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(Some) Languages with finite cardinality may be specified by
enumerating their words
(Some) Languages with infinite cardinality may be specified in
terms of word features, example

L = {all the words that start with α}

It would be better to have a formal tool to specify
languages, in order to enable quantitative methods to
solve analysis and synthesis problems
Automata are one of these tools

Gianmaria De Tommasi – detommas@unina.it 3 of 33



(Some) Languages with finite cardinality may be specified by
enumerating their words
(Some) Languages with infinite cardinality may be specified in
terms of word features, example

L = {all the words that start with α}

It would be better to have a formal tool to specify
languages, in order to enable quantitative methods to
solve analysis and synthesis problems

Automata are one of these tools

Gianmaria De Tommasi – detommas@unina.it 3 of 33



(Some) Languages with finite cardinality may be specified by
enumerating their words
(Some) Languages with infinite cardinality may be specified in
terms of word features, example

L = {all the words that start with α}

It would be better to have a formal tool to specify
languages, in order to enable quantitative methods to
solve analysis and synthesis problems
Automata are one of these tools

Gianmaria De Tommasi – detommas@unina.it 3 of 33



Definition of automaton UNI
NA

DIE
II I

A (logic deterministic) automaton G is the 6-tuple

G = (X ,E , f , Γ , x0 Xm)

where
X is the discrete state space. If the cardinality of X is finite,
then G is also referred to as finite state machine (FSM) or finite
state automaton
E is the set of events associated with the transitions in G
f (· , ·) : X × E 7→ X is the transition function
Γ(·) : X 7→ 2E is the active event function. Γ(·) is implicitly
defined by f (· , ·)
x0 is the initial state
Xm ⊆ X is the the set of marked or final states (used in the SCT
context to deal with non-blocking requirements)
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Graphical representation UNI
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Recursive extension of the transition
function f
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It is common to recursively extend the transition function f (· , ·)
from the X × E domain to the X × E∗ one as follows
f (x , ε) := x for all x ∈ X
f (x ,we) := f (f (x ,w) ,e) with w ∈ E∗ and e ∈ E
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Languages & automata UNI
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Let G = (X ,E , f , Γ , x0 ,Xm)

Language generated by G – L(G)

L (G) := {w ∈ E∗ : f (x0 ,w) is defined}

Language marked by G – Lm(G)

Lm (G) := {w ∈ L (G) : f (x0 ,w) ∈ Xm}

By definition

L(G) is always prefix-closed, i.e. L(G) = L(G)

Lm (G) ⊆ Lm (G) ⊆ L (G)

If Lm (G) ⊂ L (G), then there are deadlock and/or livelock in G

If Lm (G) = L (G), then G is said to be non-blocking
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Examples of blocking automata UNI
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Equivalence of automata UNI
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Automata G1 and G2 are said to be equivalent if
L (G1) = L (G2)

Lm (G1) = Lm (G2)
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Equivalence of automata - Example UNI
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Accessible part of G UNI
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Removes all the states that are unreachable from x0 (and the
related transitions) Given G = (X ,E , f , x0 ,Xm) the accessible
part of G Ac(G) is

Ac (G) := (Xac ,E , fac , x0 ,Xac ,m)

where
Xac = {x ∈ X | ∃ w ∈ E∗ s.t. f (x0 ,w) = x}
Xac ,m = Xm ∩ Xac

fac = f|Xac×E 7→Xac

The accessible part does not affect nor L(G) neither Lm(G)

If G = Ac(G), then G is said to be accessible
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Coaccessible part UNI
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Removes all the states that do not lead to a marked state (and
the related transitions) Given G = (X ,E , f , x0 ,Xm) the
coaccessible part of G CoAc(G) is

CoAc (G) := (Xcoac ,E , fcoac , x0coac ,Xm)

where
Xcoac = {x ∈ X | ∃ w ∈ E∗ s.t, f (x ,w) ∈ Xm}
x0coac = x0 if x0 ∈ Xcoac , otherwise x0 is left undefined
fcoac = f|Xcoac×E 7→Xcoac

By definition CoAC(G) is always non-blocking, i.e. the
generated language is modified in such a way that

L (CoAc(G)) = Lm (CoAc(G)) = Lm (G)

If G = CoAc(G), then G is said to be coaccessible
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Trim(G) := CoAc (Ac(G)) = Ac (CoAc(G))

If G = Trim(G), then G is said to be trimmed
A trimmed automaton is both accessible and coaccessible
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Let G be a trimmed automaton with
Lm (G) = L
L (G) = L̄

The complement automaton Gcomp is such that

L (Gcomp) = E∗ \ L
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How to build Gcomp UNI
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1 Complete the transition function f (· , ·) as follows

ftot (x ,e) :=

{
f (x ,e) if e ∈ Γ(x)
xd otherwise

with xd /∈ Xm and ftot (xd ,e) = xd ∀ e ∈ E
2 Let

Gcomp = (X ∪ {xd} ,E , ftot , x0 ,X new
m )

with X new
m = (X ∪ {xd}) \ Xm

Clearly it is
L (Gcomp) = E∗

Lm (Gcomp) = E∗ \ Lm (G)
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Example of complement automaton UNI
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Composition operations UNI
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Figure: Cross product G1 ×G2 and parallel composition (or
concurrent product) G1‖G2
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Cross product G1 ×G2
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Given G1 and G2 the product G1 ×G2 automaton is

G1×G2 := Ac
(
X1 × X2 ,E1 ∩ E2 , f , Γ1×2 , (x01 , x02) ,Xm1 × Xm2

)
with

f ((x1 , x2) ,e) :=

{
(f1(x1 ,e) , f2(x2 ,e)) if e ∈ Γ1(x1) ∩ Γ2(x2)
undefined otherwise

and Γ1×2(x1 , x2) = Γ1(x1) ∩ Γ2(x2)

NOTE: an event occurs in G1 ×G2 if and only if it occurs in both
automata G1 and G2. It follows that
L (G1 ×G2) = L (G1) ∩ L (G2)

Lm (G1 ×G2) = Lm (G1) ∩ Lm (G2)
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Example of cross product UNI
NA

DIE
II I

Gianmaria De Tommasi – detommas@unina.it 19 of 33



Parallel composition G1‖G2
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Given G1 and G2 the parallel composition G1‖G2 automaton
is

G1‖G2 := Ac
(
X1 × X2 ,E1 ∪ E2 , f , Γ1‖2 , (x01 , x02) ,Xm1 × Xm2

)
with

f ((x1 , x2) ,e) :=


(f1(x1 ,e) , f2(x2 ,e)) if e ∈ Γ1(x1) ∩ Γ2(x2)
(f1(x1 ,e) , x2) if e ∈ Γ1(x1) \ E2
(x1 , f2(x2 ,e) , x2) if e ∈ Γ2(x2) \ E1
undefined otherwise

and
Γ1‖2(x1 , x2) = [Γ1(x1) ∩ Γ2(x2)] ∪ [Γ1(x1) \ E2] ∪ [Γ2(x2) \ E1]
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Example - Simple FMS UNI
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Dijkstra’s dining philosophers problem
and the curse of dimensionality
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Dijkstra’s dining philosophers problem (1965)
Deadlock due to shared resources (the forks)
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Two dining philopophers UNI
NA

DIE
II I

Gianmaria De Tommasi – detommas@unina.it 23 of 33



Modelling philosophers and forks UNI
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The overall system F1‖F2‖P1‖P2 UNI
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The curse of dimensionality UNI
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2 philosophers 2 forks→ overall model with 9 states

3 philosophers 3 forks→ overall model with 504 states
4 philosophers 4 forks→ overall model with 4.080 states
5 philosophers 5 forks→ overall model with 32.736 states
6 philosophers 6 forks→ overall model with 262.080 states→
about 1 minute to compute the parallel composition on this
laptop
7 philosophers 7 forks→ overall model with 2.097.024 states
→ more than 1 hour to compute the parallel composition on
this laptop
8 philosophers 8 forks→ GOD KNOWS :)
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Projection function UNI
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Given the two sets of events E1 and E2, we need to introduce
the projection functions Pi(·) and their inverse in order to
derive a compact expression for both the generated and
marked languages of G1‖G2

Pi : (E1 ∪ E2)∗ 7→ E∗i
Pi(ε) := ε
Pi(e) := e if e ∈ Ei
Pi(e) := ε if e /∈ Ei
Pi(we) := Pi(w)Pi(e) w ∈ (E1 ∪ E2)∗ ,e ∈ (E1 ∪ E2)

The projection function will be used also when uncertainty in
terms of presence of unobservable events will be considered
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Inverse projection UNI
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The inverse projection P−1
i (·) is defined as

P−1
i : E∗i 7→ 2(E1∪E2)

∗

P−1
i (t) := {w ∈ (E1 ∪ E2)∗ : Pi(w) = t}

While the projection of a word is a (possibly empty) word, the
inverse projection of a word is a language
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Extend projection to languages UNI
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Given a language L defined over E1 ∪ E2, the extensions of the
projection functions to L are

Pi (L) := {t ∈ E∗i : ∃ w ∈ L ,Pi(w) = t}

Given a language Li ⊆ E∗i defined over Ei(i = 1 ,2), the
extension of the inverse projection to Li is

P−1
i (Li) := {w ∈ (E1 ∪ E2)∗ : ∃ t ∈ Li , ,Pi(w) = t}

Note that
Pi

(
P−1

i (L)
)

= L

and that
L ⊆ P−1

i (Pi (L))

Gianmaria De Tommasi – detommas@unina.it 29 of 33



Examples of projection UNI
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Let E1 = {a ,b} and E2 = {b , c} and

L = {c , ccb ,abc , cacb , cabcbbca}

Then
P1 (L) = {ε ,b ,ab ,abbba}
P2 (L) = {c , ccb ,bc , cbcbbc}
P−1

1 ({ε}) = {c}∗

P−1
1 ({ab}) = {c}∗ {a} {c}∗ {b} {c}∗

P−1
1 (P1 ({abc})) = P−1

1 ({ab})
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G1‖G2 languages UNI
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Language generated by G1‖G2

L (G1‖G2) = P−1
1 (L (G1)) ∩ P−1

2 (L (G2))

Language marked by G1‖G2

Lm (G1‖G2) = P−1
1 (Lm (G1)) ∩ P−1

2 (Lm (G2))
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