MARTe Tutorial

André Neto*, F. Sartori,

- D. Alves, A. Barbalace,
- L. Boncagni, G. De Tommasi,
- G. Manduchi, F. Piccolo,
- R. Vitelli, D.F. Valcárcel,
- L. Zabeo and
- EFDA-JET PPCC contributors

*Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal http://www.ipfn.ist.utl.pt

The water tank

- A cross-sectional area of water in tank
- b constant related to flow rate into the tank
- a constant related to flow rate out of the tank
- H height of water

What GAMs for the water tank?

Development cycle

- What are my needs?
 - Interfaces to hardware
 - Algorithm execution
 - Plant simulation
 - Connection between components (DDB)
 - Interfaces to outside world
- What do I have ready to be used?
 - Recycle hardware interfaces
 - Reuse algorithms

MARTe World

Requirements for our goal

- Development of a water tank simulator
 - Time provider (timer)
 - Reference generation
 - A GAM with the model of the plant
 - water tank
 - pump power supply
 - PID
 - Data downloading
 - External triggering of the state machine

+MARTe = {
 Class = MARTeContainer
 StateMachineName = StateMachine
 MenuContainerName = MARTe
 +DriverPool = {...}
 +Messages = {...}
 +ExternalTimeTriggeringService = {...}
 +Thread_1 = {...}

+MARTe = $\{$

External Time & Trigger

 $+MARTe = {$

IOGAM (Timer)


```
+Thread_1 = {
     +Timer = {
         Class = IOGAMs::TimeInputGAM
         TriggeringServiceName = ExternalTimeTriggeringService
         BoardName = TimerBoard
         Signals = {
             time = {
                                                                       Farget height
                 SignalName = usecTime <
                                                                         Voltage
                                                                     Height
                 SignalType = int32
                                                                   Time
                                                          Timing
             }
                                                      counter = {
                 SignalName = timerCounter-
                                                          Reference gen.
                 SignalType = int32
             }
         }
     }
10
                                     A. Neto | FPSC Workshop, Feb 28, 2010 | MARTe
```

Reference Generator

PID GAM (1)

PID GAM (2)

- Only GAM not readily available
- GAM development cycle
 - Design algorithm
 - Piece of paper
 - Software (matlab, octave, ...)
 - Decide inputs and outputs
 - What parameters are configurable?
 - What parameters are compulsory?

Water Tank variables


```
class WaterTank : public GAM, public HttpInterface {
// Parameters
private:
   /** Last usec time (for the integral) */
   int32
                                             lastUsecTime;
   /** Last water height (for the integral) */
   float
                                             lastHeight;
   /** Last voltage value after saturation*/
   float
                                             lastVoltage;
   /** The input flow rate constant*/
   float
                                             bFlowRate;
   /** The output flow rate constant */
   float
                                             aFlowRate;
   /** Tank area */
   float
                                             tankArea;
   /** Maximum voltage that can be requested */
   float
                                             maxVoltage;
};
```

What input/output signals?

Water Tank read config.


```
bool WaterTank::Initialise(ConfigurationDataBase& cdbData) {
    if(!AddInputInterface(input, "InputInterface")){
            AssertErrorCondition(InitialisationError,
"WaterTank::Initialise: %s failed to add input interface", Name());
           return False;
                               Input signals from DDB
        }
    if(!cdb->Move("InputSignals")){
                AssertErrorCondition(InitialisationError,
"WaterTank::Initialise: %s did not specify InputSignals entry", Name());
           return False;
    if(!cdb.ReadFloat(aFlowRate, "aFlowRate", 20)){
            AssertErrorCondition(Information, "WaterTank %s::Initialise:
output flow rate not specified. Using default %f", Name(), aFlowRate);
    if(!cdb.ReadFloat(tankArea, "TankArea", 20)){
            AssertErrorCondition(Information, "WaterTank %s::Initialise:
tank area not specified. Using default %f", Name(), aFlowRate);
        }
}
```

Water Tank execution

```
bool WaterTank::Execute(GAM FunctionNumbers functionNumber) {
    // Get input and output data pointers
    input->Read();
    int32 usecTime = *((int32*)input->Buffer());
                        = ((float *)input->Buffer())[1];
    float voltage
    float *outputBuff = (float*) output->Buffer();
    float height = 0;
    //Saturate voltage
    if(voltage > maxVoltage){
                 voltage = maxVoltage;
    }
    if(voltage < minVoltage){</pre>
                 voltage = minVoltage;
    }
    //simple Euler method
    height = (voltage * bFlowRate - aFlowRate * sqrt(lastHeight)) / tankArea
 (usecTime - lastUsecTime) * 1e-6 + lastHeight;
    lastHeight = height;
. . .
    *outputBuff = height;
. . .
    // Update the data output buffer
    output->Write();
}
18
```

Water tank configuration

. . .

Data collection

- GAMs readily available
- Display data using the HTTP interface
- Extremely useful to quickly debug and inspect signals in the DDB
- More information on the example slides

- MARTe has two runtime cycles
- Online is associated with the real-time cycle, whereas offline is the stand-by mode
- GAMs can be Online forever

```
Execution order
+Thread_1 = {
    Online = "Timer WaveformGen PIDGAM WaterTank
PlottingGAM Statistic Collection"
    Offline = "Timer PlottingGAM Statistic"
}
```

MARTe Universe

MARTe Universe components

LoggerAddress = localhost DefaultCPUs = 8 +HTTPSERVER= { Class = HttpService Port = 8084 Root = WEB		
\$ *	BROWSE	
Class = HttpGroupResource +BROWSE = { Class = HttpGCRCBrowser	BACK REFRESH	
Title = "Http Object	+ (MARTeContainer)	MARTe > W
browser"	+ (StateMachine)	StateMachine > W
AddReference = "MARTe	(HttpClassListResource)	OBJBROWSE > W
StateMachine OBJBROWSE THRBROWSE	(HttpThreadListResource)	THRBROWSE > W
CFGUpload MATLABSupport"	+ (CFGUploader)	CFGUpload > W
}	+ (CODASCommunicationModule	e) CODAS
$+MATLABSupport = \int$	+ (MATLABHandler)	MATLABSupport > W
Class = MATLABHandler		
}		
+CFGUpload = {		
Class = CFGUploader		
}		
+StateMachine = {		

GAMs and HTTP interface

- GAMs may expose information about themselves using the HTTP interface
 - Write to a stream facility which is provided every time an HTTP request for their URL is performed

au was apaatea 0.0001	17 seconds a	go											
	Last value	Mean	Variance	Abs Max	Abs Min	Rel Max	Rel Min	Туре					
usecTime	5.565e+006	5.311e+006	6.426e+010	5.565e+006	9.918e+005	5.565e+006	9.918e+005	int32					
CycleUsecTime	2.505e-004	2.529e-004	2.734e-009	7.997e-003	1.631e-005	7.997e-003	1.631e-005	float					
waterHeightReference	2.068e+000	2.219e+000	2.369e-002	3.500e+000	2.068e+000	3.500e+000	2.068e+000	float					
waterHeight	2.121e+000	2.278e+000	2.501e-002	3.540e+000	2.121e+000	3.540e+000	2.121e+000	float					
pumpVoltageRequest	3.453e-001	3.575e-001	5.719e-003	1.220e+001	-5.590e+001	1.220e+001	-5.590e+001	float					
pumpVoltage	3.453e-001	3.585e-001	4.261e-003	5.000e+000	0.000e+000	5.000e+000	0.000e+000	float					
Integer 32 bits sign	nals Iex 31 30	29 28 27 20	5 25 24 23 2	2 21 20 19	18 17 16 15	14 13 12 1	1 10 09 08 0	07 06 0	5 04	03 0	2 01	00	

Install the executable on your computer

 Linux users, remember to set the LD_LIBRARY_PATH to point to the location where you have installed MARTe

e.g:export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:.

– Ubuntu users might require libtinfo (ncurses)

- sudo ln -s /usr/lib/libncurses.so.5 /usr/lib/libtinfo.so.5
- sudo ln -s /usr/lib/libtinfo.so.5 /usr/lib/libtinfo.so

Antivirus software might interfere with MARTe

• (Disable it at your own risk)

Starting the logger

- MARTe can be run either as a service or as a console program
 - The latter will be used in this demo
- Start MARTe by executing MARTe.ex
 - If no parameters are given MARTe will look for a MARTe.cfg file in the same directory

Use this option for the demo

 Otherwise it will assume the first parameter is a path to a configuration file

The logger is your friend...

11:34:58]:localhost.localdomain:FatalError:tid=0xb78046d0 ():cid=0x0:obj=GLOBAL:InitGlobalContainer:: Failed opening file configurations/MARTe-WaterTank-000PSS.cfg 11:34:58]:localhost.localdomain:Information:tid=0xb7820b70 ():cid=0x0:obj=GLOBAL:Switching log server to localhost:32767 11:35:0]:localhost.localdomain:FatalError:tid=0xb78046d0 ():cid=0x0:obj=GLOBAL:MARTe:: MARTe Initialization has failed.

- Sometimes it can get too verbose
 - Use the menu on the left to filter accordingly to error (value < 1)
- Even if not demonstrated here the logger can be connected to a logger service
 - Stores logging history
 - Enables history retrieving
 - Logging broadcast across networks
 - Multi-client support

The MARTe console

 Menu automatically created accordingly to the configuration file

Obsolete, but quick, interface

<i>####################################</i>	######	########	***	###	<i>*************************************</i>
<i>##</i>			MAR	Ге	Menu ##
4######## <u>#</u> ###	######	########	###########	###	#######################################
				#	
:->	State	Machine	Interface	#	
				#	
3:->			MARTe	#	
				#	
				#	
				#	
				#	
				#	
				#	
				# #	
				#	
<i>##############</i>	#######	########	*#########	###	****
9: EXIT					
+######################################	######	########	##########	###	****
				A	. Neto FPSC Workshop, Feb 28, 2010 MARTe

- Point your browser to http://localhost:8084
- Click on BROWSE

 Any objects that implement the HTTP interface can be inspected

 Open the MARTe.cfg and compare with the object tree in your browser

```
+BROWSE = {
    Title = "Http Object Browser"
    Class = HttpGCRCBrowser
    AddReference = {MARTe StateMachine OBJBROWSE
THRBROWSE CFGUpload HTTPSignalServer MatlabSignalServer}
}
```


W

- Containers can be expanded to display their objects
 MARTeContainer)
 MARTe >
 - Click on the + symbol next to (MARTeContainer)
 - Click on the + symbol next to (RealtimeThread)
 - Two GAMs are displayed
 - Click on the > symbol next to Statistic
- Debug information can also be displayed using this interface
 - Click on THRBROWSE and OBJBROWSE

Loading a new configuration file

- In a fully deployed production system this should be performed using other protocols...
- Click on the CFGUpload
 - Select Wait reply
 - Select the configuration file MARTe-WaterTank.cfg
 - Click on the REFRESH button (upper left part of the screen)
- If you list the objects inside the RealtimeThread, you should see new GAMs...

Using the State machine

			IDLE]
			. event	PULSE_SETT COMPLETED
 Change 	to online			
– PUL	SE SETUP	CON		
– TRIC	GER –	-	_	
				ACTIVATE
			. event	UNRECOVERABLE
WAITING_FOR_TRIGGER			. event	
. event	TRIGGER		. event	CONFIG_OK
.act			.act	
. event	ABORT		. event	STOP
.act		[. act	
. event				

Figures of merit

- Visit the WebStatistics page
 - http://localhost:8084/BROWSE/MARTe/Thread_1/Statistic/
 - CycleUsecTime: the control cycle time
 - GAM_N_RelativeUsecTime: execution time of GAM_N
 - GAM_N_AbsoluteUsecTime: elapsed time from start of cycle until end of GAM_N execution
- More information in PlottingGAM and WaterTank:
 - http://localhost:8084/BROWSE/MARTe/Thread_1/PlottingGAM/
 - http://localhost:8084/BROWSE/MARTe/Thread_1/WaterTank

Returning to offline...

- Back to StateMachine page
- Select END_PULSE
- Select
 COLLECTION_COMPLETED
- New configurations are only accepted when offline
- Data collection only possible in offline

Downloading acquired data

- HTTPSignalServer
 - Signals stored in ASCII format
- MatlabSignalServer

Signals store in Matlab format (can also be opened in Octave)

Select the MatlabSignalServer

- Select Dump all signals to file and Send

Analysing data (with octave)

MARTe

- Open Octave and move to the folder to where the signals were download
- octave:1> load allsignals.mat
- octave:2> whos
- octave:3> plot(TIME/1e6, WATERHEIGHTREFERENCE, TIME/1e6, WATERHEIGHT)
- octave:4> xlim([0 5])
- octave:5> plot(TIME/1e6, CYCLETIME)
- octave:6> xlim([1 2]);ylim([1e-3 5e-3])

Bad configurations (1/2)

MARTe

- Return to the CFGUpload
- Select the configuration file configurations/MARTe-WaterTank-bug.cfg
- And select Wait reply
- You should see

- MARTe replied: ERROR

Investigate the error in the logger

GLOBAL:Signal waterHeightReferences, used by PIDGAM with interface InputInterface reports error: missingSourceError. DDB *)0xb7600ae8:DDB::CheckAndAllocate(): One or more errors prevent DDB allocation.):obj=(RealTimeThread *)0x9fb0f08:RealTimeThread::CreatePerformanceMonitors4Gams: Thread_1: DDB CheckAndAllocate Failed

Bad configurations (2/2)

- State machine will go to ERROR
- Recover by loading the MARTe-WaterTank.cfg
- State machine will recover
- All states and error responses are configurable

IDLE	
. event	PULSE_SETUP_COMPLETED
.act	
.act	
.act	
. event	INHIBIT
. event	ACTIVATE
. event	UNRECOVERABLE

ACTIVATE

COLLECTION COMPLETED

ERROR

event

event

Streaming

Streaming UDP driver

Connect several RT MARTe

- Send data to an HMI

Main configuration parameters

```
+StreamingDrv = {
            Class = StreamingDriver
            NumberOfOutputs = 4
            NumberOfBuffers = 40
            NumberOfTransferBuffers = 1
            ReceiverUDPPort = 14500
            ReceiverUDPAddress = localhost
            CPUMask = 1
        }
+StreamingReceiver = {
            Class = StreamingDriverReceiver
            NumberOfInputs = 4
            NumberOfOutputs = 0
            NumberOfTransferBuffers = 1
            ReceiverUDPPort = 14500
            SynchronizationMethod = Synchronizing
            CPUMask = 1
        }
```

Running the example (1/2)

- Start one MARTe with the cfg. file configurations/MARTe-WaterTank-Streaming-Sender.cfg
- Start a second MARTe with the cfg. configurations/MARTe-WaterTank-Streaming-Receiver.cfg
- Go to the sender MARTe state machine
 - http://localhost:8084/BROWSE/
 - Change the status to online
- Go to the receiver MARTe
 - http://localhost:8085/BROWSE/
 - Check the statistics page

Running the example (2/2)

- Change the receiver state to online
- Visit the GAMs pages
 - Statistics
 - PlottingGAM
 - WaterTank

Backup slides