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Abstract—Diagnosability of faults in discrete event systems
modeled with Petri nets can be assessed either via graph-
based techniques (also called diagnoser, verifier/twin-plant based
techniques), or via the solution of optimization problems. The
approaches that belong to the former class are based on the
analysis of the net reachability or coverability graphs (or of a
more compact version of them). The latter approach exploits the
mathematical representation of the net itself to specify and solve
optimization problems, which are usually expressed as integer
linear programming (ILP) problems.

In this paper we exploit the railway Petri net model originally
proposed in [16], and extended in [14] to be used as a benchmark
for diagnosability analysis, to assess the efficiency of the approach
based on the solution of ILP problems proposed in [3]. In order
to show the effectiveness of the proposed technique, a comparison
with a graph-based approach for analyzing diagnosability is also
presented.

Index Terms—Discrete event systems, Petri nets, diagnosability,
ILP problems, benchmarking.

I. INTRODUCTION

In the context of discrete event systems (DES), fault
diagnosis is the task related to the detection (and identification)
of the occurrences of unobservable faults on the basis of
the words of observed events. Since the seminal works [19]
and [20] by Sampath et al., many approaches have been
proposed in the literature to perform this task, both in the
context of finite state automata and Petri net models1.

However, online fault detection can be performed only if
the system is diagnosable. Roughly speaking, a DES is said
to be diagnosable if all the fault occurrences can be detected
when the system evolution is observed for a sufficiently
long time, i.e. after the occurrence of a sufficiently long
word of observable events. It follows that diagnosability is
the precondition that is needed in order to perform fault
diagnosis. Moreover, diagnosability assessment is a task that
can be performed offline, and different approaches have been
proposed in literature: from the so-called diagnoser approach,
proposed in the context of finite state automata (see [19]), to
the case of approaches based on model-checking problem, in
the context of Petri net (see [21]).

1The interested reader can refer to [22] for an overview of the literature in
the DES field, and to [6] for a more comprehensive overview of fault detection
and fault-tolerant control systems.

When DES are modeled using Petri nets, the approaches that
have been proposed to assess diagnosability can be classified
in two different categories. On one hand there are those
ones that rely on a graph representation of the system state
space. These graph-based techniques require to analyze the
coverability graph or a compact version of it (in the case
of bounded net systems), or of the coverability graph (in
the case of unbounded systems). Examples of diagnosability
approaches that belong to this class can be found in [8], [11],
[12], [15], [17]. On the other hand, there are optimization-
based approaches that exploit the mathematical representation
of Petri nets to assess diagnosability by solving optimization
problems, which usually are in the form of Integer Linear
Programming (ILP) problems. Examples of this technique
are [2], [3], [5], [13] in the diagnosability context; a similar
approach can be also used for supervisory control, e.g. [4].

Given the complexity of ILP problems, it follows that
the diagnosability conditions that belong to this latter class
require the solution of NP-hard problems. However, since ILP
programming is a standard optimization tool, these techniques
can rely on efficient software suites that are available off-the-
shelf, such as CPLEX® or FICO™ Xpress [1]. It turns out
that, despite their computational complexity, the optimization-
based approaches for diagnosability can be practically more
convenient when compared with the graph-based ones, which
usually requires ad hoc algorithms.

In this paper we exploit the railway benchmark model used
in [14] to show the effectiveness of the optimization-based
approach proposed in [3], by comparing it with the graph-
based one proposed in [7], [8]. This latter approach makes use
of the semi-symbolic diagnoser (SSD), and turned out to be the
most efficient one in comparison to two other reference graph-
based techniques when applied to the considered railway
benchmark (more details can be found in [10]).

For the sake of comparison, it should be noticed that,
although computationally efficient, the diagnosability
approach proposed in [3] presents several limitations
compared to others, such as [8], [17], [21]. In particular,
it provides necessary and sufficient condition to
check K-diagnosability, i.e. diagnosability after the occurrence
of at most K events after the fault, where the integer K is
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fixed. For this reason the technique in [3] cannot be used
to assess non-diagnosability and it requires to solve an ILP
problem for each value of K to be tested. Furthermore, this
approach works only when the net is bounded.

Despite these limitations, in the case of bounded Petri
net model of the plant (which is the case of the railway
benchmark in this paper), and when the interest is in practical
diagnosability, i.e. diagnosability in at most K steps, the
considered optimization-based technique turns out to be
particularly efficient from the computational point of view. It
should be also noticed that, K-diagnosability permits to verify
if the fault can be detected within a specified maximum time
delay (steps / transition firings). Indeed, if the maximum
interleaving between two event occurrences is given, and if
it is required to detect the fault within a maximum delay,
that implies the fault detection to be performed within a
maximum number of firings, which is the parameter K.

This paper is structured as follows. Some backgrounds on
labeled Petri nets and diagnosability are given in Section II.
Section III briefly introduces the two considered diagnosability
approaches for Petri net models: the optimization-based one
originally proposed in [3], and the graph-based one described
in [8] and [7]. The railway Petri net model used as a
benchmark for the comparison is presented in Section IV,
while the results of the numerical experiments aimed at
showing the effectiveness of the considered optimization-based
approach are described in Section V. Eventually, a conclusive
discussion is given.

II. BACKGROUNDS

The Petri net basics, together with the definition of
diagnosability in the field of Petri nets are introduced in what
follows.

A Petri net is a 4-tuple N = (P, T,Pre, Post), where P
is a set of m places (represented by circles), T is a set
of n transitions (represented by empty boxes and each one
associated to an event), Pre : P × T 7→ N (Post : P × T 7→
N) is the pre- (post-) incidence matrix. Pre(p, t) = w
(Post(p, t) = w) means that there is an arc with weight w
from p to t (from t to p); C = Post−Pre is the incidence
matrix.

A marking is a function m : P 7→ N that assigns to each
place of a net a nonnegative integer number of tokens, drawn
as black dots. It is useful to represent the marking of a net with
a vector m ∈ Nm. A net system S = 〈N,m0〉 is a net N with
an initial marking m0. A transition t is enabled at m if and
only if m ≥ Pre(·, t) and this is denoted as m[t〉. An enabled
transition t may fire, yielding the marking m′ = m+C(·, t),
and this is denoted as m[t〉m′.

A firing sequence from m is a sequence of
transitions σ = t1t2 . . . tk such that m

[
t1〉m1

[
t2〉m2

. . .
[
tk〉mk, and this is denoted as m[σ〉mk. The

notations m
[
σ〉 and m¬

[
σ〉 denote an enabled and

a disabled sequence under a marking m, respectively.
Furthermore, ti ∈ σ denotes that the transition ti belongs

to the sequence σ. The length of a sequence σ is denoted
with |σ|.

A marking m′ is said to be reachable from m0 if and
only if there exists a sequence σ such that m0[σ〉m′.
R(N,m0) denotes the set of reachable markings of the net
system 〈N,m0〉.

The function σ : T 7→ N, where σ(t) represents the number
of occurrences of t in σ, is called firing count vector of the
firing sequence σ. As it has been done for the marking of a net,
the firing count vector is often denoted as a vector σ ∈ Nn.
The notation σ = π(σ) is used to denote that σ is the firing
count vector of σ. Given a sequence σ the 1-norm of the
related firing count vector2 σ = π(σ) is equal to the length
of the sequence, i.e., ‖σ‖1 = |σ|.

If m0[σ〉m, then it is possible to write the vector equation

m = m0 +C · σ , (1)

which is called the state equation of the net system.

The set T can be partitioned into the disjoint sets
of observable and unobservable transitions, named
respectively To and Tuo with card(Tuo) = nuo ≤ n,
where card(Tuo) denotes the cardinality of Tuo. In this paper
the fault events t ∈ Tf are supposed to be unobservable,
i.e., Tf ⊆ Tuo, with card(Tf ) = nf ≤ nuo.

We now introduce the notion of labeled Petri net (LPN),
which allows us to associate events to the net transitions.

Definition 1 (Labeled Petri net system): A labeled Petri
net (LPN) system is the 3-ple G = 〈N,m0, λ〉, where
N is a standard P/T net, m0 is the initial marking,
and λ : T 7→ E ∪ {ε} is the labeling function which assigns
to each transition t ∈ T either an event from the set E or
the silent event ε. In particular, it is λ(t) = ε if t ∈ Tuo,
while λ(t) 6= ε otherwise 3
In the following it is card(E) = e, and we denote
with Tαi =

{
t ∈ T | λ(t) = αi

}
the set of transitions

associated with the same event αi ∈ E. Moreover, we denote
as w the word of events associated with a sequence σ such
that w = λ(σ), assuming the usual extension of the labeling
function3 λ : T ∗ 7→ E∗. Given a word w we will denote with
|w| its length, and with |w|αi the number of occurrences of
the event αi in w.

Given a firing count vector σ ∈ Nn, in this paper we
are often interested to consider only the firings of either the
observable or the unobservable transitions. For this reason we
introduce the following notations:

σ|To ∈ Nn , with σ|To(t) =

{
σ(t) if t ∈ To
0 ift /∈ To

σ|Tuo ∈ Nn , with σ|Tuo(t) =

{
σ(t) if t ∈ Tuo
0 if t /∈ Tuo

Given a firing count vector σ it is σ = σ|To + σ|Tuo .

2Given a vector v, the 1-norm ‖v‖1 is equal to the sum of the absolute
values of the vector elements.

3The superscript S∗ denotes the Kleene closure of the given set S.
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Consider a net system 〈N ,m0〉 with T = Tuo ∪ To,
and Tf ⊆ Tuo. Let L be the live and prefix-
close language generated by 〈N ,m0〉. We denote
by L/u = {v ∈ T ∗ s.t. uv ∈ L} . the post-language of L
after the sequence of transitions u.

Let Pr : T ∗ 7→ T ∗o be the usual projection (see [18]),
which “erases” the unobservable transitions in a sequence
u. The inverse projection operator Pr−1L is defined
as Pr−1L (r) = {σ ∈ L s.t. P r(u) = r}.

Let u̇ be the final transition of sequence u and define

Ψ(t̂) =
{
u ∈ L s.t. u̇ = t̂

}
.

Given a fault tf and a positive integer K, it is now possible
to give the following definition of K-diagnosable fault tf .

Definition 2 (K-diagnosable fault): Given tf ∈ Tf and K ∈
N, tf is said to be K-diagnosable if

∀ u ∈ Ψ(tf ) and ∀ v ∈ L/u such that |v| ≥ K ,

then it is
r ∈ Pr−1L

(
Pr(uv)

)
⇒ tf ∈ r .

3
If u is any sequence generated by the system that ends in
a failure event tf , and v is a continuation of u which holds
at least K transitions, then K-diagnosability implies that it is
possible to detect the occurrence of tf within a finite delay,
specifically after the firing of at most K transitions after its
occurrence.

It should be noticed that diagnosability requires the
existence of an upper bound for the continuation of u (see
also [19]), while K-diagnosability specifies a quantitative
bound for the number of events in the continuation of u,
i.e., it specifies an upper bound for the number of events
that are needed to detect a fault. In this sense we claim
that K-diagnosability has more sense from a practical point
of view. Moreover, when labeled nets are considered, two or
more transitions can share the same event α. This source of
nondeterminism affects the diagnosability.

III. DIAGNOSABILITY OF PETRI NET MODELS

In this section the two diagnosability approaches that are
compared in this paper are briefly introduced, and some details
about their computational complexity are given. For more
details, the interested reader should refer to [3], [8] and [7].

A. K-diagnosability analysis via resolving ILP problems
The following theorem represents the main result presented

in [3] that gives a necessary and sufficient condition to
check K-diagnosability in bounded and live labeled net
systems.

Theorem 1 ( [3]): Consider a labeled bounded and live net
system G = 〈N ,m0 , λ〉 and a fault transition tf , and let J be
a positive integer such that the constraints (3), in the following
denoted with F

(
m0 , t̂ ,J ,K

)
, fully describe the set

M(tf ) =

{
m ∈ Nm |

(
m0

[
u〉m

)∧(
tf /∈ u

)∧(
m
[
tf 〉
)}

.

(2)

where
∧

denotes the logical AND operator. Given a
positive integer K, tf is K-diagnosable if and only if
there exist 3

(
J + K

)
vectors u1 , . . . ,uJ ,v1 , . . . ,vK,

ε1 , . . . , εJ+K , s1 , . . . , sJ+K ∈ Nn such that:

min
s.t. LD

(
m0 ,tf ,J ,K

) J+K∑
r=1

εr(tf ) 6= 0 ,

where the two sets of constraints LD (m0 , tf ,J ,K)
and LE (m0 , |w|α1 , . . . , |w|αe) are specified in (4) and (5),
respectively.

m0 ≥ Pre · u1

m0 +C · u1 ≥ Pre · u2

. . . (3a)

m0 +C ·
J−1∑
i=1

ui ≥ Pre · uJ

m0 +C ·
J∑
i=1

ui ≥ Pre
(
· , t̂
)

(3b)

m0 +C ·
J∑
i=1

ui +C
(
· , t̂
)
≥ Pre · v1

m0 +C ·
J∑
i=1

ui +C
(
· , t̂
)
+C · v1 ≥ Pre · v2

. . . (3c)

m0 +C ·
J∑
i=1

ui +C
(
· , t̂
)
+C ·

K−1∑
j=1

vj ≥ Pre · vK

J∑
i=1

u(t̂) = 0 (3d)∥∥∥∥∥
K∑
j=1

vj

∥∥∥∥∥
1

≥ K (3e)

It is worth to notice that, since we are dealing with
bounded net systems, there exists an integer Jmin such
that all the markings in the set (2) can be characterized
by the set of constraints (3). Although in the worst
case Jmin may be equal to card (R (N ,m0)) − 1, in
many cases Jmin � card (R (N ,m0)) − 1. For a more
comprehensive discussion on this issue, the interested reader
can refer to [3, Sec. 3], where some results to estimate Jmin
for bounded and live systems are given.

m0 +C · ε1|Tuo ≥ Pre · s1|To

m0 +C ·
2∑
i=1

εi|Tuo +C · s1|To ≥ Pre · s2|To

. . . (5a)

m0 +C ·
ρ∑
i=1

εi|Tuo +C ·
ρ−1∑
i=1

sj|To ≥ Pre · sρ|To

m0 ≥ Pre · ε1|Tuo
m0 +C ·

(
ε1|Tuo + s1|To

)
≥ Pre · ε2|Tuo

. . . (5b)

m0 +C ·
ρ−1∑
i=1

(
εi|Tuo + si|To

)
≥ Pre · ερ|Tuo

∑
tj∈Tαl

ρ∑
i=1

si(tj) = |w|αl , l = 1 , . . . , e (5c)
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F
(
m0 , tf ,J ,K

)
(4a)

LE
(
m0 ,

∑
tl∈Tα1

( J∑
i=1

ui(tl) +

K∑
j=1

vj(tl)
)
, . . . ,

∑
tl∈Tαe

( J∑
i=1

ui(tl) +

K∑
j=1

vj(tl)
))

(4b)

∑
tj∈Tαl

s1(tj) =
∑

tj∈Tαl

u1(tj) , l = 1 , . . . , e

. . .∑
tj∈Tαl

sJ (tj) =
∑

tj∈Tαl

uJ (tj) , l = 1 , . . . , e

∑
tj∈Tαl

sJ+1(tj) =
∑

tj∈Tαl

v1(tj) , l = 1 , . . . , e (4c)

. . .∑
tj∈Tαl

sJ+K(tj) =
∑

tj∈Tαl

vK(tj) , l = 1 , . . . , e

We now briefly discuss the complexity of the proposed
optimization based approach to check K-diagnosability.
Although it is well known that the ILP optimization problems
are NP-hard, their complexity depends on the number of
unknowns and constraints that are involved.

Assuming that, for a given net the integer J is given and
does not depend on the net size and on the initial marking (as
it will be in many practical cases, including the benchmark
considered in this paper), it readily follows that the number
of unknowns in F (m0 , tf ,J ,K) is equal to:

#unknownsF = (J +K) · n ,

while the correspondent number of constraints is:

#constraintsF = (J +K + 2) ·m+ 1 .

When dealing with the set of constraints E(· , · , ·) it should
be noticed that the unknowns in each εi vector are the nuo
components related to the unobservable transitions, while in
each si vector the unknowns are the n − nuo observable
components. Moreover, thanks to the constraints (4c), the latest
unknowns are fictitious, thus

#unknownsE = (J +K) · nuo ,

and
#constraintsE = [2 · (J +K) + 1] ·m.

It turns out that the overall number of unknowns is:

#unknowns = (J +K) · (n+ nuo) < 2nJ + 2nK ,

while the total number of constraints is:

#constraints = 3mJ + 3mK + 3m+ 1 ,

Hence, if J is given, the numbers of unknowns and of
constraints grow linearly with respect to K. Furthermore, if J
is given, the numbers of constraints and unknowns increase
linearly with the net size, and are independent from the
initial marking. However, in the more general case where
the integer J cannot be considered constant for a given net

system, its value may be changed as a function of the initial
marking. In [3] it was proved that it is:

Jmin ≤ 2 · ‖m0‖1 ·

∥∥∥∥∥∥
∑

y∈T (N)

y

∥∥∥∥∥∥
1

,

where T (N) is the set of minimal support T-invariants of N .
Hence, in the worst case, the complexity grows exponentially
with respect to the net size.

B. Diagnosability via graph-based approach

In order to formally present the considered graph-based
approach, we introduce the following notations:
• Given a subset of transitions T ′ ⊆ T , we define
EnableT ′(m) = {t ∈ T ′ | m [ t〉}, as the set of
transitions in T ′ that are enabled at marking m. The
extension to a subset of markings M ′ ⊆ R(N,m0), is
EnableT ′(M

′) =
⋃

m∈M ′EnableT ′(m).
• Given a subset of markings M ⊆ R(N,m0) and a

transition t ∈ T , we define Img(M, t) = {m′ ∈
R(N,m0) |∃m ∈M : m [t〉m′} as the set of markings
that are reachable from the markings in M by firing
transition t. The generalization to a subset of transitions
T ′ ⊆ T is Img(M,T ′) =

⋃
t∈T ′ Img(M, t).

• Given a marking m ∈ R(N,m0) and a subset of
transitions T ′ ⊆ T , we define ReachT ′(m) = {m} ∪
{m′ ∈ R(N,m0)|(∃ σ ∈ T ′∗) : m [ σ 〉 m′} as
the set of markings that can be reached by firing a
sequence of transitions in T ′ from marking m. The
generalization to a subset of markings M ⊆ R(N,m0)
is ReachT ′(M) =

⋃
m∈M ReachT ′(m).

Generally, all graph-based approaches use a deterministic
graph (called diagnoser) whose nodes contain a set of
reachable (normal and/or faulty) markings and whose arcs
are the observed labels (events). In fact, the diagnoser is used
in order to verify the diagnosability property and perform the
online diagnosis (in the case of diagnosable systems).

The graph-based technique considered in this paper for the
comparison study is the SSD approach, introduced in [7],
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[8], which is based on the computation of a semi-symbolic
diagnoser (from which the SSD acronym is derived). The SSD
technique shows three interesting features compared to the
classic approaches, namely: i) a new structure which explicitly
separates between the normal and the faulty markings in each
node, (ii) a compact representation of the node markings
using binary decision diagrams (BDD), and (iii) an on-
the-fly algorithm to synthesize the diagnoser and analyze
diagnosability simultaneously.

In fact, in the SSD approach each node a of the diagnoser
is partitioned into two distinct subsets of markings, each of
them is encoded using a BDD:

1) the set of normal markings (denoted by a.MN ), which
is the subset of markings in node a that are reachable
upon the of firing faulty-free sequences.

2) the set of faulty markings (denoted by a.MF ), which
is the subset of markings in node a that are reachable
upon the firing faulty sequences.

It should be noticed that, in a given node a, there may exist
some faulty transitions that link some markings in a.MN

to some others in a.MF . The existence of such transitions
is also encoded within each node using a boolean variable
denoted Ba (true if such transitions exist and false if not). As
illustrated in [7], such a node structure can be advantageously
explored for rendering diagnosability analysis more efficiently
than using the classic diagnoser approaches.

Definition 3: The SSD associated with a LPN G =
〈N,m0, λ〉 is a deterministic graph D = 〈A , E , δD , a0〉,
where:

1) A is a finite set of diagnoser nodes;
2) E is a finite set of events (labels);
3) a0 is the initial diagnoser node with:

a) a0.MN = ReachTreg (m0);
b) a0.MF = ReachTuo(Img(a0.MN , Tf )).
c)

Ba0
{
true if Img(a0.MN , Tf ) 6= ∅
false if Img(a0.MN , Tf ) = ∅

4) δD : A × E → A is the transition relation, defined as
follows:
∀ a, a′ ∈ A, α ∈ Σo: a′ = δD(a, α) ⇔
a′.MN = ReachTreg (Img(a.MN , Tσ)) ∧ a′.MF =
ReachTuo(Img(a′.MN , Tf ) ∪ Img(a.MF , T

α))

Ba′
{
true if Img(a′.MN ,Σf ) 6= ∅
false if Img(a′.MN ,Σf ) = ∅

with Treg = Tuo\Tf .
5) In each node ai, sets ai.MN and ai.MF are encoded as

BDDs, this aspect is not discussed in the present paper;
the reader should refer to [8] for more details. 3

According to this definition, one can differentiate between
three types of diagnoser nodes:
• N-certain node a: is a diagnoser node where the set of

faulty markings is empty (a.MF = ∅);

• F-certain node a: is a diagnoser node where the set of
normal marking is empty (a.MN = ∅);

• F-uncertain node a: is a diagnoser node of which neither
the normal set nor the faulty set of markings is empty,
i.e., a.MN 6= ∅ and a.MF 6= ∅.

In the same way as in [19], we define F -uncertain cycle as
follows:

Definition 4: (F -uncertain cycle)
A cycle c` = a1, a2, . . . , an, with δD(ai, αi) = a(i+1)modn

4

for 1 ≤ i ≤ n, in diagnoser D, is said to be an F -uncertain
cycle, if ∀i : 1 ≤ i ≤ n : ai is an F -uncertain node.

Diagnosability verification using the SSD is based on a
simplified necessary and sufficient established using the notion
of “indicating sequence”, which is associated with the F -
uncertain cycles5.

Definition 5: (c`-indicating sequence)
Let c` = a1, a2, . . . , an be an F -uncertain cycle in D (the

starting node a1 can be arbitrarily chosen in the cycle), with
δD(ai, αi) = a(i+1)modn for 1 ≤ i ≤ n. The associated c`-
indicating sequence ρc` = S1,S2, . . . , is an infinite sequence
of sets of markings, such that:
− S1 = a1.MF ;
− ∀ i > 1 : Si = ReachTuo(Img(Si−1, Tα(i−1)modn

)). 3

In other terms, the c`-indicating sequence tracks the subsets
of faulty markings in each node of c` without considering
the faulty markings generated through the occurrence of some
faulty transitions outgoing from the normal set of markings in
the traversed nodes (except for S1 which holds all the faulty
states of node a1, i.e., S1 = a1.MF ).

In fact, the c`-indicating sequence is introduced with the
aim of elucidating the actual faulty cycles corresponding to a
given F -uncertain cycle, if such cycles exist in the original
model.

Based on this notion, a simplified necessary and sufficient
condition for diagnosability of LPNs can be reformulated as
follows:

Theorem 2: ( [7]) An LPN is said to be diagnosable, w.r.t.
P and Tf , if and only if for each F−uncertain cycle c` in its
diagnoser D and ρc` = S1,S2, . . . is its indicating sequence;
then ∃ i ∈ N∗ : Si = ∅. 3

It is worth recalling that series ρc` necessarily reaches a
repetitive cycle and that i in the above theorem is most equal
to the number of markings in the reachability graph of the
net. For the actual verification of diagnosability, and based
on this result, a systematic procedure is derived directly from
Theorem 2. This procedure is repeated on each F -uncertain
cycle generated on-the-fly in D, and is performed as follows.

When an F -uncertain cycle c` is built in SSD D, then:
1) generate the successive elements of c`-indicating

sequence ρc` (starting from S1), and for each element
Si check the following conditions:

4The notation δD(ai, αi) = a(i+1)modn is used to denote that ∀i < n it
is δD(ai, αi) = ai+1 and δD(an, αn) = a1.

5A similar notion called “refined sequence” has been
introduced independently by A. Giua in the lecture available at
http://www.diee.unica.it/giua/ARP/.
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a) if Si = ∅, then cycle c` satisfies the condition of
Theorem 2 and therefore the procedure is stopped;

b) else, if Si 6= ∅ and ∃k ∈ N : i = 1 +kn (with n =
|c`|), then:
i) if Si = S(i−n), then cycle c` violates the

condition of Theorem 2 and stop the procedure;
ii) else continue.

The SSD-based algorithm for analyzing diagnosability
has been implemented in a tool called DPN-SOG [9],
which is a command-line software tool developed in C++
programming language. DPN-SOG builds the SSD on the
fly and simultaneously analyzes the diagnosability. When
the LPN system is non-diagnosable, DPN-SOG outputs
the generated part of the diagnoser as well as a witnessed
event-trace that violates the diagnosability property (the
first encountered event-trace that violates the diagnosability
feature, based on Theorem 2). If the LPN model is found to
be diagnosable, DPN-SOG generates the part of the diagnoser
that is sufficient to perform the online diagnosis, which is
does not necessarily requires to build the whole reachability
graph, as explained in [7]. Further pieces of information
that help assessing the efficiency of the approach are output
by the tool, namely, the required CPU time, the size of the
diagnoser, the number of used BDD nodes and memory
required to store the SSD (in kilobytes).

IV. THE LEVEL CROSSING BENCHMARK MODEL

In this section we briefly introduce the benchmark model
for diagnosability analysis that has been proposed in [14], and
which has been derived from the railway model originally
proposed in [16].

The considered benchmark is a railway level crossing
system (LC) which considers one or more railway tracks. The
LC system is composed of three main subsystems: i) sensing
module to detect trains’ position relative to the LC along each
track; ii) barriers module to stop the road traffic; and iii) a
local control module to activate/deactivate the barriers, flashing
lights and sound alarm. The operational logic of a multi-track
LC considers the railway traffic on each track:
• the LC is closed to road traffic if for at least one track,

a train is in the crossing zone;
• the LC is reopened to road traffic only if, for all the tracks

no train is in the crossing zone.
The LC benchmark was proposed in [14] in order to

analyze various diagnosis issues. An interesting feature of this
benchmark is that it can be extended to n railway tracks.
Hence, while the size of the model grows linearly, its state-
space grows exponentially, which is suitable for evaluating the
efficiency of an approach.

For diagnosis purposes, all the benchmark models include
two classes of faults, and the fault transitions are represented
in red in the LPN model shown in Fig. 1. The first one,
named Tf1 , related to a train-sensing defect is modeled by
unobservable transition (ti,4, ig) and indicates that the train

may enter the LC zone before the barriers are lowered.
The second failure, named Tf2 , modeled by unobservable
transition (t6, bf) indicates a defect of the barriers that results
in a premature rising. Either of these two faults can induce
incorrect operation of the LC control and possibly train-car
collisions.

nth track

1st track

p1,1 p1,2 p1,3

pn,1 pn,2 pn,3

t1,4, ig

tn,4, ig

p1 np2 p3 p4

p5 n p6

t1, cr t2, or

t1,1, ap1

p9

t1,3, lv1

tn,1, apn tn,3, lvn

p7, up

p8, down

p9

t6, bf

t1,2, en1

tn,2, enn

t4, lwt3, kd t5, rs

n n

railway traffic

LC controller

barriers

� observable transition � unobservable fault transition

Fig. 1. The multi-track level crossing benchmark

V. NUMERICAL EXPERIMENTS

In this section we use the railway LC benchmark previously
introduced to compare the performances of the ILP-based
approach for diagnosability analysis of DES modeled with
LPN systems. In particular:
• in order to apply the optimization-based approach

described in Section III-A, a Matlab® script has been
used, which calls the FICO™ Xpress [1] API to solve
the ILP problem in Theorem 1;

• the DPN-SOG tool [9] has been used as a reference
as it implements the SSD-based technique that was
already compared to two reference graph-based
approaches, namely the classic diagnoser technique and
the MBRG\BRD based one ( [11], [12]), on the basis
on the level-crossing benchmark that we consider in the
present paper.

Moreover, before discussing the numerical results of the
experiments that have been performed, it is important to notice
that:
• the current implementation of graph-based SSD approach

within DPN-SOG permits to assess diagnosability but not
K-diagnosability. However, the tool will be extended in
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TABLE I
COMPARATIVE EXPERIMENTAL RESULTS

n
Petri net features Diagnosability via SSD K-diagnosability via ILP

|P | |T | |N | |A| |DS | |DT | De (s) Dm (kB) K Last ILPe (s) Total ILPe (s) #constr. (origin / Xpress) #unkow. (origin / Xpress)
1 12 10 20 43 10 14 0 44 7 0.3 9 721 / 225 228 / 180
2 15 14 142 500 83 205 0 1056 13 0.6 26 1171 / 467 425 / 380
3 18 18 832 4085 483 1745 1 8696 19 0.7 56 1729 / 798 682 / 639
4 21 22 4314 27142 2434 11774 2 80400 25 1.1 108 2395 / 1237 999 / 923
5 24 26 20556 157551 11304 69112 30 430456 31 4 194 3169 / 1764 1376 / 1294
6 27 30 92070 831384 56136 414299 458 2155100 37 2.7 326 4051 / 2386 1813 / 1725
7 30 34 393336 4086585 261262 2282890 7836 10167015 43 5.6 507 5041 / 3110 2310 / 2197
8 33 38 1618866 19013130 * * o.t. * 49 6.4 767 6139 / 3940 2867 / 2743
9 36 42 * * * * o.t. * 55 8.8 1079 7345 / 5006 3484 / 3351
10 39 46 * * * * o.t. * 61 11.8 1514 8659 / 6013 5822 / 4017
11 42 50 * * * * o.t. * 64 20 1874 12519 / 6686 11400 / 4555
12 45 54 * * * * o.t. * 67 32 3630 13962 / 7688 12798 / 5125

*: No result obtained in 4 hours. o.t.: Out of time (more than 4 hours).

• n: the number of tracks;
• |P | and |T |: the number of places and transitions in the PN models, respectively;
• |N | and |A|: the number of nodes and arcs in the reachability graph, respectively;
• |DS | and |DT |: the numbers of nodes and arcs in the SSD, respectively;
• De and Dm: the required time and memory to generate perform the verification respectively;
• K: number of events needed to detect the fault;
• Last ILPe: the time taken by Xpress to solve the ILP problem that satisfies Theorem 1;
• Total ILPe: the time taken by Xpress to solve the K ILP problems needed to assess K-diagnosability;
• #const.: the number of constraints in the ILP problem that satisfies Theorem 1 before and after Xpress presolver, respectively;
• #unkow.: the number of unknowns in the ILP problem that satisfies Theorem 1 before and after Xpress presolver, respectively.

the future in order to make it possible to also tackle K-
diagnosability investigation.

• on the other hand, the considered ILP-based approach
cannot be used to assess non-diagnosability, and hence it
cannot be used to elucidate non-diagnosable faults. For
this reason, in this comparison we have considered only
fault (t6 , bf), since the faults belonging to class Tf1 are
not diagnosable as soon as the benchmark has more than
one railway track (see the results presented in [10]).

• the considered optimization-based also requires to solve
an ILP problem for each value of K that needs to
be tested. For this reason in Table I reports both the
time to solve the ILP problem that satisfies Theorem 1
(Last ILPe), and the total time needed to solve the K ILP
problems (Total ILPe).

The numerical experiments carried out to compare the two
considered approaches have been run on the same platform;
in particular a 64-bit PC equipped with CPU Intel® Core™
i3-6100U, at 2.30 GHz with 4GB of RAM has been used.

The results of the numerical experiments for the benchmark
models with a number of tracks that ranges from 1 to 12 are
summarized in Table I. Taking into account that a time out
of 4 hours has been considered, several observations can be
made, as discussed below:

• although the proposed optimization-based approach
requires to solve a number of ILP problems equal
to K to assess K-diagnosability, as soon as the size
of the model becomes relatively large (in our case,
as soon as n > 6), the time needed to perform the
analysis becomes way lower than the one required by

the graph-based SSD approach6.
• Given the exponential explosion of the state space, the

graph-based approach becomes practically unfeasible
for n > 7, not terminating within the 4 hours timeout on
the considered platform. Instead, the ILP-based approach
does not need to explicitly compute the state space of
the system, and is capable to give the result for the
model with 10 tracks in less then half an hour. In
particular, on the considered platform, the proposed ILP-
based approach it is possible to assess the diagnosability
of the (t6 , bf) fault up to n = 12 track in about one hour,
then for n > 12 the memory limit is reached without
reaching the timeout.

• The algorithm underlying the SSD-based technique
implements an on-the-fly procedure which is, in general,
particularly efficient in the case of non-diagnosable
models. Indeed, in this case the algorithm stops as soon
as an indeterminate cycle is built within the SSD and
a negative verdict regarding diagnosability is issued.
Hence, in general, a small part of the reachability graph,
and likewise of the SSD, is built in this case. However,
it is worth recalling that, in the experiments carried
out in the present paper, only diagnosable faults were
considered.

• Since it does not require the explicit computation of the
reachability set of the model, the ILP-based approach
takes advantage of the parallelism of the proposed

6While the SSD algorithm has been directly implemented in C++, the
ILP-based K-diagnosability approach has been deployed in the Matlab®
environment and relies on the FICO™ Xpress API. It follows that, from the
implementation point-of-view, there is a time overhead for the latter approach
that is bigger than for the former, and this fact may have a non negligible
impact when the size of the problem is relatively small.
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benchmark. Indeed, while adding an additional track
has a significant impact on the size of the model state
space, it does not affect too much the efficiency of
ILP-based approach. This result is achieved thanks to
the fact that the algebraic formulation of the constraints
of Theorem 1 enables to exploit the parallelism in
the dynamic evolution of each track, and that the
tracks evolve in parallel. It turns out that the proposed
ILP-based is particularly well suited for LPN models
with a high level of parallelism.

• As already claimed in the introduction, the ILP-based
approach exploits commercial tools such as FICO™
Xpress for the solution of the ILP problems. Such
an approach not only enables the use of efficient
optimization codes, but takes also advantage of all
the preprocessing processes of these commercial tools.
Indeed, in the considered case, the number of constraints
and unknowns after the run of the Xpress presolver is
always smaller than the one of the original ILP problem
in Theorem 1, and this has a positive impact on the time
needed to solve the problem.

CONCLUSIONS

In this paper, two approaches to assess diagnosability in
DES modeled with LPN have been compared. In particular,
the graph-based technique based on SSD [8]– [7], and the
approach based on the solution of ILP problems presented
in [3] have been considered. The comparison was carried out
using the railway benchmark presented in [14].

From the numerical experiments that have been performed,
it can be concluded that, despite its limitation (i.e. it cannot
assess non-diagnosability), the proposed ILP-based approach
for diagnosability analysis represents a valuable alternative to
the graph-based approaches, since
• it does not require to develop ad hoc software, since it

relies on commercial optimization tools that are available
off-the-shelf;

• compared with the SSD approach, which proved to
be among the more efficient graph-based approaches
proposed in the literature, given a limit in time for
the diagnosability assessment, it allows for dealing with
problems whose size is larger.

Acknowledgements: the research leading to these results
has been partially supported by Department of Electrical
Engineering and Information Technology (DIETI) of
University of Naples Federico II under the project MODAL
(MOdel-Driven AnaLysis of Critical Industrial Systems).

REFERENCES

[1] Xpress-Optimizer - Reference manual, release 31.01. FICOTM Xpress
Optimization Suite, April 2017.

[2] F. Basile, P. Chiacchio, and G. De Tommasi. Decentralized K-
diagnosability of Petri nets. In Proc. of the 11th International Workshop
on Discrete Event Systems (WODES’12), pages 214–220, Guadaljara,
Mexico, October 2012.

[3] F. Basile, P. Chiacchio, and G. De Tommasi. On K-diagnosability of
Petri nets via integer linear programming. Automatica, 48(9):2047–2058,
2012.

[4] F. Basile, R. Cordone, and L. Piroddi. A branch and bound approach for
the design of decentralized supervisors in Petri net models. Automatica,
52:322–333, 2015.

[5] F. Basile, G. De Tommasi, and C. Sterle. Sensors selection for K-
diagnosability of Petri nets via Integer Linear Programming. In Proc.
of the 23rd Mediterranean Conference on Control and Automation
(MED’15), pages 168–175, Torremolinos, Spain, June 2015.

[6] M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, and J. Schröder.
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