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Preliminaries Linear Systems

Dynamical Systems

State-space model

A finite dimensional continuous-time
dynamical system can be described by the
following differential equations:

ẋ(t) = f
(
x(t) , u(t) , t , t0

)
, x(t0) = x0 (1a)

y(t) = η
(
x(t) , u(t) , t , t0

)
(1b)

where:

x(t) ∈ Rn is the system state
x(t0) ∈ Rn is the initial condition
u(t) ∈ Rm is the input vector

y(t) ∈ Rp is the output vector
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Preliminaries Linear Systems

Linear time-invariant systems

A linear time-invariant (LTI) continuous-time system is described by

ẋ(t) = Ax(t) + Bu(t) , x(0) = x0 (2a)
y(t) = Cx(t) + Du(t) (2b)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m.

A dynamical system with single-input (m = 1) and single-output
(p = 1) is called SISO, otherwise it is called MIMO.

Matlab commands
sys = ss(A,B,C,D) creates a state-space model object.
y = lsim(sys,u,t) simulates the the time response of the LTI
system sys.
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Preliminaries Linear Systems

Equilibria of nonlinear dynamical systems

Consider a nonlinear and time-invariant system

ẋ(t) = f
(
x(t) ,u(t)

)
, x(0) = x0 (3a)

y(t) = η
(
x(t) ,u(t)

)
(3b)

If the input is constant, i.e. u(t) = ū, then the equilibria
xe1 , xe2 , . . . , xeq of such a system can be computed as solutions of the
homogeneous equation

f
(
xe , ū) = 0 ,

Given an equilibrium xei the correspondent output is given by

yei = η
(
xei , ū

)
.
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Preliminaries Linear Systems

Linearization around a given equilibrium

If x0 = xe + δx0 and u(t) = ū + δu(t), with δx0 , δu(t) sufficiently
small, then the behaviour of (3) around a given equilibrium

(
ū , xe

)
is

well described by the linear system

δẋ(t) =
∂f
∂x

∣∣∣∣∣∣ x = xe
u = ū

δx(t) +
∂f
∂u

∣∣∣∣∣∣ x = xe
u = ū

δu(t) , δx(0) = δx0 (4a)

δy(t) =
∂η

∂x
∣∣∣∣∣∣ x = xe

u = ū

δx(t) +
∂η

∂u
∣∣∣∣∣∣ x = xe

u = ū

δu(t) (4b)

The total output can be computed as

y(t) = η
(
xe , ū

)
+ δy(t) .
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Preliminaries Linear Systems

Example - Pendulum

Mass m
Length L
Friction coefficient b
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Preliminaries Linear Systems

Example - Pendulum

Nonlinear model

Let

x(t) =

(
θ(t)
θ̇(t)

)
u(t) = F (t) y(t) = θ(t)

then

ẋ1(t) = x2(t)

ẋ2(t) = −g
L

sin x1(t)− b
mL2 x2(t) +

1
mL

cos x1(t)u(t)

y(t) = x1(t)
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Preliminaries Linear Systems

Example - Pendulum

Equilibria

If ū = mg, solving f
(
xe, ū

)
= 0 we get

xek =

(
π
4 + kπ

0

)

G. De Tommasi (CREATE) Systems & Control Fundamentals GOTiT - Nov. 2009 9 / 62



Preliminaries Linear Systems

Example - Pendulum

Around the equilibria xe =
(
π
4 0
)T the behaviour of the pendulum is

well described by the linear system

δẋ1(t) = δx2(t)

δẋ2(t) = −
√

2g
L

δx1(t)− b
mL2 δx2(t) +

1√
2mL

δu(t)

δy(t) = δx1(t)
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Preliminaries Linear Systems

The script pendulum.m - 1

% System parameters
m = 10;
b = 15;
g = 9.81;
L = 1;
% Equilibria
xbar = [pi/4 0];
ubar = m*g;
% Output at the equilibria
ybar = xbar(1);
% Variation of the initial conditions
dx0 = [0.3 3];
% Input variation: Am*sin(t)
Am = 10;
% Simulation time interval
tfin = 15;
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Preliminaries Linear Systems

The script pendulum.m - 2

% Linearized model matrices
A = [ 0 1 ; -sqrt(2)*g/L -b/(m*L 2̂) ];
B = [ 0 ; 1/(sqrt(2)*m*L) ];
C = [ 1 0 ];
D = 0;
% Linearized model
sys_l = ss(A,B,C,D);
% Time vector
tlin = 0:.001:tfin;
% Linear simulation
du = Am*sin(tlin);
ylin= lsim(sys_l,du,tlin,dx0);
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Preliminaries Linear Systems

The script pendulum.m - 3

% Nonlinear simulation
[ t,x_nl ]=ode45(’p_nl’,[0 tfin],xbar+dx0,[],m,b,g,L,ubar,Am);
y_nl = x_nl(:,1);
% Plots
figure(1)
plot(t,y_nl*180/pi,’-’,tlin,(ylin+ybar)*180/pi,’-’)
grid on
ylabel(’[deg]’)
xlabel(’tempo [s]’)
title(’theta’)
legend(’NL’,’L’)
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Preliminaries Linear Systems

The function p_nl.m

function xdot = p_nl(t,x,flag,m,b,g,L,ubar,Am)
%
% Returns the state derivative
%
u = ubar + Am*sin(t);
xdot = [x(2); -g/L*sin(x(1)) - b/(m*L 2̂)*x(2) +...
u/(m*L)*cos(x(1))];

Download Matlab example
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Preliminaries Linear Systems

Asymptotic stability of LTI systems

Asymptotic stability

This property roughly asserts that every solution of ẋ(t) = Ax(t) tends to zero as t →∞.

Note that for LTI systems the stability property is related to the system and not to a specific
equilibrium.

Theorem - System (2) is asymptotically stable iff A is Hurwitz, that is if every eigenvalue λi of
A has strictly negative real part

<
(
λi

)
< 0 , ∀ λi .

Theorem - System (2) is unstable if A has at least one eigenvalue λ̄ with strictly positive real
part, that is

∃ λ̄ s.t. <
(
λ̄
)
> 0 .

Theorem - Suppose that A has all eigenvalues λi such that <
(
λi

)
≤ 0, then system (2) is

unstable if there is at least one eigenvalue λ̄ such that <
(
λ̄
)

= 0 which corresponds to a Jordan

block with size > 1.
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Preliminaries Linear Systems

Equilibrium stability for nonlinear systems

For nonlinear system the stability property is related to the specific
equilibrium.

Theorem - The equilibrium state xe corresponding to the constant
input ū a nonlinear system (3) is asymptotically stable if all the
eigenvalues of the correspondent linearized system (4) have strictly
negative real part.

Theorem - The equilibrium state xe corresponding to the constant
input ū a nonlinear system (3) is unstable if there exists at least one
eigenvalue of the correspondent linearized system (4) which has
strictly positive real part.
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Preliminaries Transfer function

Transfer function of LTI systems

Given a LTI system (2) the corresponding transfer matrix from u to y is
defined as

Y (s) = G(s)U(s) ,

with s ∈ C. U(s) and Y (s) are the Laplace transforms of u(t) and y(t)
with zero initial condition (x(0) = 0), and

G(s) = C
(
sI − A

)−1B + D . (5)

For SISO system (5) is called transfer function and it is equal to the
Laplace transform of the impulsive response of system (2) with zero
initial condition.

Matlab commands
sys = tf(num,den) creates a transfer function object.
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Preliminaries Transfer function

Transfer function

Given the transfer function G(s) and the Laplace transform of the input
U(s) the time response of the system can be computed as the inverse
transform of G(s)U(s), without solving differential equations.

As an example, the step response of a system can be computed as:

y(t) = L−1
[
G(s)

1
s

]
.

Matlab commands
[y,t] = step(sys) computes the step response of the LTI system
sys.
[y,t] = impulse(sys) computes the impulse response of the LTI
system sys.
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Preliminaries Transfer function

Poles and zeros of SISO systems

Given a SISO LTI system , its transfer function is a rational function of s

G(s) =
N(s)

D(s)
= ρ

Πi(s − zi)

Πj(s − pj)
,

where N(s) and D(s) are polynomial in s, with
deg

(
N(s)

)
≤ deg

(
D(s)

)
.

We call
pj poles of G(s)
zi zeros of G(s)

Matlab commands
sys = zpk(z,p,k) creates a zeros-poles-gain object.
p = eig(sys) or p = pole(sys) return the poles of the LTI
system sys.
z = zero(sys) returns the zeros of the LTI system sys.
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Preliminaries Transfer function

Poles and eigenvalues of a LTI system

Every pole of G(s) is an eigenvalue of the system matrix A. However,
not every eigenvalue of A is a pole of G(s).

If all the poles of G(s) have strictly negative real part – i.e. they are
located in the left half of the s-plane (LHP) – the SISO system is said
to be Bounded–Input Bounded–Output stable (BIBO).

A system is BIBO stable if every bounded input to the system results in
a bounded output over the time interval [0,∞).
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Preliminaries Transfer function

Time constants, natural frequencies and damping factors

A transfer function can be also specified in terms of
time constants (τ ,T )
natural frequencies (ωn,αn)
damping factors (ξ,ζ)
gain (µ)
system type (i.e. number of poles/zeros in 0, g)

G(s) = µ
Πi(1 + Tis)Πj

(
1 + 2 ζj

αnj
s + s2

αnj

)
sgΠk (1 + τks)Πl

(
1 + 2 ξl

ωnl
s + s2

ωnl

) .
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Preliminaries Block diagrams

Block diagrams

When dealing with transfer functions, it is usual to resort to Block
diagrams which permit to graphically represent the interconnections
between system in a convenient way.
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Preliminaries Block diagrams

Series connection

Matlab commands
sys = series(sys1,sys2) makes the series interconnection
between sys1 and sys2.
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Preliminaries Block diagrams

Parallel connection

Matlab commands
sys = parallel(sys1,sys2) makes the parallel interconnection
between sys1 and sys2.
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Preliminaries Block diagrams

Feedback connection

Matlab commands
sys = feedback(sys1,sys2,[+1]) makes the feedback interconnection
between sys1 and sys2. Negative feedback is the default. If the third
parameter is equal to +1 positive feedback is applied.
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Preliminaries Block diagrams

Stability of interconnected systems

Given two asymptotically stable LTI systems G1(s) and G2(s)

the series connection G2(s)G1(s) is asymptotically stable
the parallel connection G1(s) + G2(s) is asymptotically stable

the feedback connection G1(s)
1±G1(s)G2(s) is not necessarely stable
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Preliminaries Frequency response

Frequency response

Given a LTI system the complex function

G(jω) = C
(
jωI − A

)−1B + D ,

with ω ∈ R is called frequency response of the system.

G(jω) permits to evaluate the system steady-state response to a
sinusoidal input. In particular if

u(t) = A sin(ω̄t + ϕ) ,

then the steady-state response of a LTI system is given by

y(t) =
∣∣G(jω̄)

∣∣A sin
(
ω̄t + ϕ+ ∠G(jω̄)

)
.
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Preliminaries Graphical representations of G(jω)

Bode plot

Given a LTI system G(s) the Bode diagrams plot
the magnitude of G(jω) (in dB,

∣∣G(jω)
∣∣
dB = 20 log10

∣∣G(jω)
∣∣)

and the phase of G(jω) (in degree)
as a function of ω (in rad/s) in a semi-log scale (base 10).

Bode plots are used for both analysis and synthesis of control
systems.

Matlab commands
bode(sys) plots the the Bode diagrams of the LTI system sys.
bodemag(sys) plots the Bode magnitude diagram of the LTI system
sys.
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Preliminaries Graphical representations of G(jω)

Bode plot - Example

Let consider

G(s) = 10
1 + s

s
(

s2

400 + 20.3
20 s + 1

) = 10
1 + s

s(0.0025s2 + 0.03s + 1)

Matlab commands
s = tf(’s’);
sys = 10*(1+s)/(s*(sˆ2/400+0.6*s/20+1));
bode(sys);
grid
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Preliminaries Graphical representations of G(jω)

Bode plot - Example
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Preliminaries Graphical representations of G(jω)

Minimum phase systems

A stable system is said to be a minimum phase system if it has not
time delays or right-half plane (RHP) zeros.

For minimum phase systems there is a unique relationship between
the gain and phase of the frequency response G(jω). This may be
quantified by the Bode’s gain-phase relationship

∠G(jω̄) =
1
π

∫ +∞

−∞

d ln |G(jω)|
d lnω

ln
∣∣∣∣ω + ω̄

ω − ω̄

∣∣∣∣dωω .

The name minimum phase refers to the fact that such a system has the
minimum possible phase lag for the given magnitude response |G(jω)|.
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Preliminaries Graphical representations of G(jω)

Nyquist plot

The Nyquist is a polar plot of the frequency response G(jω) on the
complex plane.

This plot combines the two Bode plots - magnitude and phase - on a
single graph, with frequency ω, which ranges in (−∞ ,+∞), as a
parameter along the curve.

Nyquist plots are useful to check stability of closed-loop systems
(see Nyquist stability criterion ).

Matlab commands
nyquist(sys) plots the Nyquist plot of the LTI system sys.
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Preliminaries Graphical representations of G(jω)

Nyquist plot - Example
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Preliminaries Graphical representations of G(jω)

Nichols plot

It is similar to the Nyquist plot, since it plots both the magnitude and
the phase of G(jω) on a single chart, with frequency ω as a parameter
along the curve.

As for the Bode plot the magnitude |G(jω)| is expressed in dB and the
phase ∠G(jω) in degree.

Nichols charts are useful for the design of control systems, in
particular for the design of lead, lag, lead-lag compensators.

Matlab commands
nichols(sys) plots the Nichols chart of the LTI system sys.
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Preliminaries Graphical representations of G(jω)

Nichols plot - Example
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Feedback Control Systems The control problem

The control problem

The objective of a control system is to make the output of a plant y(t) behave
in a desired way by manipulating the plant input u(t).

A good controller should manipulate u(t) so as to

counteract the effect of a disturbance d(t) (regulator problem)

keep the output close to a given reference input r(t) (servo problem)

In both cases we want the control error e(t) = y(t)− r(t) to be small.
G. De Tommasi (CREATE) Systems & Control Fundamentals GOTiT - Nov. 2009 36 / 62



Feedback Control Systems The control problem

Why feedback ?

A major sources of difficulty are that
1 the plant model G(s) and the disturbance model Gd (s) may be affected by uncertainty

and/or may change with time
2 the disturbance is not always measurable
3 the plant can be unstable

It turns out that e feed-forward approach is not robust enough and/or is not always a
viable solution.

A feedback approach can guarantee the desired degree of robustness. However design a

feedback control system is not straightforward: instability is around the corner!
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Feedback Control Systems The control problem

Performance and stability

A good controller must guarantee:
Nominal stability - The system is stable with no model
uncertainty
Nominal Performance - The system satisfies the performance
specifications with no model uncertainty
Robust stability The system is stable for all perturbed plants
about the nominal model up to the worst case model uncertainty
Robust performance The system satisfies the performance
specifications for all perturbed plants about the nominal model up
to the worst case model uncertainty
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Feedback Control Systems The control problem

One degree-of-freedom controller

The input to the plant is given by

U(s) = K (s)
(
R(s)− Y (s)− N(s)

)
.

The objective of control is to manipulate design a controller K (s) such
that the control error e(t) = r(t)− y(t) remains small in spite of
disturbances d(t).
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Feedback Control Systems The control problem

Terminology and Notation

L(s) = G(s)K (s) is called loop transfer function
S(s) =

(
I + L(s)

)−1 is called sensitivity function

T (s) =
(
I + L(s)

)−1L(s) is called complementary sensitivity
function

It is straightforward to note that

T (s) + S(s) = I .
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Feedback Control Systems The control problem

One DOF controller

Exploiting the composition rules for block diagrams, it turns out that

Y (s) = T · R(s) + SGd · D(s)− T · N(s) (6a)
E(s) = −S · R(s) + SGd · D(s)− T · N(s) (6b)
U(s) = KS · R(s)− K (s)S(s)Gd · D(s)− KS · N(s) (6c)
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Feedback Control Systems The control problem

One DOF controller

Remark - S(s) is called sensitivity because it gives the relative
sensitivity of the closed-loop transfer function T (s) to the relative plant
model error. In particular, at a given frequency ω we have for a SISO
plant that

dT
T

dG
G

= S .

Remark - Equations (6) are written in matrix form because they apply
to MIMO systems. For SISO systems we may write

S(s) =
1

1 + L(s)
,

T (s) =
L(s)

1 + L(s)
.
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Feedback Control Systems The control problem

The control dilemma

Let consider

Y (s) = T · R(s) + SGd · D(s)− T · N(s) .

In order to reduce the effect of the disturbance d(t) on the output
y(t), the sensitivity function S(s) should be made small
(particularly in the low frequency range)
In order to reduce the effect of the measurement noise n(t) on the
output y(t), the complementary sensitivity function T (s) should be
made small (particularly in the high frequency range)

However, for all frequencies it is

T + S = I .

Thus a trade-off solution must be achieved.
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Feedback Control Systems The control problem

Feedback may cause instability

One of the main issues in designing feedback controllers is stability.

If the feedback gain is too large then the controller may overreact and the closed-loop system

becomes unstable.

Download Simulink example
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Feedback Control Systems The control problem

Bandwidth and crossover frequency

Usually the frequency response of loop transfer function |L(jω)| has a low-pass behaviour.

The crossover frequency ωc is the frequency such that |L(jωc)| = 1.

In most of the cases the crossover frequency is a good estimation of the closed-loop

bandwidth
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Feedback Control Systems Stability margins

Gain and phase margin

The frequency response of the loop transfer function L(jω) can be used to
estimate the stability margins.

Gain margin (GM)

1/|L(jω180| ,

where ω180 is the phase corssover frequency.

Phase margin (PM)

∠L(jωc) + 180◦ ,

where ωc is the crossover frequency.
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Feedback Control Systems Stability margins

Gain Margin

The GM is the factor by which the loop gain |L(jω)| may be increased
before the closed-loop system becomes unstable.

The GM is thus a direct safeguard against steady-state gain
uncertainty.
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Feedback Control Systems Stability margins

Phase Margin

The phase margin tells how much phase lag can added to L(s) at
frequency ωc before the phase at this frequency becomes 180◦ which
corresponds to closed-loop instability (see Nyquist stability criterion ).

The PM is a direct safeguard against time delay uncertainty.
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Feedback Control Systems Nyquist Criterion

Nyquist Criterion - Preliminaries

The Nyquist Criterion permits to check the stability of a closed loop
system by using the Nyquist plot of the loop frequency response L(jω).

The criterion is based on the fact the the close-loop poles are equal to
the zeros of the transfer function

D(s) = 1 + L(s) .

Hence, if D(s) has at least one zero z̄ such that <(z̄) > 0 the
closed-loop system is unstable.
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Feedback Control Systems Nyquist Criterion

Nyquist Criterion

Consider a loop frequency response L(jω) and let
P be the number of poles of L(s) with strictly positive real part
Z be the number of zeros of L(s) with strictly positive real part

The Nyquist plot of L(jω) makes a number of encirclements N
(clockwise) about the point (−1 , j0) equal to

N = Z − P .

It turns out that the closed-loop system is asymptotically if and only if
the Nyquist plot of L(jω) encircle (counter clockwise) the point
(−1 , j0) a number of times equal to P.

The criterion is valid if the Nyquist plot of L(jω) do not intersect
the point (−1 , j0).
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Feedback Control Systems Nyquist Criterion

Nyquist plot - Example

G(s) =
1

s3 + 3s2 + 3s + 1
,

K (s) = Kp
1 + s

s
.

Download Simulink example

G. De Tommasi (CREATE) Systems & Control Fundamentals GOTiT - Nov. 2009 51 / 62
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Feedback Control Systems Nyquist Criterion

Nyquist Criterion - Remarks

1 If the loop transfer function L(s) has a zero pole of multiplicity l ,
then the Nyquist plot has a discontinuity at ω = 0. Further analysis
indicates that the zero poles should be neglected, hence if there
are no other unstable poles, then the loop transfer function L(s)
should be considered stable, i.e. P = 0.

2 If the loop transfer function L(s) is stable, then the closed-loop
system is unstable for any encirclement (clockwise) of the point -1.

3 If the loop transfer function L(s) is unstable, then there must be
one counter clockwise encirclement of -1 for each pole of L(s) in
the right-half of the complex plane.

4 If the Nyquist plot of L(jω) intersect the point (−1 , j0), then
deciding upon even the marginal stability of the system becomes
difficult and the only conclusion that can be drawn from the graph
is that there exist zeros on the imaginary axis.
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Feedback Control Systems Root locus

Location of the poles of a closed-loop system

The time behaviour of a closed-loop system is strictly related to the
position of its poles on the complex plane.

For example, for a second order closed-loop system it is possible to
relate the features of the step response such as

rise time
overshoot
settling time

to the location of its poles.

The Root Locus design method permits to evaluate how changes in the
loop transfer function L(s) affect the position of the closed-loop poles.
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Feedback Control Systems Root locus

The Root Locus

The closed-loop poles are given by the roots of

1 + L(s) . (7)

Assuming that L(s) = ρL′(s) the Root Locus plot the locus of all
possible roots of (7) as ρ varies in the range [0 ,∞).

The Root Locus can be used to study the effect of additional poles and
zeros in L′(s), i.e. in the controller K (s).

The Root Locus can be effectively used to design SISO controllers.

Matlab commands
rlocus(sys) - plots the root locus for the loop transfer function
specified by sys.
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Feedback Control Systems Root locus

Root Locus - Example

L′(s) =
1 + s

s
·

1
s3 + 3s2 + 3s + 1

=
1

s(s + 1)2
.
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Feedback Control Systems Root locus

Root Locus - Example

Consider the unstable loop transfer function

L′(s) =
1

(s − 2)2

It is not possible to stabilize the system with a simple proportional controller.
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Root Locus - Example

It is not possible to stabilize the system with a simple proportional controller.
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Feedback Control Systems Root locus

Root Locus - Example

Add a pole in 0 to have zero steady-state error

L′(s) =
1

s(s − 2)2

It is still not possible to stabilize the system with a simple proportional controller.
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Feedback Control Systems Root locus

Root Locus - Example

Add two zeros to draw the poles in the LHP

L′(s) =
(s + 10)2

s(s − 2)2

The controller K (s) = ρ
(s+10)2

s can stabilize the plant but is not causal.
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Feedback Control Systems Root locus

Root Locus - Example

Add an high frequency pole to have a proper controller

L′(s) =
(s + 10)2

s(s + 100)(s − 2)2

The controller K (s) = ρ
(s+10)2

s(s+100)
can stabilize.
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Feedback Control Systems Controller design

Hands on system

Let’s try to design our own controller (with Matlab)!
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Appendix

Suggested textbooks

F. M. Callier and C. A. Desoer
Linear System Theory
Springer-Verlag, 1991

G. F. Franklin, J. D. Powell and A. Emami-Naeini
Feedback Control of Dynamic Systems
Pearson Prentice Hall, 2008

S. Skogestad and I. Postlethwaite
Multivariable Feedback Control - Analysis and Design
John Wiley and Sons, 2006

K. Zhou and J. C. Doyle
Essentials of Robust Control
Prentice Hall, 1998
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