

Controllo Digitale

Gianmaria De Tommasi¹

¹Università degli Studi di Napoli Federico II detommas@unina.it

Ottobre 2012 Corsi AnsaldoBreda

Outline

4

5

6

8

Introduzione

- Motivazioni
- Schema di riferimento di un sistema di controllo digitale
- Segnali tempo continuo e segnali tempo discreto
- Metodologie di progetto di sistemi di controllo digitali

Sistemi LTI tempo-discreto

- Modi di evoluzione
- Stabilità
- Sistemi a dati campionati
- $\textbf{Trasformata} \ \mathcal{Z}$
- Funzione di trasferimento
- Zeri e poli dei sistemi a dati campionati
- Analisi dei sistemi di controllo digitale nel tempo-continuo
- Progetto di controllori digitali per discretizzazione
- Progetto di controllori digitali nel dominio della z
- Corrispondenze piano s piano z
- Specifiche nel dominio della z

Premessa - Perché "Controllo Digitale"?

• La quasi totalità dei sistemi di controllo moderni è realizzata mediante l'utilizzo di micorprocessori.

Motivazioni

Introduzione

Premessa - Perché "Controllo Digitale"?

- La quasi totalità dei sistemi di controllo moderni è realizzata mediante l'utilizzo di micorprocessori.
- L'impiego di sistemi digitali (HW e SW) consente di
 - ottenere maggiore flessibilità (modifica dell'algoritmo di controllo = modifica software);
 - ottenere maggiore affidabilità;
 - implementare algoritmi di controllo sofisticati, altrimenti non realizzabili con altre tecnologie;
 - integrare gli algoritmi di controllo dinamico con logiche decisionali (controllo adattativo, controllo non-lineare, controllo predittivo (MPC), ecc.).

Introduzione Motivazioni

Esempi di sistemi di controllo digitale

- pilota automatico di un aereomobile;
- sospensioni attive di un'automobile;
- sistema di controllo della trazione di un'automobile;
- cambio automatico di un'automobile;
- sistemi di controllo dei robot;
- sistema di posizionamento della testina degli HD;
- sistemi di puntamento automatico;

...

Cosa sapete (dovreste sapere?)

Controllo analogico (corso di Controlli Automatici)

Cosa sapete (dovreste sapere?)

Controllo analogico (corso di Controlli Automatici)

Come si implementa C(s) ?

Passato Tecnologia elettronica analogica (amplificatori operazionali), tecnologia idraulica, tecnologia pneumatica;

Presente Tecnologia digitale (sistemi a microprocessore)

G. De Tommasi (UNINA)

Controllo Digitale

Cosa (dovreste imparare) imparerete

Schema di riferimento di un sistema di controllo digitale

Cosa (dovreste imparare) imparerete

Schema di riferimento di un sistema di controllo digitale

Come si implementa C(z) ?

C(z) è un algoritmo (somme, prodotti, ...) che può essere implementato in un qualsiasi linguaggio di programmazione (Assembler, C, LabView, ...).

Segnali tempo continuo

Per i segnali tempo continuo la variabile tempo *t* varia con continuità in un intervallo dell'asse reale.

Segnali tempo continuo

Per i segnali tempo continuo la variabile tempo *t* varia con continuità in un intervallo dell'asse reale.

segnali analogici se l'ampiezza può variare con continuità in un intervallo di \mathbb{R} ;

Segnali tempo continuo

Per i segnali tempo continuo la variabile tempo *t* varia con continuità in un intervallo dell'asse reale.

segnali analogici se l'ampiezza può variare con continuità in un intervallo di \mathbb{R} ;

segnali quantizzati se l'ampiezza può assumere solo un insieme finito di valori.

Segnali tempo discreto

Per i segnali tempo discreto la variabile tempo può assumere solo un insieme (anche infinito) di valori discreti.

Segnali tempo discreto

Per i segnali tempo discreto la variabile tempo può assumere solo un insieme (anche infinito) di valori discreti.

segnali a dati campionati se l'ampiezza può variare con continuità in un intervallo di \mathbb{R} ;

Segnali tempo discreto

Per i segnali tempo discreto la variabile tempo può assumere solo un insieme (anche infinito) di valori discreti.

segnali a dati campionati se l'ampiezza può variare con continuità in un intervallo di \mathbb{R} ;

segnali digitali se l'ampiezza è quantizzata. I segnali digitali sono rappresentati con un numero finito di cifre binarie.

Periodo di campionamento

 Nei sistemi di controllo digitali gli istanti di tempo discreto sono tipicamente multipli di un periodo di campionamento *T*, *t* = *kT* con *k* ∈ N.

Periodo di campionamento

- Nei sistemi di controllo digitali gli istanti di tempo discreto sono tipicamente multipli di un periodo di campionamento *T*, *t* = *kT* con *k* ∈ N.
- In questo caso le operazioni di conversione A/D e D/A, e la stessa esecuzione dell'algoritmo di controllo sono sincronizzate da un clock – Esecuzione periodica.

Periodo di campionamento

- Nei sistemi di controllo digitali gli istanti di tempo discreto sono tipicamente multipli di un periodo di campionamento *T*, *t* = *kT* con *k* ∈ N.
- In questo caso le operazioni di conversione A/D e D/A, e la stessa esecuzione dell'algoritmo di controllo sono sincronizzate da un clock – Esecuzione periodica.
- Altre possibilità:
 - le conversioni A/D e D/A vengono comandate in maniera asincrona, non appena l'algoritmo di controllo a terminato l'esecuzione – Esecuzione ciclica (esempio: Controllori a Logica Programmabile – PLC);
 - le conversioni e l'esecuzione dell'algoritmo di controllo vengono comandate dal verificarsi di un particolare evento – Esecuzione ad eventi (esempio: attivazione di una procedura di emergenza).

Quantizzazione

 A rigore l'operazione di quantizzazione introduce una non linearità nel sistema.

Quantizzazione

- A rigore l'operazione di quantizzazione introduce una non linearità nel sistema.
- Quando il numero di cifre della rappresentazione binaria è sufficientemente elevato, è possibile trascurare l'effetto della quantizzazione (ipotesi ritenuta valida in questo corso).

Convertitori A/D

Questo dispositivo effettua il campionamento del segnale analogico in ingresso e resituisce un segnale digitale in uscita.

Convertitori D/A

Questo dispositivo ricostruisce un segnale analogico a partire dalla sequenza dei suoi campioni.

Introduzione Metodologie di progetto

Metodologie di progetto

- Progetto di controllori digitali per discretizzazione
- Progetto di controllori digitali nel dominio della z

Fissato un periodo di campionamento T, $\{x(kT)\}_{k\in\mathbb{N}_0}$ indicherà una sequenza discreta nel tempo di numeri reali.

Con $x_k \in \mathbb{R}$ si indicherà, inoltre, il *k*-mo campione della sequenza, vale a dire

 $x_k = x(kT)$

Rappresentazione implicita i-s-u

$$x_{k+1} = Ax_k + Bu_k$$
, $x_0 = x(0)$ (1a)
 $y_k = Cx_k + Du_k$ (1b)

Rappresentazione esplicita i-s-u - 1

Risolvendo le (1) per un dato stato iniziale x_0 e per una data sequenza d'ingresso $\{u(kT)\}_{k\in\mathbb{N}_0}$, si ottiene la seguente rappresentazione *esplicita* i-s-u

$$x_{k} = \underbrace{\Phi(k)x_{0}}_{risposta \ libera} + \underbrace{\sum_{h=0}^{k-1} H(k-h)u_{h}}_{risposta \ forzata}$$
(2a)
$$y_{k} = \underbrace{\Psi(k)x_{0}}_{risposta \ libera} + \underbrace{\sum_{h=0}^{k} W(k-h)u_{h}}_{risposta \ forzata}$$
(2b)

con

$$\Phi(k) = A^{k}, \text{ matrice di transizione}$$
$$H(j) = A^{j-1}B,$$
$$\Psi(k) = CA^{k},$$
$$W(j) = \begin{cases} CA^{j-1}B & \text{se } j \neq 0\\ D & \text{se } j = 0 \end{cases}$$

matrice delle risposte impulsive

Rappresentazione esplicita i-s-u - 2

Risposta al gradino

La risposta al segnale

$$u_k = \bar{u} \cdot \mathbf{1}_k = \begin{cases} \bar{u}, & k \ge 0\\ 0, & k < 0 \end{cases}$$

è

$$x_{k} = \underbrace{(I-A)^{-1}B\bar{u}}_{(*)} + \underbrace{A^{k}\left(x_{0} + (A-I)^{-1}B\bar{u}\right)}_{(**)}, \quad k \ge 0$$
(4a)

$$y_{k} = \underbrace{\left(C(I-A)^{-1}B+D\right)\bar{u}}_{(*)} + \underbrace{CA^{k}\left(x_{0} + (A-I)^{-1}B\bar{u}\right)}_{(**)}, \quad k \ge 0$$
(4b)

Se il sistema è asiontoticamente stabile allora

- Ie (*) prendono il nome di risposta a regime (rispettivamente nello stato e nell'uscita);
- Ie (**) prendono il nome di risposta transitoria (rispettivamente nello stato e nell'uscita).

Rappresentazione i-u - 1

Il modello *implicito* ingresso-uscita di un sistema dinamico LTI tempo-discreto *single-input-single-output* è dato dalla seguente equazione alle differenze

$$\sum_{i=0}^{\nu} a_i y_{k-i} = \sum_{j=0}^{\mu} b_j u_{k-j} , \qquad (5)$$

con $\nu \leq n \, e \, \mu \leq \nu$. Senza ledere la generalità della trattazione, è sempre possibile considerare $a_0 = 1 \, e \, \mu = \nu$, quindi la (5) diventa

$$y_k + a_1 y_{k-1} + a_2 y_{k-2} + \dots + a_\nu y_{k-\nu} = b_0 u_k + b_1 u_{k-1} + \dots + b_\nu u_{k-\nu}, \quad (6)$$

da cui

$$y_{k} = b_{0}u_{k} + (b_{1}u_{k-1} - a_{1}y_{k-1}) + (b_{2}u_{k-2} - a_{2}y_{k-2}) + \dots + (b_{\nu}u_{k-\nu} - a_{\nu}y_{k-\nu}).$$
(7)

Sistemi LTI tempo-discreto Modi di evoluzione

Modi di evoluzione

Dato il sistema (1), la risposta libera a partire dallo stato iniziale x_0 è

$$x_k^l = A^k x_0$$
.

Ne segue che la risposta in evoluzione libera di ogni componente dello stato è una combinazione lineare di termini del tipo λ_i^k , dove λ_i , i = 1, ..., n, sono gli autovalori della matrice dinamica A.

Tali termini prendono il nome di *modi naturali* di evoluzione del sistema (1).

Sistemi LTI tempo-discreto Modi di evoluzione

Modi aperiodici

Sistemi LTI tempo-discreto Modi di evoluzione

Modi pseudoperiodici

Teorema

Il sistema (1) *è asintoticamente stabile se e solo se tutti gli autovalori della matrice A sono in modulo minori di 1.*

Teorema

Il sistema (1) è instabile se almeno uno degli autovalori della matrice A è in modulo maggiore di 1.

Teorema

Il sistema (1) con tutti autovalori in modulo minori di uno, eccetto $\overline{\lambda}$, con $|\overline{\lambda}| = 1$, è instabile se esiste almeno un miniblocco di Jordan associato a $\overline{\lambda}$ di dimensione maggiore di 1. Nel caso contrario il sistema è stabile.

Sistemi LTI tempo-discreto Sistemi a dati campionati

Sistema a dati campionati - 1

(8)

Sistemi LTI tempo-discreto Sistemi a dati campionati

Sistema a dati campionati - 1

Sistema tempo-continuo

$$S: \begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

Sistema a dati campionati

$$x_{k+1} = A_d x_k + B_d u_k \tag{9a}$$

$$y_k = Cx_k + Du_k \tag{9b}$$

dove

$$A_d = e^{AT}$$
, $B_d = \int_0^T e^{A\tau} d\tau B$.

Se la matrice A di (8) è invertibile, allora

$$B_d = A^{-1} \left(e^{AT} - I \right) B$$

G. De Tommasi (UNINA)

Trasformata \mathcal{Z}

Definizione (Trasformata Z unilatera)

Sia data una sequenza $\{x(kT)\}_{k\in\mathbb{N}_0}$ di valori reali. La traformata \mathcal{Z} (unilatera) di $\{x(kT)\}_{k\in\mathbb{N}_0}$ è la funzione di variabile complessa z definita come

$$X(z) = \mathcal{Z}[x(kT)] = \mathcal{Z}[x_k] = x_0 + x_1 z^{-1} + x_2 z^{-2} + \dots + x_k z^{-k} + \dots = \sum_{k=0}^{\infty} x_k z^{-k}.$$

Trasformata $\mathcal Z$

Trasformata \mathcal{Z} - Proprietà - 1

Linearità Si considerino due sequenze $x_k \in y_k$. Allora $\forall \alpha, \beta \in \mathbb{C}$ risulta

$$\mathcal{Z}[\alpha \mathbf{x}_{k} + \beta \mathbf{y}_{k}] = \alpha \mathcal{Z}[\mathbf{x}_{k}] + \beta \mathcal{Z}[\mathbf{y}_{k}] = \alpha \mathbf{X}(\mathbf{z}) + \beta \mathbf{Y}(\mathbf{z})$$

Anticipo

$$\mathcal{Z}\big[x_{k+1}\big]=zX(z)-zx_0$$

Ritardo Se $x_{-1} = 0$, allora

$$\mathcal{Z}[x_{k-1}] = z^{-1}X(z) = \frac{X(z)}{z}$$

Cambiamento di scala

$$\mathcal{Z}\left[\alpha^{k} \mathbf{x}_{k}\right] = \mathbf{X}\left(\frac{\mathbf{z}}{\alpha}\right)$$

Trasformata $\mathcal Z$

Trasformata \mathcal{Z} - Proprietà - 2

Derivazione in *z*

$$\mathcal{Z}(-kx_k) = z \frac{\mathrm{d}}{\mathrm{d}z} X(z)$$

Convoluzione

$$\mathcal{Z}[x_k * y_k] = \mathcal{Z}\left[\sum_{h=0}^k x_{k-h}y_h\right] = X(z)Y(z)$$

Trasformata \mathcal{Z}

Trasformata \mathcal{Z} - Proprietà - 3

Teorema (Teorema del valore finale)

Si consideri una sequenza $\{x(kT)\}_{k\in\mathbb{N}_0}$ dotata di trasformata \mathcal{Z} , allora se $\lim_{k\to\infty} x_k$ esiste, si ha

$$\lim_{k\to\infty} x_k = \lim_{z\to 1} (z-1)X(z).$$

Teorema (Teorema del valore iniziale)

Il valore iniziale di una sequenza $\big\{x(kT)\big\}_{k\in\mathbb{N}_0}$ dotata di trasformata $\mathcal Z$ è dato da

$$x_0=\lim_{z\to\infty}X(z)\,.$$

Trasformata ${\cal Z}$

Trasformate notevoli

x _k	X(z)
δ_{k-N}	z^{-N}
1 _{<i>k</i>-<i>N</i>}	$Z^{-N}\frac{z}{z-1}$
$k \cdot 1_k$	$\frac{z}{(z-1)^2}$
$\frac{k^{(n)}}{n!} \cdot 1_k$	$\frac{z}{(z-1)^{n+1}}$
$kT \cdot 1_k$	$T\frac{z}{(z-1)^2}$
$\lambda^k \cdot 1_k$	$\frac{z}{z-\lambda}$
$e^{lpha k} \cdot 1_k$	$\frac{Z}{Z-\theta^{\alpha}}$
$\frac{k^{(n)}}{n!}\lambda^{k-n}\cdot1_k$	$\frac{z}{(z-\lambda)^{n+1}}$
$\sin(\theta k) \cdot 1_k$	$Z \frac{\sin \theta}{z^2 - 2z \cos \theta + 1}$
$\cos(\theta k) \cdot 1_k$	$Z \frac{z - \cos \theta}{z^2 - 2z \cos \theta + 1}$
$\left(a\rho^k\cos(\theta k)+rac{b+lpha a}{\omega} ho^k\sin(\theta k) ight)\cdot 1_k$	$z \frac{az+b}{(z-\alpha)^2+\omega^2}$, con $\rho = \sqrt{\alpha^2 + \omega^2}$ e $\theta = \arctan \frac{\omega}{\alpha}$

Applicando la trasformata \mathcal{Z} alle (1) si ottiene

$$X(z) = \underbrace{(zI - A)^{-1}BU(z)}_{risposta \ forzata} + \underbrace{z(zI - A)^{-1}x_0}_{risposta \ libera}$$
(10a)
$$Y(z) = \underbrace{\left(C(zI - A)^{-1}B + D\right)U(z)}_{risposta \ forzata} + \underbrace{zC(zI - A)^{-1}x_0}_{risposta \ libera}$$
(10b)

La matrice $m \times r$

$$G(z) = C(zI - A)^{-1}B + D,$$
 (11)

è detta funzione di trasferimento.

Risposta di un sistema del primo ordine

$$G(z) = \mu \frac{1 - p_1}{1 - z_1} \cdot \frac{z - z_1}{z - p_1}, \quad \text{con } p_1, z_1 \neq 0$$
(12)

Utilizzando il metodo della scomposizione in fratti semplici è immediato verificare che la risposta al gradino del sistema è

$$y_k = \left(\mu(1-\rho_1^k) + \mu \frac{1-\rho_1}{1-z_1}\rho_1^k\right) \cdot \mathbf{1}_k.$$

Risposta di un sistema del primo ordine

$$G(z) = \mu \frac{1 - p_1}{1 - z_1} \cdot \frac{z - z_1}{z - p_1}, \quad \text{con } p_1, z_1 \neq 0$$
(12)

Utilizzando il metodo della scomposizione in fratti semplici è immediato verificare che la risposta al gradino del sistema è

$$y_k = \left(\mu(1-\rho_1^k) + \mu \frac{1-\rho_1}{1-z_1}\rho_1^k\right) \cdot \mathbf{1}_k.$$

Si ricordi che la costante di tempo del sistema è espressa in *numero di campioni*, ed è pari a

$$\tau = -\frac{1}{\ln|\boldsymbol{p}_1|}\,.$$

Risposta al variare di p_1

G. De Tommasi (UNINA)

Risposta al variare di z₁

G. De Tommasi (UNINA)

Trasformazione di campionamento

la relazione tra la matrice dinamica A di un sistema tempo-continuo e la matrice dinamica A_d del suo equivalente a dati campionati è

$$A_d = e^{AT}$$
, T periodo di campionamento

si verifica facilmente che l'*i*-mo autovalore del sistema tempo-continuo s_i corrisponde all'autovalore tempo discreto

$$z_i = e^{s_i T}$$
 .

Gli autovalori del sistema a dati campionati, quindi, si ottengono applicando agli autovalori del sistema tempo-continuo la cosidetta *trasformazione di campionamento*

$$z = e^{sT}.$$
 (13)

Aliasing - 1

È importante notare che la trasformazione (13) è univoca ma non biunivoca. Infatti, se si considerano due autovalori s_p e s_q di A tali che

$$s_q = s_p \pm j rac{2\pi}{T} h \,, \quad h \in \mathbb{Z}$$

applicando la trasformazione (13) si ottiene

$$z_q = e^{s_q T} = e^{s_p T} e^{\pm j 2\pi h} = e^{s_p T} = z_p,$$

cioè due autovalori diversi del sistema a tempo-continuo generano due autovalori coincidenti del sistema a dati campionati associato. Questo fenomeno può essere visto come una particolare manifestazione del fenomeno di aliasing associato al campionamento.

Aliasing - 2

Zeri di un sistema a dati campionati

• gli *m* zeri tempo-continui *generano m* zeri di G(z) che, per $T \rightarrow 0$, tendono al punto z = 1

- gli *m* zeri tempo-continui *generano m* zeri di G(z) che, per $T \rightarrow 0$, tendono al punto z = 1
- per $T \rightarrow 0$ gli *m* zeri di G(z) generati dagli zeri tempo-continui seguono anch'essi la trasformazione di campionamento

- gli *m* zeri tempo-continui *generano m* zeri di G(z) che, per $T \rightarrow 0$, tendono al punto z = 1
- per $T \rightarrow 0$ gli *m* zeri di G(z) generati dagli zeri tempo-continui seguono anch'essi la trasformazione di campionamento
- quando n m > 1 nascono n m 1 zeri, detti zeri del campionamento

- gli *m* zeri tempo-continui *generano m* zeri di G(z) che, per $T \rightarrow 0$, tendono al punto z = 1
- per $T \rightarrow 0$ gli *m* zeri di G(z) generati dagli zeri tempo-continui seguono anch'essi la trasformazione di campionamento
- quando n m > 1 nascono n m 1 zeri, detti zeri del campionamento
- per T sufficientemente piccolo tutte le singolarità tempo-continue, zeri e poli, si trasformano in singolarità prossime a z = 1, creando problemi di carattere numerico e cancellazioni che possono rendere critico il progetto di un regolatore digitale

- gli *m* zeri tempo-continui *generano m* zeri di G(z) che, per $T \rightarrow 0$, tendono al punto z = 1
- per $T \rightarrow 0$ gli *m* zeri di G(z) generati dagli zeri tempo-continui seguono anch'essi la trasformazione di campionamento
- quando n m > 1 nascono n m 1 zeri, detti zeri del campionamento
- per T sufficientemente piccolo tutte le singolarità tempo-continue, zeri e poli, si trasformano in singolarità prossime a z = 1, creando problemi di carattere numerico e cancellazioni che possono rendere critico il progetto di un regolatore digitale
- per *T* sufficientemente piccolo n m 1 zeri tendono a mapparsi anche in zeri in modulo maggiore di 1. Quindi partendo da un sistema tempo-continuo a fase minima è possibile ottenere un sistema a dati campionati con singolarità all'esterno del cerchio di raggio unitario

Caratterizzazione in frequenza di un campionatore ideale

Teorema

Sia f(t) continuo negli istanti di campionamento. Dato il periodo di campionamento T, si consideri il segnale campionato f_k , allora risulta:

$$F^*(e^{j\omega T}) = \frac{1}{T} F_s(j\omega), \qquad (14)$$

con

$$F_{s}(j\omega) = \sum_{h=-\infty}^{+\infty} F(j(\omega + h\omega_{s})), \qquad (15)$$

dove $F^*(e^{j\omega T})$ è la trasformata di Fourier discreta della sequenza di campioni f_k , e $F(j\omega)$ è la trasformata di Fourier di f(t).

Aliasing - 3

(c) Modulo di $F_s(j\omega) \operatorname{con} \omega_{max} > \omega_N$.

Figure: Esempio di costruzione di $F_s(j\omega)$ a partire da $F(j\omega)$.

Caratterizzazione in frequenza di uno ZOH - 1

Si supponga $u_k = \delta_k$ (quindi U(z) = 1). In questo caso è immediato verificare che l'uscita dello ZOH è pari a

$$y(t) = h_0(t) = 1(t) - 1(t - T),$$
 (16)

se T è il tempo di tenuta pari al periodo di campionamento. Trasformando la (16) secondo Laplace si ha

$$H_0(s)=rac{1-e^{-sT}}{s}$$
 .

Caratterizzazione in frequenza di uno ZOH - 2

Per una generica sequenza d'ingresso u_k , sarà

$$F(z)=\sum_{k=0}^{+\infty}u_kz^{-k}\,,$$

quindi

$$y(t) = \sum_{k=0}^{+\infty} u_k h_0(t - kT) \,. \tag{17}$$

Trasformando la (17) secondo Laplace si ottiene

$$Y(s) = \sum_{k=0}^{+\infty} u_k e^{-skT} H_0(s) = H_0(s) U^*(e^{sT}),$$

pertanto $H_0(s)$ rappresenta il rapporto tra la trasformata di Laplace dell'uscita e la trasformata \mathcal{Z} dell'ingresso valutata in $z = e^{sT}$. In senso lato, quindi, $H_0(s)$ può essere considerata la funzione di trasferimento dello ZOH.

Caratterizzazione in frequenza di uno ZOH - 3

È possibile, inoltre, considerare la *risposta armonica* $H_0(j\omega)$, ottenendo

$$H_0(j\omega) = \frac{1 - e^{-j\omega T}}{j\omega} = e^{-j\frac{\omega T}{2}}T\frac{\sin\frac{\omega T}{2}}{\frac{\omega T}{2}} = Te^{-j\frac{\omega T}{2}}\operatorname{sinc}\frac{\omega T}{2}.$$

Quindi la conversione digitale-analogico mediante ZOH introduce un ritardo pari a $\frac{7}{2}$ e una distorsione in ampiezza.

Caratterizzazione in frequenza di uno ZOH - 4

Si noti che nell'intervallo $[0, \omega_N]$, con $\omega_N = 100\pi$, il modulo può ritenersi pressocchè costante. Pertanto, nella banda $[0, \omega_N]$, l'effetto principale di campionatore più ZOH è quello di introdurre un ritardo pari a $\frac{T}{2}$.

Sintesi nel continuo e discretizzazione del controllore

Sotto opportune ipotesi è possibile dimostrare che, scegliendo opportunamente il periodo di campionamento T, nell'intervallo $[0, \omega_N]$ vale la seguente eguaglianza

$$\mathbf{R}_{\mathbf{c}}(j\omega) = \mathbf{e}^{-j\frac{\omega T}{2}} \mathbf{R}_{\mathbf{d}}(\mathbf{e}^{j\omega T}),$$

dove $R_d(e^{j\omega T})$ e $R_c(j\omega)$ indicano la risposta armonica del controllore tempo-discreto e del suo equivalente nel tempo-continuo.

Sfasamento dovuto allo ZOH

Il termine di ritardo $e^{-j\frac{\omega T}{2}}$ è dovuto alla presenza del mantenitore di ordine zero e contribuisce alla risposta armonica solamente in termini di sfasamento. In particolare il suo contributo alla pulsazione critica ω_c è pari a

$$arphi_0=-\omega_crac{7}{2}rac{180}{\pi}=-rac{\omega_c}{\omega_s}180^\circ\,,$$

ed è tanto più grande quanto più la pulsazione critica ω_c è vicina alla pulsazione di campionamento ω_s .

Sintesi nel dominio del tempo continuo e discretizzazione

• Scegliere il periodo di campionamento T in maniera tale che risulti

$$\omega_{\rm C} < \omega_{\rm N} = \frac{\omega_{\rm S}}{2}$$

In particolare, scegliendo $\omega_s > 6\omega_c$ la distorsione d'ampiezza introdotta dallo ZOH può essere completamente trascurata

Sintesi nel dominio del tempo continuo e discretizzazione

• Scegliere il periodo di campionamento T in maniera tale che risulti

$$\omega_{c} < \omega_{N} = rac{\omega_{s}}{2}$$

In particolare, scegliendo $\omega_s > 6\omega_c$ la distorsione d'ampiezza introdotta dallo ZOH può essere completamente trascurata

 Progettare il regolatore analogico R_c(s) in modo da assicurare un'adeguata eccedenza nel margine di fase rispetto alle specifiche originarie, in maniera tale da compensare l'effetto introdotto dallo ZOH

Sintesi nel dominio del tempo continuo e discretizzazione

• Scegliere il periodo di campionamento T in maniera tale che risulti

$$\omega_{c} < \omega_{N} = rac{\omega_{s}}{2}$$

In particolare, scegliendo $\omega_s > 6\omega_c$ la distorsione d'ampiezza introdotta dallo ZOH può essere completamente trascurata

- Progettare il regolatore analogico R_c(s) in modo da assicurare un'adeguata eccedenza nel margine di fase rispetto alle specifiche originarie, in maniera tale da compensare l'effetto introdotto dallo ZOH
- Discretizzare il regolatore R_c(s) per ottenere il regolatore tempo-discreto R_d(z)

Metodi di discretizzazione

Una possibile approssimazione tempo-discreto di $R_c(s)$ è data da

$$R_d(z) = R_c\left(\frac{1}{T} \cdot \frac{z-1}{\alpha z+1-\alpha}\right).$$

Metodi di discretizzazione

Una possibile approssimazione tempo-discreto di $R_c(s)$ è data da

$$R_d(z) = R_c \left(\frac{1}{T} \cdot \frac{z-1}{\alpha z+1-\alpha} \right).$$

5

Le approssimazioni utilizzate nella pratica sono Eulero in avanti ($\alpha = 0$)

$$s = \frac{z-1}{T}$$

Eulero all'indietro ($\alpha = 1$)

$$s=\frac{z-1}{Tz}$$

Tustin ($\alpha = 0.5$)

$$s=\frac{2(z-1)}{T(z+1)}$$

Comando Matlab

Matlab commands

sys_d = c2d(sys_c, T_s, method) - produces a continuous-time model sys_c that is equivalent to the discrete-time LTI model sys_d. method is a string that selects the conversion method (example 'Tustin').

Scelta del periodo di campionamento - 1

Costo dei dispositivi - All'aumentare della frequenza di campionamento, cresce il costo sia dei convertitori A/D e D/A, sia dei processori sui quali viene implementata la legge di controllo.

Scelta del periodo di campionamento - 1

Costo dei dispositivi - All'aumentare della frequenza di campionamento, cresce il costo sia dei convertitori A/D e D/A, sia dei processori sui quali viene implementata la legge di controllo.

Problemi di tipo numerico - Al diminuire del periodo di

campionamento *T* possono nascere problemi legati alla rappresentazione dei numeri in aritmetica finita all'interno degli organi di elaborazione (*underflow*). Quindi, oltre hai motivi legati al costo dei dispositivi, esistono altri fattori che limitano verso l'alto il valore della frequenza di campionamento.

Scelta del periodo di campionamento - 2

Banda del sistema di controllo - La pulsazione di campionamento ω_s scelta anche tenendo conto della dinamica desiderata del sistema a ciclo chiuso. Se il sistema a ciclo chiuso ha un comportamento di tipo passa-basso con banda passante $\omega_B \cong \omega_c$, per il Teorema di Shannon deve essere $\omega_c < \omega_N$, quindi $\omega_s > 2\omega_c$.

Scelta del periodo di campionamento - 2

- Banda del sistema di controllo La pulsazione di campionamento ω_s scelta anche tenendo conto della dinamica desiderata del sistema a ciclo chiuso. Se il sistema a ciclo chiuso ha un comportamento di tipo passa-basso con banda passante $\omega_B \cong \omega_c$, per il Teorema di Shannon deve essere $\omega_c < \omega_N$, quindi $\omega_s > 2\omega_c$.
- Filtro anti-aliasing Siccome i segnali reali non hanno banda limitata, è necessario effettuare in filtraggio anti-aliasing della grandezza d'uscita y(t). I filtri anti-aliasing reali sono filtri passa-basso che introducono uno sfasamento. Per evitare che questo sfasamento produca inaccettabili diminuzioni del marigne di fase, pregiudicando le prestazioni del sistema di controllo, è opportuno che la pulsazione di taglio del filtro anti-aliasing ω_f sia $\omega_f \gg \omega_c$. Quindi $\omega_s > 2\omega_f \gg 2\omega_c$.

Progetto di controllori digitali nel dominio della z Corrispondenze s-z

Mapping dei luoghi attraverso la trasformazione di campionamento

Trasformazione di campionamento

$$z = e^{sT} \Rightarrow \hat{z} = e^{\hat{s}} = e^{\hat{s}+j\frac{2\pi}{T}n}, \quad n \in \mathbb{N}$$

Progetto di controllori digitali nel dominio della z Corrispondenze s-z

Mapping dei luoghi attraverso la trasformazione di campionamento - 1

T = 100 ms

G. De Tommasi (UNINA)

Progetto di controllori digitali nel dominio della z Corrispondenze s-z

Mapping dei luoghi attraverso la trasformazione di campionamento - 2

T = 100 ms

G. De Tommasi (UNINA)

Controllo Digitale

Analisi Statica - 1

Errore a regime per ingresso a gradino

Ingresso a gradino: $R(z) = \frac{Az}{z-1}$

$$e_{\infty} = \lim_{k \to \infty} e_k = \lim_{z \to 1} (z - 1)S(z) \frac{Az}{z - 1} = A \lim_{z \to 1} S(z)$$

$$\mathbf{e}_{\infty} = \left\{ egin{array}{c} rac{\pi}{1+\mu}\,, & m{g} = 0 \ 0\,, & m{g} > 0 \end{array}
ight.$$

Analisi Statica - 2

Errore a regime per ingresso a rampa

Ingresso a rampa: $R(z) = \frac{AT_z}{(z-1)^2}$

$$e_{\infty} = \lim_{k \to \infty} e_k = \lim_{z \to 1} (z - 1) S(z) \frac{ATz}{(z - 1)^2} = AT \lim_{z \to 1} S(z) \cdot \frac{1}{z - 1}$$
$$e_{\infty} = \begin{cases} \infty, & g = 0\\ \frac{AT}{1 + \mu}, & g = 1\\ 0, & g > 1 \end{cases}$$

Requisiti e specifiche

Stabilità

- Stabilità
- Precisione statica (per ingressi e disturbi canonici)

- Stabilità
- Precisione statica (per ingressi e disturbi canonici)
- Precisione dinamica
 - requisiti sulle funzioni di sensitività
 - requisiti sulla posizione dei poli a ciclo chiuso

- Stabilità
- Precisione statica (per ingressi e disturbi canonici)
- Precisione dinamica
 - requisiti sulle funzioni di sensitività
 - requisiti sulla posizione dei poli a ciclo chiuso
- Attenuazione dei disturbi
- Attenuazione del rumore di misura
- Moderazione del segnale di controllo

- Stabilità
- Precisione statica (per ingressi e disturbi canonici)
- Precisione dinamica
 - requisiti sulle funzioni di sensitività
 - requisiti sulla posizione dei poli a ciclo chiuso
- Attenuazione dei disturbi
- Attenuazione del rumore di misura
- Moderazione del segnale di controllo
- Assenza di oscillazioni nascoste

Appendix

🛸 P. Bolzern, R. Scattolini, and N. Schiavoni Fondamenti di controlli automatici McGraw-Hill, 2004

🍆 G.F. Franklin, J.D. Powell, and M. Workman Digital Control of Dynamic Systems Addison–Wesley, 1998

K. J. Astrem and B. Wittenmark Computer-Controlled Systems – Theory and Design Prentice Hall, 1997