

Simulazione di sistemi non lineari Introduzione a Stateflow

Gianmaria De Tommasi¹

¹Università degli Studi di Napoli Federico II detommas@unina.it

Ottobre 2012 Corsi AnsaldoBreda

Outline

2 Elementi di un grafo Stateflow

Stateflow

Stateflow

• è un tool grafico per la progettazione di sistemi ad eventi (*event-driven systems*)

Stateflow

- è un tool grafico per la progettazione di sistemi ad eventi (*event-driven systems*)
- utilizza un linguaggio grafico che permette di rappresentare macchine a stati finiti (automi)

Stateflow

- è un tool grafico per la progettazione di sistemi ad eventi (*event-driven systems*)
- utilizza un linguaggio grafico che permette di rappresentare macchine a stati finiti (automi)
- In particolare con un grafo Stateflow (chart) è possibile
 - definire gli ingressi e le uscite del sistema

Stateflow

- è un tool grafico per la progettazione di sistemi ad eventi (*event-driven systems*)
- utilizza un linguaggio grafico che permette di rappresentare macchine a stati finiti (automi)
- In particolare con un grafo Stateflow (chart) è possibile
 - definire gli ingressi e le uscite del sistema
 - specificare gli eventi che determinano l'evoluzione dello stato

Stateflow

- è un tool grafico per la progettazione di sistemi ad eventi (*event-driven systems*)
- utilizza un linguaggio grafico che permette di rappresentare macchine a stati finiti (automi)
- In particolare con un grafo Stateflow (chart) è possibile
 - definire gli ingressi e le uscite del sistema
 - specificare gli eventi che determinano l'evoluzione dello stato
 - specificare delle azioni associate sia agli stati che alle transizioni (macchina di Moore, macchine di Mealy)

Stateflow

- è un tool grafico per la progettazione di sistemi ad eventi (*event-driven systems*)
- utilizza un linguaggio grafico che permette di rappresentare macchine a stati finiti (automi)
- In particolare con un grafo Stateflow (chart) è possibile
 - definire gli ingressi e le uscite del sistema
 - specificare gli eventi che determinano l'evoluzione dello stato
 - specificare delle azioni associate sia agli stati che alle transizioni (macchina di Moore, macchine di Mealy)
 - definire una relazione gerarchica tra grafi

Stateflow

- è un tool grafico per la progettazione di sistemi ad eventi (*event-driven systems*)
- utilizza un linguaggio grafico che permette di rappresentare macchine a stati finiti (automi)
- In particolare con un grafo Stateflow (chart) è possibile
 - definire gli ingressi e le uscite del sistema
 - specificare gli eventi che determinano l'evoluzione dello stato
 - specificare delle azioni associate sia agli stati che alle transizioni (macchina di Moore, macchine di Mealy)
 - definire una relazione gerarchica tra grafi
 - avere più stati che evolvono in parallelo

Stateflow & Simulink

• I grafi Stateflow (*chart*) vengono richiamati come blocchi all'interno di uno schema Simulink

- I grafi Stateflow (*chart*) vengono richiamati come blocchi all'interno di uno schema Simulink
- I collegamenti tra un blocco Stateflow e altri blocchi si effettua attraverso gli ingressi e le uscite

- I grafi Stateflow (*chart*) vengono richiamati come blocchi all'interno di uno schema Simulink
- I collegamenti tra un blocco Stateflow e altri blocchi si effettua attraverso gli ingressi e le uscite
- Lo sviluppo dei grafi Stateflow può essere fatto indipendentemente da Simulink

- I grafi Stateflow (*chart*) vengono richiamati come blocchi all'interno di uno schema Simulink
- I collegamenti tra un blocco Stateflow e altri blocchi si effettua attraverso gli ingressi e le uscite
- Lo sviluppo dei grafi Stateflow può essere fatto indipendentemente da Simulink
- L'editor di Stateflow comprende anche un *debugger*, con il quale è possibile simulare il funzionamento del grafo prima di integrarlo un Simulink

- I grafi Stateflow (*chart*) vengono richiamati come blocchi all'interno di uno schema Simulink
- I collegamenti tra un blocco Stateflow e altri blocchi si effettua attraverso gli ingressi e le uscite
- Lo sviluppo dei grafi Stateflow può essere fatto indipendentemente da Simulink
- L'editor di Stateflow comprende anche un *debugger*, con il quale è possibile simulare il funzionamento del grafo prima di integrarlo un Simulink
- Durante la simulazione è possibile *animare* il grafo per seguirne l'evoluzione

Il blocco Chart di Stateflow

Per inserire un grafo Stateflow in uno schema Simulink si deve utilizzare il blocco Chart contenuto nella libreria Stateflow di Simulink

Exclusive state (OR state)

Rappresentano stati *mutuamente esclusivi*. In un grafo Stateflow <u>non</u> ci possono essere due o più OR state attivi nello stesso istante.

Parallel state (AND state)

AND state

Rappresentano stati di un grafo Stateflow che possono essere eseguiti contemporaneamente (in parallelo).

Transizioni

Transizioni di default

Transizioni di default

Specifica l'OR state attivo per default.

Azioni, Condizioni ed Eventi

Azioni

Azioni eseguite in base al particolare stato di attivazione di uno stato

Azioni, Condizioni ed Eventi

Azioni

Azioni eseguite in base al particolare stato di attivazione di uno stato

Condizioni

Espressioni booleane associate alle transizioni che ne determinano l'attivazione (*scatto*)

Azioni, Condizioni ed Eventi

Azioni

Azioni eseguite in base al particolare stato di attivazione di uno stato

Condizioni

Espressioni booleane associate alle transizioni che ne determinano l'attivazione (*scatto*)

Eventi

Condizioni che determinano la partenza di particolari attività associate al grafo Stateflow

Ciclo di sviluppo

Ciclo di sviluppo di un grafo Stateflow

Sistema di condizionamento dell'aria

 Costruiremo un grafo Stateflow che mantiene la temperatura in un impianto industriale a 27°.

Sistema di condizionamento dell'aria

- Costruiremo un grafo Stateflow che mantiene la temperatura in un impianto industriale a 27°.
- Il controllore gestisce due ventole.

Sistema di condizionamento dell'aria

- Costruiremo un grafo Stateflow che mantiene la temperatura in un impianto industriale a 27°.
- Il controllore gestisce due ventole.
- La prima viene accesa se la temperatura supera i 27°.

Sistema di condizionamento dell'aria

- Costruiremo un grafo Stateflow che mantiene la temperatura in un impianto industriale a 27°.
- Il controllore gestisce due ventole.
- La prima viene accesa se la temperatura supera i 27°.
- La seconda ventola addizionale viene accesa se la temperatura supera i 30°.

Impianto

Modello matematico

$$\dot{T} = K_T(T_{ext} - T) + K_{cool}(T_{ext} - T)$$

con $K_T = 0.7$. $K_{cool} = -0.5$ se la prima ventola è accessa e $K_{cool} = -1$ se entrambe le ventole sono accese.

G. De Tommasi (UNINA)

Sottosistema Impianto Industriale

Selezionare lo schema Simulink dell'impanto e creare un sottosistema utilizzando il menù Create subsystem

Definizione dell'interfaccia con Simulink

Variabili di interfaccia con Simulink

• Variabile d'ingresso -> Temperatura T

Variabili di interfaccia con Simulink

• Variabile d'ingresso -> Temperatura T Add -> Data -> Input from Simulink

Variabili di interfaccia con Simulink

- Variabile d'ingresso -> Temperatura T Add -> Data -> Input from Simulink
- Variabile d'uscita > K_{cool}

Variabili di interfaccia con Simulink

- Variabile d'ingresso -> Temperatura T Add -> Data -> Input from Simulink
- Variabile d'uscita -> K_{cool}
 Add -> Data -> Output to Simulink

Definizione degli stati del grafo

Definizione degli stati del grafo

• Definire gli stati esclusivi (drag and drop)

Definizione degli stati del grafo

- Definire gli stati esclusivi (drag and drop)
- Definire gli stati paralleli (Decomposition -> Parallel (AND) + drag and drop)

Definizione degli stati del grafo

- Definire gli stati esclusivi (drag and drop)
- Definire gli stati paralleli (Decomposition -> Parallel (AND) + drag and drop)
- Definite gli stati esclusivi all'interno degli stati paralleli (Decomposition -> Exclusive (OR) + drag and drop)

Definizione degli stati del grafo

- Definire gli stati esclusivi (drag and drop)
- Definire gli stati paralleli (Decomposition -> Parallel (AND) + drag and drop)
- Definite gli stati esclusivi all'interno degli stati paralleli (Decomposition -> Exclusive (OR) + drag and drop)

Ordinamento esplicito dell'esecuzione degli stati paralleli

Nel menù File -> Chart properties selezionare User specified state/transition execution order.

Definizione degli stati del grafo

- Definire gli stati esclusivi (drag and drop)
- Definire gli stati paralleli (Decomposition -> Parallel (AND) + drag and drop)
- Definite gli stati esclusivi all'interno degli stati paralleli (Decomposition -> Exclusive (OR) + drag and drop)

Ordinamento esplicito dell'esecuzione degli stati paralleli

Nel menù File -> Chart properties selezionare User specified state/transition execution order. Assegnare gli ordini con il tasto destro Execution Order

Grafo Stateflow

G. De Tommasi (UNINA)

Azioni e delle varaibili associate agli stati

Tipi di azioni associabili agli stati

 entry - eseguita quando si entra in uno stato - eseguita una sola volta

Tipi di azioni associabili agli stati

- entry eseguita quando si entra in uno stato eseguita una sola volta
- during eseguita quando uno stato è attivo eseguita ad ogni passo di simulazione

Tipi di azioni associabili agli stati

- entry eseguita quando si entra in uno stato eseguita una sola volta
- during eseguita quando uno stato è attivo eseguita ad ogni passo di simulazione
- exit prima di uscire da uno stato eseguita una sola volta

Tipi di azioni associabili agli stati

- entry eseguita quando si entra in uno stato eseguita una sola volta
- during eseguita quando uno stato è attivo eseguita ad ogni passo di simulazione
- exit prima di uscire da uno stato eseguita una sola volta

La funzione in

La funzione in(*nome_stato*) restituisce true (1) se *nome_stato* è attivo

Grafo Stateflow

G. De Tommasi (UNINA)

Definizione delle transizioni tra gli stati

Definizione delle transizioni

Utilizzando l'editor grafico (drag and drop)

• Definire le transizioni tra i vari stati esclusivi (OR-state)

Definizione delle transizioni

Utilizzando l'editor grafico (drag and drop)

- Definire le transizioni tra i vari stati esclusivi (OR-state)
- Definire la *transizione di default* verso lo *stato iniziale* per ogni gruppo di OR-state inclusi in un AND-state

Condizioni sulle transizioni

 Ad ogni transizione deve essere associata una condizione booleana

Condizioni sulle transizioni

- Ad ogni transizione deve essere associata una condizione booleana
- Se la condizione dipende dalle variabili d'interfaccia con Simulink la sintasi da utilizzare è [condizione]

Condizioni sulle transizioni

- Ad ogni transizione deve essere associata una condizione booleana
- Se la condizione dipende dalle variabili d'interfaccia con Simulink la sintasi da utilizzare è [condizione]
- Se la condizione dipende da un evento esterno
 - definire l'evento dal menù Add -> Event -> Input from Simulink
 - utilizzare la sintassi nome_evento

Condizioni sulle transizioni

- Ad ogni transizione deve essere associata una condizione booleana
- Se la condizione dipende dalle variabili d'interfaccia con Simulink la sintasi da utilizzare è [condizione]
- Se la condizione dipende da un evento esterno
 - definire l'evento dal menù Add -> Event -> Input from Simulink
 - utilizzare la sintassi nome_evento

Definire l'evento ON_OFF - Selezionare Trigger: Either

Grafo Stateflow

G. De Tommasi (UNINA)

Scelta dell'evento di trigger per il grafo

Eventi di trigger di un grafo Stateflow

Durante una simulazione Simulink esegue un grafo Stateflow

• con un passo di campionamento fisso definito dall'utente

Eventi di trigger di un grafo Stateflow

Durante una simulazione Simulink esegue un grafo Stateflow

- con un passo di campionamento fisso definito dall'utente
- quando si verifica un particolare evento di trigger

Eventi di trigger di un grafo Stateflow

Durante una simulazione Simulink esegue un grafo Stateflow

- con un passo di campionamento fisso definito dall'utente
- quando si verifica un particolare evento di trigger
- utilizzando un segnale di comando proveniente da un altro grafo Stateflow

Eventi di trigger di un grafo Stateflow

Durante una simulazione Simulink esegue un grafo Stateflow

- con un passo di campionamento fisso definito dall'utente
- quando si verifica un particolare evento di trigger
- utilizzando un segnale di comando proveniente da un altro grafo Stateflow

Quindi gli **eventi di trigger** vengono utilizzati per definire **quando** un grafo Stateflow deve essere eseguito durante la simulazione.

Eventi di trigger di un grafo Stateflow

Durante una simulazione Simulink esegue un grafo Stateflow

- con un passo di campionamento fisso definito dall'utente
- quando si verifica un particolare evento di trigger
- utilizzando un segnale di comando proveniente da un altro grafo Stateflow

Quindi gli **eventi di trigger** vengono utilizzati per definire **quando** un grafo Stateflow deve essere eseguito durante la simulazione. **Definire l'evento** CLOCK - Selezionare Trigger: Either

Creazione degli eventi ON_OFF e CLOCK - 1

Aggiungere un blocco $\verb"Sources" -> Signal Builder nello schema Simulink$

Creazione degli eventi ON_OFF e CLOCK - 2

- Definire il segnale di trigger CLOCK come un onda quadra con frequenza 10 Hz, ampiezza 1, offset 1 e duty cycle 50 %.
- Definire l'evento ON_OFF come in figura

G. De Tommasi (UNINA)

Simulazione del grafo

Simulazione

G. De Tommasi (UNINA)

Debug del grafo

