Introduction to automata

Discrete Event Systems and Supervisory Control

Prof. Gianmaria DE TOMMASI Email: detommas@unina.it

March 2021

- (Some) Languages with finite cardinality may be specified by enumerating their words
- (Some) Languages with infinite cardinality may be specified in terms of *word features*, example

 $L = \{ all the words that start with \alpha \}$

- (Some) Languages with finite cardinality may be specified by enumerating their words
- (Some) Languages with infinite cardinality may be specified in terms of *word features*, example

 $L = \{ all the words that start with \alpha \}$

It would be better to have a formal tool to specify languages, in order to enable *quantitative* methods to solve analysis and synthesis problems

- (Some) Languages with finite cardinality may be specified by enumerating their words
- (Some) Languages with infinite cardinality may be specified in terms of *word features*, example

 $L = \{ all the words that start with \alpha \}$

- It would be better to have a formal tool to specify languages, in order to enable *quantitative* methods to solve analysis and synthesis problems
- Automata are one of these tools

A (logic deterministic) automaton *G* is the 6-tuple

$$G = (X, E, f, \Gamma, x_0 X_m)$$

where

- X is the *discrete* state space. If the cardinality of X is finite, then G is also referred to as *finite state machine (FSM)* or *finite state automaton*
- E is the set of events associated with the transitions in G
- $f(\cdot, \cdot) : X \times E \mapsto X$ is the *transition function*
- Γ(·) : X → 2^E is the active event function. Γ(·) is implicitly defined by f(·, ·)
- x₀ is the initial state
- X_m ⊆ X is the the set of marked or final states (used in the SCT context to deal with non-blocking requirements)

- It is common to recursively extend the transition function $f(\cdot, \cdot)$ from the $X \times E$ domain to the $X \times E^*$ one as follows
- $f(x,\varepsilon) := x$ for all $x \in X$
- f(x, we) := f(f(x, w), e) with $w \in E^*$ and $e \in E$

Languages & automata

Let $G = (X, E, f, \Gamma, x_0, X_m)$

Language generated by $G - \mathcal{L}(G)$

 $\mathcal{L}(G) := \{w \in E^* : f(x_0, w) \text{ is defined}\}$

Language marked by $G - \mathcal{L}_m(G)$

$$\mathcal{L}_{m}\left(G
ight) :=\left\{ w\in\mathcal{L}\left(G
ight) \ : \ f(x_{0}\,,w)\in X_{m}
ight\}$$

By definition

- $\mathcal{L}(G)$ is always prefix-closed, i.e. $\overline{\mathcal{L}(G)} = \mathcal{L}(G)$
- If $\overline{\mathcal{L}_m(G)} \subset \mathcal{L}(G)$, then there are *deadlock* and/or *livelock* in *G*
- If $\overline{\mathcal{L}_m(G)} = \mathcal{L}(G)$, then G is said to be *non-blocking*

Examples of blocking automata

Automata G_1 and G_2 are said to be equivalent if $\mathcal{L}(G_1) = \mathcal{L}(G_2)$ $\mathcal{L}_m(G_1) = \mathcal{L}_m(G_2)$

Equivalence of automata - Example

Removes all the states that are unreachable from x_0 (and the related transitions) Given $G = (X, E, f, x_0, X_m)$ the **accessible** part of **G** Ac(G) is

$$Ac(G) := (X_{ac}, E, f_{ac}, x_0, X_{ac,m})$$

where

■ $X_{ac} = \{x \in X \mid \exists w \in E^* \text{ s.t. } f(x_0, w) = x\}$ ■ $X_{ac,m} = X_m \cap X_{ac}$

 $\bullet f_{ac} = f_{|X_{ac} \times E \mapsto X_{ac}}$

Removes all the states that are unreachable from x_0 (and the related transitions) Given $G = (X, E, f, x_0, X_m)$ the **accessible** part of **G** Ac(G) is

$$Ac(G) := (X_{ac}, E, f_{ac}, x_0, X_{ac,m})$$

where

 $\blacksquare X_{ac} = \{x \in X \mid \exists w \in E^* \text{ s.t. } f(x_0, w) = x\}$

$$X_{ac,m} = X_m \cap X_{ac}$$

 $\bullet f_{ac} = f_{|X_{ac} \times E \mapsto X_{ac}}$

The accessible part does not affect nor L(G) neither L_m(G)
If G = Ac(G), then G is said to be accessible

Coaccessible part

Removes all the states that do not lead to a marked state (and the related transitions) Given $G = (X, E, f, x_0, X_m)$ the **coaccessible part of G** CoAc(G) is

$$CoAc(G) := (X_{coac}, E, f_{coac}, x_{0_{coac}}, X_m)$$

where

$$X_{coac} = \{x \in X \mid \exists w \in E^* \text{ s.t, } f(x, w) \in X_m\}$$

• $x_{0_{coac}} = x_0$ if $x_0 \in X_{coac}$, otherwise x_0 is left undefined • $f_{coac} = f_{|X_{coac} \times E \mapsto X_{coac}}$

Coaccessible part

Removes all the states that do not lead to a marked state (and the related transitions) Given $G = (X, E, f, x_0, X_m)$ the **coaccessible part of G** CoAc(G) is

$$CoAc(G) := (X_{coac}, E, f_{coac}, x_{0_{coac}}, X_m)$$

where

$$X_{coac} = \{x \in X \mid \exists w \in E^* \text{ s.t, } f(x, w) \in X_m\}$$

• $x_{0_{coac}} = x_0$ if $x_0 \in X_{coac}$, otherwise x_0 is left undefined • $f_{coac} = f_{|X_{coac} \times E \mapsto X_{coac}}$

By definition CoAC(G) is always non-blocking, i.e. the generated language is modified in such a way that

$$\mathcal{L}(CoAc(G)) = \overline{\mathcal{L}_m(CoAc(G))} = \overline{\mathcal{L}_m(G)}$$

If G = CoAc(G), then G is said to be *coaccessible*

- $\blacksquare Trim(G) := CoAc(Ac(G)) = Ac(CoAc(G))$
- If G = Trim(G), then G is said to be trimmed
- A trimmed automaton is both accessible and coaccessible

Let G be a trimmed automaton with

- $\mathcal{L}_m(G) = L$ $\mathcal{L}(G) = \overline{L}$
- The **complement automaton** *G*^{comp} is such that

$$\mathcal{L}(G^{comp}) = E^* \setminus L$$

1 Complete the transition function $f(\cdot, \cdot)$ as follows

$$f_{tot}(x, e) := \begin{cases} f(x, e) & \text{if } e \in \Gamma(x) \\ x_d & \text{otherwise} \end{cases}$$

with $x_d \notin X_m$ and $f_{tot}(x_d, e) = x_d \forall e \in E$

2 Let

$$G^{comp} = (X \cup \{x_d\}, E, f_{tot}, x_0, X_m^{new})$$

with $X_m^{new} = (X \cup \{x_d\}) \setminus X_m$

Clearly it is

$$\blacksquare \mathcal{L}(G^{comp}) = E^*$$

$$\blacksquare \mathcal{L}_m(G^{comp}) = E^* \setminus \mathcal{L}_m(G)$$

Example of complement automaton

Automaton G

Trimmed automaton

Figure: Cross product $G_1 \times G_2$ and parallel composition (or concurrent product) $G_1 || G_2$

Given G_1 and G_2 the **product** $G_1 \times G_2$ automaton is

$$G_{1} \times G_{2} := Ac(X_{1} \times X_{2}, E_{1} \cap E_{2}, f, \Gamma_{1 \times 2}, (x_{0_{1}}, x_{0_{2}}), X_{m_{1}} \times X_{m_{2}})$$

with

$$f((x_1, x_2), e) := \begin{cases} (f_1(x_1, e), f_2(x_2, e)) & \text{if } e \in \Gamma_1(x_1) \cap \Gamma_2(x_2) \\ \text{undefined} & \text{otherwise} \end{cases}$$

and $\Gamma_{1\times 2}(x_1, x_2) = \Gamma_1(x_1) \cap \Gamma_2(x_2)$

NOTE: an event occurs in $G_1 \times G_2$ if and only if it occurs in both automata G_1 and G_2 . It follows that

$$\blacksquare \mathcal{L}(G_1 \times G_2) = \mathcal{L}(G_1) \cap \mathcal{L}(G_2)$$

$$\blacksquare \mathcal{L}_m(G_1 \times G_2) = \mathcal{L}_m(G_1) \cap \mathcal{L}_m(G_2)$$

Example of cross product

Given G_1 and G_2 the **parallel composition** $G_1 || G_2$ automaton is

$$G_1 \| G_2 := Ac \left(X_1 \times X_2, E_1 \cup E_2, f, \Gamma_1 \|_2, (x_{0_1}, x_{0_2}), X_{m_1} \times X_{m_2} \right)$$
 with

$$f((x_1, x_2), e) := \begin{cases} (f_1(x_1, e), f_2(x_2, e)) & \text{if } e \in \Gamma_1(x_1) \cap \Gamma_2(x_2) \\ (f_1(x_1, e), x_2) & \text{if } e \in \Gamma_1(x_1) \setminus E_2 \\ (x_1, f_2(x_2, e), x_2) & \text{if } e \in \Gamma_2(x_2) \setminus E_1 \\ \text{undefined} & \text{otherwise} \end{cases}$$

and

 $\Gamma_{1||2}(x_{1}, x_{2}) = [\Gamma_{1}(x_{1}) \cap \Gamma_{2}(x_{2})] \cup [\Gamma_{1}(x_{1}) \setminus E_{2}] \cup [\Gamma_{2}(x_{2}) \setminus E_{1}]$

Example - Simple FMS

12 . O (W1.F.W2

12 0 (A1.F.W2)

e)

21 of 33

Dijkstra's dining philosophers problem and the curse of dimensionality

Dijkstra's dining philosophers problem (1965) Deadlock due to shared resources (the forks)

Modelling philosophers and forks

The overall system F1||F2||P1||P2

F1 || F2 || P1 || P2 -> 9 STATES

2 philosophers 2 forks \rightarrow overall model with 9 states

- **2** philosophers 2 forks \rightarrow overall model with 9 states
- \blacksquare 3 philosophers 3 forks \rightarrow overall model with 504 states

- **2** philosophers 2 forks \rightarrow overall model with 9 states
- **3** philosophers 3 forks \rightarrow overall model with 504 states
- 4 philosophers 4 forks \rightarrow overall model with 4.080 states

- **2** philosophers 2 forks \rightarrow overall model with 9 states
- \blacksquare 3 philosophers 3 forks \rightarrow overall model with 504 states
- 4 philosophers 4 forks \rightarrow overall model with 4.080 states
- **5** philosophers 5 forks \rightarrow overall model with 32.736 states

- **2** philosophers 2 forks \rightarrow overall model with 9 states
- **3** philosophers 3 forks \rightarrow overall model with 504 states
- 4 philosophers 4 forks \rightarrow overall model with 4.080 states
- **5** philosophers 5 forks \rightarrow overall model with 32.736 states
- 6 philosophers 6 forks → overall model with 262.080 states → about 1 minute to compute the parallel composition on this laptop

- **2** philosophers 2 forks \rightarrow overall model with 9 states
- **3** philosophers 3 forks \rightarrow overall model with 504 states
- 4 philosophers 4 forks \rightarrow overall model with 4.080 states
- **5** philosophers 5 forks \rightarrow overall model with 32.736 states
- 6 philosophers 6 forks → overall model with 262.080 states → about 1 minute to compute the parallel composition on this laptop
- 7 philosophers 7 forks → overall model with 2.097.024 states → more than 1 hour to compute the parallel composition on this laptop

- **2** philosophers 2 forks \rightarrow overall model with 9 states
- **3** philosophers 3 forks \rightarrow overall model with 504 states
- 4 philosophers 4 forks \rightarrow overall model with 4.080 states
- **5** philosophers 5 forks \rightarrow overall model with 32.736 states
- 6 philosophers 6 forks → overall model with 262.080 states → about 1 minute to compute the parallel composition on this laptop
- 7 philosophers 7 forks → overall model with 2.097.024 states → more than 1 hour to compute the parallel composition on this laptop
- 8 philosophers 8 forks → GOD KNOWS :)

■ Given the two sets of events *E*₁ and *E*₂, we need to introduce the projection functions *P_i*(·) and their inverse in order to derive a compact expression for both the generated and marked languages of *G*₁ || *G*₂

$$P_i:(E_1\cup E_2)^*\mapsto E_i^*$$

$$\begin{cases} P_i(\varepsilon) := \varepsilon \\ P_i(e) := e & \text{if } e \in E_i \\ P_i(e) := \varepsilon & \text{if } e \notin E_i \\ P_i(we) := P_i(w)P_i(e) & w \in (E_1 \cup E_2)^* , e \in (E_1 \cup E_2) \end{cases}$$

Given the two sets of events E_1 and E_2 , we need to introduce the **projection functions** $P_i(\cdot)$ and their inverse in order to derive a compact expression for both the generated and marked languages of $G_1 || G_2$

$$P_i:(E_1\cup E_2)^*\mapsto E_i^*$$

$$\begin{cases} P_i(\varepsilon) := \varepsilon \\ P_i(e) := e & \text{if } e \in E_i \\ P_i(e) := \varepsilon & \text{if } e \notin E_i \\ P_i(we) := P_i(w)P_i(e) & w \in (E_1 \cup E_2)^* \ , e \in (E_1 \cup E_2) \end{cases}$$

The projection function will be used also when uncertainty in terms of presence of unobservable events will be considered

The inverse projection $P_i^{-1}(\cdot)$ is defined as

$$P_i^{-1}: E_i^* \mapsto 2^{(E_1 \cup E_2)^*}$$

$$P_i^{-1}(t) := \{ w \in (E_1 \cup E_2)^* : P_i(w) = t \}$$

The inverse projection $P_i^{-1}(\cdot)$ is defined as

$$P_i^{-1}: E_i^* \mapsto 2^{(E_1 \cup E_2)^*}$$

$$P_i^{-1}(t) := \{ w \in (E_1 \cup E_2)^* : P_i(w) = t \}$$

While the projection of a word is a (possibly empty) word, the inverse projection of a word is a language

■ Given a language *L* defined over *E*₁ ∪ *E*₂, the extensions of the projection functions to *L* are

$$P_i(L) := \{t \in E_i^* : \exists w \in L, P_i(w) = t\}$$

Given a language $L_i \subseteq E_i^*$ defined over E_i (i = 1, 2), the extension of the inverse projection to L_i is

$$P_i^{-1}(L_i) := \{ w \in (E_1 \cup E_2)^* : \exists t \in L_i, , P_i(w) = t \}$$

Note that

$$P_{i}\left(P_{i}^{-1}\left(L\right)\right)=L$$

and that

 $L\subseteq P_{i}^{-1}\left(P_{i}\left(L\right)\right)$

Let
$$E_1 = \{a, b\}$$
 and $E_2 = \{b, c\}$ and

 $L = \{c, ccb, abc, cacb, cabcbbca\}$

Then

P₁ (L) = {
$$\varepsilon$$
, b, ab, abbba}
P₂ (L) = { c , ccb, bc, cbcbbc}
P₁⁻¹ ({ ε }) = { c }*
P₁⁻¹ ({ ab }) = { c }* { a } { c }* { b } { c }*
P₁⁻¹ ({ ab }) = { c }* { a } { c }* { b } { c }*

Language generated by $G_1 || G_2$

$$\mathcal{L}(G_1 \| G_2) = P_1^{-1} (\mathcal{L}(G_1)) \cap P_2^{-1} (\mathcal{L}(G_2))$$

Language marked by $G_1 || G_2$

$$\mathcal{L}_m(G_1 || G_2) = P_1^{-1} \left(\mathcal{L}_m(G_1) \right) \cap P_2^{-1} \left(\mathcal{L}_m(G_2) \right)$$

Why?

Introduction to automata

Discrete Event Systems and Supervisory Control

Prof. Gianmaria DE TOMMASI Email: detommas@unina.it

March 2021

