Formal languages

Discrete Event Systems and Supervisory Control

Prof. Gianmaria De TOMmAsI
Email: detommas@unina.it

March 2021

1 Formal languages

- Definitions
- Operations on languages

Alphabet and words

■ Given a DES, the events that may occur can be seen as elements (symbols) of an alphabet E set

$$
E=\{a, b, c, \ldots\}
$$

where the symbols a, b, c, \ldots are used to denotes events
■ A word (string, trace) w is a sequence of event of finite length
Example: $w=e^{1} e^{2} e^{3}=a a b$
■ $|w|$ denotes the length of a word is denoted (some authors use $\|w\|$)
$\square \varepsilon$ denotes the empty word or silent event, i.e. $|\varepsilon|=0$

Languages

■ A language L defined over an alphabet E is a set of words defined on the symbols of E
■ The cardinality of a language L can be either finite or infinite
■ Being $E=\{a, b, c\}$

- $L_{1}=\{\varepsilon, a, a b b\}$
- $L_{2}=\{$ all words that starts with the event $a\}$
- $L_{3}=\{\varepsilon, b, b, b a b\}$

Concatenation of strings

- The key operation among words is the concatenation
- The concatenation of two words w_{1} and w_{2} is the new string w consisting of the events in w_{1} immediately followed by the events in w_{2}, and it is denoted $w=w_{1} w_{2}$
■ In general, if $u=w_{1} w_{2}$ and $v=w_{2} w_{1}$ it does not necessarily follows that $u=v \rightarrow$ concatenation is not commutative
- The empty word ε is the identity element of concatenation, i.e. $w \varepsilon=\varepsilon W=W$
■ Given a word $w=$ tuv the following terminology is adopted
$\square t$ is called prefix of w
- u is called substring of w
- v is called suffix of w

Kleene closure of E

■ The Kleene closure of an alphabet E is the set of all the finite-length words defined on the elements of E and is denoted with E^{*}
■ The empty word ε is always contained in E^{*}
■ Example:

- $E=\{\alpha, \beta\}$
- $E^{*}=\{\varepsilon, \alpha, \beta, \alpha \alpha, \alpha \beta, \beta \alpha, \beta \beta, \alpha \alpha \alpha, \ldots\}$

■ E^{*} contains every possible language L defined on the symbols of E

Set operations

■ Being sets, all the set operations are defined also on languages:
union $L_{1} \cup L_{2}$

- intersection $L_{1} \cap L_{2}$
difference $L_{1} \backslash L_{2}$
- complement with respect to $E^{*} E^{*} \backslash L$

■ Language specific operations are

- Concatenation (of languages)
- Prefix-closure
- Kleen-closure

Concatenation of languages

Given two languages $L_{a}, L_{b} \subseteq E^{*}$, the concatenation $L_{a} L_{b}$ is

$$
L_{a} L_{b}:=\left\{w \in E^{*}: w=w_{a} w_{b} \text { with } w_{a} \in L_{a}, w_{b} \in L_{b}\right\}
$$

Prefix-closure

■ Let $L \subseteq E^{*}$, its prefix-closure is

$$
\bar{L}:=\left\{w \in E^{*}: \exists t \in E^{*} \text { such that } w t \in L\right\}
$$

■ It is always $L \subseteq \bar{L}$
■ L is said to be prefix-closed if $L=\bar{L}$

Kleene-closure

■ Let $L \subseteq E^{*}$, its Kleene-closure is

$$
L^{*}:=\{\varepsilon\} \cup L \cup L L \cup L L L \cup \ldots
$$

■ The Kleene-closure is idempotent, i.e. $\left(L^{*}\right)^{*}=L^{*}$

Operator precedence

■ Closures comes first. . .
■ . . .then concatenations. . .
■ . . .finally set operators

Operator precedence

- Closures comes first. . .

■ . . .then concatenations. . .
■ . . .finally set operators
■ unless there are brackets

Special cases

■ Always remember that $\varepsilon \neq \emptyset$

- If $L=\emptyset \Rightarrow \bar{L}=\emptyset$

■ If $L \neq \emptyset \Rightarrow \varepsilon \in \bar{L}$
■ $\emptyset^{*}=\{\varepsilon\}$
■ $\{\varepsilon\}^{*}=\{\varepsilon\}$

Formal languages

Discrete Event Systems and Supervisory Control

Prof. Gianmaria De Tomması
Email: detommas@unina.it
March 2021

