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Abstmct We study a class of specifica- 
tions, called generalized mutual exclusion con- 
straints, for discrete event systems modeled using 
Placellkansition nets. These specifications may be 
easily enforced by a set of places called monitors 
on a net system where all transitions are control- 
lable. However, when some of the transitions of 
the net are uncontrollable this technique is not al- 
ways applicable. For some classes of nets, we prove 
that generalized mutual exclusion constraints may 
always be enforced by monitors, even in the pres- 
ence of uncontrollable transitions. 

I. INTRODUCTION 

Mutual exclusion constraints are a natural way of 
expressing the concurrent use of a finite number of 
resources, shared among different processes. In the 
framework of Petri nets and from a very general per- 
spective, we define a generalized mutual exclusion con- 
straint (GMEC) as a condition that limits a weighted 
sum of tokens contained in a subset of places. Let 
(N, M O )  be a net system with set of places P .  A con- 
straint ($, k) defines a set of legal markings: 

M(G,  A) = { M  E NlPl I GT . M 5 k}, 

where w’ is a weight vector of nonnegative integers, 
and k is a positive integer. Markings in NIpi that are 
not legal will be denoted forbidden markings. 

In the first part of this paper we present a method- 
ology, based on linear algebraic techniques [8], to 
compare and simplify GMEC. An equivalence notion 
among GMEC is introduced and studied from the 
point of view of structural net theory. 

In traditional Petri net modeling all transitions are 
assumed to be controllable, i.e., may be prevented 
from firing by a control agent. A problem addressed 
for those systems with shared resources has been that 
of deadlock prevention or avoidance [l, 9, lo]. A single 
GMEC may be easily implemented by a monitor, i.e., 
a place whose initial marking represents the available 
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units of a resource and whose outgoing and incoming 
transitions represent, respectively, the acquisition and 
release of units of the resource. 

In the framework of Supervisory Control [3, 71 the 
complexity of enforcing a GMEC is enhanced by the 
presence of uncontrollable transitions, i.e., transitions 
that may be observed but not prevented from firing 
by a control agent. To enforce a given GMEC, it is 
necessary to prevent the system from reaching a su- 
perset o€ the forbidden markings, containing all those 
markings from which a forbidden one may be reached 
by firing a sequence of uncontrollable transitions. Un- 
fortunately, in this case we prove that the set of legal 
markings cannot always be represented by a linear do- 
main in the marking space, thus there exist problems 
which do not have a “monitor-based” solution. 

The paper is structured as follows. Section I1 is in- 
troducee the notation on Petri nets. Generalized mu- 
tual exclusions constraints are defined in Section 111. 
We also discuss the modeling power of this kind of 
constraints. Section IV shows how these constraints 
may be enforced by a monitor place if all transitions 
of the net are controllable. Section V shows that a 
monitor-based solution may not exists if some of the 
transitions of a net are uncontrollable. 

11. GENERALITIES 

A Place/Transition net (P/T net) [6] is a structure 
N = (P,T,  P r e ,  P o s t ) ,  where P is a set of places rep- 
resented by circles, IPI= rn; T is a set of transitions 
represented by bars, [TI= n; P r e  : P x T + EV is the 
pre-incidence function that specifies the arcs directed 
from places to transitions; Post  : P x T + nV is the 
post-incidence function that specifies the arcs directed 
from transitions to places. 

If the net is pure, i.e., it has no selfloops, the 
incidence functions can be represented by a single 
matrix, the incidence matrix of the net, defined as 
C ( p , t )  = P o s t ( p ,  t )  - P r e ( p ,  t ) .  

A marking is a vector M : P + nV that assigns to 
each place of a P/T net a non-negative integer number 
of tokens, represented by black dots. Idp1 will denote 
the set of all possible markings that may be defined 
on the net. A P/T system or net system ( N ,  M O )  is a 
net N with an initial marking MO. 
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A transition t E T is enabled at a marking M iff 
M 2 Pre( . , t ) .  If t is enabled at M, then t may fire 
yielding a new marking M' with M' = M + C(. , t ) .  
We will write M [t)  M' to denote that t may fire at  
M yielding M'. 

A firing sequence from MO is a (possibly empty) 
sequence of transitions U = tl . . . t k  such that 
MO [tlj M1 . / 2 2 )  M2 . . .  [ t k )  Mk. A marking M is 
reacha le in N ,  MO)  iff there exists a firing sequence 
U such that MO [U )  M. 

Given a system (N, MO), the set of firing sequences 
(also called language of the net) is denoted L ( N , M o )  
and the set of reachable markings (also called reacha- 
bility set of the net) is denoted R ( N ,  MO). 

If marking M is reachable in ( N , M o )  by firing a 
sequence U ,  then the following state equation is satis- 
fied: M = MO + CO', where a' : T --+ M is a vector 
of non-negative integers, called the firing count vec- 
tor. Z( t )  represents the number of times transition t 
appears in U .  The set of markings M such that there 
exists a vector a' satisfying the previous state equa- 
tion is called potentially reachable set and is denoted 
P R ( N ,  MO). Note that P R ( N ,  MO) 2 R ( N ,  MO).  

A P-semiflow is a vector Y : P -+ I'V such that 
Y 2 6 and YT .C = 6. Let B be a basis of P-semiflows 
of the net N .  For any MO, a marking M E P R ( N ,  MO)  
satisfies the following system of equations: BT . M = 
BT . MO. The set markings satisfying the previous 
system of equations is denoted P R B ( N ,  MO) [2]. Note 
that P R B ( N ,  MO) 2 P R ( N ,  MO).  

Let X : P -+ IV be a vector and P' E P. The 
support of X is Q x  = {p E P I X ( p )  > 0). The 
projection of X on P' is the restriction of X to P' and 
will be denoted X f p , .  This definition is extended in 
the usual way to  the projection of a set of vectors X ,  
i.e., X tpt= {X tpt l  X E X } .  

111. GENERALIZED MUTUAL EXCLUSION 
CONSTRAINTS 

In this section we define a generalized mutual ex- 
clusion constraint (GMEC) as a condition that limits 
the weighted sum of tokens in a set of places. We 
discuss the modeling power of this kind of constraint 
and prove that only for restricted classes of systems 
a forbidden marking problem may be expressed as a 
mutual exclusion problem. 
A. Redundancy, Equivalence and Simplification of 

Mutu a1 Ezclusion Constraints 

Definition 1 Let ( N , M o )  be a net system with set 
of places P .  A single generalized mutual exclusion 
constraint (5, k )  defines a set of legal markings 

M ( G ,  1)  = { M  E Idp1 I G T .  M 5 k}, 

where G : P -, nV is a weighl vector, and k E W .  
The support of G is the set Qw = { p  E P I w(p) > 0). 

Adset of generalized mutual exclzsion constraints 
(W, k ) ,  with W = [ G I . .  . G,,,] and k = ( k l  . . . k,)T, 

defines a set of legal markings 

M ( W , g )  = n E I M ( G i , k i )  
= { M  E NIPI I W T .  M 5 Z}. 

- 
As a particular case, when G 5 1, i.e., w ( p )  = 

1 (Vp E Qw) ,  the unweighted GMEC (G, k) is reduced 
to the set condition considered .in [5]. 

In the following we will discuss redundancy and 
equivalence between constraints. 

Definition 2 Let ( N , M o )  be a s stem. A GMEC 
(G, k )  is redundant with respect t o  hrt) a set of mark- 
ings A c MIp1 i f A  s M ( G , k ) .  

A GMEC(G,  k )  is redundant wrt a system (N, MO) 
if R ( N ,  MO) C M ( G ,  k k  

A set of GMEC (W, k), where W = [GI . . . Gm] and 
4 = $k1 . . . k,)T, is redundant wrt ( N ,  MO) i f  (G,, k,) 
IS re undant for all i = 1 , .  . . , m. 

Linear programming techniques may be used to de- 
rive sufficient conditions for redundancy. 

Proposition 1 If the following Linear Programming 
Problem (LPP) has optimal solution x* < k + 1 then 
the GMEC (G, k )  is redundant wrt ( N ,  MO): 

z =  max I Z ~ . M  
s.t. M = M o + C . a ' ,  

Proof: If <* < k + 1 then P R ( N ,  MO) M ( G ,  k )  

The proposition gives a sufficient condition for re- 
dundancy. There are classes of nets, such as marked 
graphs, for which the condition is necessary and suffi- 
cient [2]. Also for the nets for which P R ( N , M o )  = 
PRB(N,M0)  we may equivalently check for redun- 
dancy solving the following linear programming prob- 
lem: 

M,a' 2 6. 

and this implies that R ( N ,  MO) c M ( G ,  k ) .  0 

x =  max G ~ - M  

M 2 6. 
s.t. BT . M = BT . M O ,  

where B is a basis of P-semiflows of the net. 

Definition 3 Two sets of GMEC, (W1,Zl) and 
( ~ 2 , h ) ,  are equivalent wrt ( N , M ~ )  if R ( N , M ~ )  n 
M(Wi , k i )  = R ( N ,  M O )  n M (  W2, G ) .  

We may check for equivalence between constraints 
using the same approach we used to check for redun- 
dancy. In fact from t i e  definition it follows that two 
sets of GMEC, (W1,kI) and (W2,&), are equivalent 
wrt (N, MO) if and only if (W1, $ 1 )  is redundant wrt 
R ( N ,  Mo)nM(Wz,&),  and (W2,&) is redundant wrt 
R(N,Mo)nM(W1,&) .  
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Figure 1: System in Example 1. 

Example 1 Consider the system in Figure la whose 
set of reachable markings is RiN, MOL = { M  I fT . 
M = 3). Let (G1,kl) and (w2,kz)  e two GMEC 
with: $1 = ( I ~ ~ C I ) ~ ,  kl  = 5 ,  and $2 = (OllO)T, k2 = 
1. 

To prove that the two constraints are equivalent 
wrt the system considered we may proceed as follows. 
The LPP 

21' max I $ - M  
iT . M = 3, 

M 2 6, 

8.t. 
G T - M  5 1, 

has optimal value ZT = 5 < k1 + 1, hence by Propasi- 
tion 1 R(N,Mo)nM(G2,k2)  c M(w'l ,k l ) .  The LPP 

22= max G T - M  
s. t .  i.T . M = 3, 

l $ . M 5 5 ,  
M 2 6, 

has optimal value z$ = < k2 + 1, hence R(N,  MO) n 
M(w'1,kl) c M(u32,k2). This proves that the two 
constraints are equivalent for the given system. 

The equivalence between constraints leads to the 
idea of simplification of a constraint. Given a con- 
straint ($, k), we may look for a simpler, but equiva- 
lent, constraint. A constraint (w",k') is simpler than 
($,k) if w" < $. In the next subsection we will see 
that simpler constraints require simpler control struc- 
ture to be enforced. The next example shows another 
advantage of simplifying constraints. 
Example 2 For the system in Figure l a  consider, in 
addition to the two constraints discussed in Exam- 
ple 1, the constraint ($3, k3) with: $3 = (0330)T,  k3 = 

5 .  By definition, (ti&, k2)  is simpler than ($3, k3)  that 
is simpler than W'1,kl . It is immediate to see that 
e ( G 3 ,  k3 )  = M[$2, k2] ,  i.e., ($3, k3)  is equivalent to 
(w2, k2)  wrt ( N ,  Mp). Since we have proved in Exam- 
ple 1 that ( $ 1 ,  k .1)  IS equivalent to  (G2, k z ) ,  the equiv- 
alence between ( 5 1 ,  k1)  and ($3, k3 )  also follows. 

Note, however, that if we try to use a LPP to prove 
that ( $ 1 ,  k l )  is redundant wrt R(N,  MO) n (G3, k3) we 
have an inconclusive answer. In fact the LPP 

z1= max ~z: .M 
s. t .  iT. M = 3, 

M 2 6, 
5; . M _< 5,  

has optimal value: z; = > 6, hence we cannot 
conclude that ($1, k l )  is redundant wrt R(N,  MO)  n 

I t  is important, in the previous example, to pin- 
point the advanta e of using the simpler unweighted 
constraint (ti&, k27 rather than the weighted one 
( G 3 , k 3 )  to prove equivalence to ( 5 1 , k . l ) .  The sys- 
tem considered in the example is a live marked graph, 
and the constraint set that defines the set of reach- 
able markings has integer extrema1 points, hence any 
optimal solution of the Linear Programming Program 
is also a solution of the corresponding Integer Pro- 
gramming Problem. This property is preserved if we 
add any number of unweighted constraints to the con- 
straint set that defines the set of reachable markings. 

B. 

($3, a ) .  

Modeling Power of Generalized Mutual 
Exclusion Constraints 

The use of weights in the definition of ($, k) may 
be a useful way to compactly express more than one 
unweighted constraint, i.e., it may be the case that a 
weighted constraint may be decomposed into a set of 
unweighted ones. 
Example 3 In the case of safe (i.e., 1-bounded) sys- 
tems, the constraint ( w ' , k )  with w' = (1234)T and 
k = 5 is equivalent to the set of constraints (W, i) 
with 

1 1 1 0  w =  0 1 0 1 ,  
[ o  0 1 1 1  

and = (211)T. In fact M(w',k) n {0,1}4 = 

We point out that there does not always exist a 
set of unweighted constraints equivalent to a set of 
weighted ones. 

Example 4 Again consider the system in Figure la. 
Let ( G , k )  be a GMEC with: w' = (1200)T,k = 4. 
Markings M I  = (2100)T and M2 = (0210)T are legal, 
while marking M3 = ( 1200)T is forbidden by (G,  k). 
If there exists a set of unweighted constraints (W, i)  
equivalent to (G, k), then one of the constraints in this 

M ( w , ~ )  n (0, 1 i4 .  
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set must be (G',k'), with w" = i, such that M 1 ,  MZ E 
M(ti?,k'), and M3 4 M(ti?,k'). We will prove, by 
contradiction, that no such (ti?, k') may exists. In fact, 
ti?. M1 < ti? . M3 & w'(p1) < w'(pz), and ti? . MZ < 
ti?. M3 w'(p3) < w'(p1) .  That is, in order to have 
an unweighted constraint that forbids M3 but that 
does not forbid M I  and Mz we need to chose a ti? 
such that (Vp)  w' (p)  E {0,1} and w'(p3) < w'(p1)  < 
zu'(p2). This is clearly impossible. 

For safe systems, however, the following theorem 
proves that any weighted constraint is equivalent to a 
set of unweighted constraints. 

Theorem 1 Let N ,  M O )  be a safe system with set of 

a set of unweighted constraints (W,;) equivalent t o  

Proof: Consider the set of vectors V such that 
Vi7 E V the following conditions are verified: (C l )  

Q,,,; ((73) GT .i7 > k; ((74) 
(vV' E (0, I}IJ'I,C' < GJ Let <~,i) 
be such that W = (GI . . .  Gr) and i = (kl ...kr)T, 
where Ur==,{Gi} = V, and where ki =IQ,,,, I -1 
( V i =  1, ..., r ) .  

places P and (5, r, ) a weighted GMEC.  There exists 

(G,  k) wrt ( N ,  MO). 

;E {O,l}"'I; (C2) Qv 

G* . V' 5 k. 

a) Let us prove R ( N ,  MO) n M ( G ,  k) M(W,  Q. 
M E  R ( N , i v o ) n M ( w ' , k )  * M 5 i A 8 . M  5 

p) Let US prove R ( N , M ~ )  n ~ ( w , i )  c M ( G , ~ ) .  

k * M 5 T A  (Vi7 E V )  3 p  E Qu 3 M ( p )  = 0 * 
(Vi7E V )  GT. M 5 ki * M E M ( W , i ) .  

It 1s enough to  prove that M E R(N,Mo) A M 4 
M(G,  6 )  - M 4 M ( W ,  i). 
M E R(N,Mo)AM 4 M y , k )  M 5 l 'AGT.M > 
k. Let $0 be defined as: i p E Q,,, then . p ( p )  = M ( p )  
else vo(p)  = 0. Clearly i70 satisfies conditions Cl-C3 
listed above. We will show that there exists a vector 
i7j 5 i70 and such that i7j E V. Consider p' E Quo 3 
(Vp E Q,,)w(p') 5 w ( p ) .  Let 171 be a new vector such 
that: if p # p' then v l ( p )  = vo(p)  else v l ( p )  = 0. If 
GT41 5 k stop else repeating this procedure construct 
i72, .. . , Gj+l such that M 2 i70 > i71 > . . . > Gj+l and 
GT . Gj+l  5 k while G* . i7j > k. This means that 
Gj E V, hence i7: . M  = I Q u j l *  M 4 M(W,$) .  o 

Let us compare GMEC with the most general kind 
of constraint that can be defined on the markings of 
a system, the forbidden markings constraint [4]. A 
forbidden marking constraint consists of an explicit 
list of markings F that we want to forbid. 

Let us now consider a net system ( N , M o )  and let 
F be any set of forbidden markings. Is it possible 
to find a set of GMEC (W,@ equivalent to F, i.e., 
such that R ( N ,  MO) \ F = R(N, MO) r l  M ( W ,  Z)? In 
general the answer is no. In fact given three markings 
M 1 , M z , M 3  E R ( N , M o )  with M3 = ( M I  + M 2 ) / 2  we 
have that M 1 , M z  E M(W,L)  M3 E M(W,Z) ,  
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Figure 2: System in Example 5 .  

since M ( W ,  $) is a convex set. However, F may be 
chosen such that M 1 , M 2  4 F and M3 E F. This 
proves that there may not exist a GMEC equivalent 
to a forbidden marking constraint. 

It is possible to prove that for some classes of nets 
there exists a set of GMEC equivalent t o  any forbidden 
marking constraint. 

Theorem 2 Let ( N , M o )  be a safe and conservative 
net system. Then given a set of forbi_dden mark- 
ings F there exists a set of G M E C  (W, k )  such that 
R(N,Mo)\F = R(N,Mo)nM(W,Z) .  

Proof: Let us first state two obvious facts. 1) If 
a net is safe there do not exist two different mark- 
ings with the same support, i.e., M, M' E R(N, MO) A 
QM = Q M ~  M = M'. 2) If a net is con- 
servative no marking is covering another one, i.e., 
(VM E R(N, MO)) BM' E R(N, MO) 3 M < M'.  

Then, given a set of forbidden markings F we may 
forbid any M E F with a constraint &,k) where: 

Clearly M 4 M ( G , k )  and any other marking M' E 
R ( N , M o )  is such that M' E M ( G , k ) .  Thus (W,$) 
may be constructed as the union of all the GMEC 
constraints forbidding a marking in F. 

The requirement that the net be conservative may 
be shown necessary by the following example. 

Example 5 Consider the 1-bounded but not conser- 
vative system in Figure 2. The two possible mark- 
ings of the system are M1 = (1) and M2 = (0). 
Clearly for a set of forbidden markings F = ((0)) 
it is not possible to find an equivalent GMEC since 

G(p) = 1 if p E QM else G ( p )  = 0, and !k = l Q ~ l  -1. 

0 

( V G , k )  GT . MO 5 G T .  MT 5 k. 

IV. MONITORS 

Definition 4 Given a system ( N , M o ) ,  with N = 
( P , T , P r e , P o s t ) ,  and a G M E C  ( G , k ) ,  the moni- 
tor that enforces this constraint is  a new place S 
t o  be added t o  N .  The resulting system i s  denoted 
( N s , M { ) ,  with N S  = ( P U { S } , T , P r e S ,  P o s t S ) .  Let 
C be the incidence matrix of N .  Then N S  will have 
incidence matrix 

W e  are assuming that there are no seljloops contain- 
ing S in N S ,  hence P r e s  and PostS m a y  be uniquely 
determined by Cs. The initial marking of ( N s ,  M t )  
i s  
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W e  assume that the initial marking MO of the system 
satisfies the constraint (G, k ) .  

As an example, in Figure l b  we have represented 
the two monitors corresponding to the two constraints 
discussed in Example 1. 
Proposition 2 Let ( N , M o )  be a system, ( G , k )  a 
GMEC, and ( N s , M ; )  the system with the addition 
of the corresponding monitor S. 

1) S ensures that the projection on P of the reach- 
ability set of (Ns, ME) is contained in the set of legal 
reachable markings o f - ( N ,  MO), i .e. ,  R ( N S ,  M t )  I p s  

2) S ensures that the projection on P of the po- 
R(N,  M ~ )  n M(G,  k). 

teniially reachable set of ( N S , M t )  is  identical to the 
set of legal potentially reachable markings of ( N ,  MO), 
:.e., P R ( N S ,  Mf) fp= P R ( N ,  MO) n M ( G ,  k ) .  

3 S minimally restricts the behavior of NS, Ms), 

yield forbidden markings. 
in t R e sense that it prevents only transition brings t i a t  

addition of a pace  \ 
Proof: 
1) Clearly R N S , M ; )  t p c  R(N,Mo) ,  since the 

behavior of a system. To prove R ( N s , M f )  fpc 
M ( G , k ) ,  let MS E R ( N s , M , f )  and M = MS T P .  
Then there exist 3 such that MS = M t  + Cs . 0' 
or, equivalently, M = MO + C . 3, and M s ( S )  = 
M:(S)-GT.C-Z= k - G T - ( M 0 + C . Z )  2 0. Hence 
GT . M = GT (MO + C - 3) 5 k, i.e., M E M ( G ,  k ) .  

2) With the same reasoning of the previous point 
we can immediately conclude that P R ( N S ,  M Z )  f p c  
P R ( N ,  Mo)nM tu, k ) .  Let us prove the reverse inclu- 

that M = MO + C . 3, and GT - M 5 k. This implies 
that GT(Mo+C.Z) 5 k ,  i.e., k - G T . ( M o + C - 3 )  2 0. 
Then we also have that  

can only further constrain the 

sion. Let M E P !k- (N, Mo)nM(G, k), i.e., 33 2 0 such 

M 
M S =  ( k - G T - ( M O + C . 3 ) )  

is a non negative solution of MS = MZ + Cs . Z, i.e., 

3) Let at E L ( N ,  MO) be such that: M o [ a ) M [ t ) M '  
and U E L ( N s , M : )  be such that: M , f [ u ) M S .  We 
need to  prove that a t  f! L ( N S ,  M $ )  GT . M' > 1. 
Let C(-, t )  be the column of C corresponding to tran- 
sition 1 .  Then P r e s ( S , t ) - P o s t S ( t , S )  = - C S ( S , t )  = 
GT . C( ., t). Since t is not enabled by marking M S  and 
since there are no selfloops containing S, it follows 
that 0 5 M s ( S )  < P r e s ( S , t )  P o s t S ( t , S )  = 0 ,  
i.e., P r e s ( S , t )  = GT . C ( - , t ) .  Then k - GT . M = 
M s ( S )  < P r e s ( S , t )  = GT . C ( . , t ) ,  from which fol- 

The addition of a monitor to the net structure mod- 
ifies the behavior of a system, in order to avoid reach- 
ing markings that do not satisfy the corresponding 
GMEC. We pinpoint three facts: 

MS E P R ( N S , M f ) .  

lows GT . M' = GT [ M  + C(., t ) ]  > k .  0 

Figure 3: A system not reversible under constraint. 

0 The addition of a monitor does not always pre- 
serve liveness of the system. 

0 Not all markings that satisfy the GMEC may be 
reached on the net with the addition of a monitor. 
In the net in Figure 3, a monitor has been added 
to enforce the constraint M(p1)  + M(p3)  5 1. 
From the initial marking M t  = ( O O O 1 l l ) T  the 
marking MS = (lOOO1O)T will never be reached 
even if it  is legal and MS Tp= (lOOO1)T belongs 
to the reachability set of the unconstrained net. 

0 Even if liveness is preserved, the system may lose 
reversibility, as shown in the system in Figure 3. 
The same figure shows the reachability graph of 
the original system (all arcs and states) and of 
the system with monitor (only continuous arcs). 
The initial marking, that satisfies the constraint, 
will never be reached again in the system with 
monitor. 

V. NETS WITH UNCONTROLLABLE TRANSITONS 

We now assume that the set of transitions T of a 
net is partitioned into the two disjoints subsets Tu, the 
set of uncontrollable transitions, and Tcr the set of con- 
trollable transitions. A controllable transition may be 
disabled by the supervisor, a controlling agent which 
ensures that the behavior of the system is within a le- 
gal behavior. An uncontrollable transition represents 
an event which may not be prevented from occurring 
by a supervisor. 

Given a system (N, MO) and a set of GMEC (W, Z), 
the set of legal markings is given as a linear domain: 

M ( W ,  Z) = {M E NIp' I W T .  M 5 Z}. 
In the presence of uncontrollable transitions, we need 
to further restrict the behavior of the system, avoiding 
all those markings from which a forbidden marking 
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Figure 4: A mutual exclusion problem with uncontrol- 
lability that does not allow a monitor-based solution. 

may be reached by firing only uncontrollable transi- 
tions. The set of legal markings is in this case: 
M,(W,L) = M(W,L)\ 

i.e., we do not consider legal the markings that satisfy 
(W, i )  but from which a forbidden marking may be 
reached by firing only uncontrollable transitions. We 
need to introduce this restriction because a firing se- 
quence U E T: may not be prevented by a controlling 
agent. 

It is possible to prove that there may not exist 
a GMEC (W, L) such that R ( N ,  MO) r l  M ( W , i )  = 
R ( N , M o )  n M ,  w , k ) .  Thus we may have cases in 

clusion problem does not exist. 
Example 6 In the net in Figure 4, we have rep- 
resented as empty boxes the controllable transitions 
t l , t 2 , t 5 .  Assume we want to enforce a constraint 
(w’ ,k)  with w’ = (00100010 and k = 1 ,  i.e., such 

markings M1 = (2002001)T and MZ = (0220001)T are 
in M,(w’,k), but M = ( l l l l O O 1 ) T  = (MI + M 2 ) / 2  is 
not. Thus, there does not exist a GMEC (W,;) such 

The example shows that in presence of uncontrol- 
lable transitions, a problem of mutual exclusion is 
transformed into a more general forbidden marking 
problem, which is a qualitatively different problem, in 
the sense that it may not always be solved with the 
same techniques used in the case that all transitions 
are controllable. Note, however, that for safe and con- 
servative systems the result of Theorem 2 ensures that, 
even if some transitions are not controllable, (w’ ,k)  
may be enforced by a set of monitors. 

I 3 M ’ ~ M ( W , L ) , M [ u ) M ’ A a E T : } ,  

which a monitor- (b- ased solution to a given mutual ex- 

that M(p5)  + M ( n )  _< 1. IT s is easy to see that the 

that R(N,  MO) n M(W,  i) = R ( N ,  MO) n Me($ ,  k). 

VI. CONCLUSIONS 

We have presented and studied a class of specifica- 
tions, called generalized mutual exclusion constraints. 
These specifications may be easily enforced on a net 
system where all transitions are controllable, by a set 
of places called monitors. Unfortunately, we have 
shown that this technique is not always applicable 

when some of the transitions of the net are uncon- 
trollable. 

For safe and conservative nets, we have proved that 
GMEC are equivalent to a forbidden marking specifi- 
cation and may always be enforced by monitors, even 
in the presence of uncontrollable transitions. 

Future work will focus on the structure of the su- 
pervisors capable of enforcing GMEC on nets with un- 
controllable transitions. 
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