

Regolatori PID digitali

Gianmaria De Tommasi¹

¹Università degli Studi di Napoli Federico II

Ottobre 2012

Corsi AnsaldoBreda

Outline

Discretizzazione del PID

2 Pseudocodice di un regolatore PID

Discretizzazione di un controllore tempo-continuo

Data la frequenza di campionamento $f_s = \frac{1}{h}$, un'approssimazione tempo tempo-discreto del regolatore tempo-continuo $R_c(s)$ è data da

$$R_d(z) = R_c \left(\frac{1}{h} \cdot \frac{z-1}{\alpha z + 1 - \alpha} \right).$$

dove

Eulero in avanti ($\alpha = 0$)

$$s=\frac{z-1}{h}$$

Eulero all'indietro ($\alpha = 1$)

$$s=\frac{z-1}{hz}$$

Tustin ($\alpha = 0.5$)

$$s = \frac{2(z-1)}{h(z+1)}$$

PID tempo-continuo

La f.d.t. di un regolatore PID tempo-continuo reale è

$$R(s) = K_P + \frac{K_P}{T_I s} + \frac{K_P T_D s}{1 + s \frac{T_D}{N}}$$

PID tempo-continuo

La f.d.t. di un regolatore PID tempo-continuo reale è

$$R(s) = K_P + rac{K_P}{T_I s} + rac{K_P T_D s}{1 + s rac{T_D}{N}}$$

Azione proporzionale

$$P(s) = K_P E(s)$$

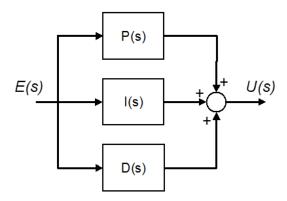
Azione integrale

$$I(s) = \frac{K_P}{T_I s} E(s)$$

Azione derivativa

$$D(s) = \frac{K_P T_D s}{1 + s \frac{T_D}{N}} E(s)$$

PID - Schema a blocchi



Discretizzazione dell'azione proporzionale

- L'azione proporzionale è puramente algebrica → la sua discretizzazione non comporta nessuna approssimazione
- Se p_k è il contributo dell'azione proporzionale all'istante t = kh, allora

$$p_k = K_P e_k = K_P (r_k - y_k)$$

Discretizzazione dell'azione proporzionale

- L'azione proporzionale è puramente algebrica → la sua discretizzazione non comporta nessuna approssimazione
- Se p_k è il contributo dell'azione proporzionale all'istante t = kh, allora

$$p_k = K_P e_k = K_P (r_k - y_k)$$

 Nel caso di regolatore PID ISA si deve portare in conto anche il parametro b

$$p_k^{ISA} = K_P \left(b r_k - y_k \right)$$

Discretizzazione dell'azione integrale

 Tipicamente l'azione integrale i_k viene discretizzata utilizzando il metodo di Eulero all'indietro, con la quale si ottiene

$$i_k = i_{k-1} + \frac{K_P h}{T_I} e_k$$

Discretizzazione dell'azione integrale

 Tipicamente l'azione integrale i_k viene discretizzata utilizzando il metodo di Eulero all'indietro, con la quale si ottiene

$$i_k = i_{k-1} + \frac{K_P h}{T_I} e_k$$

• Se si utilizzasse Eulero in avanti, l'algoritmo di controllo dovrebbe memorizzare anche il campione dell'errore all'istante t = (k-1)h, infatti si avrebbe

$$i_k = i_{k-1} + \frac{K_P h}{T_I} e_{k-1}$$

Discretizzazione dell'azione integrale

• Tipicamente l'azione integrale i_k viene discretizzata utilizzando il metodo di Eulero all'indietro, con la quale si ottiene

$$i_k = i_{k-1} + \frac{K_P h}{T_I} e_k$$

• Se si utilizzasse Eulero in avanti, l'algoritmo di controllo dovrebbe memorizzare anche il campione dell'errore all'istante t = (k-1)h, infatti si avrebbe

$$i_k = i_{k-1} + \frac{K_P h}{T_I} e_{k-1}$$

 Una considerazione analoga vale anche se l'azione integrale venisse discretizza utilizzando il metodo di Tustin

Discretizzazione dell'azione derivativa - 1

• Anche per l'azione derivativa d_k si preferisce utilizzare il metodo di Eulero all'indietro, ottenendo

$$d_{k} = \frac{T_{D}}{Nh + T_{D}}d_{k-1} + \frac{K_{P}T_{D}N}{Nh + T_{D}}(e_{k} - e_{k-1})$$

Discretizzazione dell'azione derivativa - 1

• Anche per l'azione derivativa d_k si preferisce utilizzare il metodo di Eulero all'indietro, ottenendo

$$d_{k} = \frac{T_{D}}{Nh + T_{D}}d_{k-1} + \frac{K_{P}T_{D}N}{Nh + T_{D}}(e_{k} - e_{k-1})$$

 Nel caso di regolatore PID ISA, bisogna considerare anche il parametro c

$$d_{k}^{ISA} = \frac{T_{D}}{Nh + T_{D}}d_{k-1} + \frac{K_{P}T_{D}N}{Nh + T_{D}}\left(c\left(r_{k} - r_{k-1}\right) + y_{k-1} - y_{k}\right)$$

Discretizzazione dell'azione derivativa - 1

• Anche per l'azione derivativa d_k si preferisce utilizzare il metodo di Eulero all'indietro, ottenendo

$$d_{k} = \frac{T_{D}}{Nh + T_{D}}d_{k-1} + \frac{K_{P}T_{D}N}{Nh + T_{D}}(e_{k} - e_{k-1})$$

 Nel caso di regolatore PID ISA, bisogna considerare anche il parametro c

$$d_{k}^{ISA} = \frac{T_{D}}{Nh + T_{D}}d_{k-1} + \frac{K_{P}T_{D}N}{Nh + T_{D}}(c(r_{k} - r_{k-1}) + y_{k-1} - y_{k})$$

• Tipicamente c=0 per limitare l'azione derivativa \rightarrow non c'è la necessità di memorizzare e_{k-1} anche se l'azione integrale viene discretizzata con Eulero all'indietro

Discretizzazione dell'azione derivativa - 2

Se, per discretizzare l'azione derivativa, si utilizzasse

- Eulero in avanti \rightarrow per valori sufficientemente piccoli di T_D si avrebbe una legge di controllo instabile
- Tustin \rightarrow quando $T_D = 0$ il controllore presenterebbe un polo in -1, associato ad un modo alternante, che è preferibile evitare perché causa di ringing dell'azione di controllo (oscillazione dei campioni di controllo alla freguenza di campionamento)

Napoli - Ottobre 2012

Considerazioni preliminari

 Il codice che implementa un regolatore PID dovrà essere eseguito in modalità periodica dal dispositivo di controllo

Considerazioni preliminari

- Il codice che implementa un regolatore PID dovrà essere eseguito in modalità periodica dal dispositivo di controllo
- Il periodo di esecuzione deve essere pari a $h = \frac{1}{f_s}$

Considerazioni preliminari

- Il codice che implementa un regolatore PID dovrà essere eseguito in modalità periodica dal dispositivo di controllo
- II periodo di esecuzione deve essere pari a $h = \frac{1}{f_s}$
- Prima di entrare nella modalità di esecuzione periodica è possibile calcolare alcune costanti, con l'obiettivo di ridurre il numero di operazioni da effettuare in real-time, e quindi per ridurre il ritardo tra l'istante in cui viene campionata l'uscita y_k e l'istante in cui viene generata la corrispondente azione di controllo u_k

Definizione delle costanti

 Si supponga di aver definito le seguenti costanti nella fase di inizializzazione del codice

```
GP = KP*b;
GI = KP*h/TI;
GD1 = TD/(N*h+TD);
GD2 = KP*N*GD1;
GD3 = c*GD2;
```

• e di inizializzare le variabili seguenti

```
d = 0;
i = 0;
r_old = 0;
y old = 0;
```


Pseudocodice - 1

- Attesa attivazione (clock interrupt o chiamata dal s.o.)
- Acquisizione A/D di r e y
- ③ e = r−y % Calcolo dell'errore
- 🗿 p = GP*r-Kp*y; % Azione proporzionale
- od = GD1*d+GD2*(y_old-y)+GD3*(r_old-r) % Azione
 derivativa

 derivativa
- 1 if MANUALE then % Modalità manuale
- 🕖 u = u+delta_u; % Uscita manuale
- 0 i = u-d-p % Bumpless
- 🧐 else % Modalità automatica
- i = i+GI*e % Azione integrale
- u = p+i+d % Uscita complessiva
- endif

Pseudocodice - 2

- if u>u_max then % Anti wind-up Saturazione superiore
- u = u_max
- $oldsymbol{1}{\circ}$ i = u-p-d
- 6 elseif u<u_min then % Anti wind-up Saturazione
 inferiore</pre>

- endif
- Emissione di u e conversione D/A
- 2 y_old = y

Problemi numerici

Si possono verificare diversi problemi numerici. Le principali cause sono

- la quantizzazione dei parametri e delle variabili di ingresso e uscita
- gli arrotondamenti
- l'undeflow e l'overflow del processore

Problemi numerici

Si possono verificare diversi problemi numerici. Le principali cause sono

- la quantizzazione dei parametri e delle variabili di ingresso e uscita
- gli arrotondamenti
- l'undeflow e l'overflow del processore

In particolare

- a causa della rappresentazione quantizzata e del verificarsi di underflow, l'errore a regime in presenza di riferimento costante è diverso da zero anche in presenza di azione integrale
- in presenza di azione integrale, l'errore a regime sarà tanto più grande quanto più piccolo sarà h (quindi al crescere della frequenza di campionamento f_s)

Scelta della frequenza di campionamento - 1

• La frequenza di campionamento è limitata verso il basso dal teorema di Shannon e dalla banda desiderata a ciclo chiuso. In particolare, se $f_s = 1/h$ è la frequenza di campionamento e f_{BW} è la banda del sistema controllato, deve essere

$$f_s > 2f_{BW}$$

(Fig. 5)

Scelta della frequenza di campionamento - 1

• La frequenza di campionamento è limitata verso il basso dal teorema di Shannon e dalla banda desiderata a ciclo chiuso. In particolare, se $f_s = 1/h$ è la frequenza di campionamento e f_{BW} è la banda del sistema controllato, deve essere

$$f_s > 2f_{BW}$$

 Il limite inferiore dato dal teorema di Shannon è solo teorico. Nella pratica si sceglie

$$f_s > 10 f_{BW}$$

Scelta della frequenza di campionamento - 1

• La frequenza di campionamento è limitata verso il basso dal teorema di Shannon e dalla banda desiderata a ciclo chiuso. In particolare, se $f_s = 1/h$ è la frequenza di campionamento e f_{BW} è la banda del sistema controllato, deve essere

$$f_s > 2f_{BW}$$

 Il limite inferiore dato dal teorema di Shannon è solo teorico. Nella pratica si sceglie

$$f_s > 10 f_{BW}$$

 Per motivi legati ai filtro anti-aliasing il limite inferiore cresce ancora, tipicamente si sceglie

$$f_{\rm s} > 200 f_{\rm BW}$$

15 / 17

Scelta della frequenza di campionamento - 2

Esiste anche una limitazione verso l'alto per f_s , sia per problemi legati ai costi realizzativi, sia per rendere contenuto l'errore a regime dovuto alla realizzazione digitale dell'azione integrale

Appendix

Bibliografia

G. Magnani, G. Ferretti, P. Rocco, Tecnologie dei Sistemi di Controllo McGraw-Hill, 2007