HW and SW technologies for
industrial automation

Leonardo Labs
IEC 61131-3 standard - IEC 61131 programming languages -
Sequential functional chart

Gianmaria DE TOMMASI
Email: detommas@unina.it

October 2020

BN\ ERSITA e STUDI o
Tl INENPOLI FEDERICO I
DIPARTIMENTO oI INGEGNERIA ELETTRICA
e DELLE TECNOLOGIE pel INFORMAZIONE

Outline

The standard IEC 61131-3

IEC 61131-3 Programming languages

Sequential Functional Chart (SFC)

Gianmaria De Tommasi — detommas@unina.it 2 of 37

The standard IEC 61131-3

The Part 3 of the International Standard IEC 61131 (IEC
61131-3 defines:

m the data types
m the software architecture
m the programming languages

to be used for developing and deploying a control software
within an architecture based on Programmable Logic
Controllers (PLC).

m First released in 1993
m Second edition in 2002
m Third edition in 2012 (that support OOP)

Gianmaria De Tommasi — detommas@unina.it 3 of 37

Data types - Examples

m Elementary Data Type
BOOL: 1 bit (1 byte is allocated)
BYTE : 8 bit (1 byte is allocated)
WORD: 16 bit (2 byte are allocated)

LWORD: 64 bit (8 byte are allocated)

INT: signed integer (2 byte is allocates)

UINT: unsigned integer

REAL: floating point

CHAR: single-byte character

STRING: variable-length single-byte character string
TIME: time values in the form of T#5m90s15ms
DATE: calendar date

ANY: generic data type

Gianmaria De Tommasi — detommas@unina.it 4 of 37

Examples - Bit-valued types and integers

Leonardo
Labs

Aerotech Campus

ACADEMY

Type Min Max Dimension
BYTE 0 255 8 bit
WORD 0 65535 16 bit
DWORD 0 4294967295 32 bit
SINT -128 127 8 bit
USINT 0 255 8 bit

INT -32768 32767 16 bit
UINT 0 65535 16 bit
DINT -2147483648 2147483647 32 bit
UDINT 0 4294967295 32 bit

ia De Tommasi — detommas@unina.it

Data types - Examples

m User-defined Data Types
Enumerated data type
Subrange data type. Example: INT (4. .20)
Array data type. ARRAY[1..10] OF ...
Structured data type. STRUCT ... END_STRUCT

Gianmaria De Tommasi — detommas@unina.it 6 of 37

Program organization units (POUs)

m Functions (sometimes referred to as FCs)
m Function blocks (sometimes referred to as FBs)
m Program

Gianmaria De Tommasi — detommas@unina.it 7 of 37

Configuration objects

m RESOURCE (CPU in a control device)

m TASK (control task executed by a resource with a given
execution mode)

Gianmaria De Tommasi — detommas@unina.it 8 of 37

*/ Leonardo

|IEC 61131-3 configuration: an example [

Aerotech Campus | ACADEMY

Global variables Configuration
Resource1
Poulnstace4
Global variables
Function1
Task 1 Task 2
Poull 1 Pouli 2 | | Poull tace3 Pouli 5
| =
S Fiockt” Functiond

Gianmaria De Tommasi — detommas@unina.it

IEC 61131-3

Programming languages

m The IEC 61131-3 standard includes five programming
languages:

m ladder diagram (LD)
m functional block diagram (FBD)
m instruction list (IL)

m structured text (ST)

m sequential functional chart (SFC)

Two text languages (IL and ST) and three graphic languages
(LD, FBD and SFC)

m Three low-level languages (LD, FBD and IL) and two high-level
ones (ST and SFC)

Gianmaria De Tommasi — detommas@unina.it 10 of 37

*/ Leonardo

Ladder diagram Labe

ampus

AB OUTI
o | R
1),

A B OUT2
I)
1 (P

B

Gianmaria De Tommasi — detommas@unina.it 11 of 37

*/ Leonardo

Functional block diagram

aps
Aerotech Campus

BND OR

INPUTL — — —— CUTPUT
& >1

INPUTE — -
INPUTC —

Gianmaria De Tommasi — detommas@unina.it 12 of 37

*/ Leonardo

Instruction list Labs / cuoum

Aerotech Campus

LD Speed

GT 2000

JMPCN VOLTS_OK

LD Volts
VOLTS_OK LD 1

ST %Q75

Gianmaria De Tommasi — detommas@unina.it 13 of 37

*/ Leonardo
Labs

Aerotech Campus | ACADEMY

GAUSS_FORMULA x MAIN
FUNCTION GAUSS_FORMULZ : INT

= sum of

2

r

1| causs_rorMULA := N¥(N+1)/

detommas@unin

Sequential Functional Chart (SFC)

as programming language for PLCs

m SFC is a graphical oriented language, derived from the Petri
nets, which is a formal tool used to describe the behaviour of
discrete event-driven systems (DES)

m With respect to other formal tools, such as automata Petri nets,
and hence SFC, allow to easily represent the parallelism

m As a programming language, the SFC has been standardized
by IEC as evolution of the Grafcet graphical programming
language

m The SFC programming language is available on all the major
commercial automation platforms

@ R. Alla

Grafcet: a powerful tool for specification of logic controllers
IEEE Transactions on Control System Technology, 1995

Gianmaria De Tommasi — detommas@unina.it 15 of 37

Why using SFCs?

m The use of SFC has a threefold advantage
it allows to formally specify control logics without ambiguities
(being a formal tool for the description of DES)
it represents a possible implementation of the control logic
(when used as programming language), that can be directly
deployed on PLC-based hardware architectures
being a programming language itself, it can be easily translated
in text-based program, using general purpose programming
languages such as C, C++ or Java

Gianmaria De Tommasi — detommas@unina.it 16 of 37

SFC basics T) .

The SFC is a bipartite graph, with two different type of nodes
m STEPS
m and TRANSITIONS

connected by oriented ARCS

STEP TRANSITION ARC

s A AND B OR NOT(C)
STEP_X Initial step

Transition with the associated Oriented arc

logical predicate

STEP_Y Step

Gianmaria De Tommasi — detommas@unina.it 17 of 37

SFC - Example

*/ Leonardo
Labs

Aerotech Campus | ACADEMY

The basic rules to build an SFC
graph are very simple

m between two steps there must
always be one (and only one)

m between two transitions there must
always be one (and only one) step

N: ACTION 1
STEP_1 M1 &. acTiON 2

v
= A AND B

S: ACTION 2

STEP_2 M. acTioN 3

v
mmmmm B AND NOT(C)

A 4

STEP_3

v
W STEP_3.T >=T#2s

Gianmaria De Tommasi — detommas@unina.it 18 of 37

More on steps and transitions

m A step can be active or non-active

m The initial step (i.e., the step that is initially active) is
represented using a ticker border

m Given a SFC graph more than one step can be
simultaneously active

this is the main difference between finite-state machines
(automata) and SFCs
this feature allows to easily represent concurrent actions

m A logical predicate is associated to each transition (i.e., a
logical function that must return TRUE or FALSE)
m Two implicit variables are defined for each step in a graph
(and can be used in the logical predicate of the transitions)
NAME_STEP . X, which is a BOOL variable that indicates if a step
in active (==TRUE) or non-active (==FALSE)
NAME_STEP.T, which is a TIME variable that indicates the
active time of a step (i.e., how long a step has been active)

Gianmaria De Tommasi — detommas@unina.it 19 of 37

SFC actions

*/ Leonardo
Labs

Aerotech Campus

ACADEMY

m One or more ACTIONS can be associated to each step
m Different qualifiers can be associated to each action

Qualifier | Type of Action Description

N Non-stored The action active as long as the step.

R overriding Reset The action is deactivated.

S Set (Stored) The action is activated and remains active until a Reset.

L time Limited The action is activated for a certain time.

D time Delayed The action becomes active after a certain time as long as the
step is still active.

P Pulse The action is executed just one time if the step is active.

sD Stored and time Delayed The action is activated after a certain time and remains active
until a Reset.

DS Delayed and Stored The action is activated after a certain time as long as the step is
still active and remains active up to a Reset.

SL Stored and time Limited The action is activated for a certain time.

detommas@u

SFC evolution rules

m The SFC state is the set of active steps

m The SFC state evolves according to the value of the logical
predicates associated to the transitions

m The evolution rules of an SFC graph are the following
A transition is ENABLED if all the upstream steps are active
An ENABLED transition fires if the associated logical
predicate is TRUE
When e transition fires, it deactivates all the upstream steps
and it activate all the downstream steps

Gianmaria De Tommasi — detommas@unina.it 21 of 37

*/ Leonardo

Example of SFC evolution LaBS " /:cronm

N: ACTION 1
R: ACTION 2 A |
\
Emmmmm A AND B
c T

A 4

: STEP_1.X
e STEP:Z.X
5 AND NOT(C) STﬂ’_ﬂ—l;’l—
= AcTION 1| l
STEP_3 AUM [

acrion 3]

A4
N STEP_3.T >=TH#2s

ia De Tommasi — detommas@unina.it 22 of 37

Basic programming structure

Sequence

Gianmaria De Tommasi — detommas@unina.it 23 of 37

Basic programming structure + Leonardo

aps
Aerotech Campus | ACADEMY

Choice

STEP_X

—+—c0ND_1 —+— COND_ 2 ===== —L COND_N
v v v

For the choice structure the logical predicates associated to the
transitions should be mutually exclusive, in order to avoid ambiguous
execution of the SFC

Gianmaria De Tommasi — detommas@unina.it 24 of 37

Basic programming structure
Confluence

Gianmaria De Tommasi — detommas@unina.it 25 of 37

Basic programming structure
Parallelism

A\ 4 A A 4
STEP_1 STEP 2| ====--- STEP_N
| | |
| | |
v v v

Gianmaria De Tommasi — detommas@unina.it 26 of 37

Basic programming structure

Synchronizartion

v v v
STEP_1 STEP_2 | ===-=-- STEP_N
A 4 A 4 A\ 4
*
I
v

Gianmaria De Tommasi — detommas@unina.it 27 of 37

More on SFC rules

PLCOpen Software Construction Guidelines

m PLCopen is an independent worldwide organization providing
efficiency in industrial automation based on the needs of
users

https://plcopen.org/
m Members include suppliers and educational institutes

m Focuses on harmonization of control programming, and
application and interfacing engineering.

m Download the PLCopen Software Construction Guidelines

Gianmaria De Tommasi — detommas@unina.it 28 of 37

https://plcopen.org/
https://plcopen.org/downloads?field_category_target_id=164

*/ Leonardo

Examples - Aircrafts automation logics Labs

Aerotech Campus | ACADEMY

4.3.1 CRANK command

Function ID: ‘ POW#1
Function Name: ‘ CRANK command
Short Description:
This function includes a single automation logic that generates the CRANK command on the basis of the pilot request. The
crank is reset if the engine starts (i.e. RPM > RPM_THR) or if a watchdog timer expires (the watchdog timer is
implemented using a second SFC graph).
Tnputs
Tag Name Description Source Type
IDGND#008 | PLT_CRANK Digital request to trigger the CRANK Ground Station BOOL
ASSUMPTION: the request is
the rising edge of the signal will be
processed)
TAECU#002 | RPM_MEAS | Analog measure of the engine rpm received from | ECU REAL
the ECU
Outputs
Tag ‘ Name | Description | Consumer(s) | Type
ODPOW#001 ‘ CRANK | Digital output that triggers the CRANK | STARTER | BOOL
Parameters
Name Description Type Default Value | Valid Range
TIMEOUT#1 | Timeout #1 of Control Logic #1 TIME TBD NA
TIMEOUT#2 | Timeout #2 of Control Logic #1 (watchdog timer) | TIME 5s N/A
RPM_THR RPM threshold to set the propeller pitch to the | REAL TBD NA
feathering position

detommas@unin

*/ Leonardo

Examples - Aircrafts automation logics LaBS . /e

Control Logic #1CRANK command
(* This SFC implements a watchdog
timer used to stop the crank signal after
TIMEOUT#2 *)

— T

STEP_W1

STEP_1

W PLT_CRANK —— STEP 2.X

STEP_2 N: CRANK STEP_W2

— (RPM_MEAS > RPM_THR)

- AND (NOT STEP_W3.X) T STEP_W3.X
STEP_1

STEP_3

—— STEP_W2.T > TIMEOUT#2

STEP_W3

(STEP_3.T > TIMEOUT#1) 1 STEP_3.T <= TIMEOUT#1 J STEP_1.X
e (STEP ND (RPM_MEAS <= RPM_THR)

OR (STEP_W3.X) Al
AND (NOT STEP_W3.X)
STEP_2

detommas@u

Examples - Aircrafts automation logics

*/ Leonardo
Labs

Aerotech Campus

ACADEMY

4.2.2 Command to the AUX PUMP

Function ID:

FUL#2

Function Name:

Command to the AUX pump

Short Description:

This function includes the following four automation logics:

link in order to turn on and off the AUX pump.

AUX pump if there is a loss of flow in the engine rail

the AUX pump during both the takeoff and descent phases

e Control Logic #1 processes the shut-off request received by the pilot in order to turn off the AUX pump.

e Control Logic #2 processes the switch-on and switch-off commands sent by the pilot through the communication

e Control Logic #3processes the measurement from the pressure sensor of the fuel system, in order to turn on the

e Control Logic #4 processes the aircraft altitude and speed (received by the navigation system), in order to turn on

detommas@u

*/ Leonardo

Examples - Aircrafts automation logics Labs

Aerotech Campus | ACADEMY

The priority order of the four control logics is reported below:
FUL#2 FUL#2 FUL#2 FUL#2

Control Control Control Control
Logic #4 Logic #3 Logic #2 Logic #1

Lowest

L Highest
priority

priority
Note that, the execution order of the control logics within each execution cycle must be inverse with respect to their
priorities; hence:

o Control Logic #1 always overrides the other three control logics

e Control Logic #2 overrides Control Logic #3 and #4
e Control Logic #3 overrides Control Logic #4

detommas@un

*/ Leonardo

Examples - Aircrafts automation logics Labs

Aerotech Campus | ACADEMY

Control Logic #1Command to the AUX pump — AUX Pump OFF Pilot input

(* When STEP_1000 is active

STEP_1000 | AUX_PMP_ON is overridden by
Control Logic #2, #3 and #4 *)

A4
mmmmmm PLT_CMD_SHUT_OFF

STEP_2000 R: AUX_PMP_ON

\
= TRUE

ia De Tommasi — detommas@unina.it 33 of 37

7 Leonardo

Aerotech Campus | ACADEMY

Examples - Aircrafts automation logics

Control Logic #2:Command to the AUX pump — AUX Pump OFF/ON Pilot Input

(* This control logic is always
STEP_1 | overriden by Control Logic #1 *)

\4
e PLT_AUX_PMP_ON

\4
mmm— PLT_AUX_PMP_OFF

AND POW_OK
Y
A4
STEP_2 = 5: AUX_PMP_ON STEP_3 H R: AUX_PMP_ON
v A4
mmmmm TRUE F—TRUE

Gianmaria De Tommasi — detommas@unina.it 34 of 37

Leonardo

Examples - Aircrafts automation logics Labs

Aerotech Campus | ACADEMY

Control Logie #3:Command to the AUX pump ~ AUX Pump ON Pressure Sensor Input

(* This control logic s always overriden
by Control Logic #1.and #2.¥)

GRESS_SENS1 < PRESS_MIN1) OR
(PRES_SENS2< PRESS_MIN2)

STEP_10LT <TIMEOUT#1
AND PRESS_SENS1 > PRESS_MIN1
AND PRESS SENS2 > PRESS_MIN2

STEP_100

STEP_101.T >= TIMEOUTH1

PRESS_SENS1 > PRESS_MINL
AND PRESS_SENS2 > PRESS_MIN2

STEP_104.T <TIMEOUT#2
AND (PRESS_SENS1 < PRESS_MIN1
‘OR PRESS_SENS2 < PRESS_MIN2)
STEP_103

Gianmaria De Tommasi — detommas@unina.it 35 of 37

Examples - Aircrafts automation logics

Leonardo
Labs

Aerotech Campus

ACADEMY

Control Logic #4:Command to the AUX pump — AUX Pump ON AC Speed and Altitude input

(* This control logic isalways
overriden by Control Logic #2,
H3and#a®)

(V_MERS >V_MiN)
AND H_MEAS > H_MIN)

(STEP_11T <TIMEOUTH3) AND
((V_MEAS <V_MIN) OR (H_MEAS < H_MIN))
sTEp_10

STEP_11.T>=TIMEOUTA3

(V_MEAS <V_MIN)
OR (H_MEAS <H_MIN)

(STEP_14.T < TIMEOUTH4) AND

: TRUE
STEP_10

Gianmaria De Tommasi — detommas@unina.it

36 of 37

HW and SW technologies for
industrial automation

Leonardo Labs
IEC 61131-3 standard - IEC 61131 programming languages -
Sequential functional chart

Gianmaria DE TOMMASI
Email: detommas@unina.it

October 2020

BN\ ERSITA e STUDI o
Tl INENPOLI FEDERICO I
DIPARTIMENTO oI INGEGNERIA ELETTRICA
e DELLE TECNOLOGIE pel INFORMAZIONE

	The standard IEC 61131-3
	IEC 61131-3 Programming languages
	Sequential Functional Chart (SFC)

