Introduction to automata

Discrete Event Systems and Supervisory Control

Prof. Gianmaria DE TOMMASI
Email: detommas@unina.it

March 2021

BN\ ERSITA e STUDI o
Tl INENPOLI FEDERICO I
DIPARTIMENTO oI INGEGNERIA ELETTRICA
e DELLE TECNOLOGIE pel INFORMAZIONE

Outline

Languages and automata
m Operations on automata

Gianmaria De Tommasi — detommas@unina.it 2 of 33

m (Some) Languages with finite cardinality may be specified by
enumerating their words

m (Some) Languages with infinite cardinality may be specified in
terms of word features, example

L = {all the words that start with o}

Gianmaria De Tommasi — detommas@unina.it 3 of 33

m (Some) Languages with finite cardinality may be specified by
enumerating their words

m (Some) Languages with infinite cardinality may be specified in
terms of word features, example

L = {all the words that start with o}

m It would be better to have a formal tool to specify
languages, in order to enable quantitative methods to
solve analysis and synthesis problems

Gianmaria De Tommasi — detommas@unina.it 3 of 33

m (Some) Languages with finite cardinality may be specified by
enumerating their words

m (Some) Languages with infinite cardinality may be specified in
terms of word features, example

L = {all the words that start with o}

m It would be better to have a formal tool to specify
languages, in order to enable quantitative methods to
solve analysis and synthesis problems

m Automata are one of these tools

Gianmaria De Tommasi — detommas@unina.it 3 of 33

Definition of automaton

A (logic deterministic) automaton G is the 6-tuple
G=(X,E,f,T X0 Xm)

where

m X is the discrete state space. If the cardinality of X is finite,
then G is also referred to as finite state machine (FSM) or finite
State automaton

m E is the set of events associated with the transitions in G
m f(-,): X x E— Xis the transition function

m (-) : X — 2F is the active event function. I'(-) is implicitly
defined by f(-,-)
B Xp is the initial state

m X, C X is the the set of marked or final states (used in the SCT
context to deal with non-blocking requirements)

Gianmaria De Tommasi — detommas@unina.it 4 of 33

Graphical representation

]
— a D

Gianmaria De Tommasi — detommas@unina.it

Recursive extension of the transition

function f

It is common to recursively extend the transition function f(-,-)
from the X x E domain to the X x E* one as follows

m f(x,e):=xforal x e X
m f(x,we) =f(f(x,w),e)withwe E*andec E

Gianmaria De Tommasi — detommas@unina.it 6 of 33

Languages & automata

Let G= (X,E.f,T,x0, Xn)

Language generated by G — L(G)

L(G):={weE" : f(x,w) is defined}

Language marked by G — L,,(G)

Ln(G):={weL(G) : f(xo,w) € Xn}

By definition
L(G) is always prefix-closed, i.e. L(G) = L(G)
Lm(G) € Ln(G) € L(G)

If Lm (G) C L (G), then there are deadlock and/or livelock in G

If Lm (G) = L(G), then G is said to be non-blocking

Gianmaria De Tommasi — detommas@unina.it 7 of 33

Examples of blocking automata

<3 G \@\
TN L
é)m @ ')FADLCK(" {z\/ /uv:uxz

(&)~ K (=) “(GJ\X/%)) ()- 4/@{)
L@Q)-6,) Hulless) L (a)e<a)

Gianmaria De Tommasi — detommas@unina.it 8 of 33

Equivalence of automata

Automata Gy and G, are said to be equivalent if
m L(Gy)=L(G)

Gianmaria De Tommasi — detommas@unina.it 9 of 33

Gianmaria De Tommasi — detommas@unina.it 10 of 33

Accessible part of G

Removes all the states that are unreachable from xy (and the
related transitions) Given G = (X, E , f, xo, Xm) the accessible
part of G Ac(G) is

Ac(G) = (Xac, E7f307X07XaC,m)

where
B Xp={xeX|3IweE*st f(xo,w)=x}
B Xacm= XmN Xac

B fac = fiXox Eos Xac

Gianmaria De Tommasi — detommas@unina.it 11 of 33

Accessible part of G

Removes all the states that are unreachable from xy (and the
related transitions) Given G = (X, E , f, xo, Xm) the accessible
part of G Ac(G) is

Ac(G) = (Xac, E7f307X07XaC,m)

where
B Xp={xeX|3IweE*st f(xo,w)=x}
B Xacm= XmN Xac
B fac = fiXox Eos Xac
m The accessible part does not affect nor £(G) neither £,(G)
m If G = Ac(G), then G is said to be accessible

Gianmaria De Tommasi — detommas@unina.it 11 of 33

Coaccessible part

Removes all the states that do not lead to a marked state (and
the related transitions) Given G = (X, E , f, Xy, Xm) the
coaccessible part of G CoAc(G) is

CoAc (G) := (Xeoac , E , feoac s X0 5050 + Xm)

where
B Xepae ={xeX|IweE*st, f(x,w) € Xn}
B X0.,.. = Xo if Xo € Xcoac, Otherwise Xxg is left undefined

| fcoac = f|Xcoac><E0—>Xcoac

Gianmaria De Tommasi — detommas@unina.it 12 of 33

Coaccessible part

Removes all the states that do not lead to a marked state (and
the related transitions) Given G = (X, E , f, Xy, Xm) the
coaccessible part of G CoAc(G) is

CoAc (G) := (Xeoac , E , feoac s X0 5050 + Xm)

where
B Xepae ={xeX|IweE*st, f(x,w) € Xn}
B X0.,.. = Xo if Xo € Xcoac, Otherwise Xxg is left undefined

| fcoac = f|Xcoac><E0—>Xcoac

m By definition CoAC(G) is always non-blocking, i.e. the
generated language is modified in such a way that

L (CoAc(G)) = L (CoAc(G)) = L (G)
m If G= CoAc(G), then G is said to be coaccessible

Gianmaria De Tommasi — detommas@unina.it 12 of 33

Trim operation

m 7rim(G) := CoAc (Ac(G)) = Ac (CoAc(QG))
m If G = Trim(G), then G is said to be trimmed
m A trimmed automaton is both accessible and coaccessible

Gianmaria De Tommasi — detommas@unina.it 13 of 33

Complement wrt to E*

m Let G be a trimmed automaton with
Lm (G) - L
£(G) =L

m The complement automaton G is such that

E(GCOmp) — E* \ L

Gianmaria De Tommasi — detommas@unina.it 14 of 33

How to build Geo™

Complete the transition function f(-, -) as follows

f(x,e) ifeerl(x)
X4 otherwise

fot(X , €) := {

with xg ¢ Xm and fit(Xg,€) = xg Ve € E
Let
GComP — (X U {Xd} , E, frot , X0 ,X,%ew)
with X8 = (X U {xg}) \ Xm
Clearly it is
m L(GMP) = E*
B Ly (GPP)=E*\ Ly (G)

Gianmaria De Tommasi — detommas@unina.it 15 of 33

TG
G)

Automaton G

8.

b,c

a Trimmed automaton
g
°
\ o ‘/

e A
\@/ ‘b?

Complement automaton

Gianmaria De Tommasi — detommas@unina.it 16 of 33

Composition operations

____5;____
S
____;___
o

Figure: Cross product G; x G. and parallel composition (or
concurrent product) Gy || Gz

Gianmaria De Tommasi — detommas@unina.it 17 of 33

Cross product Gy x Go

Given Gy and G, the product G; x G, automaton is
GixGp = Ac (X x Xo, Ey N Ea, f,T1x2, (X0, , X0,) » Ximy X Xim,)

with

f((x1,%), €)= { (fi(x1,€),f(x2,€)) ifeel(x)NTa(x)

undefined otherwise
and Mx2(X1, x2) = T1(x1) N T2(x2)

NOTE: an event occurs in Gy x G, if and only if it occurs in both
automata Gy and Go. It follows that

| E(G1 X GQ) = ﬁ(G1)ﬁ£(Gg)

m Ly (G1 X Gg) =Lm (G1) NLm (GQ)

Gianmaria De Tommasi — detommas@unina.it 18 of 33

Example of cross product

Gianmaria De Tommasi — detommas@unina.it 19 of 33

Parallel composition G; || G»

Given G; and G, the parallel composition G;||G, automaton
is

G1HG_2 = Ac (X1 X Xg,E1 U Eg,f,r1H2,(Xo1 ,on),er X sz)

with
(f(x,e),b(x.e)) ifeel(x)NT(x)
(05209 G B o<\ &
undefined otherwise
and

Fi2(x, x2) = [F1(x1) NT2(x2)] U [F1(x1) \ E2] U [T2(X2) \ E4]

Gianmaria De Tommasi — detommas@unina.it 20 of 33

Example - Simple FMS

m,e,m\‘
s1
W1,EI12) &
f ‘.

(A1.EI12)

(T1,E12) .
a) LIRS

. ROmew

01,F12)

WiF12) Q
"

T1O+—O a1 ” 2 (A1,F,12)

‘™

&

1.F.W2)
s1

Qwirwz)
‘M

o) R (A1,F,W2)

ia De Tommasi — detommas@unina.it of 33

Dijkstra’s dining philosophers problem

and the curse of dimensionality

Dijkstra’s dining philosophers problem (1965)
Deadlock due to shared resources (the forks)

Gianmaria De Tommasi — detommas@unina.it 22 of 33

Two dining philopophers

TWO ©O\WNING @Y LDsoMELS

Folx (Fi
P»-\lLosoOr\FQ —= f U525
' r««@

Gianmaria De Tommasi — detommas@unina.it 23 of 33

Modelling philosophers and forks

F @ 12

Y ~Jf P o L
~@——0 —O—0
12 N

1f1 2f1
A 1f1,2f1 B 112,262
—@ (v —E__®
11,9 154

Gianmaria De Tommasi — detommas@unina.it 24 of 33

191?10‘% =
S0

DEAS Lok,
. (1T,2E,1U,2U)

Gianmaria De Tommasi — detommas@unina.it 25 of 33

The curse of dimensionality

m 2 philosophers 2 forks — overall model with 9 states

Gianmaria De Tommasi — detommas@unina.it 26 of 33

The curse of dimensionality

m 2 philosophers 2 forks — overall model with 9 states
m 3 philosophers 3 forks — overall model with 504 states

Gianmaria De Tommasi — detommas@unina.it 26 of 33

The curse of dimensionality

m 2 philosophers 2 forks — overall model with 9 states
m 3 philosophers 3 forks — overall model with 504 states
m 4 philosophers 4 forks — overall model with 4.080 states

Gianmaria De Tommasi — detommas@unina.it 26 of 33

The curse of dimensionality

m 2 philosophers 2 forks — overall model with 9 states

m 3 philosophers 3 forks — overall model with 504 states

m 4 philosophers 4 forks — overall model with 4.080 states
m 5 philosophers 5 forks — overall model with 32.736 states

Gianmaria De Tommasi — detommas@unina.it 26 of 33

The curse of dimensionality

m 2 philosophers 2 forks — overall model with 9 states

m 3 philosophers 3 forks — overall model with 504 states

m 4 philosophers 4 forks — overall model with 4.080 states
m 5 philosophers 5 forks — overall model with 32.736 states

m 6 philosophers 6 forks — overall model with 262.080 states —
about 1 minute to compute the parallel composition on this
laptop

Gianmaria De Tommasi — detommas@unina.it 26 of 33

The curse of dimensionality

m 2 philosophers 2 forks — overall model with 9 states

m 3 philosophers 3 forks — overall model with 504 states

m 4 philosophers 4 forks — overall model with 4.080 states
m 5 philosophers 5 forks — overall model with 32.736 states

m 6 philosophers 6 forks — overall model with 262.080 states —
about 1 minute to compute the parallel composition on this
laptop

m 7 philosophers 7 forks — overall model with 2.097.024 states
— more than 1 hour to compute the parallel composition on
this laptop

Gianmaria De Tommasi — detommas@unina.it 26 of 33

The curse of dimensionality

m 2 philosophers 2 forks — overall model with 9 states

m 3 philosophers 3 forks — overall model with 504 states

m 4 philosophers 4 forks — overall model with 4.080 states
m 5 philosophers 5 forks — overall model with 32.736 states

m 6 philosophers 6 forks — overall model with 262.080 states —
about 1 minute to compute the parallel composition on this
laptop

m 7 philosophers 7 forks — overall model with 2.097.024 states
— more than 1 hour to compute the parallel composition on
this laptop

m 8 philosophers 8 forks — GOD KNOWS :)

Gianmaria De Tommasi — detommas@unina.it 26 of 33

Projection function

m Given the two sets of events E; and E,, we need to introduce
the projection functions P;(-) and their inverse in order to

derive a compact expression for both the generated and
marked languages of G1| G

P,‘ : (E1 U Eg)* — E;’<

Pi(e) ==«
Pi(e) :=e if e c E;
P,-(e) =& if e ¢ E,‘
P,‘(We) =

Pi(w)Pi(e) we (EiUE)" ,ee (EjUE)

Gianmaria De Tommasi — detommas@unina.it 27 of 33

Projection function

m Given the two sets of events E; and E,, we need to introduce
the projection functions P;(-) and their inverse in order to

derive a compact expression for both the generated and
marked languages of G1| G

P,‘ : (E1 U Eg)* — E;’<

Pi(e) ==«
Pi(e) :=e if e c E;
P,-(e) =& if e ¢ E,‘
P,‘(We) =

Pi(w)Pi(e) we (EiUE)" ,ee (EjUE)

m The projection function will be used also when uncertainty in
terms of presence of unobservable events will be considered

Gianmaria De Tommasi — detommas@unina.it 27 of 33

Inverse projection

m The inverse projection P,-‘1 (1) is defined as
P71 Ep vy 2BVE)

Pty :={we (EiUE)" : Pi(w)=t}

i

Gianmaria De Tommasi — detommas@unina.it 28 of 33

Inverse projection

m The inverse projection P,-‘1 (1) is defined as
P71 Ep vy 2BVE)

Pty :={we (EiUE)" : Pi(w)=t}

i

m While the projection of a word is a (possibly empty) word, the
inverse projection of a word is a language

Gianmaria De Tommasi — detommas@unina.it 28 of 33

Extend projection to languages

m Given a language L defined over E; U Ey, the extensions of the
projection functions to L are

P,(L) = {tEEi* : EWEL,P,'(W):I'}

m Given a language L; C E; defined over E;(i = 1,2), the
extension of the inverse projection to L; is
P (L) ={we(EiUE)" : Itel;, P(w)=t}

]

m Note that

and that
LC P (Pi(L))

Gianmaria De Tommasi — detommas@unina.it 29 of 33

Examples of projection

Let Ey = {a,b} and E; = {b,c} and
L ={c,ccb,abc, cacb,cabcbbca}

Then
P; (L) = {e,b,ab, abbba}
P> (L) ={c,ccb,bc,cbcbbc}
Py 1({6}) {c}
Py ({ab}) = {c}" {a}{C} {b}{c}"
Py (Pi ({abe})) = Py ({ab})

Gianmaria De Tommasi — detommas@unina.it 30 of 33

Gi||G2 languages

Language generated by G;||G.

L(Gi]|Gz) = Py (L(G1)) NPy (L(Go))

Language marked by G || G

Lm(Gil|G2) = Py (Lm(G1)) NPy (Lm (Go))

Gianmaria De Tommasi — detommas@unina.it 31 of 33

Gianmaria De Tommasi — detommas@unina.it 32 of 33

Introduction to automata

Discrete Event Systems and Supervisory Control

Prof. Gianmaria DE TOMMASI
Email: detommas@unina.it

March 2021

BN\ ERSITA e STUDI o
Tl INENPOLI FEDERICO I
DIPARTIMENTO oI INGEGNERIA ELETTRICA
e DELLE TECNOLOGIE pel INFORMAZIONE

	Languages and automata
	Operations on automata

