already studied in its full detail. NEXPTIME-membership of BA has been shown in [5]. NEXPTIME-hardness of AB, given in [8], holds also for finite satisfiability, and it can be easily adapted to the case of BA, NEXPTIME-hardness of any fragment containing (A) or (A) immediately follows.

Theorem 7 The finite satisfiability problem for $\mathsf{BA}, \mathsf{AC}, \mathsf{AL}, \mathsf{A}$, and BA is NEXPTIME-complete.

6 EXPSPACE-completeness

In this section, we study the computational complexity of $\mathsf{AB}\mathsf{LL}$ and of its subfragments. EXPSPACE-membership for AB has been shown in [9]. EXPSPACE-hardness holds for AB, as proved in [18]. In the following, we show that the reduction used in [18] also works also in the finite case, and it can be adapted to BA. EXPSPACE-hardness follows from a reduction of the 2^n-corridor tiling problem, which is known to be EXPSPACE-complete [15, Section 5.5]. Formally, an instance of the exponential-corridor tiling problem is a tuple $T = (T_0, t_0, t_1, T_2, T_3, C_H, C_V, n)$ consisting of a finite set T of tiles, two tiles $t_0, t_1 \in T$, a set of left tiles $T_L \subseteq T$, a set of right tiles $T_R \subseteq T$, two binary relations C_H and C_V over T, and a positive natural number n. The problem amounts to deciding whether there exists a positive natural number l and a tiling $f : \{0, \ldots, 2^n - 1\} \times \{0, \ldots, l - 1\} \rightarrow T$ of the corridor of width 2^n and height l, that associates the tile t_0 to (0,0), the tile t_1 to (0, l - 1), a tile in T_L (resp., T_R) with the first (resp., last) tile of every row of the corridor and that respects the following horizontal and vertical constraints C_H and C_V: (i) for every $x < 2^n - 1$ and every $y < l$, we have $f(x, y) \in C_H \cup (x + 1, y)$; and (ii) for every $x < 2^n$ and every $y < l - 1$, we have $f(x, y) \in C_V \cup f(x, y) + 1$.

Lemma 8 There exists a polynomial-time reduction from the 2^n-corridor tiling problem to the satisfiability problem for AB over finite linear orders.

Proof. Consider an instance $T = (T, t_0, t_1, T_2, T_3, C_H, C_V, n)$ of the 2^n-corridor tiling problem, where $T = \{t_0, t_1, \ldots, t_k\}$. We guarantee the existence of a tiling function $f : \{0, \ldots, 2^n - 1\} \times \{0, \ldots, l - 1\} \rightarrow T$ that satisfies T by means of a suitable AB-formula whose size is polynomial in $|T|$. We use $k + 1$ propositional letters t_0, t_1, \ldots, t_k to represent the tiles from T, a propositional letter x_0, \ldots, x_{n-1} to represent the binary expansion of the x-coordinate of a point in the corridor, and one propositional letter c to identify those intervals that correspond to points $p = (x, y)$ of the corridor of width 2^n and height l. Such a correspondence is obtained by ensuring that we interpret those proposition letters over intervals
of the type \(x + 2^n y, x + 2^n y + 1 \). The valuation function \(V \) of the model of the formula is then related to the tiling function \(f \) as follows: for each point \(p = (x, y) \in \{0, \ldots, 2^n - 1\} \times \{0, \ldots, l - 1\} \) and each tile \(t_i \in T \), if \(f(p) = t_i \), then \([x + 2^n y, x + 2^n y + 1] \in V(\{c, t_i, x_{i+1}, \ldots, x_{jn}\}) \), where \(\{j_1, j_2, \ldots, j_n\} \subseteq \{0, \ldots, n - 1\} \) and \(x = \sum_{j=1}^n j_i \cdot 2^j \). Let the universal modal operator \(U \) be defined as \([U] \psi = \psi \land \{x \land A|A|A\} \cdot \varphi \). First, we associate the proposition letter \(c \) with all and only the intervals of the form \([x + 2^n y, x + 2^n y + 1] \):

\[
\varphi_c = c \land [U](c \land (A \land T) \rightarrow (A \land C) \land [U]-(B) \cdot C).
\]

The tiling function \(f \) is represented by associating a unique proposition letter \(t_i \) with each \(c \)-labeled interval:

\[
\varphi_f = [U](c \rightarrow \bigvee_{0 \leq i \leq k} t_i) \land \bigwedge_{0 \leq i < j \leq k} (t_i \land t_j).
\]

Next, we associate a subset of the proposition letters \(x_0, \ldots, x_{n-1} \), that encodes the binary expansion of \(x \), with each interval of the form \([x + 2^n y, x + 2^n y + 1] \). Such a labeling can be enforced by the conjunction \(\varphi_{x_i} \) of the following three formulas:

\[
\varphi_{x_1} = \left(\bigwedge_{0 \leq i < n} \neg x_i \right), \quad \varphi_{x_2} = [U](c \rightarrow \varphi_{x_{inc}}), \quad \varphi_{x_3} = [U]\left(\bigwedge_{0 \leq i < n} (t_i \land t_{i+1}) \right).
\]

where \(\varphi_{x_{inc}} \) is defined as \(T \) when \(i = n \), and as

\[
\left((x_i \land A(c \land \neg x_i) \land \varphi_{x_{eq}+1}) \lor (\neg x_i \land (A(c \land x_i) \land \varphi_{x_{eq}})) \right).
\]

Similarly, \(\varphi_{x_{eq}} \) is defined as \(T \) when \(i = n \), and as

\[
\left((x_i \land A(c \land x_i)) \lor (\neg x_i \land (A(c \land x_i) \land \varphi_{x_{eq}})) \right).
\]

Finally, we establish a correspondence between intervals that represent vertically adjacent tiles by setting the proposition letter \(co \):

\[
\varphi_{co} = [U](c \land \varphi_{co}) \land [U](c \land (B) \cdot \varphi_{eq} \land (B) \cdot co) \land [U]-(\varphi_{eq} \land (B) \cdot co).
\]

To conclude the proof, we must enforce the horizontal and vertical constraints \(C_H \) and \(C_V \) and the constraints on the border of the corridor. This can be done by means of the following formulas (remember that, by definition of tiling, \(t_0, t_1, t_2 \in T \) and \(T_L, T_R \subseteq T \)):

\[
\varphi_{01} = t_0 \land (A) \land (c \land \neg x_i \land t_1 \land \neg (A) \land co)
\]

\[
\varphi_{L} = [U]\left(c \land \bigwedge_{0 \leq i < n} \neg x_i \rightarrow \bigvee_{t_i \in T_L} t_i \right),
\]

\[
\varphi_{R} = [U]\left(c \land \bigwedge_{0 \leq i < n} x_i \rightarrow \bigvee_{t_i \in T_R} t_i \right),
\]

\[
\varphi_{H} = [U]\left(\bigwedge_{0 \leq i < k} (t_i \land (A) \land T) \rightarrow \bigvee_{(t_i, t_j) \in C_N} (A) \land t_j \right).
\]

The formula \(\varphi_T = \varphi_c \land \varphi_f \land \varphi_{co} \land \varphi_{01} \land \varphi_L \land \varphi_R \land \varphi_H \land \varphi_{eq} \) is of polynomial size w.r.t. \(|T| \) and is satisfiable if and only if \(T \) is a positive instance of the \(2^n \)-corridor tiling problem.

Theorem 9 The finite satisfiability problem for \(\text{AB}_{\text{EL}}, \text{AB}_{\text{E}}, \text{AB}, \text{AB}_{\text{E}}, \text{AB}_{\text{L}} \text{ and } \text{AB}_{\text{EL}} \) is EXPSPACE-complete.
configuration. Moreover, for each proposition letter p that appears in a given configuration, the proposition letter \bar{p} is used to transfer this piece of information to the intervals that start with the beginning point of the model (this is done for technical reasons). Finally, proposition letter t links the value of a given counter in a given configuration with the value of the same counter in the next configuration. The following formulas set up this schema and guarantee that we actually start from the initial configuration:

\[
\psi_{\text{conf}} = \text{conf} \leftrightarrow (\psi_{\exists t} \lor (\langle B \rangle \psi_{\exists t}) \land \psi_{\forall t} \land [B] \neg \psi_{\forall t},
\]

\[
\psi_{\text{new}} = \rightarrow [\langle B \rangle \text{new}] \land (\text{del} \rightarrow [\langle A \rangle \text{del}]) \land
\]

\[
\psi_{\text{transfer}} = \bigvee_{c \in C} c \land \neg \text{new} \rightarrow \langle A \rangle t,
\]

\[
\psi_0 = \langle A \rangle \langle A \rangle (\langle A \rangle \bot \land q_0 \land [\psi_{\forall}], \psi_f = q_f.
\]

The following formulas behave as follows: ψ_{conf} guarantees the existence of a sequence of configurations; ψ_{new} ensures that at most one counter is incremented at each step; ψ_f sets the correspondences between counters of successive configurations; finally, ψ_{Δ} implements the transition function:

\[
\psi_{\Delta} = \bigwedge_{(q_i, c+1, q_j) \in \Delta} (\text{conf} \land \bar{q}_i \rightarrow \langle B \rangle q_i) \land
\]

\[
\bigwedge_{(q_i, c, q_j, q_k) \in \Delta} (\text{conf} \land \langle B \rangle q_i \land \bar{q}_j \rightarrow [B](\overline{\tau} \land \neg \text{new})) \land
\]

\[
(\text{conf} \land \langle B \rangle q_i \land \bar{q}_k \rightarrow \langle B \rangle(\hat{\tau} \land \text{del}) \land [B] \neg \text{new})).
\]

It is not difficult to check that, for a given lossy machine A that starts with the configuration $(q_0, 0)$, A reaches $(q_f, 0)$ if and only if the following formula is satisfiable:

\[
\psi_0 \land \psi_f \land [U](\psi_{\text{prop}} \land \psi_{\text{transfer}} \land \psi_{\text{conf}} \land \psi_{\Delta} \land \psi_f),
\]

where $[U]$ is the transposed universal operator, which is defined as shown in the previous section with $\langle A \rangle$ replaced by $\langle \overline{A} \rangle$. □

Theorem 11 The finite satisfiability problem for $\overline{A}BB$ and all its fragments that contain $\langle \overline{A} \rangle$ and at least one between $\langle B \rangle$ and $\langle B \rangle$ is non-primitive recursive.

8 Conclusions

In this paper, we focused our attention on the satisfiability problem for interval temporal logics over finite linear orders, which is of interest for various application domains. We provided a complete classification of HS (decidable) fragments with respect to their expressive power and complexity. Such a classification cannot be automatically transferred to any other class of linear orders. As an example, the fragment D, which is undecidable over finite linear orders, turns out to be PSPACE-complete over dense ones [4].

Acknowledgments. We would like to thank the Spanish MEC projects TIN2009-14372-C03-01 and RYC-2011-07821 (G. Sciavicco), the Icelandic Research Fund project Processes and Modal Logics number 100048021 (D. Della Monica), and the Italian PRIN project Innovative and multi-disciplinary approaches for constraint and preference reasoning (A. Montanari and D. Della Monica).

REFERENCES

