Dinamica dei sistemi meccanici

Programma del corso per l'a.a. 2011/2012

Laurea Magistrale in Ingegneria Meccanica per la progettazione e produzione - prof. Sergio della Valle

- 1. Generalità sui sistemi vibranti Sistemi continui e sistemi discreti conservativi e non conservativi. Dissipazioni di energia nei sistemi meccanici. Modello fisico e matematico di un sistema reale. Rappresentazione vettoriale e complessa di grandezze armoniche. Moto libero e forzato di sistemi conservativi e smorzati a un g.d.l.. Azioni forzanti armoniche, periodiche, non periodiche. Sviluppo in serie di Fourier di funzioni periodiche (*). Cenni sulla FFT. Stabilità dell'equilibrio: il pendolo capovolto vincolato elasticamente. Esempi di applicazione.
- 2. Apparecchi per la misura delle vibrazioni Frequenzimetri. Vibrometri a tasto sonda meccanici ed elettromagnetici, vibrometri sismici, accelerometri sismici, accelerometri piezoelettrici e loro applicazioni. Torsiovibrometri e accelerometri angolari. Sensori capacitivi; sensori acustici. Estensimetri e loro applicazioni; tecniche estensimetriche. Cenni sui rilievi stroboscopici. Tecniche oscilloscopiche. Vibrodine. Cenni sul rilievo e l'analisi digitale dei segnali (*).
- 3. Sistemi a due gradi di libertà Cenni sul moto libero e forzato (*). Equazioni matriciali del moto, coefficienti di inerzia e di rigidità, matrici [m] e [K]. Smorzatori dinamici. Azioni forzanti Random e risposta del sistema (*): smorzatore Stockbridge, smorzatore automobilistico.
- 4. Sistemi conservativi a n g.d.l. Equazioni del moto. Equazioni matriciali del moto. Sistemi ad accoppiamento elastico adiacente. Matrici [m] e [K]. Problema degli autovalori e degli autovettori; cenni sul calcolo numerico di autovalori ed autovettori (*). Ortogonalità dei vettori colonna; teorema di espansione. Metodo dell'analisi modale: moto libero e forzato, azioni forzanti armoniche, periodiche, casuali. Esempi di applicazione: sistema a 3 masse concentrate, autovalori, autovettori, moto libero e forzato (*); sistema a quattro g.d.l. con pulsazioni doppie. Sistemi semidefiniti, componente rigida libera e forzata del moto.
- 5. Velocità critiche flessionali Introduzione storica allo studio delle velocità critiche flessionali e rilevanza tecnica del problema. Il modello di Jeffcott: dinamica del sistema fermo e del sistema in rotazione (*); diagrammi di Campbell. Il sistema a tre piani di simmetria; whirling diretto e inverso; wobbling diretto e inverso (*). Il sistema assialsimmetrico; l'effetto disco. Effetto disco per sistemi a più masse. Sistemi a masse concentrate: velocità critiche; albero a sezione costante; matrice [α] per sistemi con albero a sezione variabile isostatici, a vincoli fissi ed elastici; cenni sul metodo grafico; masse dei tronchi. Matrice [α] per sistemi iperstatici: determinazione delle incognite iperstatiche, calcolo della [α] per sistemi a vincoli fissi ed elastici (*). Il sistema a n dischi: equazioni del moto; matrici [m] e [K]; autovalori, autovettori, velocità critiche; matrice [α] per sistema isostatico; matrice [α] per sistema iperstatico (*). Il metodo di Myklestad-Thomson: la matrice di trasferimento (*); sistema a masse concentrate; sistema a dischi; compatibilità con i vincoli; matrice punto e matrice campo (*).
- 6. Dinamica di un corpo rigido elasticamente sospeso Rilevanza tecnica del problema. Sistema di riferimento. Equazioni del moto. Matrici [m] e [K]. Simmetria della sospensione e disaccoppiamento dei modi naturali. Cause forzanti. Esempio di applicazione (*). Il moto forzato. Il moto forzato per azioni forzanti armoniche e sincrone. Determinazione della matrice [m] per un corpo di forma qualsiasi (*). Elementi elastici discreti, silent-blocks, terna principale elastica. Determinazione della matrice [K] per elementi di sospensione discreti. Sistemi di sospensione continui. Determinazione della matrice [K] per sospensione continua: basamento industriale. Esempio di applicazione: matrice [K] per la massa sospesa di un autoveicolo.
- 7. Dinamica della massa sospesa degli autoveicoli Generalità sui criteri di proporzionamento delle sospensioni in funzione del confort e della tenuta di strada. Sistema dinamico generale a 18 gradi di libertà. Sistema dinamico ridotto a 6 gradi di libertà. Equazioni del moto nel piano longitudinale e nel piano trasversale (*), modi naturali. Disaccoppiamento dei moti di rimbalzo e beccheggio e sua influenza sul confort. Condizione del monoperiodo. Applicabilità delle condizioni di disaccoppiamento e monoperiodo. Sospensioni pneumatiche e loro necessità e utilità. Molla pneumatica semplice. Sospensioni compensate: sistemi a volume d'aria ovvero a massa d'aria costante: caratteristiche di funzionamento, compensazione dell'assetto, isocronismo. Cenni sulle sospensioni miste e sulle sospensioni coniugate.
- 8. Oscillazioni torsionali Introduzione storica allo studio delle oscillazioni torsionali e rilevanza tecnica del problema. Oscillazioni torsionali forzate. Il sistema equivalente: riduzione delle masse e delle lunghezze. Riduzione delle masse di un manovellismo: smorzamento apparente. Sistema equivalente di impianti con riduttore. Esempi di applicazione: impianto di propulsione navale (*); impianto di propulsione terrestre, risonanze torsionali negli impianti di trazione per autoveicoli (*). Sistemi a 2, 3 (*), n masse: modi naturali di vibrare, deformate, diagrammi dei momenti, sollecitazioni torsionali nei modi naturali di vibrare. Oscillazioni torsionali dovute all'elica negli impianti di propulsione navale. Cenni sulle cause forzanti torsionali "interne" (*). Armoniche del momento motore: determinazione delle armoniche del momento motore, velocità critiche torsionali. Diagrammi di fase delle armoniche M_m armoniche principali e secondarie. Diagrammi vettoriali. Ampiezza di equilibrio. Il moto torsionale forzato: calcolo della componente rigida del moto forzato. Sollecitazioni torsionali forzate. Determinazione della sollecitazione torsionale nella sezione più sollecitata. Metodi per ridurre la sollecitazione torsionale massima: variazione delle caratteristiche elastiche, giunti elastici, ordini di accensione.
- 9. Modi di vibrare e stabilità dei motocicli (*) Modi di vibrare di un motociclo; modelli a un grado di libertà e loro soluzione con MATLAB (**); modello a tre gradi di libertà e sua soluzione con MATLAB (**); modi di vibrare nel piano del motociclo; modello a quattro gradi di libertà; modi di vibrare fuori dal piano (**).
- (*) Le dimostrazioni analitiche e/o numeriche relative a questo argomento non fanno parte del programma di esame; di esso è quindi sufficiente lo studio dell'eventuale modello fisico e matematico, nonché dei risultati ai quali si perviene.
- (**) Le applicazioni MATLAB possono essere scaricate agli indirizzi: http://wpage.unina.it/dellaval/MOTO 2010/in plane Dyn2010.rar http://wpage.unina.it/dellaval/MOTO 2010/out of plane Dyn2011.rar

BIBLIOGRAFIA

- Capitoli dall'1 al 3: disponibili presso il centro copie della Facoltà.
- Capitoli dal 4 all'8:

 - * A.R. GUIDO, S. DELLA VALLE Vibrazioni meccaniche nelle macchine Liguori, Napoli, 2004 * A.R. GUIDO, S. DELLA VALLE Meccanica delle vibrazioni (volume II) CUEN, Napoli, 1988, disponibile presso il centro copie della Facoltà.
- Capitolo 9:
 - * Appunti dalle lezioni, scaricabili all'indirizzo: http://wpage.unina.it/dellaval/appunti 2011.pdf

 * V. COSSALTER Motocycle Dynamics Lulu.com, 2006 (ISBN 978-1-4303-0861-4)