Discrete Event Systems and Supervisory Control

Course introduction

Prof. Gianmaria DE TOMMASI Email: detommas@unina.it

March 2021

- Course name → Discrete event systems and supervisory control
- Part of Advanced control engineering
- Included in the Automation & control engineering curricula

- Gianmaria De Tommasi
- email:
 - detommas@unina.it
- If needed we can meet on Teams → Tue 14:30-16:30

Study of dynamic systems modelled as Discrete Event Systems (DES)

- Study of dynamic systems modelled as Discrete Event Systems (DES)
 - nonlinear...
 -with discrete state space...
 - ...whose dynamic is driven by the occurrence of *asynchronous* events over time

Modelling logical DES

Formal languages

A logical DES can be seen as a formal language generator

The events that drive the system dynamic can be regarded as letters of an alphabet E

Formal languages

A logical DES can be seen as a formal language generator

- The events that drive the system dynamic can be regarded as letters of an alphabet E
- The system trajectories become words (strings, sequences)
- \blacksquare The system itself can be regarded as a generator of words \rightarrow a generator (recognizer) of a formal language

Formal languages

A logical DES can be seen as a formal language generator

- The events that drive the system dynamic can be regarded as letters of an alphabet E
- The system trajectories become words (strings, sequences)
- The system itself can be regarded as a generator of words \rightarrow a generator (recognizer) of a formal language
- Different tools can be used to model DES at the logical level: queue systems, look-up-tables, automata, Petri nets

Formal languages

A logical DES can be seen as a formal language generator

- The events that drive the system dynamic can be regarded as letters of an alphabet E
- The system trajectories become words (strings, sequences)
- The system itself can be regarded as a generator of words \rightarrow a generator (recognizer) of a formal language
- Different tools can be used to model DES at the logical level: queue systems, look-up-tables, automata, Petri nets
- Some of this tools can be also extended to study *timed* DES: timed automata and timed Petri nets, Markov chains, (max,+) algebra,...

Modelling logical DES

◆□ → ◆圖 → ◆ 圖 →

Gianmaria De Tommasi - detommas@unina.it

5 of 14

Examples

There are analysis and synthesis tasks that cannot be practically performed when dealing with large scale/complex systems, if these are modelled using differential equations (ODEs)

$$\dot{x}(t) = f(x(t), u(t), t),$$

$$y(t) = g(x(t), u(t), t).$$
Inputs u(t)
Process
to be modelled
Outputs y(t)

There are analysis and synthesis tasks that cannot be practically performed when dealing with large scale/complex systems, if these are modelled using differential equations (ODEs)

$$\dot{x}(t) = f(x(t), u(t), t),$$

$$y(t) = g(x(t), u(t), t).$$
Inputs u(t)
Process
to be modelled
Outputs y(t)

The DES framework permits to move to a higher level of abstraction, where (some) physical details can be neglected

There are analysis and synthesis tasks that cannot be practically performed when dealing with large scale/complex systems, if these are modelled using differential equations (ODEs)

$$\dot{x}(t) = f(x(t), u(t), t),$$

 $y(t) = g(x(t), u(t), t).$

- The DES framework permits to move to a higher level of abstraction, where (some) physical details can be neglected
- When this is not possible some hybrid approaches are possible (both for modelling and control)

Bestiarium of dynamical systems

▲□▶▲圖▶▲≧≯

Gianmaria De Tommasi - detommas@unina.it

Bestiarium of dynamical systems

▲口 ▶ ▲圖 ▶ ▲ 圖 ▶

Gianmaria De Tommasi – detommas@unina.it

The DES research community

- Researchers in this field have different backgrounds: computer science, information theory, operations research, control & automation
- Most of the concepts originated in the computer science community (some date back to Turing!)
- These concepts have been brought in the control community in the 80's by Ramadge and Wonham (Supervisory Control Theory, SCT)
- Even earlier, in the mid 70's, Petri nets were used to derive the Grafcet programming language, which is used in PLCs (nowadays known as SFC)

The DES research community

- Researchers in this field have different backgrounds: computer science, information theory, operations research, control & automation
- Most of the concepts originated in the computer science community (some date back to Turing!)
- These concepts have been brought in the control community in the 80's by Ramadge and Wonham (Supervisory Control Theory, SCT)
- Even earlier, in the mid 70's, Petri nets were used to derive the Grafcet programming language, which is used in PLCs (nowadays known as SFC)
- The jargon adopted in this course is the one usually adopted by the automation-oriented researchers, as well as most of the reported results have been published on control and automation journals

W. M. Wonham, K. Cai, K. Rudie

Supervisory control of discrete-event systems: A brief history Annual Reviews in Control, 2018

1 Introduction (this lesson)

2 Logic DES (deterministic & nondeterministic)

- Languages & automata
- Petri nets
- 3 Timed DES (just some hints)
- 4 Supervisory control
- 5 Privacy and security in DES

Textbooks

<ロト < 同ト < 回)

© 2008

Introduction to Discrete Event Systems

Authors: Cassandras, Christos G., Lafortune, Stéphane

Lecture Notes in Control and Information Sciences

@ 2013

Control of Discrete-Event Systems

Automata and Petri Net Perspectives

Editors: Seatzu, Carla, Silva, Manuel, van Schuppen, Jan H. (Eds.)

...and some papers :)

....to be presented/discussed during....

-to be presented/discussed during....
- ...Oral exam

-to be presented/discussed during....
- ...Oral exam

A single mark will be given for Advanced control engineering

-to be presented/discussed during....
- ...Oral exam
- A single mark will be given for Advanced control engineering
 - Marks achieved in Discrete event systems and supervisory control and Control of complex systems and networks will be averaged

Discrete Event Systems and Supervisory Control

Course introduction

Prof. Gianmaria DE TOMMASI Email: detommas@unina.it

March 2021

